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MODELING AND SIMULATION WITH OPERATOR SCALING:

EXTENDED VERSION WITH ADDITIONAL EXAMPLES

SERGE COHEN, MARK M. MEERSCHAERT, AND JAN ROSIŃSKI

Abstract. Self-similar processes are useful models for natural systems that exhibit
scaling. Operator scaling allows a different scale factor in each coordinate. This paper
develops practical methods for modeling and simulation. A simulation method is devel-
oped for operator scaling Lévy processes, based on a series representation, along with a
Gaussian approximation of the small jumps. Several examples are given to illustrate the
range of practical applications. A complete characterization of symmetries is given in two
dimensions, for any exponent and spectral measure, to inform the choice of these model
parameters. The paper concludes with some extensions to general operator self-similar
processes.

1. Introduction

Self-similar processes form an important and useful class, favored in practical applica-
tions for their nice scaling properties, see for example the recent books of Embrechts and
Maejima [10] and Sheluhin et al. [50]. The subject was popularized by Mandelbrot [26];
see [1] for additional applications to electrical engineering, image processing, computer
network traffic, finance, and astrophysics. Recall that a stochastic process X = {X(t)}t≥0

taking values in R
d is self-similar if

(1.1) {X(ct)}t≥0
fd
= {cβX(t)}t≥0

at every scale c > 0. Here
fd
= indicates equality of finite dimensional distributions, and

we assume X is stochastically continuous with X(0) = 0. The parameter β > 0 is often
called the Hurst index [15]. Operator self-similar processes allow the scaling factor (Hurst
index) to vary with the coordinate. Therefore, a process X as above is said to be operator
self-similar (o.s.s.) if there exists a linear operator B ∈ GL(Rd) (i.e., an invertible d× d
matrix) such that

(1.2) {X(ct)}t≥0
fd
=
{

cBX(t)
}

t≥0
,

for all c > 0, where the matrix power cB := exp(B log c). The linear operator B in (1.2)
is called an exponent of the operator self-similar process X. If B = βI for some β > 0,
then X is self-similar. If B is diagonal, then the marginals of X are self-similar, and the
Hurst index can vary with the coordinate. This is important in modeling many real world
phenomena.
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Park and Cushman [38] use an operator self-similar model for anomalous dispersion
in porous media, and develop the associated Fokker-Planck equations for the motion of
individual particles. Because the porous medium is not isotropic, the scaling properties
vary with direction, see also [31, 51]. Molz et al. [37] discuss connections to the multi-
scaling structure of natural aquifers. Rachev and Mittnik [41] show that the scaling
index will vary between elements of a portfolio containing different stocks. Similar results
were obtained in [33] for exchange rates. Jansen and de Vries [13] use these models to
explain the 1987 stock market crash, see also Loretan and Phillips [21]. In tick-by-tick
analysis of financial data, it is useful to consider the waiting time between trades and
the resulting price change as a two dimensional random vector. Scalas et al. [35, 49]
show that different indices apply to price jumps and waiting times. Park and Cushman
[38] employ an operator self-similar model for the chaotic dynamics of self-motile colloid
particles at the microscale, where the sample paths trace the movements of individual
microbes. Results and further references on o.s.s. processes can be found in [10, Chapter
9] and [30, Chapter 11], see also the pioneering work of Hudson and Mason [14].

The main goal of this paper is to provide practitioners with the necessary tools for
building models with operator scaling. We focus on operator self-similar Lévy processes, a
type of operator stable process. Section 2 describes this class, with an emphasis on param-
eterization. An operator self-similar Lévy process has two parameters: a matrix exponent;
and a spectral measure. Roughly speaking, the exponent determines the scaling, and the
spectral measure codes dependence between the different coordinates. Section 3 presents
a method for simulating sample paths, based on a shot noise representation. A Gaussian
approximation of the small jumps accelerates convergence of the method. Theorem 3.1
justifies this method, and provides error bounds. The simulation algorithm facilitates nu-
merical experiments to validate the model, once parameters are chosen. Section 4 presents
a number of examples to illustrate the broad range of applications. These examples also
highlight the effect of the exponent and spectral measure on sample path behavior, to
provide a basis for choosing those parameters in practical applications. Section 5 shows
how the exponent and spectral measure interact to determine the symmetries. Symmetry
is an important modeling consideration, and a useful guide to model selection. Theorem
5.1 provides a complete classification of the possible symmetry groups in two dimensions,
in terms of the exponent. Theorem 5.2 shows how the exponent interacts with the spec-
tral measure to determine the symmetries, and then Remark 5.3 shows how to explicitly
construct an operator self-similar Lévy process with any given exponent and any admis-
sible symmetry group, by selecting the appropriate spectral measure. Finally, Section 6
provides some extensions to general operator self-similar processes.

2. Operator stable processes

This section recalls some basic facts about operator stable Lévy processes, with an
emphasis on parameterization. An operator stable Lévy process evolves in a d-dimensional
vector space. It has two parameters: a linear operator defined by a d × d matrix, called
an exponent; and a finite measure on the d− 1 dimensional unit sphere, called a spectral
measure. Roughly speaking, the exponent determines the scaling, and the spectral measure
codes dependence between the d different coordinate processes.
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We say that a Lévy process X = {X(t)}t≥0 taking values in R
d is operator stable with

exponent B ∈ GL(Rd) if for every t > 0 there exists a vector b(t) ∈ R
d such that

(2.1) X(t)
d
= tBX(1) + b(t)

where
d
= means equal in distribution. We say that X is strictly operator stable when

b(t) = 0 for all t > 0. A Lévy process is operator self-similar if and only if it is strictly
operator stable, in which case the exponents coincide [14, Theorem 7]. In general, if X is
operator stable and 1 is not an eigenvalue of the exponent B, then there exists a vector
a such that {X(t) − at}t≥0 is strictly operator stable; a complete description of strictly
operator stable processes is given by Sato [47]. Henceforth we will always assume that the
infinitely divisible distribution µ = L(X(1)) is full dimensional, i.e., not supported on a
lower dimensional hyperplane. The distributional properties of µ determine those of X.
Indeed, two Lévy processes X and Y have the same finite dimensional distributions if and
only if X(1) and Y (1) are identically distributed.

A comprehensive introduction to operator stable laws can be found in the monographs
[17] and [30]. The necessary and sufficient condition for a d×d matrix B to be an exponent
of a full operator stable law is that all the roots of the minimal polynomial of B have real
parts greater than or equal to 1/2, and all the roots with real part equal to 1/2 are simple,
see [17, Theorem 4.6.12]. In this work we will assume that the operator stable law µ has
no Gaussian component, so that all the roots of the minimal polynomial of B have real
parts greater than 1/2. Since the operator stable law µ is infinitely divisible, with no
Gaussian component, its characteristic function can be expressed in terms of the Lévy
representation

(2.2) log Eei〈y,X(1)〉 = i〈y, x0〉 +

∫

Rd

(ei〈y,x〉 − 1 − i〈y, x〉1{‖x‖≤1}) ν(dx).

See, e.g., [30, Theorem 3.1.11]. Since µ is full, the smallest linear space supporting the
Lévy measure ν is R

d [30, Proposition 3.1.20].
Next we define the spectral measure. For a given exponent B, consider a norm ‖ · ‖B

on R
d satisfying the following conditions

(i) for each x ∈ R
d, x 6= 0, the map t 7→ ‖tBx‖B is strictly increasing in t > 0,

(ii) the map (t, x) 7→ tBx from (0,∞) × SB onto R
d \ {0} is a homeomorphism,

where SB =
{

x ∈ R
d : ‖x‖B = 1

}

is the unit sphere with respect to ‖ · ‖B . There are
many ways of constructing such norms. For example, Jurek and Mason [17, Proposition
4.3.4] propose

(2.3) ‖x‖B =

(
∫ 1

0
‖sBx‖ps−1 ds

)1/p

where 1 ≤ p < ∞ and ‖ · ‖ is any norm on R
d. If the matrix B is in Jordan form,

then Meerschaert and Scheffler [30, Remark 6.1.6] observe that the function t 7→ ‖tBx‖ is
regularly varying for any x 6= 0. Then it can be shown that t 7→ ‖tBx‖B is both strictly
increasing, and regularly varying. If B is in Jordan form, with no nilpotent part, then
the Euclidean norm satisfies conditions (i) and (ii). Also, if B is in Jordan form on R

2,
then it is easy to check that the Euclidean norm satisfies conditions (i) and (ii). Under
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conditions (i)-(ii) we have the polar decomposition

(2.4) ν(E) =

∫

SB

∫ ∞

0
1E(sBu)s−2 dsλ(du),

where λ is a finite Borel measure on SB called the spectral measure of µ. The spectral
measure is given by

(2.5) λ(F ) = ν({x : x = tBu, for some (t, u) ∈ [1,∞) × F})
and then it follows from (2.4) and (2.5) that the spectral measure λ is uniquely determined
for a given Lévy measure ν, exponent B, and norm ‖x‖B . The choice of ‖ · ‖B is a matter
of convenience. For example, if B is in Jordan form, then the Euclidean norm ‖ · ‖ is a
natural choice for ‖ · ‖B . Once the coordinate system and norm are fixed, the exponent
B and the spectral measure λ determine the operator stable Lévy process, up to a drift
term determined by the vector x0 in (2.2).

3. Accelerated series representation

This section develops an efficient simulation algorithm for operator stable Lévy pro-
cesses. The main technical advantage of the method is that the large jumps are exactly
reproduced, at exactly the correct time points. Let X = {X(t)}t≥0 be a proper operator
stable Lévy process with exponent B, spectral measure λ, no Gaussian component, and
characteristic function defined by (2.2) and (2.4). Our simulation algorithm is based on a
series representation [44]: For any fixed T > 0,

(3.1) X(t) =
∞
∑

j=1

{

1(0, t](τj)

(

Γj
Tλ(SB)

)−B

vj −
t

T
cj

}

, t ∈ [0, T ],

where {τj} is an iid sequence of uniform on [0, T ] random variables, {Γj} forms a Poisson
point process on (0,∞) with the Lebesgue intensity measure, {vj} is an iid sequence on
SB with the common distribution λ/λ(SB), and

(3.2) cj =

∫ j

j−1

∫

‖x‖≤1
xσr(dx) dr,

with

(3.3) σr(A) = P

(

(

r

Tλ(SB)

)−B

v1 ∈ A
)

(see [45, Eq. (5.6)]). The random sequences {τj}, {Γj}, and {vj} are independent. The
series (3.1) converges pathwise uniformly on [0, T ] with probability one, see [45, Theorem
5.1]. This series expansion falls into a general category of shot noise representations and
is a consequence of the polar decomposition (2.4), see remark following [44, Corollary 4.4].

In order to accelerate convergence, the small jumps in (3.1) can be approximated by
a Brownian motion [8]. The Gaussian approximation of small jumps allows a fast and
accurate simulation of sample paths. Fix ǫ ∈ (0, 1] and define Nǫ = {N ǫ(t)}t∈[0,T ] by

(3.4) N ǫ(t) =
∑

Γj≤Tλ(SB)/ǫ

I(0, t](τj)

(

Γj
Tλ(SB)

)−B

vj.
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It is elementary to check that Nǫ is a compound Poisson process with characteristic
function

E exp i〈y,N ǫ(t)〉 = exp

{

t

∫

SB

∫ ∞

ǫ
(ei〈y,s

Bu〉 − 1)s−2 dsλ(du)

}

.

To see this: Observe that the number of terms Mǫ in the sum (3.4) is Poisson with
mean θǫ = Tλ(SB)/ǫ; condition on Mǫ = n in the characteristic function, noting that
(Γ1/θǫ, . . . ,Γn/θǫ) is equal in distribution to the vector of order statistics from n IID stan-
dard uniform random variables; permute the order statistics; and rewrite the characteristic
function as an integral. Thus Nǫ has the Lévy measure

νǫ(A) =

∫

SB

∫ ∞

ǫ
1A(sBu)s−2 dsλ(du).

The remainder

(3.5) Rǫ(t) = X(t) −N ǫ(t),

is a Lévy process independent of Nǫ and Rǫ(1) has Lévy measure νǫ of bounded support
given by

(3.6) νǫ(A) =

∫

SB

∫ ǫ

0
1A(sBu)s−2 dsλ(du).

Therefore, all moments of Rǫ(1) are finite. A straightforward computation shows that

(3.7) aǫ := ERǫ(1) =

∫

‖x‖>1
x νǫ(dx) −

∫

‖x‖≤1
x νǫ(dx).

Then we have

X(t) = taǫ +N ǫ(t) + {Rǫ(t) − E[Rǫ(t)]}.
Theorem 3.1 will show that, under certain matrix scaling, the last term Rǫ(t)−E[Rǫ(t)]

converges to a standard Brownian motion in R
d. Thus, any operator stable Lévy process

can be faithfully approximated by the sum of two independent component processes, a
compound Poisson and a Brownian motion with drift. The matrix scaling depends on the
covariance matrix Σǫ of Rǫ(1): A simple computation (see [8, Eq. (2.3)]) yields

Σǫ = E

[

(Rǫ(1) − E[Rǫ(1)])(Rǫ(1) − E[Rǫ(1)])
⊤
]

=

∫

SB

∫ ǫ

0
(sBu)(sBu)⊤ s−2 dsλ(du) =

∫ ǫ

0
sBΛ(sB)⊤ s−2ds,

(3.8)

where Λ is given by

(3.9) Λ =

∫

SB

uu⊤ λ(du).

Recall from Section 2 that, since X has no Gaussian component,

(3.10) b∗ := min{b1, . . . , bd} >
1

2
,

where b1, . . . , bd are the real parts of the eigenvalues of B.
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Theorem 3.1. Let X be an operator stable Lévy process with exponent B and spectral
measure λ such that

(3.11) linB(supp λ) = R
d,

where linB(suppλ) denotes the smallest B-invariant subspace of R
d containing the support

of λ. Fix T > 0 and let Nǫ be as in (3.4), W be a standard Brownian motion in R
d

independent of Nǫ, and aǫ = {aǫt}t≥0 be a drift determined by (3.7). Define

(3.12) Aǫ = ǫ−1/2ǫBΣ
1/2
1

where Σ1 is given by (3.8) with ǫ = 1.
Then, for every ǫ ∈ (0, 1] there exists a cádlág process Yǫ such that on [0, T ]

(3.13) X
fd
= aǫ +AǫW + Nǫ + Yǫ

in the sense of equality of finite dimensional distributions and such that for every δ > 0

(3.14) ǫ1/2−b∗+δ sup
t∈[0,T ]

‖Yǫ(t)‖ P−→ 0 as ǫ→ 0

where b∗ is given by (3.10).

Proof. The proof is an application of Theorem 3.1 in [8] (see also Freedman [11]). That
theorem requires Σǫ to be nonsingular for all ǫ > 0. In view of the scaling

(3.15) Σǫ = ǫ−1

∫ 1

0
(ǫ r)BΛ((ǫ r)B)⊤ r−2dr = ǫ−1ǫBΣ1(ǫ

B)⊤

it suffices to show that Σ1 is nonsingular when (3.11) holds. Let ν1 be the Lévy measure
(3.6) with ǫ = 1 and let

L = lin(supp ν1)

be the closed linear space spanned by supp ν1. By [8, Lemma 2.1] it suffices to show that
L = R

d. Following [17, Corollary 4.3.5] we have

suppν1 = {x : x = sBu, 0 ≤ s ≤ 1, u ∈ suppλ}.

We will show that L is B–invariant. To this end it is enough to show that if x = sBu ∈
supp ν1, for some 0 < s ≤ 1 and u ∈ suppλ, then BsBu ∈ L. For any θ ∈ (0, 1),
(θs)Bu ∈ supp ν1 so that

BsBu = lim
θր1

(θs)Bu− sBu

log θ
∈ L.

Since L is closed and B–invariant and contains the support of λ, L = R
d by (3.11). Thus

Σ1 is nonsingular.
Theorem 2.2 in [8] shows that the asymptotic normality of Rǫ(t)−E[Rǫ(t)] holds if and

only if for every κ > 0 we have

(3.16) lim
ǫ→0

∫

〈Σ−1
ǫ x,x〉>κ

〈Σ−1
ǫ x, x〉 νǫ(dx) = 0.
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Using (3.15) we have

〈Σ−1
ǫ sBu, sBu〉 = ǫ〈(ǫ−B)⊤Σ−1

1 ǫ−BsBu, sBu〉
= ǫ〈Σ−1

1 ǫ−BsBu, ǫ−BsBu〉
= ǫ〈Σ−1

1 (s/ǫ)Bu, (s/ǫ)Bu〉

Note that in general 〈Ax, x〉 ≤ ‖A‖‖x‖2 ≤ C‖A‖‖x‖2
B (for some constant C > 0, since all

norms on R
d are equivalent). Then, since t 7→ ‖tBu‖B is strictly increasing and tBx = x

when t = 1, the above bound shows that

(3.17) 〈Σ−1
ǫ sBu, sBu〉 ≤ Cǫ‖Σ−1

1 ‖‖(s/ǫ)Bu‖2
B ≤ Cǫ‖Σ−1

1 ‖,
whenever 0 < s ≤ ǫ ≤ 1 and u ∈ SB. Since Σ1 is invertible we know that c1 = C‖Σ−1

1 ‖ ∈
(0,∞). Then, for every κ > 0 and ǫ ∈ (0, 1) we have

∫

〈Σ−1
ǫ x,x〉>κ

〈Σ−1
ǫ x, x〉 νǫ(dx)

=

∫∫

{(s,u)∈(0,ǫ]×SB: 〈Σ−1
ǫ sBu,sBu〉>κ}

〈Σ−1
ǫ sBu, sBu〉 s−2 dsλ(du)

= 0

when ǫ < c−1
1 κ. Indeed, in view of (3.17) the region of integration is empty for c1ǫ < κ.

Therefore, (3.16) trivially holds.
Applying [8, Theorem 3.1] we get (3.13) and that

(3.18) sup
t∈[0,T ]

‖A−1
ǫ Yǫ(t)‖ P−→ 0 as ǫ→ 0.

It remains to show (3.14). If ‖Σ1‖ = c2 then ‖Σ1/2
1 ‖ =

√
c2. Since every eigenvalue of −B

has real part less than or equal to −b∗, [30, Proposition 2.2.11 (d)] implies that for any
δ > 0, for some c3 > 0, we have ‖t−Bx‖ ≤ c3t

−b∗+δ‖x‖ for all t ≥ 1 and all x ∈ R
d. Then

‖sB‖ ≤ c3s
b∗−δ for all s ≤ 1. Then for all 0 < ǫ ≤ 1 we have

‖Aǫ‖ ≤ ǫ−1/2‖ǫB‖ ‖Σ1/2
1 ‖ ≤ cǫ−1/2−δ+b∗ .

where c = c3
√
c2. Therefore,

‖Yǫ(t)‖ ≤ ‖Aǫ‖‖A−1
ǫ Yǫ(t)‖ ≤ cǫ−1/2−δ+b∗‖A−1

ǫ Yǫ(t)‖,
which together with (3.18) yields (3.14). The proof is complete. �

4. Simulation

This section implements the simulation method of Section 3 for sample paths of an
operator stable Lévy process {X(t)}t∈[0,T ] specified by (2.2) and (2.4). Several examples
illustrate the range of behavior possible for an operator scaling model, and illuminate the
effect of the exponent B and the spectral measure λ on the sample paths. Theorem 3.1
decomposes X into the drift aǫt, the large jumps N ǫ(t), and a Gaussian approximation of
the small jumps. This justifies the approximation

(4.1) X(t) ≈ Zǫ(t) := aǫt+AǫW (t) +N ǫ(t),
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with Aǫ given by (3.12) and W (t) a standard Brownian motion, to simulate sample paths.
The process {Zǫ(t)}t∈[0,T ] reproduces the large jumps exactly, which is its main techni-
cal advantage. The error in the Gaussian approximation of small jumps is given by the
remainder term Yǫ in (3.13), whose supremum converges to zero in probability at a poly-
nomial rate described by (3.14) as the number of large jumps increases or, equivalently,
as the size of the remaining jumps tends to zero. The discarded random jumps are all of
the form rBv where v ∈ SB and r ≤ ǫ. If B has no nilpotent part then ‖rBv‖B ≤ ǫb∗ .
Hence in order to retain all jumps larger than m it suffices to take ǫ = m1/b∗ , and then
the number of jumps simulated will be Poisson with mean m−1/b∗Tλ(SB). If there is a
nilpotent part, the bound involves additional log ǫ terms. The approximation converges
faster, as ǫ→ 0, when the real parts of the eigenvalues of B are uniformly larger. Remark
7.2.10 in [30] shows that the exponent governs the tails of an operator stable process, and
b∗ = min{b1, . . . , bd} > 1/2 determines the lightest tail, in the sense that E|〈X(t), u〉|ρ
diverges for all ρ > 1/b∗ and all u 6= 0. Hence the convergence is faster when X has heav-
ier tails. In general, an operator stable process can be decomposed into two independent
component processes, one Gaussian and another having no Gaussian component. The two
components are supported on subspaces of R

d whose intersection is trivial. In practical
applications, Theorem 3.1 is applied to the nonnormal component. In the case where X(t)
has both a normal and a nonnormal component, the resulting approximation combines a
full dimensional Brownian motion with drift, and a Poissonian component restricted to
the nonnormal subspace. For the remainder of this section, we will focus on simulating
operator stable laws on R

2 having no normal component.
In practical applications, it is advantageous to produce a simulated process whose mean

equals that of the operator stable process X(t). If every eigenvalue of the exponent B has
real part b < 1, then the mean exists, by [30, Theorem 8.2.14]. If any eigenvalue has real
part b > 1 then the mean is undefined. In the former case, one can choose aǫ so that the
right-hand side in (4.1) has mean zero. Recall that the number of terms Mǫ in the sum
(3.4) defining N ǫ(t) is Poisson with mean θǫ = Tλ(SB)/ǫ, and that conditional on Mǫ = n,
(Γ1/θǫ, . . . ,Γn/θǫ) is equal in distribution to the vector of order statistics from n IID stan-
dard uniform random variables. Condition to get E[N ǫ(t)|Mǫ = n] = n(t/T )E[(ǫU)−B ]E[v]
where U is standard uniform and v has distribution λ/λ(SB). Remove the condition and
simplify to get

(4.2) E[N ǫ(t)] = tλ(SB)ǫB−I
E[U−B ]E[v].

Since E[W (t)] = 0 we can set aǫt = −E[N ǫ(t)] to get mean zero. Note that for such B we
have ‖ǫB−Ix‖ → ∞ for all x 6= 0 by [30, Theorem 2.2.4], so that ‖aǫ‖ → ∞ as ǫ→ 0. This
reflects the fact that, in the finite mean case, the infinite series (3.1) does not converge
without centering. Finally we note that, if E[v] = 0, then no centering is necessary.

In this section, we assume a fixed coordinate system on R
2 with the standard coordinate

vectors e1 = [1, 0]⊤ and e2 = [0, 1]⊤, and we write X(t) = X1(t)e1 +X2(t)e2. Recall that
a strictly operator stable process satisfies the scaling relationship

(4.3) X(t)
d
= tBX(1)

for all t > 0. All plots in this section use T = 1 and ǫ = 0.001, and we show the
simulated processes at the time points t = n∆t for 0 ≤ t ≤ T with ∆t = 0.001. Unless
otherwise noted, we use the standard Euclidean norm. Computer codes are available from
the authors.
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Figure 1. Simulated operator stable process for Example 4.1, with a di-
agonal exponent and a discrete spectral measure. Top left panel shows the
sample path of the shot noise process N ǫ(t), and top right panel shows the
corresponding operator stable process X(t). Bottom left panel shows the
marginal process X1(t), and bottom right panel shows X2(t).

Example 4.1. This simple example has a diagonal exponent and a discrete spectral
measure. Equation (4.1) was used to simulate an operator stable process X(t) whose
exponent is diagonal

B =

[

1/1.8 0
0 1/1.5

]

= diag(b1, b2)

so that Bei = biei with b1 = 1/1.8 and b2 = 1/1.5. Were we to take b2 = b1, this would be
a stable process. Since the exponent is already in Jordan form, we can take ‖x‖B to be
the usual Euclidean norm, so that SB is the unit circle. We choose the spectral measure
λ to place equal masses of 1/4 at the four points ±e1 and ±e2. Then E[v] = 0 in (4.2) so
that no centering is needed, as the simulated process has mean zero without any centering.
Then Λ = diag(1/2, 1/2), Σ1 = diag(9/2, 3/2), and Aǫ = diag(3

√
5 3
√

10/10,
√

15/10). It is
easy to see from the definition tB = I+B log t+(B log t)2/2!+ · · · that tB = diag(tb1 , tb2).
From the scaling relation (4.3) it follows that

Xi(t)
d
= tbiXi(1).
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Figure 2. Simulated operator stable process for Example 4.2, with inde-
pendent skewed stable marginals. Top left panel shows the sample path of
the shot noise process N ǫ(t), and top right panel shows the corresponding
operator stable process X(t). Bottom panels show the marginal processes
X1(t) and X2(t).

Hence the coordinate marginals are (strictly) stable with index α1 = 1/b1 = 1.8 and
α2 = 1.5, respectively. The top right panel in Figure 1 shows a typical sample path of the
process, an irregular meandering curve punctuated by occasional large jumps. The top left
panel shows the corresponding shot noise part N ǫ(t) before the Gaussian approximation
of the small jumps is added. Since the spectral measure is concentrated on the coordinate
axes, the large jumps are all either horizontal or vertical. Pruitt and Taylor [40] showed
that the Hausdorff dimension of the sample path is max{α1, α2} = 1.8 with probability
one. A comparison of the two top panels in Figure 1 shows the importance of small jumps
for the “roughness” of the sample paths, which is the practical meaning of the Hausdorff
dimension. The bottom panels in Figure 1 graph each marginal process. Lemma 2.3 in
Meerschaert and Scheffler [29] shows that these coordinate marginals X1(t) and X2(t) are
independent stable processes. Note that the large jumps occur at different times, reflecting
the independence of the marginals. Blumenthal and Getoor [6] showed that the graph of
the stable process Xi(t) has Hausdorff dimension 2 − 1/αi. The bottom left graph is
“rougher” due to its higher dimension. Modifying the spectral measure in this example
can introduce skewness, and/or dependence between the marginals.

Example 4.2. The same exponent B is used as in Example 4.1, but now we take the
spectral measure λ(ei) = 1/2. The matrices Λ and Aǫ turn out to be the same as Example
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Figure 3. Simulated operator stable process for Example 4.3, with a di-
agonal exponent and a continuous spectral measure. Top panel shows the
sample path of the operator stable process. Bottom panels show the mar-
ginal processes.

4.1. The marginals Xi(t) are still stable with index α1 = 1.8 and α2 = 1.5, but they
are no longer symmetric, and we center to zero expectation. From (4.2) we get aǫ =
[45 3

√
10/4, 15]⊤ to compensate the shot noise portion to mean zero. Figure 2 shows a

typical sample path and component graphs for this process. Since the spectral measure is
concentrated on the positive coordinate axes, the large jumps apparent in the component
graphs are all positive.

Example 4.3. This example illustrates the effect of a continuous spectral measure. We
use the same exponent B as in Example 4.1, but now we take the spectral measure λ to
be uniformly distributed on the unit circle: set v = (x2 + y2)−1/2[x, y]⊤ where x, y are
independent standard normal. The matrices Λ and Aǫ turn out to be the same as Example
4.1. Since E[v] = 0, no centering is needed. The marginals Xi(t) are symmetric stable
with index α1 = 1.8 and α2 = 1.5, but they are no longer independent. The top panel in
Figure 3 shows a typical sample path of the process. Since the spectral measure is uniform,
the large jumps apparent in the sample path take a random orientation. Theorem 3.2 in
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Figure 4. Simulated operator stable sample path for Example 4.4, a
model of contaminant transport in fractured rock. The exponent has two
distinct real eigenvalues, and the discrete spectral measure is concentrated
on the eigenvector coordinates.

Meerschaert and Xiao [34] shows that the sample path is a random fractal, a set whose
Hausdorff and packing dimension are both equal to 1.8 with probability one. The bottom
panels in Figure 3 show the graphs of each marginal process. Note that the large jumps in
both marginals are simultaneous, reflecting the dependence. An asymmetric continuous
spectral measure can represent preferential directions for large jumps, see Reeves et al.
[43, Section 3.5] for an illustration.

Example 4.4. Figure 2 of Zhang et al. [51] represents a model of contaminant transport
in fractured rock. Pollution particles travel along fractures in the rock, which form at
specific angles due to the geological structure of the rock matrix. An operator stable
process X(t) represents the path of a pollution particle, with independent skewed stable
components in the fracture directions. The skewness derives from the fact that particles
jump forward (downstream) when mobilized by water that flows through the fractured
rock. The two components of X(t) are skewed stable with index α = 1.3 on the line
with angle θ1 = 30◦ measured from the positive e1 axes as usual, and index 1.7 on the
line with angle θ2 = −35◦. The e1 axis represents the overall direction of flow, caused
by a differential in hydraulic head (pressure caused by water depth). The exponent B
has one eigenvalue b1 = 1/1.3 with associated eigenvector v1 = Rθ1e1 = [.865, .500]⊤ , and
another eigenvalue b2 = 1/1.7 with associated eigenvector v2 = Rθ2e1 = [.820,−.572]⊤ .
The spectral measure is specified as λ(v1) = 0.4 and λ(v2) = 0.6, representing the relative
fraction of jumps along each fracture direction. In order to compute the matrix power tB
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a change of basis is useful. Define the matrix P according to Pei = vi so that

P =

[

.865 .820

.500 −.572

]

and D = P−1BP = diag(b1, b2) is a diagonal matrix. Then the exponent

B = PDP−1 =

[

.688 .142

.057 .671

]

.

From (3.9) we get

Λ =

[

.703 −.109
−.109 .297

]

.

Since tD = diag(tb1 , tb2) we can compute tB = PtDP−1 and integrate in (3.8) to get the
Gaussian covariance matrix Σǫ whose symmetric square root is given by

Aǫ =

[

0.723 −0.416

−0.416 0.407

]

To compute the square root, we decompose Σǫ = QEQ−1 where E = diag(c1, c2), ci are
the eigenvalues of Σǫ, and the columns of Q are the corresponding eigenvectors, so that

Aǫ = QE1/2Q−1 where E1/2 = diag(c
1/2
1 , c

1/2
2 ). From (4.2) we get aǫ = [27.9,−10.1]⊤

to compensate the shot noise portion to mean zero. Note that B⊤ui = biui where u1 =
[.572, .820]⊤ and u2 = [.500,−.865]⊤ are the dual basis vectors. Then each projection
〈X(t), ui〉 is (strictly) stable with index αi = 1/bi, since

〈X(t), ui〉 d
= 〈tBX(1), ui〉 = 〈X(1), tB

⊤

ui〉 = 〈X(1), tbiui〉 = tbi〈X(1), ui〉.
Hence .572X1(t) + .820X2(t) is stable with index α1 = 1.3 and .500X1(t) − .865X2(t) is
stable with index α2 = 1.7. Lemma 2.3 in [29] shows that these two skewed stable processes
are independent, since the spectral measure is concentrated on the eigenvector coordinate
axes 〈x, vi〉 = 0. The sample path in Figure 4 illustrates the dispersion of a typical
pollution particle away from the center of mass of the contaminant plume. Dispersion is
the spreading of particles due to variations in velocity, and it is the main cause of plume
spreading in ground water hydrology. In this application, the mean zero operator stable
process X(t) represents particle location in a moving coordinate system, with origin at
the plume center of mass. Note that the large jumps lie in the fracture directions vi. The
coordinate marginals Xi(t) in this example are not stable, and they are not independent.
Variations on this example are discussed in Zhang et al. [51] and Reeves et al. [43], in
which the spectral measure is modified to code different flow geometries.

Example 4.5. We simulate an operator stable process X(t) whose exponent has a nilpo-
tent part

B =

[

1/1.5 0
q 1/1.5

]

for some q > 0. Note that if q = 0 this reduces to a stable process with index α = 1.5.
We choose the spectral measure λ to place equal masses of 1/4 at the four points ±e1 and
±e2. Then E[v] = 0 in (4.2) so that no centering is needed. Here Λ = diag(1/2, 1/2),

Σ1 =

[

3/2 −9q/2
−9q/2 (3 + 54q2)/2

]
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Figure 5. Simulated operator stable sample path for Example 4.5. The
exponent has a nilpotent part, and the discrete spectral measure is concen-
trated on the coordinate axes.

and, in the case q = 1,

Aǫ =

[

0.146 −0.359

−0.359 4.009

]

.

Note that tB = tbtN where b = 1/1.5 and

tN =

[

1 0
q log t 1

]

.

From (4.3) it follows that the second marginal X2(t) is symmetric stable with index α =
1/b = 1.5. The first marginal is not stable, but it lies in the domain of attraction of a
symmetric stable with index α = 1.5, see [27, Theorem 2]. Figure 5 shows a typical sample
path of the process in the case q = 1. The large jumps apparent in the sample path of
Figure 5 are all of the form tBv where v = ±ei and t > 0. Hence they are either vertical,
or they lie on the curved orbits ±tBe1. Theorem 3.2 in [34] shows that the sample path
is almost surely a random fractal with dimension 1.5. Lemma 2.3 in [29] shows that the
coordinates X1(t) and X2(t) are not independent.

Example 4.6. We simulate an operator stable process X(t) whose exponent

B =

[

1/1.5 1
−1 1/1.5

]

has complex eigenvalues b± i with b = 1/1.5. We choose the spectral measure λ to place
equal masses of 1/4 at the four points ±e1 and ±e2, so that E[v] = 0 in (4.2) and no
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Figure 6. Simulated operator stable sample path for Example 4.6, whose
exponent has complex eigenvalues.

centering is needed. Here Λ = diag(1/2, 1/2), and

Aǫ =

[

0.387 0.0

0.0 0.387

]

.

In this case, tB = tbRθ(t) with θ(t) = ln t, since we can write B = bI+K where the matrix
exponential exp(sK) = Rs. The coordinate marginals X1(t) and X2(t) are not stable, but
they are both semistable with index α = 1/b = 1.5, see [27, Theorem 2]. Lemma 2.3 in
[29] shows they are not independent. Figure 6 shows a typical sample path of the process.
The large random jumps are of the form tBv where v = ±ei, so that the angle varies along
with the length of the jump. The sample path is a fractal with dimension 1.5, see [34,
Theorem 3.2].

Example 4.7. Figure 1 in Zhang et al. [51] presents an operator stable model X(t) with
diagonal exponent

B =

[

1/1.5 0
0 1/1.9

]

and spectral measure λ that places masses of 0.3 at e1, 0.2 at ±6◦, 0.1 at ±12◦, and 0.05
at ±18◦ on the unit sphere in the standard Euclidean norm. Large jumps are along the
positive x-axis, or along the orbits tBu where u is a unit vector at ±6◦, ±12◦, or ±18◦,
representing displacements of a pollutant particle in an underground aquifer with a mean
flow in the positive x direction, but some dispersion due to the intervening porous medium.
The average plume velocity is v = [10, 0]⊤ so that E[X(t)] = tv. Figure 7 depicts the path
of a typical particle. Here

Λ =

[

0.977 0.0

0.0 0.0226

]
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Figure 7. Simulated operator stable process for Example 4.7, modeling a
pollution particle moving through underground water in a heterogeneous
porous medium consisting of sand, gravel, and clay. Left panel depicts the
sample path of a moving particle. Right panel shows the coordinate
marginals.
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Figure 8. Simulated operator stable sample path for Example 4.8, mod-
eling the motion of a pollution particle moving through water in fractured
rock. The mean zero sample path represents deviation from the plume
center of mass.

and

Aǫ =

[

0.541 0.0

0.0 0.546

]

.

From (4.2) we compute aǫ = [29.7, 0]⊤ and, in the simulation code, we first center to mean
zero, and then add the mean velocity.
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Example 4.8. This example follows the transport model number 22 for contaminant
transport in complex fracture networks from Reeves et al. [43]. The exponent B has
eigenvectors v1 = [

√
2/2,

√
2/2]⊤ and v2 = [

√
2/2,−

√
2/2]⊤ at +45◦ and −45◦ on the unit

circle with eigenvalues b1 = 1/1.1 and b2 = 1/1.2 respectively. Writing Pei = vi we get
D = P−1BP = diag(b1, b2) so that

B = PDP−1 =

[

115/132 5/132

5/132 115/132

]

Since tD = diag(tb1 , tb2) we also have

tB = PtDP−1 =

[

(tb1 + tb2)/2 (tb1 − tb2)/2

(tb1 − tb2)/2 (tb1 + tb2)/2

]

The spectral measure has weights 0.4 and ±45◦ and 0.2 at e2. The Lévy measure is
concentrated on the two straight line orbits {tBvi : t > 0} and on the curved orbit
{tBe2 : t > 0}. Marginals 〈X(t), vi〉 are stable with index α1 = 1.1 and α2 = 1.2
respectively, but they are not independent, since the spectral measure is not concentrated
on the eigenvector axes. The first marginal process 〈X(t), v1〉 is positively skewed, since
the projection of the Lévy measure onto the first eigenvector coordinate places all mass on
the positive half line. The second marginal 〈X(t), v2〉 is the sum of two independent stable
processes, one with positive skewness resulting from the v2 orbit, and one with negative
skewness resulting from the projection of the e2 orbit onto the negative v2 axis. As in
Example 4.4 we compute Λ = diag(0.4, 0.6) and

Aǫ =

[

0.0603 −0.0204

−0.0203 0.0723

]

.

From (4.2) we compute aǫ = [11.35, 4.43]⊤ to correct the shot noise process to mean zero.
Figure 8 shows a typical sample path. In this case, the sample path represents the growing
deviation of a typical pollution particle from the plume center of mass.

Example 4.9. This example illustrates computation of the norm (2.3) when the exponent
is not in Jordan form. The matrix

B =

[

1/1.8 1/2
0 1/1.5

]

has eigenvalue-eigenvector pairs Bvi = bivi with b1 = 1/1.8, v1 = e1, b2 = 1/1.5, and
v2 = (9/2)e1 +e2. In order to compute the matrix power tB it is advantageous to write the
Jordan form. The matrix B has eigenvalue-eigenvector pairs Bvi = bivi with b1 = 1/1.8,
v1 = [1, 0]⊤ = e1, b2 = 1/1.5, and v2 = [9/2, 1]⊤ = (9/2)e1 + e2 so that a change of basis
is useful. Define the matrix P according to Pei = vi so that

P :=

[

1 9/2
0 1

]

and P−1 =

[

1 −9/2
0 1

]

so that

D := P−1BP =

[

1/1.8 0
0 1/1.5

]
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Figure 9. Level sets of the norm ‖x‖B used in example 4.9.

is a diagonal matrix. Then

tD =

[

t1/1.8 0

0 t1/1.5

]

and since B = PDP−1 to follows from the definition tB = I +B +B2/2! + · · · that

tB =

[

t1/1.8 −(9/2)t1/1.8 + (9/2)t1/1.5

0 t1/1.5

]

We compute the norm (2.3) with p = 2: ‖x‖2
B = (9/10)x2

1 − (81/110)x1x2 + (903/880)x2
2

so that the unit sphere SB is an ellipse, whose major axis is rotated approximately 50◦

counterclockwise from the e1 direction. Figure 9 shows level sets of this norm. The spectral
measure λ places equal masses of 1/4 at each point where the unit sphere SB intersects the
coordinate axes: ±ciei where c21 = 10/9 and c22 = 880/903. Here Λ = diag(5/9, 440/903),
and

Aǫ =

[

5.209 −0.266

−0.266 0.274

]

.

The second coordinate X2(t) is symmetric stable with index α2 = 1.5, and the projection
onto the remaining eigenvector X1(t) − (9/2)X2(t) is stable with index α1 = 1.8. These
two stable marginals of X(t) are not independent, since the spectral measure is not con-
centrated on the eigenvector axes. Figure 10 shows a typical sample path for this process.
The large jumps of the process are all of the form tBv where v = ±c1e1 or v = ±c2e2,
since we have concentrated the spectral measure at these points. If v = ±c1e1 then, since
e1 is an eigenvector of B (and hence of tB), these jumps will be in the horizontal. The re-
maining jumps lie along the orbits {±tBc2e2 : t > 0}. Any exponent, with any coordinate
system and norm, can be accommodated in an operator stable model, but an exponent in
Jordan form and Euclidean geometry is the most straightforward.
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Figure 10. Operator stable sample path for example 4.9, whose exponent
B is not given in Jordan form.

5. Exponents and Symmetries in two dimensions

The examples in Section 4 illustrate the wide range of sample path behavior for an
operator stable Lévy process X in R

2 with exponent B and spectral measure λ. In
this section, we consider the important modeling issue of symmetry in the distribution
of X(t). First we classify the possible symmetries in two dimensions, in terms of the
exponent. For any operator stable law, a change of coordinates puts the exponent into
Jordan form. Theorem 5.1 shows that all symmetries are orthogonal in this coordinate
system, and then describes the possible symmetries for each exponent. Theorem 5.2 shows
how the exponent and spectral measure interact to determine the symmetries. In short,
the exponent B determines the orbits tB and, if these orbits are curved, it can break the
symmetry in the spectral measure. Finally Remark 5.3 shows how to explicitly construct a
process X with any given exponent and any admissible symmetry group, by selecting the
appropriate spectral measure. Symmetry is an important modeling consideration, and a
useful guide to model selection. In many practical applications, the natural symmetries of
the system are known, and these results can be used to calibrate the choice of parameters.

For any full dimensional probability distribution µ, the set of symmetries

(5.1) S(µ) :=
{

A ∈ GL(Rd) : Aµ = µ ∗ δx for some x ∈ R
d
}
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forms a compact subgroup of GL(Rd), see for example [5]. If the full operator stable law
µ = L(X(1)) has a large degree of symmetry, the exponent B in (1.2) is not unique. The
possible exponents are given by [17, Theorem 4.6.7]:

(5.2) E(µ) = B + TS(µ)

where B ∈ E(µ) is arbitrary. Here TS(µ) is the tangent space of S(µ) at the identity. If
S(µ) is finite, then TS(µ) = {0}, and the exponent is unique. If A ∈ S(µ) and B is an
exponent of µ, then so is A−1BA. When the exponent is unique, we must have AB = BA,
so B commutes with S(µ). The use of commuting exponents simplifies the analysis of
E(µ). Every operator stable law µ has an exponent Bc that commutes with S(µ), see [17,
Theorem 4.7.1]. If µ is operator stable with S(µ) = Od, the orthogonal group on R

d, then
Bc = βI for some β > 0 is the only commuting exponent, and µ is multivariable stable
with index 1/β. Since T (Od) = Qd is the linear space of skew symmetric matrices, we get
from (5.2) that

(5.3) E(µ) = βI + Qd.

Recall that a matrix Q is skew-symmetric if Q⊤ = −Q, where Q⊤ is the transpose of
Q. If S(µ) is an arbitrary compact subgroup of GL(Rd), then by a classical result of
algebra (see, e.g., [5, Theorem 5]) there exists a symmetric positive-definite matrix W and
a compact subgroup G of the orthogonal group Od such that

(5.4) S(µ) = W−1GW.
Then (5.2) becomes

(5.5) E(µ) = B +W−1HW,
where H is the tangent space of G.

Theorem 2 in [28] implies that a compact subgroup G of GL(Rd) can be the symmetry
group of a full dimensional probability distribution on R

d if and only if it is maximal,
meaning that G cannot be strictly contained in any other subgroup that has the same
orbits. For example, the special orthogonal group O+

d is not maximal because O+
d x = Odx

for every x ∈ R
d, and O+

d is a proper subgroup of Od. Consequently, O+
d cannot be the

symmetry group of any full dimensional probability measure on R
d. Actually Theorem 2

in [28] characterizes the strict symmetry group of µ defined by

(5.6) S0(µ) :=
{

A ∈ GL(Rd) : Aµ = µ}.
However, Theorem 5 in Billingsley [5] implies that S(µ) = S0(µ ∗ δa) for some a ∈ R

d.
Hence S(µ) must be maximal as well. Moreover, we have a relation between the symme-
tries of µ and the strict symmetries of the Lévy measure ν in (2.2):

(5.7) S(µ) = S0(ν) :=
{

A ∈ GL(Rd) : Aν = ν
}

,

which is valid for any infinitely divisible distribution without Gaussian part.
Since the real parts of the eigenvalues of B are greater than 1/2, there is a coordinate

system in which the exponent assumes one the following Jordan forms

(5.8) B0 = bI, B1 =

[

b1 0
0 b2

]

, B2 =

[

b −c
c b

]

, B3 =

[

b 0
1 b

]

where b, b1, b2 > 1/2, b1 6= b2, and c 6= 0. If B = B0, then X is a multivariable stable
process with index α = 1/b, and all maximal compact subgroups of GL(R2) are admissible
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as S(µ). A genuine operator stable Lévy process is obtained when B = Bi, i = 1, 2, 3.
Our first question is, what are possible symmetry groups?

To deal with this question, we need to review some basic facts about subgroups of the
orthogonal group O2 on R

2, which can be found, e.g, in [3]. Recall that O2 consists of
rotations and reflections,

O2 = {Rθ, Fθ : θ ∈ [0, 2π)},
where

Rθ =

[

cos θ − sin θ
sin θ cos θ

]

and Fθ =

[

cos θ sin θ
sin θ − cos θ

]

.

Rθ is a rotation counter-clockwise by θ and Fθ is a reflection through the line of angle θ/2
passing through the origin. The following rules of composition hold: Rθ1Rθ2 = Rθ1+θ2 ,
Fθ1Fθ2 = Rθ1−θ2 , Rθ1Fθ2 = Fθ1+θ2 , Fθ2Rθ1 = Fθ2−θ1 .

The group of rotations O+
2 = {Rθ : θ ∈ [0, 2π)} is the only infinite proper compact

subgroup of O2. There are also only two kinds of finite subgroups of O2 (modulo the
orthogonal conjugacy, see [3, Ch. VII.3]):

(1) Cyclic group Cn = {Rk2π/n : k = 0, . . . , n− 1}, n ≥ 1,
(2) Dihedral group Dn = {Rk2π/n, Fk2π/n : k = 0, . . . , n− 1}, n ≥ 1.

Notice that C1 = {I}, C2 = {I,−I}, D1 = {I, F0}, and D2 = {I, F0,−I,−F0}, where

F0 =

[

1 0
0 −1

]

is the reflection with respect to the x-axis. We will also need D∗
1 = {I,−F0}, the group

of reflection with respect to the y-axis, which is orthogonally conjugate to D1.
The next result characterizes the possible symmetries of the distribution of X(t) in the

truly operator stable case where B = Bi in (5.8) for some i = 1, 2, 3. In view of (2.1), the
symmetry group do not depend on t. Remarkably, once the exponent takes the Jordan
form, all symmetries must be orthogonal.

Theorem 5.1. Let X = {X(t)}t≥0 be a full operator stable Lévy processes on R
2 with an

exponent B in the Jordan form (5.8), and let µ = L(X(1)). Then the following hold.

(i) If B = B1, then S(µ) is either C1, C2, D1, D∗
1, or D2.

(ii) If B = B2, then S(µ) is either Cn, n ≥ 1, or O2.
(iii) If B = B3, then S(µ) is either C1 or C2.

Proof. Suppose that µ has an exponent B = Bi, i = 1, 2, 3, and let Bc be a commuting
exponent. If S(µ) is finite, then Bi = Bc, otherwise Bc can be different from Bi. The
symmetries S(µ) defined in (5.1) form a compact subgroup of the centralizer C(Bc),

(5.9) S(µ) ⊂ C(Bc) := {A ∈ GL(R2) : ABc = BcA}.
First consider finite symmetry groups S(µ), so that Bc = Bi. If i = 1,

C(B1) =

{[

α 0
0 β

]

: αβ 6= 0

}

,

and since S(µ) is finite (and thus compact),

S(µ) ⊂
{[

α 0
0 β

]

: |α| = |β| = 1

}

.
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Thus S(µ) is either C1, C2, D1, D∗
1, or D2, as claimed. If i = 2, then

C(B2) =

{[

α −β
β α

]

: α2 + β2 > 0

}

.

Since S(µ) is finite (and thus compact),

S(µ) ⊂
{[

α −β
β α

]

: α2 + β2 = 1

}

,

so that S(µ) = Cn, for some n ≥ 1. If i = 3,

C(B3) =

{[

α 0
β α

]

: α 6= 0, β ∈ R

}

,

and since S(µ) is finite,

S(µ) ⊂
{[

α 0
0 α

]

: |α| = 1

}

.

Thus S(µ) is either C1 or C2, as claimed.
Now we consider infinite symmetry groups S(µ), so that (5.4) holds. From (5.9),

WBcW
−1 commutes with every orthogonal transformation. Thus WBcW

−1 is a mul-
tiple of the identity matrix, which yields

(5.10) Bc = βI

Since TO2 = Q2, Bi = Bc+W
−1KW = W−1(βI+K)W for some skew symmetric matrix

K, and so Bi = γW−1RφW for some γ 6= 0 and φ ∈ [0, 2π). This equation eliminates the
cases i = 1 and i = 3 by comparing the eigenvalues on the left and right hand side. Thus
i = 2 and B2 = αRψ for some ψ ∈ (0, π) ∪ (π, 2π), from which we have

αRψ = B2 = γW−1RφW.

Comparing the determinants of both sides gives α = γ. Hence

Rψ = W−1RφW.

Since the sets of eigenvalues of both sides of this equation must be the same, φ = ψ or
φ = 2π − ψ. If φ = ψ then WRψ = RψW for ψ ∈ (0, π) ∪ (π, 2π). A direct verification
of this equation reveals that W = κRτ is a multiple of a rotation. (In fact, W is a scalar
multiple of the identity, since it is also symmetric and positive definite.) Therefore,

S(µ) = (κRτ )
−1O2κRτ = O2,

as claimed. If φ = 2π − ψ, then

Rψ = W−1R2π−ψW = W−1F0FψW = W−1F0RψF0W

or

(F0W )Rψ = Rψ(F0W ).

By the same reason as above, one can verify that F0W = κRτ is a multiple of rotation.
Hence W = κF−τ and

S(µ) = (κF−τ )
−1O2κF−τ = O2.

This proves that B = B2 and S(µ) = O2 provided S(µ) = W−1O2W . �
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Operator stable laws are parameterized by their exponents and spectral measures. The
next result shows how the interplay between the curved orbits tB determined by the
exponent, along with the symmetries of the spectral measure, combine to determine the
symmetries of the process. Recall that O+

2 is the group of rotations.

Theorem 5.2. Let X = {X(t)}t≥0 be a full operator stable Lévy process in R
2 with

exponent B, spectral measure λ, and no Gaussian component. Let µ = L(X(1)). Suppose
that B is given in the Jordan form (5.8) and that the polar decomposition (2.5) holds with
SB = S1, the Euclidean unit sphere of R

2. Let S0(λ) = {A ∈ GL(R2) : Aλ = λ} denote
the strict symmetry group of the spectral measure.

(a) If B = B1, then S(µ) = S0(λ) ∩ D2.
(b) If B = B2, then either S(µ) = S0(λ) ∩ O+

2 = Cn for some n ≥ 1, or S(µ) =
S0(λ) = O2.

(c) If B = B3, then S(µ) = S0(λ) ∩ C2 .

Proof. Let ν be the Lévy measure of µ. Since µ does not have a Gaussian part, we have

(5.11) S(µ) = S0(ν) = {A ∈ GL(R2) : Aν = ν}
as in (5.7). First we will show that if B = Bi, i = 1, 2, 3 and S(µ) is finite, then

(5.12) S(µ) = S0(λ) ∩ {A ∈ O2 : AB = BA}.
Let A ∈ S(µ), S(µ) being finite. Then A ∈ O2 by Theorem 5.1 and A commutes with B.
For every F ∈ B(S1), A−1F ∈ B(S1) and by (2.4) and (2.5) with SB = S1 we have

λ(A−1F ) = ν({x : x = tBA−1v, for some (t, v) ∈ [1,∞) × F})
= ν(A−1{x : x = tBv, for some (t, v) ∈ [1,∞) × F}) = λ(F )

because S(µ) = S0(ν) from (5.11). Hence A ∈ S0(λ). The proof of the opposite inclusion
in (5.12) uses similar arguments and is omitted.

Proof of (a). A direct verification shows that B1 commutes with D2. Thus by (5.12)

S0(λ) ⊃ S(µ) ⊃ S0(λ) ∩ D2.

Since S(µ) ⊂ D2 by Theorem 5.1, we get (a).

Proof of (b). By Theorem 5.1 S(µ) = Cn for some n ≥ 1, or S(µ) = O2. Suppose that
S(µ) = Cn. Since O+

2 commutes with B2, by (5.12) we have

S0(λ) ⊃ S(µ) ⊃ S0(λ) ∩ O+
2 .

Thus S(µ) = S0(λ) ∩ O+
2 = Cn.

Suppose S(µ) = O2. Then Rθ ∈ S0(ν) for every θ by (5.11). Since Rθ commutes
with B2, Rθ ∈ S0(λ) by the same line of arguments as in the proof of (5.12). Hence
S0(λ) ⊃ O+

2 , which implies that λ is a finite full measure in R
2. Then λ is a constant

multiple of a probability measure, so S0(λ) must be maximal by [28, Theorem 2], and
hence S0(λ) = O2.

Proof of (c). This follows from (5.12) because C2 obviously commutes with B3. �

Remark 5.3. Using Theorem 5.2 we can explicitly construct an operator stable process with
any given exponent Bi for i = 1, 2, 3 in Jordan form (5.8) and any admissible symmetry

group. For example, let λ be concentrated at four points (±2−1/2,±2−1/2). Choosing
masses at these points appropriately, any subgroup of D2 is realized as S0(λ). By Theorem
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Figure 11. Support of the Lévy measure (thick lines) for Remark 5.4,
showing the effect of the exponent B1 on the symmetry group. The spectral
measure gives equal weight to three equally spaced points on the unit circle,
so that S0(λ) = D3. In this case B = B1, we have S(µ) = D1.

5.2, all cases of S(µ) are realized by this example when B = B1 and B = B3. When
B = B2, we only get C1 and C2. To get S(µ) = Cn, n ≥ 3, we take λ concentrated at
vertices of a regular n-gon inscribed into the unit circle with one vertex at (1, 0) and equal
masses at all the vertices. Then S0(λ) = Dn, so by Theorem 5.2, S(µ) = Dn ∩ O+

2 = Cn.
Finally S(µ) = O2 when B = B2 and λ is a uniform measure on S1.

Remark 5.4. It is interesting to see how much an exponent affects the symmetry. Consider
a measure λ with S0(λ) = Dn described in Remark 5.3, with n = 3. Then, by Theorem
5.2, S(µ) = D1 when B = B1, S(µ) = C3 when B = B2, and S(µ) = C1 when B = B3.
Figure 11 illustrates the diagonal case B = B1, in which the Lévy measure ν in (2.4) is
symmetric with respect to reflection about the vertical axis. Here we take b1 = 1/1.8 and
b2 = 1/1.5, but any case with b1 6= b2 appears similar. Figure 12 illustrates the complex
case B = B2, where the Lévy measure is symmetric with respect to rotations that are
a multiple of 2π/3. Figure 13 illustrates the nilpotent case B = B3, and here the Lévy
measure has no nontrivial symmetries. All three cases have the same spectral measure, but
a different exponent. Hence the spectral measure and the exponent are both important in
determining the symmetries.

Remark 5.5. In order to tie the results of this section back to the examples in Section 4, we
compute the symmetry group S(µ) for each case. For Example 4.1 we have S(µ) = S0(λ) =
D2 by Theorem 5.2 (a), since the exponent B = B1 in (5.8), and spectral measure λ gives
equal mass to the four points ±e1,±e2. Example 4.2 has S(µ) = C1 since the spectral
measure λ gives unequal mass to the two points e1, e2, so that Theorem 5.2 (a1) applies.
The spectral measure in Example 4.3 is uniform on the unit sphere, so that S0(λ) = O2,
but the symmetry is of the form B = B1 in (5.8), so the symmetry group S(µ) = D2 by
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Figure 12. Support of the Lévy measure for Remark 5.4, showing the
effect of the exponent B2 on the symmetry group. Here S(µ) = C3.
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Figure 13. Support of the Lévy measure for Remark 5.4, showing the
effect of the exponent B3 on the symmetry group. Here S(µ) = C1.

Theorem 5.2 (a). For Example 4.4, note that P−1X has exponent D of the form B1 in
(5.8). Since the spectral measure λ of X is concentrated on the two linear independent
vectors v1, v2, with unequal weights, the spectral measure P−1λ of P−1X gives unequal
mass to e1, e2, so that S(P−1µ) = C1 as for Example 4.2. Since S(µ) = PS(P−1µ)P−1,
it follows that S(µ) = C1 as well. The construction in Example 4.5 yields S0(λ) = D2.
Then S(µ) = C2 since the exponent B = B3 is nilpotent, by Theorem 5.2 (b). In Example
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4.6 we also have S0(λ) = D2, and then S(µ) = C2 by Theorem 5.2 (c). Example 4.7 has
S(µ) = D1 since the spectral measure is symmetric with respect to reflection across the
e1-axis: B = B1, and F0λ = λ, but −Iλ 6= λ. For Example 4.8 we begin with a change
of coordinates P−1X for the mean-centered process X, where P = F0Rθ with θ = −π/4,
so that Pei = vi. The spectral measure P−1λ assigns equal weights of 0.4 to e1 and e2,
and weight 0.2 to (e1 − e2)/

√
2. Now S0(P

−1λ) = C1. Since the exponent D = P−1BP is
of the form B1 in (5.8), Theorem 5.2 applies to show that S(Pµ) = C1, and so S(µ) = C1

as well. Finally, in Example 4.9 a change of coordinates Pvi = ei leads to P−1X operator
stable with exponent B1 = P−1BP in Jordan form. Since the spectral measure λ gives
equal weights of 1/4 to the points ±ciei, we see that P−1λ(±ciwi) = 1/4 where Pei = wi.
We can compute w1 = e1 and w2 = e2 − (9/2)e1. Clearly the only symmetries of P−1λ
are I and Rπ = −I, so that S0(P

−1λ) = C2, and then Theorem 5.2 yields S(P−1µ) = C2.
Finally S(µ) = PC2P

−1 = C2 since ±I commute with P . The shot noise representation
in Theorem 3.1 shows that the symmetries in the distribution of X(t) are also reflected
in the sample paths. Hence, for example, the sample path in Figure 2 can be reflected
through either axis, or both, to produce an equally likely path.

6. Operator self-similar processes

An operator stable Lévy process has stationary, independent increments. Some appli-
cations require dependent increments, nonstationarity, or both. In this section, we discuss
more general operator self-similar processes, whose increments need not be independent
or stationary. As usual, we assume that the operator self-similar process X is proper,
and stochastically continuous, with X(0) = 0. Under these assumptions, the real parts
of eigenvalues of the exponent B are positive [14, Theorem 4]. Let S(X) denote the
symmetries of X, i.e., the set of linear operators A in GL(Rd) such that

(6.1) {AX(t)}t≥0
fd
= {X(t)}t≥0.

The symmetries form a compact subgroup of GL(Rd) as long as X is proper. Symmetry is
an important modeling consideration, and a useful guide to model selection. In particular,
the natural symmetries of the system reflect the choice of exponent. Hudson and Mason
[14, Theorem 2] proved that the possible exponents are given by

(6.2) E(X) = B + TS(X),

where B ∈ E(X) is arbitrary and TS(X) is the tangent space of S(X) at the identity.
Maejima [25] showed that one can always find a commuting exponent Bc ∈ E(X) such that
ABc = BcA for all A ∈ S(X). For any operator self-similar process, a change of coordinates
puts the commuting exponent into Jordan form. The next result extends Theorem 5.1 to
the more general case of operator self-similar processes. It shows that all symmetries are
orthogonal in this coordinate system, and describes the possible symmetries depending on
the Jordan form of the exponent.

Corollary 6.1. Let X = {X(t)}t≥0 be a proper operator self-similar process in R
2 with

an exponent B given in the Jordan form (5.8). Then the statements (i)–(iii) of Theorem
5.1 hold verbatim after replacing S(µ) by S(X) and including O+

2 as a possible symmetry
group in (ii)

Proof. The exponents of a proper operator self-similar process are related to the symmetry
group by (6.2), there always exists a commuting exponent, and the eigenvalues of any
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exponent all have positive real part. These were the crucial facts used in the proof of
Theorem 5.1. The rest of the proof is identical to Theorem 5.1, except that here we
cannot exclude the case where S(µ) is conjugate to O+

2 , see Example 6.4 later in this
section. �

Remark 6.2. As a simple extension of the construction in Remark 5.3, we can obtain
an operator self-similar process in R

2 with any exponent, and any admissible symmetry
group. Take X(t) as in Remark 5.3 and let Y (t) = X(T (t)) where T (t) is a self-similar
process (time change) with T (at) = apT (t) (e.g., take T (t) = tp). Then Y (t) is operator
self-similar with exponent D = pB. This, together with Example 6.4, also shows that
S(X) can take every possible form listed in Corollary 6.1, which therefore provides a com-
plete characterization in R

2 of the possible symmetries of an o.s.s. process. An interesting
and useful example of a self-similar process {T (t)} with Hurst index 0 < β < 1, which
is not infinitely divisible or even Markovian, is given by the first passage or hitting time
T (t) = inf{u > 0 : D(u) > t} of a stable subordinator D(t) with E(e−sD(t)) = exp(−ctsβ).
If we take {D(t)} independent of the outer process X, then the time changed process
Y (t) = X(T (t)) has densities h(x, t) that solve a space-time fractional multiscaling diffu-
sion equation

∂βh(x, t)

∂tβ
= Lh(x, t)

where L is the generator of the operator stable semigroup, see for example [31, 32, 51].
This fractional diffusion equation has been applied to contaminant transport in heteroge-
neous porous media, where the process Y (t) represents the path of a randomly selected
contaminant particle. The order of the time fractional derivative β controls particle re-
tention (sticking or trapping) while the exponent of the operator stable process codes the
anomalous super-diffusion caused by long particle jumps. The inner process T (t) is con-
stant on intervals corresponding to jumps of the stable subordinator D(t), the length of
which is determined by the stable index β. A different governing equation pertains when
the time change is not be independent of the outer process [4, 36]. Methods for simulating
these non-Markovian subordinated processes have recently been developed by Magdziarz
and Weron [22] and Zhang et al. [52] based on a simple random walk approximation of X.
It would be interesting to apply the results of this paper to improve those methods.

The alert reader will note that a shift is included in the definition of symmetry (5.1)
for operator stable Lévy processes, which is natural, since the process definition (2.1) also
includes a shift. For operator self-similar processes, the definition (1.1) does not include
a shift, so it is natural that the symmetry definition (6.1) does not allow a shift. The
following lemma relates these two definitions in the operator stable case.

Lemma 6.3. Let X = {X(t)}t≥0 be a strictly operator stable Lévy process with exponent
B. Suppose that 1 is not an eigenvalue of B. Then S(X) = S(µ), where µ = L(X(1)).

Proof. Since {X(t)} fd
= {AX(t)} if and only if X(1)

d
= AX(1), we have S(X) = S0(µ), so

it suffices to show that S(µ) = S0(µ) (see definitions (5.1) and (5.6)). Let A ∈ S(µ), so
that AX(1) and X(1)− b are identically distributed for some b ∈ R

d. Since the real parts
of eigenvalues of all exponents of µ are the same (see [30, Corollary 7.2.12]), we may take
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B as a commuting exponent. Then, for every t > 0 we have

AX(t)
d
= X(t) − tb

d
= tBX(1) − tb = tB(AX(1) + b) − tb

= AtBX(1) + tBb− tb
d
= AX(t) + tBb− tb.

Thus (tB − t)b = 0 for all t > 0, and since 1 is not an eigenvalue of B, b = 0. Hence
A ∈ S0(µ). The converse inclusion, S(µ) ⊃ S0(µ), is obvious. �

Full dimensional operator stable Lévy processes, and proper operator self-similar pro-
cesses, form two distinct classes. Neither class is contained in the other: a drift can be
added to an operator stable process, to break the operator self-similarity; a time change
can make increments dependent or nonstationary, while maintaining operator scaling.
Take Z(t) a spherically symmetric Lévy process on R

d whose marginals are Cauchy. Then
b + Z(t) is an operator stable Lévy process, but it is not operator self-similar. The pro-
cess X(t) = Z(tp) for p > 1 is operator self-similar but not Lévy. Remark 6.2 provides
examples of operator self-similar processes for which none of the one-dimensional distri-
butions are operator stable. The process X(t) = vt + Z(t) is a strictly operator stable
Lévy process and also a proper operator self-similar process. If we take µ = L(X(1))
then S(µ) = Od but S0(µ) = S(X) consists of the orthogonal transformations that fix the
vector v. Remark 6.2 showed how to construct an operator self-similar process with any
admissible symmetry group. The group O+

2 was included, even though it is not maximal,
and hence cannot be the symmetry group of any probability measure (see Section 2). The
next example shows that it is possible to have S(X) = O+

2 for some operator self-similar
(not Lévy) processes. This illustrates the basic difference between the symmetries of a
random vector, and those of a stochastic process. Process symmetries must also preserve
finite dimensional distributions, and this further restriction affects the possible symmetry
groups.

Example 6.4. Consider a complex valued process

X(t) = tβ exp (i(Θ + log t)) , t > 0,

where β > 0, Θ is a uniform random variable on [0, 2π] and X(0) = 0. Since for any φ ∈ R

{eiφX(t)}t≥0
fd
= {X(t)}t≥0,

X as a process in R
2,

X(t) = tβ
[

cos(Θ + log t)
sin(Θ + log t)

]

is a self-similar with index β and O+
2 ⊂ S(X). By (6.2), I and B2 are exponents of X (B2

with b = β and arbitrary c). If A ∈ S(X) then

AX(1)
d
= X(1)

which implies A ∈ O2. Thus O+
2 ⊂ S(X) ⊂ O2. Consider the process {F0X(t)}t≥0, where

F0 is the reflexion with respect to the x-axis,

F0X(t) = tβ
[

cos(Θ + log t)
− sin(Θ + log t)

]

.
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If F0 ∈ S(X), then for t1 = 1 and t2 = eπ/2 we would have

(F0X(1), F0X(eπ/2))
d
= (X(1),X(eπ/2)),

or
([

cos Θ
− sin Θ

]

, eβπ/2
[

− sin Θ
− cos Θ

])

d
=

([

cos Θ
sin Θ

]

, eβπ/2
[

− sin Θ
cos Θ

])

.

This equality written in R
4 means

(cos Θ,− sin Θ,− sin Θ,− cos Θ)
d
= (cos Θ, sin Θ,− sin Θ, cos Θ),

which is impossible since the sum of the first and the fourth random variables on the left
hand side is 0, while on the right hand side is 2 cos Θ. Hence F0 /∈ S(X), which yields
S(X) = O+

2 .

Remark 6.5. Example 6.4 is consistent with the result that symmetry groups of probability
measures must be maximal [28, Theorem 2], even though O+

2 is not a maximal subgroup of
GL(R2). This is because, for A in S(X), we not only require AX(t) identically distributed
with X(t) for a single t > 0, but also that (AX(t1), . . . , AX(tp)) is identically distributed
with (X(t1), . . . ,X(tp)) for all finite-dimensional distributions. We say that O+

2 acts
diagonally in this case, and we identify A with corresponding element of GL(R2p) defined
by (x1, . . . , xp) 7→ (Ax1, . . . , Axp) for x1, . . . , xp ∈ R

2. In Example 6.4 the diagonal action
of O+

2 is a maximal subgroup of GL(R4), see the proof of Theorem 1 in [28].

Remark 6.6. In Examples 4.1, 4.3, 4.5 and 4.6 the operator stable process is centered, so
that S(X) = S0(µ) = S(µ). In Example 4.7, we also have S(X) = S0(µ) = S(µ), since
the drift vt is a fixed point of F0. If we let Y (t) = vt +X(t) for some v 6= 0, with X(t)
from Example 4.1, and write µ = L(Y (1)), then S(Y) = S0(µ) = C1 is trivial, and strictly
contained in S(µ) = D2. In Example 6.4 the symmetry group of the process S(X) = O+

2
is strictly contained in the symmetry group S(µ) = O2 of µ = L(X(1)).
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Jan Rosiński, Department of Mathematics, University of Tennessee, Knoxville, TN 37996,

USA.

E-mail address: rosinski@math.utk.edu

URL: http://www.math.utk.edu/∼rosinski/


