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ABSTRACT

ESTIMATING COVARIANCE STRUCTURE IN HIGH DIMENSIONS

By

Ashwini Maurya

Many of scientific domains rely on extracting knowledge from high-dimensional data sets

to provide insights into complex mechanisms underlying these data. Statistical modeling has

become ubiquitous in the analysis of high dimensional data for exploring the large-scale gene

regulatory networks in hope of developing better treatments for deadly diseases, in search of

better understanding of cognitive systems, and in prediction of volatility in stock market in

the hope of averting the potential risk. Statistical analysis in these high-dimensional data sets

yields better results only if an estimation procedure exploits hidden structures underlying the

data. This thesis develops flexible estimation procedures with provable theoretical guarantees

for estimating the unknown covariance structures underlying data generating process. Of

particular interest are procedures that can be used on high dimensional data sets where the

number of samples n is much smaller than the ambient dimension p. Due to the importance

of structure estimation, the methodology is developed for the estimation of both covariance

and its inverse in parametric and as well in non-parametric framework.
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CHAPTER 1

INTRODUCTION

The increasing use of technology with the developments in storage systems has created

vast amount of high dimensional data across many scientific disciplines. Examples include

the large-scale omics data that enhance our knowledge of human biology, network data that

explains how we interact and connect with each other, and the finance data that provides

an opportunity to beat the market. The statistical analysis of these data is challenging due

to the curse of dimensionality. New statistical methods are needed to model the unknown

structure underlying these data sets to leverage our scientific understanding.

The statistical inference in high-dimensional data is possible only if an inference pro-

cedure is flexible enough to exploit the hidden structure underlying these data sets. This

translates to designing an inference procedure that does well in modeling the structure un-

derlying these data sets. Such an inference procedure often assumes that many of high

dimensional structures can be represented with a smaller number of parameters which is

the case in many scientific disciplines. Consequently, the the concept of parsimony becomes

crucial in high dimensions.

The effectiveness of statistical estimation in high dimensional setting relies on the ro-

bustness of the procedure, its efficiency, and scalability. The latter depends upon the avail-

ability of scalable algorithmic techniques and its ability to efficiently learn the structure

underlying these data sets.

The main goal of this thesis is to develop a flexible and principled statistical methods

for uncovering hidden structure underlying the high dimensional, complex data with a focus

on scientific discovery. In particular the thesis addresses two main tasks: (i) Estimation of

covariance matrices and its inverse, and (ii) Scalable algorithms for computing the covariance

structure based on the proposed estimation procedures, in high dimensional setting.
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1.1 Covariance Structure Estimation

In many scientific disciplines, a study involves large complex systems whose output often

depends on large number of components (variables) and their interactions. As a motivat-

ing example, in system biology, the cellular networks often consists of very large number of

molecules that interact and exchange information among themselves. Many of the existing

techniques depend upon the descriptive analysis of macroscopic properties, which include

degree distribution, path lengths and motif profile of these molecular networks or data min-

ing tools to identify clusters. Such an analysis provides limited insight into the complex

mechanism of the functional and structural organization of biological structures. An esti-

mate of the robust covariance matrix can explain the biologically important interactions and

enhance our scientific understanding of the complex phenomenon.

Covariance structure estimation is of fundamental importance in multivariate data anal-

ysis. It is widely used in number of applications including (i) Principal component analysis

(PCA) [Johnstone and Lu [2004], Zou et al. [2006]], where the goal is to project the data on

“best" k-dimensional subspace, and where best means the projected data explains as much

of the variation in original data without increasing k; (ii) Discriminant analysis [Mardia

et al. [1979]]: where the goal is to classify observations into different classes, here estimates

of covariance and inverse covariance matrices play an important role as the classifier is often

a function of these entities; (iii) Regression analysis: If interest focuses on estimation of

regression coefficients with correlated (or longitudinal) data, a sandwich estimator of the

covariance matrix may be used to provide standard errors for the estimated coefficients that

are robust in the sense that they remain consistent under mis-specification of the covariance

structure; and (iv) Gaussian graphical modeling [Yuan and Lin [2007], Wainwright et al.

[2006]Wainright [2009], Yuan [2009],Meinshausen and Bühlmann [2006]]: the relationship

structure among nodes can be inferred from inverse covariance matrix (also called precision

matrix). A zero entry in the precision matrix implies conditional independence between the
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corresponding nodes, given the remaining nodes. In applications where the probability dis-

tribution of data is multivariate Gaussian, precision matrix is used to describe the underlying

dependece structure among the variables.

1.1.1 High Dimensional Covariance Matrix Estimation

In many of the applications, statistician often encounter data sets where sample size

n is much smaller than the ambient dimension p, where the latter can be very large often

in thousands, millions or even more. In such situations, the classical statistical estimators

tend to have huge bias for estimating their population counterpart and many of the existing

asymptotic theories no longer remain valid. In general a p dimensional covariance matrix

requires estimation of p(p+1)/2 free parameters. For n< p, this is an ill-defined problem. In

such high dimensional setting, an estimation of covariance matrix is possible by the fact that

in many scientific problems, most of the variables are uncorrelated and hence an assumption

of sparsity reduces the effective number of parameters to estimate.

1.2 Inverse Covariance Matrix Estimation

Many of scientific studies require estimation of a network structure, in particular the

conditional dependence relationships among its nodes (variables). In a large population

identifying the true interaction among nodes is generally a very hard problem since number

of edges scales quadratically to that of number of nodes n. For a motivating example,

consider the estimation of network of neurons. With a significant improvement in technology

of measuring neural data, it is now possible to record the spike activity of hundreds of

neurons at the same time. A central question in such scientific studies is how do the neurons

communicate during a given task? The traditional time and trail-shifting methods suffer

from limitation that these do not account for behaviors that encompass multiple distinct

structures in the brain. The research [Yatsenko et al. [2015]] shows that the neural spike
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pattern can be modeled as a combinnation of sparse precision matrix that accounts for local

interaction and a low rank matrix representing the common fluctuations and external inputs.

A precision matrix approach is appealing as it offers fexibility in estimating a sparse neural

network and also useful for predicting the future states of network of neurons.

Another important application is in Gaussian graphical modeling. In Gaussian graphical

models, the conditional independence relationships among the nodes (variables) is equiva-

lently represented as a matrix of partial correlation coefficients or a precision matrix. Thus

the estimation of network is equivalent to estimating a precision matrix which is obtained by

maximizing the Gaussian likelihood function of observations. Since the Gaussian likelihood

is a concave function of precision matrix, its optimization can be solved by a number of fast

algorithms.

The existing estimation methods of inverse covariance matrices mainly focus on estimat-

ing the underlying sparse structure of the given data, and do not account for minimizing the

over dispersion in the sample eigen-spectrum. The proposed method here for the estimation

of inverse covariance matrix addresses this phenomenon by penalizing an overdispersion term

of the sample eigenvalues. We consider the estimation of precision matrix in both paramet-

ric and non-parametric framework. The former is based on Gaussian likelihood whereas the

latter is based on Frobenius norm loss function.

1.3 Thesis Overview

The main focus of this thesis is the estimation of large dimensional covariance matrix

and its inverse from limited sample observations, establish the theoretical consistency, and

provide a very fast algorithm for computing these estimates.

In part I (chapter 2 - chapter 8), we focus on covariance structure estimation.

• Chapter 2 reviews the classical sample covariance matrix estimator, and its limita-

tions in high dimensional setting. We address these limitations and build on these in
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subsequent chapters.

• Chapter 3 reviews the various loss functions used in estimation of covariance matrices

and its inverse, the related optimization problems, and highlight their advantages and

limitations.

• Chapter 4 reviews the sparse structure learning of covariance matrices in high dimen-

sional setting, two broad classes of covariance matrices, and describes their estimation

paradigms. We introduce regularized estimation of covariance matrices and discuss

their estimation framework with different loss functions from earlier chapter.

• Chapter 5 reviews the concept of well-conditioned estimation and its importance in high

dimensional settings. Some of the eigenvalues shrinkage methods, their advantages, and

limitations are described. We conclude the chapter by introducing the new penalty

(variance of eigenvalues) to reduce the over-dispersion in the sample eigen-structure

and the corresponding estimation frameworks based on Frobenius norm loss function.

• In Chapter 6, we propose the Joint Penalty estimation method. We discuss its asymp-

totic properties and rates of convergence in Frobenius and spectral norm. We also give

generalized joint penalty estimators of covariance matrix in high dimensional settings.

• Chapter 7 contains a derivation of a very fast algorithm for computing the proposed

joint penalty estimator and compares its computational time with other some existing

methods.

• In Chapter 8, we discuss the extensive simulation analysis to compare the performance

of the proposed estimator with some other existing methods for various choices of co-

variance matrices in high dimensional setting. We also analyze the recovery of true

sparse and eigen-structure based on joint penalty methods. We conclude the chpater

with the classification analysis of sonar data.
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In part II (chapter 9- chapter 13), we focus on precision matrix estimation.

• Chapter 9 reviews the existing literature and introduces the proposed joint penalty

framework for precision matrix estimation. The chapter concludes with discussion of

few applications.

• In Chapter 10, we describe the joint convex penalty (JCP) framework of precision ma-

trix estimation and discuss sparse and well-conditioned estimation under assumption

that the data generating process is Gaussian.

• Chapter 11 reviews the proximal gradient algorithm, and its convergence analysis. We

give a fast algorithm for computing the JCP estimate of precision matrix. The chapter

is concluded with extensive simulation analysis for varying sample sizes and dimensions

in high-dimensional setting.

• In Chapter 12, we review simultaneous estimation of sparse and well-conditioned in-

verse covariance matrices in high dimensional settings. We introduce weighted joint

penalty estimators and discuss their rates of convergence in both the Frobenius and

spectral norm.

• Chapter 13 reviews the extensive simulation analysis using JPEN method for various

choices of structured inverse covariance matrices. We conclude the chapter with an

application to colon tumor gene expression data.

Conclusions and future work directions are given in chapter 14.

1.4 Notation

Notation: For a matrix M , Mij denotes its (i, j)th element, ‖M‖1 denotes its `1 norm

defined as the sum of absolute values of the entries of matrixM , ‖M‖F denotes the Frobenius

6



norm of matrix M defined as sum of squared element of M , ‖M‖ denotes the operator norm

(also called spectral norm) defined as largest absolute eigenvalue of M , M− denotes matrix

M where all diagonal elements are set to zero, M+ denotes matrix M where all off-diagonal

elements are set to zero, σi(M) denotes the ith largest eigenvalue of M , tr(M) denotes its

trace, ‖M‖∗ denotes its trace norm defined as sum of its singular values, and det(M) denotes

its determinant.
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Estimating Covariance Structure
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CHAPTER 2

SAMPLE COVARIANCE MATRIX AND ITS LIMITATIONS

2.1 Sample Covariance Matrix

Given random vectors (X1,X2, · · · ,Xn) from a p-variate probability distribution, the

sample covariance matrix is given by:

S = [[Sij ]], Sij = 1
n−1

n∑
k=1

(Xki− X̄i)(Xkj− X̄j), i, j = 1,2, · · ·p. (2.1.1)

Sample covariance matrix is a widely applicable estimator of its population counterpart

and has low computational complexity. In low dimensional setting where sample size is

significantly larger than the number of variables, it possess number of desired properties of

a good estimator such as:

• It is theoretically consistent, which means that as the sample size diverges to infinity, it

converges almost surely to the population covariance matrix as long as the dimension

p is fixed.

• It is an unbiased estimator of its population counterpart.

• It is approximate maximum likelihood estimator.

• Together with the vector of sample means, the sample covariance matrix constitute

sufficient statistics for the family of Gaussian distributions.

• It is invertible and extensively used in linear models and time series analysis.

• Its eigenvalues are well behaved and good estimators of their population counterparts.

Because of the these properties, it is extensively used for both structure estimation and

prediction in many data analysis applications.
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2.2 Why Sample Covariance Matrix is NOT Suitable in High Di-
mensions?

In high dimensional setting where often the dimension exceeds the sample size, typically

former is of exponential order of later, many of these properties of sample covariance matrix

do not hold. In high dimensions it has following limitations:

• It is very noisy, which means that the many of its entries have biases.

• For n < p, it does not remains positive definite and invertible.

• It has p− n eigenvalues equal to zero which means that total variation in data is

contained in first n eigenvalues and therefore highly skewed and biased. In fact the

sample eigenvalues are over dispersed in the sense that smaller eigenvalues are biased

downward and larger eigenvalues are biased upward of the true eigenvalues.

Figure 2.1 explains the eigen-spectrum over-dispersion phenomenon. For this example,

we simulated random vectors from multivariate Gaussian distribtuion with mean zero and

identity covariance matrix. We consider two cases:

• case (i) Low dimensional setting: n=500, p=50, and

• case (ii) High dimensional setting n=50, p=50.

The over dispersion in sample eigenvalues are quite apparent in these two settings. The

true eigenvalues are all one, whereas the sample eigenvalues follow Marchenko-Pastar law

[Marcenko and Pastur [1967]]. A result from [Geman [1980]] shows that for independent

and identically (iid) distributed random variables ( that have mean zero and identity co-

variance matrix) with finite fourth moment, as ratio p
n → γ, the smallest and largest sample

eigenvalues satisfy:
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Figure 2.1: Eigenvalue of sample and population covariance matrices

l1 → (1 +√γ)2 a.s. and (2.2.1)

lp → (1−√γ)2 a.s. (2.2.2)
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In this example, for case (ii), γ = 1 by (2.2.1) and (2.2.2), the smallest and largest

eigenvalue of sample covariance matrix are 0 and 4 respectively. This shows that in high

dimension the sample eigenvalues are over dispersed compared to its population counterpart.

Because of these limitations, sample covariance matrix is not a suitable estimator in high

dimensional settings.
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CHAPTER 3

LOSS FUNCTIONS FOR COVARIANCE MATRIX ESTIMATION

Loss functions are key to estimation problems. An estimator optimal with respect to one

loss function may not be optimal for other choices of loss functions. The consistency and rate

of convergence of the estimators depends upon the choice of loss function. In this chapter

we discuss some of the most commonly used loss functions in the context of estimating a

high dimensional covariance matrix.

3.1 Likelihood Based Methods

Data likelihood (model based) functions are one of the most widely used loss functions

for covariance matrix estimation.

Figure 3.1: A concave function

The likelihood based methods have advantage that often they outperform the non-
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parametric counterparts in rate of convergence and asymptotic optimality. In practice, it is

reasonable to assume that the data generating likelihood function is smooth. If the likelihood

function is strictly concave (Figure 3.1), the unique maximum likelihood estimator exists. In

such cases, maximum likelihood estimator can be easily computed using very fast numerical

algorithm such as Expectation Maximization algorithm, and the algorithms based on linear

or quadratic approximations of likelihood functions. Another advantage of likelihood based

estimator is that this can be easily generalized when samples come from a mixture of prob-

ability distributions.

Multivariate normal distribution is the most widely used parametric model for covari-

ance matrix estimation. Let (X1,X2, · · · ,Xn) follow p-variate normal distribution with zero

mean vector and covariance matrix Σ. The likelihood function is given by:

L(X1,X2, · · · ,Xn;µ,Σ) = 1
(2π)np/2

1
|Σ|p/2

exp{−1
2tr(SΣ−1)} (3.1.1)

This is concave in Σ−1. Therefore a common practice is to maximize the above function

with respect to Σ−1. Let Ω̂ be its solution, then an estimate of covariance matrix is given

by Ω̂−1.

3.2 Frobenius Norm Loss Based Methods

Frobenius loss function is one of the most popular alternative estimation method to

likelihood based methods. It provides a flexible estimation framework and has number of

attractive features such as:

• It is convex and easy to solve.

• It is fully non-parametric and does not require any knowledge of functional form of

underlying data distribution

• Since the parameter of interest appears in very simple form in the loss function, it is

easy to interpret.
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• The convex structure facilitates the estimation procedure and its computation can be

easily performed with a number of fast algorithms with low computational complexity.

One of most important advantage is that the Frobenius loss function results in exact op-

timization, unlike in the case of Gaussian distribution, a direct maximization of the function

(3.1) with respect to Σ is very difficult problem due to its convex nature. Another disadvan-

tage of likelihood based model is that if data does not meet the stated model assumption

(or if model is not choosen carefully), estimators based on likelihood models tend to perform

worse than non-parametric estimators. The likelihood function may not always be a concave

function, which makes the computation very difficult. In this case, the estimators do not

remain optimal anymore.

Let S be the sample covariance matrix. A, un-regularized covariance matrix estimator

based on minimization of Froebnius loss function is given by:

Σ̂ = argmin
Σ
‖Σ−S‖2F (3.2.1)

The estimator is Σ̂ = S. As discussed earlier, S may not be suitable estimator in high

dimensional setting, and a number of techniques namely regularization and positive well

conditioned estimation are needed to improve the sample covariance estimator. For more

details on this topic see chapters 4 and 5.

3.3 Other Loss Function Based Methods

The likelihood based methods require a priori knowledge about the underlying data

generating stochastic process which is a very strong assumption. Also both the likelihood

function based method and Frobenius norm loss function based methods assume the prior

knowledge of sample covariance matrix S. In practice sample covariance matrix may not

be readily available but some structure of S may be known. In such situations entropy loss

function and quadratic loss function are two other commonly used loss functions for covari-
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ance matrix estimation [Donoho et al. [2015]].

Entropy loss function: Given a covariance matrix A, not necessarily sample covari-

ance matrix, we seek estimate Σ̂ which is obtained my minimizing the following entropy loss

function:

Σ̂ = argmin
B�0,B=BT

[
tr(A−1B)− log(det(A−1B))−p

]
(3.3.1)

where A is symmetric and positive definite. The entropy loss function (also known by

Kullback-Leibler loss, or Stein’s loss function), is a widely used method to measure the

discrepancy between two probability distributions.

Quadratic Loss Function An estimator of covariance matrix based on minimization

of the quadratic loss function is given by:

Σ̂ = argmin
B�0,B=BT

[
(tr(A−1B− I))

]
(3.3.2)

The estimators based on entropy and quadratic loss function work well in low dimensional

setting when n < p.

Remark 3.3.1. Although estimators based on minimizing the Frobenius, entropy and

quadratic loss functions have many good properties, to establish the rate of convergence

of these estimators, it is necessary to assume some parametric structure on the underlying

data generating process. One of the most common assumption is that the data generating

process is sub-Gaussian. A continuous random vector is sub-Gaussian if its tails are similar

those of Gaussian random vector. See §6.3 for more details.
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CHAPTER 4

LEARNING SPARSE STRUCTURE

As discussed in chapter 2, sample covariance matrix is not a suitable estimator in high

dimensional setting as this fails to exploit the sparse structure of the true covariance matrix.

In this chapter, we discuss improved estimation of sparse covariance matrices based on

regularized loss function optimization.

4.1 Two Broad Class of Covariance Matrices

In real data analysis problems, knowledge of true covariance structure is often unknown.

However in these situations a suitable assumption on the covariance matrix structure facili-

tates the estimation procedure and reduces the computational complexity. As a motivating

example, given the weather temperature of locations across some geography, we expect the

temperature of nearby locations to be similar than the far away locations. Toeplitz type

covariance matrix would be suitable for modeling the tempreture variations for that geogra-

phy.

The most commonly used covariance matrix structures across many scientific disciplines

can be classified into two broad class:

1. Natural ordering among variables: This class includes the covariance matrices

where the variables far apart are weakly correlated. One of the example is in time series

analysis, where the observations are typically auto correlated in time. In these applications

the researcher often assumes that the true underlying covariance matrix has Toeplitz type

of structure. Such an assumption greatly reduces the effective number of parameters to be

estimated in the matrix.

2. No natural ordering among variables: This class includes the covariance ma-
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trices where there is no natural ordering. Examples include the analysis of gene expression

data where prior knowledge of any canonical ordering is not available and searching over all

permutations of variables is quite infeasible.

In high dimensional setting typically n< p, and the estimation of p(p+1)/2 free param-

eters of the covariance matrix based on n observations is ill defined problem. The concept

of sparse structural assumption, where one often believe that only few of the entries of true

covariance matrix are non-zero, greatly reduces the effective number of parameters to be es-

timated and hence improves the overall estimation. Figure 4.1 shows the difference between

parsimonious (sparse) and non-parsimonious (dense) covariance matrices.

Figure 4.1: Dense and sparse covariance and precision matrices

There is an extensive literature on the estimation of sparse covariance matrix [Bickel and

Levina [2008a], Bickel and Levina [2008b], Bien and Tibshirani [2011], Rothman [2012], Xue

et al. [2012],Dahl et al. [2008]. Among earlier developments, Dempster [1972] introduced the

concept of covariance selection in the context of precision matrix estimation. His approach

is based on entrywise sparse estimation of the precision matrix. He shows that the resulting

estimator corresponds to maximum entropy model (maximum entropy model is maximum
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smooth model among a class of given models). One can follow the similar procedure for

covariance matrix estimation in high dimensonal setup by setting certain elements of S to

equal zero and continue doing so untill there is no substantial improvement in model fitting.

In such a setting it may not be possible to derive an exact test of significance, however

number of approximate methods such as change in 2 log Lik value can be used as stopping

criteria. The main limitation of such a procedure is that the resulting matrix may not remain

positive definite.

The methods for the estimation of high dimensional sparse covariance matrix tend to

impose certain structures as suitable on a given class of covariance matrices. For the class

of covariance matrices where the variables are assumed to have natural ordering, estimators

based on banding or tapering seem to be a natural choice. Bickel and Levina [2008b] proposed

regularized estimation of covariance matrices based on banding where the corresponding

estimator is obtained by selecting at most k non zero elements in each row. A choice of k

is made based on re-sampling and cross validation. Although their estimator has natural

interpretation, but need not be positive definite. To overcome this, they propose a tapering

estimator of covariance matrices, which uses the Shur matrix multiplication. This is based

on the fact that Shur matrix multiplication of two positive definite matrices is also positive

definite. For more discussion on this see Bickel and Levina [2008b], Cai et al. [2010], and

Karoui [2008].

4.2 Lasso Type Penalty

In situations where there is no natural ordering among variables, banding and tapering

based estimators fail to recover the sparse structure of underlying true covariance matrix. In

these situations the `1 regularized covariance matrix estimators are generally permutation

invariant [Rothman et al. [2008]] and better alternative than their banding and tapering

counterparts. The `1 based regularized covariance matrix estimation is motivated by lasso
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in regression [Tibshiran [1996]], where the main idea is to shrink the smaller entries of

covariance matrix to zero, while preserving the positive definiteness. This procedure is also

known as covariance graph estimation of marginally independent variables.

Among the likelihood based methods, Bien and Tibshirani [2011] proposed an estimator

of covariance matrix as the solution to following optimization problem:

Σ̂ = argmin
Σ�0

[
log(det(Σ)) + tr(SΣ−1) +λ∗‖H ∗Σ‖1

]
(4.2.1)

where λ is some positive tuning parameter, H is a matrix of non-negative weights. Both λ

and H together control the level of sparsity in the estimated covariance matrix. As the above

optimization problem is concave in Σ, they derive a solution of (4.2.1) by iteratively solving

its convex approximation using “Majorization-Minimization” approach. However, such a

procedure is computationaly intense and need not be globally optimal. Among other related

works, Chaudhuri et al. [2007] consider the problem of estimating a covariance matrix given

a pre-specified zero pattern, Khare and Rajaratnam, in an unpublished 2009 technical report

available at http://statistics.stanford.edu/c̃kirby/techreports/GEN/ 2009/ 2009-01.pdf, for-

mulate a prior for Bayesian inference given a covariance graph structure, and Butte et al.

[2000] introduce the related notion of relevance network, where genes with partial correlation

exceeding given a threshold are connected.

Among Frobenius norm based estimation of high dimensional covariance matrix, Roth-

man [2012] proposed a correlation matrix estimator as the solution to the following opti-

mization problem:

Γ̂ = argmin
Γ=ΓT

[
‖Γ−R‖2F +λ∗‖Γ−‖1−γlog(det(Γ))

]
(4.2.2)

whereR is sample correlation matrix, γ is some constant that ensures the positive definiteness

of Γ̂. The log-determinant barrier is a valid technique to achieve positive definiteness but

it is still unclear whether the iterative procedure proposed in Rothman [2012] actually finds

the right solution to the corresponding optimization problem. In another interesting paper,
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the authors in Xue et al. [2012] proposed an estimator of covariance matrix as a minimizer of

penalized Frobenius norm loss function over set of positive definite matrices. Their estimator

is positive definite but whether it overcomes the over-dispersion of the sample eigenvalues,

is hard to justify.

In another interesting line of work Lam and Fan [2009] proposed a regularized covariance

matrix estimator using a non-convex penalty. They propose their estimator for a class of

hard-thresholding and SCAD (Smoothly Clipped Absolute Deviation) penalty. The hard-

thresholding penalty is given by: pλ(θ) = λ2−(|θ|−λ)21{θ<λ} , whereas the SCAD penaly is

given by: pλ(θ) = λ1{λ≤θ}+(aλ−θ)+1{θ>λ}/(a−1), for some a > 2. The main idea behind

the non-convex penalty is to reduce the bias when the value of parameter has relatively larger

magnitude. For example, the SCAD penalty remains constant when θ is large, whereas the

`1 penalty grows linearly with θ. The main limitations of non-convex penalty is that the

proposed algorithms uses iterative procedure based on local convex approximations hence

computatinaly intensive. Also it is hard to say if the proposed algorithm converges to the

global minima/maxima.

The proposed Joint PENalty (JPEN) method in this thesis uses Frobenius norm loss

function and joint penalty of `1 and variance of eigenvalue of underlying covariance matrix.

The choice of squared loss function allows sparse estimation of covariance matrix (rather

the sparse precision matrix), and results in very fast algorithm. We introduce variance of

eigenvalues penalty to ensure that the estimated covariance matrix is positive definite. For

more details on this, see the chapter 6.

4.3 Discussion:

Assumption of sparsity involves a tradeoff between benefit and cost. In particular in high

dimensional data analysis, when entries of covariance matrices are set to zero, the noise due to

the error of estimation is generally reduced. On the other hand, errors of misspecification are
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introduced. Hence the decision to fit a sparse model comes at trade-off between overfitting

and model specification. As noted by Dempster [1972], once the parametric model is adopted,

choice of level of sparsity is often settled down, specially when the optimal estimates can

easily be computed. However, such optimality provides no gaurantee against the cost of

introducing unecessary parameters.
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CHAPTER 5

ESTIMATING A WELL-CONDITIONED STRUCTURE

5.1 Motivation

In high dimensional data applications, where an inverse of covariance matrix is used,

sample covariance matrix can not be used as generally this is not invertible. By a well-

conditioned covariance matrix, we mean that its condition number (ratio of maximum and

minimum eigenvalues) is bounded above by a positively finite constant (here the constant

is not too large). As pointed out by Ledoit and Wolf [2004], a well-conditioned estimator

reduces the estimation error and is a desired propoerty in high dimensional settings. In

this chapter, we discuss some of the existing literature on well-conditioned estimation, and

introduce variance of eigenvalues penaltly as an effective method for improved eigen-structure

estimation.

5.2 Well Conditioned Estimation

The problem of well-conditioned covariance matrix estimation is a long studied subject

Stein [1975, 1986], Ledoit and Wolf [2004, 2014], Sheena and Gupta [2003], Won et al. [2012].

It has received considerable attention in high dimensional analysis due to the importance of

such estimators in many high dimensional data applications. Among the earlier developments

to solve this problem, Stein [1975] proposed his famous class of rotation invariant shrinkage

estimators. Here the main idea was to keep the same eigenvectors as that of the sample

covariance matrix but shrink the eigenvalues towards the center, in order to reduce the

eigenvalues dispersion. Let S := UDUT be eigen-decomposition of the sample covariance
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matrix. Stein’s estimator is given by :

Σ̂ = UDnewUT where Dnew = diag(dnew1 ,dnew2 , · · · ,dnewp ) (5.2.1)

with

dnewii = ndii

/(
n−p+ 1 + 2dii

p∑
i 6=j

1
dii−djj

)

, where (d11,d22, · · · ,dpp) is the diagonal of D. This class of estimators is further studied

by Haff [1980], Lin and Perlman [1985], Dey and Srinivasan [1985], Ledoit and Wolf [2004,

2014]. Although Stein estimator is considered to be “Gold Standard” [Rajaratnam et al.

[2014]], it has a number of limitations including, (i) it is not necessarily positive definite, (ii)

assumes normality, and (iii) suitable only for low dimension data analysis when sample size

exceeds the dimension. Among the earlier work of eigenvalues shrinkage estimation in high

dimensional setting, Ledoit and Wolf [2004] proposed an estimator that shrinks the sample

covariance matrix towards identity. Their estimator is given by:

ρ1S +ρ2I, where ρ1,ρ2 are estimated from data. (5.2.2)

For ρ large enough, the estimator given by (5.2.2) is well-conditioned but need not be sparse

as sample covariance matrix is generally not sparse. In another interesting work, Won et al.

[2012] consider maximum likelhihood estimation with a condition number constraint. They

solve the following optimization problem:

Maximize L(S,Σ) subject to σmax/σmin ≤ κmax, (5.2.3)

where L(S, .) is likelihood function of multivariate Gaussian distribution given in (3.1.1), and

κmax is some positive constant. The estimate Σ of (5.2.3) is invertible if κmax is finite, and

well conditioned if κmax is moderate. They consider a value of κmax < 103 to be moderate

but its values also depends upon the eigenvalues dispersion of true population covariance

matrix.
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5.3 Variance of Eigenvalues Penalty

The estimators proposed by Stein [1975], Dey and Srinivasan [1985], Ledoit and Wolf

[2004], and Won et al. [2012] are well-conditioned and have been used in a number of ap-

plications. However these estimators are not sparse, in addition they have the following

limitations:

• The rotation invariant estimators do not change the eigen-vectors and hence they

remain inconsistent [Johnstone and Lu [2004]].

• These estimators tend to overestimate the number of non-zeros of the underlying true

covariance matrix and its inverse.

• The estimator given in Ledoit and Wolf [2004] results in linear shrinkage of eigenvalues

towards those of identity matrix, which may not be optimal criteria, as eigenvalues far

from center tend to be heavily biased as compared to the eigenvalues in the center.

The choice of variance of eigenvalues has advantage as it allows more shrinkage of the

extreme eigenvalues than the ones in center and therefore non-linearly reduces the bias, and

the quadratic term leads to very fast and exact algorithm. See chapter 6 for more detailed

analysis of the proposed method.
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CHAPTER 6

LEARNING SIMULTANEOUS STRUCTURE WITH JOINT PENALTY

6.1 Motivation

From the discussion in chapter 4, it is understood that learning a sparse structure

can be achieved by `1 regularization. From chapter 5, it is learned that a well-conditioned

structure can be achieved by suitably shrinking the sample eigenvalues towards its center.

However either of these regularization do not provide a simultaneous treatment of sparse

and well-conditioned estimation. For example, consider the estimation of covariance matrix

by minimizing the `1 regularized Frobenius norm loss function:

Σ̂λ = argmin
Σ=ΣT , tr(Σ)=tr(S)

[
||Σ−S||22 +λ‖Σ−‖1

]
, (6.1.1)

where λ is some positive constant. Note that by penalty function ‖Σ−‖1, we only penalize

off-diagonal elements of Σ. By the constraint, tr(Σ) = tr(S), we ensure that total variation

in the estimated covariance matrix is the same as that in the sample covariance matrix. The

solution to (6.1.1) is the standard soft-thresholding estimator and it is given by (see chapter

7 for derivation of this estimator):

Σ̂ii = sii

Σ̂ij = sign(sij)max
(
|sij |−

λ

2 ,0
)
, i 6= j.

(6.1.2)

It is clear from this expression that a sufficiently large value of λ will result in sparse covari-

ance matrix estimate. However the estimator Σ̂ of (6.1.1) is not necessarily positive definite

[for more details here see Maurya [2016], Xue et al. [2012]]. Moreover it is hard to say

whether it overcomes the over-dispersion in the sample eigenvalues. Figure 6.1 illustrates

this phenomenon for a neighbourhood type covariance matrix. Here we simulated random

vectors from multivariate normal distribution with sample size n= 50 and dimension p= 50.
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Figure 6.1: Comparison of eigenvalues of covariance matrix estimates

As is evident from Figure 6.1, eigenvalues of sample covariance matrix are over-dispersed as

most of them are either too large or close to zero. Eigenvalues of the proposed Joint Penalty

(JPEN) estimator are well aligned with those of the true covariance matrix. See chapter 8

for detailed discussion. The soft-thresholding estimator (6.1.2) is sparse but fails to recover

the eigenstructure of the true covariance matrix.

To overcome the over dispersion and achieve a well-conditioned estimator, it is natural

to regularize the eigenvalues of the sample covariance matrix. Consider the eigenvalues reg-

ularized estimator of covariance matrix based on squared loss penalty as the solution to the
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following optimization problem:

Σ̂γ = argmin
Σ=ΣT , tr(Σ)=tr(S)

[
||Σ−S||22 +γ

p∑
i=1

{
σi(R)− σ̄R

}2]
, (6.1.3)

where γ is some positive constant. The minimizer Σ̂γ of (6.1.3) is given by,

Σ̂ = (S+γ t I)/(1 +γ), (6.1.4)

where I is the identity matrix, and t = ∑p
i=1Sii/p. To see the advantage of eigenvalue

shrinkage penalty, note that after some algebra, for any γ > 0,

σmin(Σ̂) = σmin(S+γ t I)/(1 +γ)≥ γ t

1 +γ
> 0.

This means that the variance of eigenvalues penalty improves S to a positive definite esti-

mator Σ̂. However the estimator (6.1.3) is well-conditioned but need not be sparse. Sparsity

can be achieved by imposing `1 penalty on the entries of covariance matrix. In the next

section we describe the joint penalty estimation and discuss its advantage as an improved

covariance matrix estimator.

6.2 JPEN Framework

We consider the joint penalty estimator of covariance matrix as the solution to the

following optimization problem.

Σ̂λ,γ = argmin
Σ=ΣT , tr(Σ)=tr(S)

[
||Σ−S||22 +λ‖Σ−‖1 +γ

p∑
i=1

{
σi(Σ)− σ̄Σ

}2]
, (6.2.1)

where λ and γ are some positive constants. From here onwards we suppress the dependence

of Σ̂ on λ,γ and denote Σ̂λ,γ by Σ̂.

Simulations have shown that, in general the minimizer of (6.2.1) is not positive def-

inite for all values of λ > 0 and γ > 0. Therefore we consider the optimization of (6.2.1)

for restricted set of (λ,γ) to ensure the resulting estimator is sparse and well-conditioned
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simultaneously. In what follows, we first consider correlation matrix estimation, and later

generalize the method for covariance matrix estimation.

The proposed JPEN covariance matrix estimator is obtained by optimizing the following

objective function in R over specific region of values of (λ,γ) which depends on the sample

correlation matrix K, and λ,γ. Here the condition tr(Σ) = tr(S) reduces to tr(R) = p, and

therefore t= 1.

R̂K = argmin
R=RT ,tr(R)=p|(λ,γ)∈ŜK

1

[
||R−K||2F +λ‖R−‖1 +γ

p∑
i=1

{
σi(R)− σ̄R

}2]
, (6.2.2)

where

ŜK
1 =

{
(λ,γ) : λ,γ > 0,λ� γ �

√
log p
n ,∀ε > 0,σmin{(K+γI)− λ

2 ∗ sign(K+γI)}> ε
}
,

and σ̄R is the mean of the eigenvalues of R. In particular if K is diagonal matrix, the set

ŜK
1 is given by,

ŜK
1 =

{
(λ,γ) : λ,γ > 0,λ� γ �

√
log p
n ,∀ε > 0,λ < 2(γ− ε)

}
.

The minimization in (6.2.2) over R is for fixed (λ,γ) ∈ ŜK
1 . Furthermore Lemmas 6.2.1 and

6.2.2, respectively show that the objective function (6.2.2) is convex and estimator given in

(6.2.3) is positive definite.

The proposed estimator of covariance matrix (based on regularized correlation matrix

estimator R̂K) is given by:

Σ̂K = (S+)1/2R̂K(S+)1/2, (6.2.3)

where S+ is the diagonal matrix of the diagonal elements of S.

6.3 Theoretical Analysis of JPEN Estimators

Although we do not make any assumption of data generating process for estimation,

to derive rates of convergence we make assumption that the underlying data generating

29



process is sub-Gaussian. In this section, we give rates of convergence of the proposed JPEN

estimator in high dimensional setting where the sample size and dimension both diverge to

infinity.

Def: A random vector X is said to have sub-Gaussian distribution if for each t≥ 0 and

y ∈ Rp with ‖y‖2 = 1, there exist 0< τ <∞ such that

P{|yT (X−E(X))|> t} ≤ e−t
2/2τ (6.3.1)

The JPEN estimators exists for any (n,p) satisfying 2 ≤ n < p <∞. For theoretical

consistency in operator norm we require s log p = o(n) and for Frobenius norm we require

(p+s) log p= o(n) where s is the upper bound on the number of non-zero off-diagonal entries

in true covariance matrix. For more details, see the remark after Theorem 6.3.1.

We make the following additional assumptions about the true covariance matrix Σ0.

A0. Let X := (X1,X2, · · · ,Xp) be a mean zero vector with covariance matrix Σ0 such that

each Xi/
√

Σ0ii has sub-Gaussian distribution with parameter τ as defined in (6.3.1).

A1. With E = {(i, j) : Σ0ij 6= 0, i 6= j}, the |E| ≤ s for some positive integer s.

A2. There exists a finite positive real number k̄ > 0 such that 1/k̄≤ σmin(Σ0)≤ σmax(Σ0)≤

k̄.

Assumption A2 guarantees that the true covariance matrix Σ0 is well-conditioned (i.e.

all the eigenvalues are finite and positive). Assumption A1 is more of a definition which says

that the number of non-zero off diagonal elements are bounded by some positive integer.

The following Lemmas 6.3.1 and 6.3.2, respectively, show that the optimization problem in

(6.2.2) is convex and yields a positive definite solution.

Lemma 6.3.1. The optimization problem in (6.2.2) is convex.

Lemma 6.3.2. The estimator given by (6.2.2) is positive definite for any 2 ≤ n <∞ and

1≤ p <∞.
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6.3.1 Results on Consistency

Theorem 6.3.1. Let (λ,γ)∈ ŜK
1 and Σ̂K be as defined in (6.2.2). Under Assumptions A0,

A1, A2,

‖R̂K −R0‖F =OP

(√
s log p

n

)
and ‖Σ̂K −Σ0‖=OP

(√(s+ 1)log p
n

)
, (6.3.2)

where R0 is true correlation matrix.

Remark 6.3.1. The JPEN estimator Σ̂K is mini-max optimal under the operator norm.

In (Cai et al. [2015]), the authors obtain the mini-max rate of convergence in the operator

norm of their covariance matrix estimator for the particular construction of parameter space

H0(cn,p) :=
{

Σ : max1≤i≤p
∑p
i=1 I{σij 6= 0} ≤ cn,p

}
. They show that this rate in operator

norm is cn,p
√
log p/n which is same as that of Σ̂K for 1≤ cn,p =

√
s.

Remark 6.3.2. Bickel and Levina [2008b] proved that under the assumption of∑j=1 |σij |q ≤

c0(p) for some 0 ≤ q ≤ 1, the hard thresholding estimator of the sample covariance matrix

for tuning parameter λ�
√

(log p)/n is consistent in operator norm at a rate no worse than

OP

(
c0(p)√p( log pn )(1−q)/2

)
where c0(p) is the upper bound on the number of non-zero ele-

ments in each row. Here the truly sparse case corresponds to q = 0. The rate of convergence

of Σ̂K is same as that of Bickel and Levina [2008b] except in the following cases:

Case (i) The covariance matrix has all off diagonal elements zero except last row which

has √p non-zero elements. Then c0(p) =√p and
√
s=

√
2 √p−1. The operator norm rate

of convergence for JPEN estimator is OP
(√√

p (log p)/n
)
where as rate of Bickel and Lev-

ina’s estimator is OP
(√

p (log p)/n
)
.

Case (ii) When the true covariance matrix is tri-diagonal, we have c0(p) = 2 and

s= 2p−2, the JPEN estimator has operator norm rate of
√
p log p/n whereas that of Bickel

and Levina’s estimator is
√
log p/n.

For the case
√
s � c0(p) and JPEN estimator has the same rate of convergence as that of

Bickel and Levina’s estimator.
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Remark 6.3.3. The operator norm rate of convergence is much faster than Frobenius norm.

This is due to the fact that Frobenius norm convergence is in terms of all eigenvalues of

the covariance matrix whereas the operator norm convergence is in terms of the largest

eigenvalue.

Remark 6.3.4. Our proposed estimator is applicable to estimate any non-negative definite

covariance matrix.

Note that the estimator Σ̂K is obtained by regularization of sample correlation matrix

in (6.2.2). In some applications it is desirable to directly regularize the sample covariance

matrix. The JPEN estimator of the covariance matrix based on regularization of sample

covariance matrix is obtained by solving the following optimization problem:

Σ̂S = argmin
Σ=ΣT ,tr(Σ)=tr(S)|(λ,γ)∈Ŝ S

1

[
||Σ−S||2F +λ‖Σ−‖1 +γ

p∑
i=1
{σi(Σ)− σ̄Σ}2

]
, (6.3.3)

where

Ŝ S
1 =

{
(λ,γ) : λ,γ > 0,λ� γ �

√
log p
n ,∀ε > 0,σmin{(S+γtI)− λ

2 ∗ sign(S+γtI)}> ε}.

The minimization in (6.3.3) over Σ is for fixed (λ,γ)∈ Ŝ S
1 . The estimator Σ̂S is positive

definite and well-conditioned. Theorem 6.3.2 gives the rate of convergence of the estimator

Σ̂S in Frobenius norm.

Theorem 6.3.2. Let (λ,γ) ∈ Ŝ S
1 , and let Σ̂S be as defined in (6.3.3). Under Assumptions

A0, A1, A2,

‖Σ̂S−Σ0‖F =OP

(√(s+p)log p
n

)
(6.3.4)

As noted in Rothman [2012] the worst part of convergence here comes from estimating

the diagonal entries.
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6.4 Generalized JPEN Estimators and Optimal Estimation

The estimators in (6.2.1) and (6.3.3) encourage eigenvalue shrinkage by the same weights

for all the eigenvalues. However one might want to penalize the eigenvalues with different

weights, especially if some prior knowledge is available about the structure of true eigenvalues.

To encourage different level of shrinkage towards the center, we provide the more generic

estimators and call it weighted JPEN estimators.

6.4.1 Weighted JPEN Estimator for the Covariance Matrix Estimation

A modification of estimator R̂K is obtained by adding positive weights to the term

(σi(R)− σ̄R)2. This leads to weighted eigenvalues variance penalty with larger weights

amounting to greater shrinkage towards the center and vice versa. Note that the choice of

the weights allows one to use any prior structure of the eigenvalues (if known) in estimating

the covariance matrix. The weighted JPEN correlation matrix estimator R̂A is given by

R̂A = argmin
R=RT ,tr(R)=p|(λ,γ)∈Ŝ

K,A
1

[
||R−K||2F +λ‖R−‖1 +γ

p∑
i=1

ai{σi(R)− σ̄R}2
]
, (6.4.1)

where

ŜK,A
1 =

{
(λ,γ) : λ� γ �

√
log p
n ,λ≤ (2 σmin(K))(1+γ max(Aii)−1)

(1+γ min(Aii))−1p + γ min(Aii)
p

}
,

and A = diag(A11,A22, · · ·App) with Aii = ai. The proposed covariance matrix estimator

is Σ̂K,A = (S+)1/2R̂A(S+)1/2. The optimization problem in (6.4.1) is convex and yields

a positive definite estimator for each (λ,γ) ∈ ŜK,A
1 . A simple excercise shows that the

estimator Σ̂K,A has the same rate of convergence as Σ̂S . How to choose weights ai in

(6.4.1), is discussed in next chapter.
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CHAPTER 7

AN ALGORITHM AND ITS COMPUTATIONAL COMPLEXITY

A problem is regarded as inherently difficult if its solution requires significant resources,

whatever the algorithm used. Despite recent ambitious developments in solving convex

optimization problems, efficient computation and scalability still remain two challenging

problems in high dimensions data analysis. The existing methods that solve a convex opti-

mization (here we mean minimization) problems often can be implemented very efficiently

in far less time than the concave optimization. Extensive literature exits for convex opti-

mization problems [Bertsekas [2010] Vandenberghe and Boyd [2004], Bach et al. [2011], Beck

and Teboulle [2009]]. The main challange in covariance matrix estimation in the Gaussian

liklihood framework is that the negative of log likelihood is concave function which makes

it a very hard optimization problem. In such situations, one way to facilitate the optimiza-

tion is to approximate the negative of log likelihood function by some non-concave function

and then solve this approximate problem efficiently using existing algorithms. However the

solution thus obtained may not be an optimal solution to the original problem.

The existing algorithms of computing the optimal covariance matrix based on Frobenius

loss function have computational complexity of O(p3), where the constant in O(p3) can be

really large, often more than the dimension of the matrix. The main reason behind such

high computational complexity is that the methods require optimzation over a set of positive

definite cones for the estimator to be positive definite (for more on this topic, see Xue et al.

[2012]). The JPEN framework provides an easy solution for positive definite constraints

that depends upon choices of the (λ,γ). The compuatonal complexity of JPEN estimator is

O(p2) and thus much faster than the other existing algorithms. The next section describes

the derivation of JPEN estimator described in chapter 6.
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7.1 A Very Fast Exact Algorithm

7.1.1 Derivation

The optimization problem (6.2.2) can be written as:

R̂K = argmin
R=RT |(λ,γ)∈ŜK

1

f(R), (7.1.1)

where

f(R) = ||R−K||2F +λ‖R−‖1 +γ
p∑
i=1
{σi(R)− σ̄(R)}2.

Note that ∑p
i=1{σi(R)− σ̄(R)}2 = tr(R2)− 2 tr(R) +p, where we have used the constraint

tr(R) = p. Therefore,

f(R) = ‖R−K‖2F +λ‖R−‖1 +γ tr(R2)−2 γ tr(R) +p

= tr(R2(1 +γ))−2tr{R(K+γI)}+ tr(KTK) +λ ‖R−‖1 +p

= (1 +γ){tr(R2)− 2
1 +γ

tr{R(K+γI)}+ (1/(1 +γ))tr(KTK)}+λ ‖R−‖1 +p

= (1 +γ){‖R− (K+γI)/(1 +γ)‖2F + 1
1 +γ

tr(KTK)}+λ ‖R−‖1 +p.

The solution of the above optimization problem is soft thresholding estimator and is given

by,

R̂K = 1
1 +γ

sign(K)∗pmax{abs(K+γ I)− λ2 ,0} (7.1.2)

with (R̂K)ii = (Kii+γ)/(1+γ), pmax(A,b)ij := max(Aij , b) is elementwise max function for

each entry of the matrix A. Note that for each (λ,γ) ∈ ŜK
1 , R̂K is positive definite.
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7.1.2 Choice of Regularization Parameters

For a given value of γ, we can find the value of λ satisfying

σmin{(K+γI)− λ2 ∗ sign(K+γI)}> 0, (7.1.3)

which can be simplified to

λ <
σmin(K+γI)

C12 σmax(sign(K)) , C12 ≥ 0.5.

Then (λ,γ) ∈ ŜK
1 , and the estimator R̂K is positive definite. Smaller values of C12 yield a

solution which is more sparse but may not be positive definite. The optimal values of (λ,γ)

were obtained following the approach suggested in Bickel and Levina [2008b] by minimizing

the 5−fold cross validation error

1
5

5∑
i=1
‖Σ̂vi −Σ−vi ‖1,

where Σ̂vi is JPEN estimate of the covariance matrix based on v = 4n/5observations, Σ−vi is

the sample covariance matrix using (n/5) observations.

7.1.3 Choice of Weights

For the optimization problem in (6.4.1), we chose the weights as per the following

criteria:

Let E = (ε1, ε2, · · · , εp) be the set of smallest to largest diagonal elements of the sample

covariance matrix S.

• Let k be the largest integer such that kth elements of E is less than 1. Let

bi =


εi for i≤ k

1/εi, for k < i.

• A= diag(a1,a2, · · · ,ap), where aj =
bj∑p
i=1 bi

.
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Such choice of weights allows more shrinkage of extreme sample eigenvalues than the ones

in the center of eigen-spectrum.

7.2 Computational Complexity

The JPEN estimator Σ̂K has computational complexity of O(p2). This is due to the fact

that there there are at most (p2 + 2p) multiplication, and at most p2 operations for entry-

wise maximum computation. The other existing algorithms Graphical Lasso (Friedman et al.

[2008]), and PDSCE (Rothman [2012]) have computational complexity of O(p3), where the

constant of complexity is often very large, mainly due to the iterative nature of convergence.

Another advantage of JPEN estimator is that it is an exact solution to the underlying

optimization problem. To see the computing time performance, we plot the computational

timing of our algorithm and some other existing algorithms including Glasso (Friedman

et al. [2008]), PDSCE (Rothman [2012]). Note that the exact timing of these algorithm also

depends upon the implementation, platform etc. (we did our computations in R on a AMD

2.8GHz processor).
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Figure 7.1: Timing comparison of JPEN, Glasso, and PDSCE.

Figure 7.1 illustrates the total computational time taken to estimate the covariance

matrix by Glasso, PDSCE and JPEN algorithms for different values of p for Toeplitz type

of covariance matrix (see chapter 8 for Toeplitz type of covariance matrix). Although the

proposed method requires optimization over a grid of values of (λ,γ) ∈ ŜK
1 , our algorithm

is very fast and easily scalable to large scale data analysis problems.
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CHAPTER 8

SIMULATIONS

In this chapter we compare the performance of the proposed JPEN estimator of covari-

ance matrix for various choices of structured covariance matrices. We consider covariance

matrices from both class viz. (i) when there is a natural ordering among variables, and (ii)

when there is no natural ordering among variables. In addition to these, we also include

results in a setting when the underlying true covariance matrix is dense and has very high

condition number.

8.1 Preliminary

We consider the following five different types of covariance matrices in our simulations.

(i) Hub Graph: Here the rows/columns of Σ0 are partitioned into J equally-sized disjoint

groups: {V1 ∪V2 ∪, ...,∪ VJ} = {1,2, ...,p}, each group is associated with a pivotal row k.

Let size |V1| = s. We set σ0i,j = σ0j,i = ρ for i ∈ Vk and σ0i,j = σ0j,i = 0 otherwise. In our

experiment, J = [p/s],k = 1, s+ 1,2s+ 1, ..., and we always take ρ= 1/(s+ 1) with J = 20.

(ii) Neighborhood Graph: We first uniformly sample (y1,y2, ...,yn) from a unit square.

We then set σ0i,j = σ0j,i = ρ with probability (
√

2π)−1
exp(−4‖yi− yj‖2). The remaining

entries of Σ0 are set to be zero. The number of nonzero off-diagonal elements of each row or

column is restricted to be smaller than [1/ρ], where ρ is set to be 0.245.

(iii) Toeplitz Matrix: We set σ0i,j = 2 for i= j; σ0i,j = |0.75||i−j| , for |i− j|= 1,2; and

σ0i,j = 0 , otherwise.

(iv) Block Toeplitz Matrix: In this setting Σ0 is a block diagonal matrix with varying

block size. For p = 500, number of blocks is 4 and for p = 1000, the number of blocks is 6.

Each block of covariance matrix is taken to be Toeplitz type matrix as in the case (iii).
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(v) Cov-I type Matrix: In this setting, we first simulate a random sample (y1,y2, ...,yp)

from standard normal distribution. Let xi = |yi|3/2 ∗ (1 + 1/p1+log(1+1/p2)). Next we gen-

erate multivariate normal random vectors Z = (z1, z2, ..., z5p) with mean vector zero and

identity covariance matrix. Let U be eigenvector corresponding to the sample covariance

matrix of Z . We take Σ0 = UDU ′, where D = diag(x1,x2, ....xp). This is not a sparse

setting but the covariance matrix has most of eigenvalues close to zero and hence allows us

to compare the performance of various methods in a setting where most of eigenvalues are

close to zero and widely spread as compared to structured covariance matrices in the cases

(i)-(iv).

Figure 8.1 shows the graphical covariance structure for these matrices. Here we choose

p= 100 for better visualization.
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Figure 8.1: Covariance graph for different type of matrices
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For all these choices of covariance and inverse covariance matrices, we generate random

vectors from multivariate normal distributions with varying n and p. We chose n = 50,100

and p= 500,1000. We compare the performance of the proposed covariance matrix estimator

Σ̂K with the following estimators.

• Graphical lasso [Friedman et al. [2008]]: Graphical lasso estimates a sparse precision

matrix. Here we invert the inverse, and include in our analysis. The estimate was com-

puted using ‘R’ package ’Glasso’. For more details, refer to http://statweb. stanford.

edu/ tibs/ glasso/.

• Bickel and Levina’s thresholding estimator (BLThresh) [Bickel and Levina

[2008b]]. The estimator was computed as per the algorithm given in their paper.

• Rothman’s Positive Definite Sparse Covariance Matrix Estimator (PDSCE)

[Rothman [2012]]. The PDSCE was computed using ‘R’ package ’PDSCE’. For more

details, refer to (http://cran. r-project. org/web/ packages/PDSCE/index.html)

• Ledoit and Wolf estimator [Ledoit and Wolf [2004]] Their estimate was computed

using code from (http://econ.uzh.ch/faculty/wolf/publications.html#9).

• The JPEN estimator was computed using ‘R’ package ’JPEN’. All the computations

were done using R on a AMD 2.8GHz processor.

8.2 Performance Comparison

For each of covariance and precision matrix estimate, we calculate Average Relative

Error (ARE) based on 50 iterations using following formula,

ARE(Σ, Σ̂) = | log(f(S, Σ̂)) − log(f(S,Σ0))|/| log(f(S,Σ0))|, (8.2.1)

where f(S, ·) is multivariate normal density given the sample covariance matrix S, Σ0 is the

true covariance, Σ̂ is the estimate of Σ0 based on one of the methods under consideration.
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Other choices of performance criteria are Kullback-Leibler, used by Yuan and Lin [2007] and

Bickel and Levina [2008b], precision and recall. The optimal values of tuning parameters

were obtained over a grid of values by minimizing 5−fold cross-validation as explained in

§7.2.

Table 8.1: Covariance matrix estimation

Block type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Ledoit-Wolf 1.54(0.102) 2.96(0.0903) 4.271(0.0394) 2.18(0.11)

Glasso 0.322(0.0235) 3.618(0.073) 0.227(0.098) 2.601(0.028)
PDSCE 3.622(0.231) 4.968(0.017) 1.806(0.21) 2.15(0.01)

BLThresh 2.747(0.093) 3.131(0.122) 0.887(0.04) 0.95(0.03)
JPEN 2.378(0.138) 3.203(0.144) 1.124(0.088) 2.879(0.011)

Hub type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Ledoit-Wolf 2.13(0.103) 2.43(0.043) 1.07(0.165) 3.47(0.0477)

Glasso 0.511(0.047) 0.551(0.005) 0.325(0.053) 0.419(0.003)
PDSCE 0.735(0.106) 0.686(0.006) 0.36(0.035) 0.448(0.002)

BLThresh 1.782(0.047) 2.389(0.036) 0.875(0.102) 1.82(0.027)
JPEN 0.732(0.111) 0.688(0.006) 0.356(0.058) 0.38(0.007)

Neighborhood type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Ledoit-Wolf 1.36(0.054) 2.89(0.028) 1.1(0.0331) 2.32(0.0262)

Glasso 0.608(0.054) 0.63(0.005) 0.428(0.047) 0.419(0.038)
PDSCE 0.373(0.085) 0.468(0.007) 0.11(0.056) 0.175(0.005)

BLThresh 1.526(0.074) 2.902(0.033) 0.870(0.028) 1.7(0.026)
JPEN 0.454(0.0423) 0.501(0.018) 0.086(0.045) 0.169(0.003)
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Table 8.2: Covariance matrix estimation

Toeplitz type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Ledoit-Wolf 1.526(0.074) 2.902(0.033) 1.967(0.041) 2.344(0.028)

Glasso 2.351(0.156) 3.58(0.079) 1.78(0.087) 2.626(0.019)
PDSCE 3.108(0.449) 5.027(0.016) 0.795(0.076) 2.019(0.01)

BLThresh 0.858(0.040) 1.206(0.059) 0.703(0.039) 1.293(0.018)
JPEN 2.517(0.214) 3.205(0.16) 1.182(0.084) 2.919(0.011)

Cov-I type covariance matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Ledoit-Wolf 33.2(0.04) 36.7(0.03) 36.2(0.03) 48.0(0.03)

Glasso 15.4(0.25) 16.1(0.4) 14.0(0.03) 14.9(0.02)
PDSCE 16.5(0.05) 16.33(0.04) 16.9(0.03) 17.5(0.02)

BLThresh 15.7(0.04) 17.1(0.03) 13.4(0.02) 17.5(0.02)
JPEN 7.1(0.042) 11.5(0.07) 8.4(0.042) 7.8(0.034)

The average relative error and their standard deviations (in percentage) for covariance

matrix estimates are given in Table 8.1 and Table 8.2. The numbers in the bracket are the

standard errors of relative error based on the estimates using different methods. Among

all the methods JPEN and PDSCE perform similar for most of choices of n and p for all

five type of covariance matrices. This is due to the fact that both PDSCE and JPEN use

quadratic optimization function with a different penalty function. The behavior of Bickel

and levina’s estimator is quite good in Toepltiz case where it performs better than the other

methods. For this type of covariance matrix, the entries away from the diagonal decay to

zero and therefore soft-thresholding estimators like BLThresh perform better in this setting.

However for neighorhood and hub type covariance matrix which are not necessarily banded

type, Bickel and Levina estimator is not a natural choise as their estimator would fail to

recover the underlying sparsity pattern. The performance of Ledoit-Wolf estimator is not

very encouraging for Cov-I type matrix, This is beacuse Ledoit-Wolf estimator is generally

not sparse and uniformly shrinks the sample covariance matrix towards identity matrix.
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Figure 8.2: Heat-map of zeros identified in covariance matrix out of 50 realizations. White
color is 50/50 zeros identified, black color is 0/50 zeros identified.
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8.3 Recovery of Eigen-structure and Sparsity

To see the performance JPEN estimator in recovering the eigenstructure and sparsity,

we plot the recovered eigenstructure and sparsity pattern in the both settings namely: (i)

when the true covariance matrix has low condition number, and (ii) when the true covariance

matrix has a very high condition number. The eigen-plots in Figure 8.3 and 8.4 show that

among all the methods, estimates of eigenvalues of JPEN estimator are most consistent for

the true eigenvalues. For Cov-I type covariance matrix where most of eigenvalues are close

to zero and widely spread, the performance of JPEN estimator is impressive. This clearly

shows the advantage of JPEN estimator of covariance matrix when the true eigenvalues are
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dispersed or close to zero. The eigenvalues plot in Figure 8.4 shows that when eigen-spectrum

of the true covariance matrix are not highly dispersed, the JPEN and PDSCE estimates of

eigenvalues are almost the same, because both of these methods exploit Frobenius norm loss

function with different penalty functions.

Figure 8.3: Eigenvalues plot for n = 100, p = 50 based on 50 realizations for neighborhood
type of covariance matrix
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Figure 8.4: Eigenvalues plot for n = 100, p = 100 based on 50 realizations for Cov-I type
matrix
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Part II

Estimating Inverse Covariance

Structure
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CHAPTER 9

INVERSE COVARIANCE MATRIX AND ITS APPLICATIONS

9.1 Motivation

In many of the scientific applications the interest is to estimate the inverse of the co-

variance matrix (also called precision matrix). Precision matrix is widely used in a variety of

applications including: i) linear discriminant classification: the classifier is function of pre-

cision matrix ii) Gaussian graphical modeling: A zero entry of the precision matrix implies

conditional independence between the corresponding variables, iii) regression analysis: the

regression coefficients are functions of precision matrix, and iv) Confidence interval estima-

tion of population mean vector when the underlying data distribution is Gaussian.

In high dimensional data analysis problems where one often has very few observations

as compared to the number of variables, the inverse of sample covariance matrix is not very

useful. In fact for n < p the sample covariance is singular and the inverse is not defined. In

such situations one can replace the precision matrix by its generalized inverse [Rao [1972]].

A matrix G is called generalized inverse of A, if AGA=A. Generalized inverse have been

used in number of applications including system of normal equations with singular matrix,

least squares theory to express the variance of estimates. Although these are appealing in

number of applications, their application in high dimensional analysis is often limited due

to fact that they still remain singular and non-sparse. In particular their eigenvalues are

biased, still remain over-dispersed compared to their population counterparts.
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9.2 Related Work

Regularization is the most widely used technique to impose some structure on the

estimation of precision matrices. In the likelihood based estimation framework, there is

plenty of literature for the estimation of sparse precision matrix. Dempster [1972] introduced

the concept of covariance selection where certain entries of precision matrices are set to zero,

location of such entries in precision matrix is based on information in sample covarinace

matrix. In likelihood framework, Gaussian distribution is most widely used data distribution

for covariance matrix estimation due to its concavity as a function of precision matrix.

In such framework, the optimization can be carried out by a number of fast algorithms,

viz., interior based methods (Vandenberghe and Boyd [2004],Vandenberghe et al. [1998]),

subgradient based methods (Beck and Teboulle [2009]), and proximal gradient methods

(Bertsekas [2010]). Among the early work on `1 regularized high dimensional covariance

matrix estimation, Banerjee et al. [2008] proposed an estimator of sparse precision natrix

(based on Σ) as the solution to the following optimization problem:

Σ̂−1 = argmax
Ω

−log(det(Ω)) + 1
2tr(SΩ) +λ‖Ω‖1, (9.2.1)

where λ is non-negative tuning parameter that controls the level of sparsity in the estimate.

They show that the above problem is convex and consider the estimation of Σ (rather

than Σ−1) and argue that one can solve the problem by optimizing over each row and

corresponding column of Ω = Σ1 in a block coordinate descent fashion. In another interesting

work, Meinshausen and Bühlmann [2006] take another approach by solving a lasso problem

to each variable, using others as predictors. The component Σ̂−1
ij is estimated to be zero if

either the estimated coefficient of variable i on j, or the estimated coefficient of variable j

on i, is non-zero (alternatively they use an AND rule). They show that asymptotically, this

consistently estimates the set of non-zero elements of Σ−1. However as argued in Friedman

et al. [2008], this approach does not yield maximum likelihood estimator. Friedman et al.

[2008] proposed Graphical lasso estimator as solution to (9.1) but instead they solve for Ω.
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Using the fact that (9.1) is a smooth function of Ω except at the origin, they use subgradient

based approach to solve a lasso least square regression of each variable, taking others as

predictors. The graphical lasso uses cordinate descent algorithm and is very fast. Rothman

et al. [2008] proposed an estimator (they call it SPICE) of precision matrix as solution to `1

regularized log likelihood function, however they only penalize off-diagonal entries. Other

authors have proposed exact minimization of `1 regularized log-likelihood; Yuan and Lin

[2007], Yuan [2009], Zhou et al. [2011],and Pourahmadi [2007, 2011]. In Cai et al. [2011], the

authors proposed an estimator of precsion matrix as a solution to the following optimization

problem.

min
Ω
‖Ω‖1 subject to ‖SΩ− I‖∞ ≤ λ, Ω ∈ Rp×p (9.2.2)

where λ is a tuning parameter. They gave a symmetric estimator based on this solution by

taking

ω̂ij = ω̂ij1{|ω̂ij |≤|ω̂ji|}+ ω̂ji1{|ω̂ji|≤|ω̂ij |}

where ω̂ij is the (i, j)th entry of the solution Ω̂ of (9.2.2). Next, we describe the joint penalty

estimator of precision matrix.

9.3 Joint Penalty for Precision Matrix Estimation

The `1 regularized precision matrix estimators often perform very good in estimating a

sparse precision matrix, however whether they overcome the over-dispersion in eigenvalues,

it is hard to justify. Figure 9.3.1 shows the eigenvalues of the estimated inverse precision

matrix based on different methods. The methods consider here are: (i) Joint Penalty (JPEN)

(see chapter 12 for JPEN estimator), (ii) Graphical Lasso (Glasso), (iii) SPICE, and (iv)

CLIME.
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Figure 9.1: Eigenvalues plot of precision matrix

Among these methods, the proposed Joint Penalty estimated eigenvalues are closest to

the true eigenvalues, as it clearly reduces the over dispersion. This suggests that including

a penalty on the variance of eigenvalues improves the over dispersion in the eigenvalues of

precision matrix. Next we highlight few applications of precision matrix context of high

dimensional data analysis.
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9.4 Some Applications

9.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is one of the widely used classification method in

high dimensional setting. For simplicity, consider the two class classification problem. Given

sample observations on class labels and features, LDA classifies each test observation x to

either class k = 0 or k = 1 using the rule

δk(x) = argmax
k

{
xT Ω̂µ̂k −

1
2 µ̂kΩ̂µ̂k + log(π̂k)

}
, (9.4.1)

where π̂k is the proportion of class k observations in the training data, µ̂k is the sample

mean for class k on the training data, and Ω̂ := Σ̂−1 is an estimator of the inverse of the

common covariance matrix.

9.4.2 Gaussian Graphical Modeling

Given a random vector Y = (Y1,Y2, · · · ,Yp) , Yi,Yj are said to be conditionally inde-

pendent, if their joint distribution given rest of variables is same as the product of their

conditionally marginal distribution. i.e.

P
(
Yi,Yj

∣∣∣{Y \Yi,Yj})= P
(
Yi
∣∣∣{Y \Yi,Yj})P(Yj , ∣∣∣{Y \Yi,Yj}),

where {Y \Yi,Yj} is vector Y excluding random variables Yi and Yj .
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Figure 9.2: Illustration of conditional independence

In Gaussian graphical model, Y = (Y1,Y2, · · · ,Yp) follows multivariate normal distribu-

tion with mean vector µ and variance covariance matrix Σ. In this setting, the Yi and Yj are

conditionally independent given the rest of variables {Yk,k 6= i,k 6= j}, if partial correlation

coefficient between Yi and Yj is zero which is equivalent to Σ−1
ij = 0. This parallel relation-

ship between the graph structure and the precision matrix greatly simplifies the estimation

of graph structure to the problem of sparse precision matrix estimation.
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CHAPTER 10

A JOINT CONVEX PENALTY(JCP) ESTIMATION

10.1 Motivation

Discussions from the above chapters 5 and 6 suggest estimation based on just `1 regu-

larization does not yield appropriate shrinkage of the eigenspectrum. Therefore it is natural

to impose an additional penalty to obtain a well-conditioned precision matrix estimation. In

this chapter, we extend the likelihood based `1 regularized precision matrix estimation by

adding trace norm penalty, and call it by Joint Convex Penalty (JCP) method. We imple-

ment proximal gradient method for computing the proposed estimator. The proposed

algorithm is shown to converge at a rate O(1/k) under mild conditions.

10.2 Joint Convex Penalty Estimation

The method to overcome the over-dispersion in precision matrix was previously studied

by many authors with majority of work focusing on a well-conditioned estimation. Sheena

and Gupta [2003] propose a constrained maximum likelihood estimator with restrictions on

the lower or upper bound of the eigenvalues. This method focuses on only one of the two

ends of the eigen-spectrum and thus the resulting estimator does not correct for the overesti-

mation of the large eigenvalues and underestimation of the small eigenvalues simultaneously.

Consequently their approach does not address the distortion of the entire eigen-spectrum

– especially in high dimensional setting. Won et al. [2012] consider a maximum likelihood

estimation of covariance matrix with condition number constraint. However this approach

itself requires an estimation of condition number.

To control the distortion of eigen-spectrum of the covariance matrix, we consider a
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joint penalty of sum of singular values (trace norm) in addition to `1 norm. By minimizing

the joint penalty function of `1 and trace norm, the resulting estimated precision matrix is

sparse as well as singular values of the corresponding covariance matrix are more centered

than those of the sample observed covariance matrix.

10.2.1 Problem Formulation

Let X ∼ Np(0,Σ), Σ� 0. For the simplicity of notation, we denote Ω = Σ−1. Let ‖Ω‖∗

be trace norm and defined as sum of singular values of the matrix Ω. Next we describe the

proposed Joint Convex Penalty (JCP) estimator.

10.2.2 Proposed Estimator

We consider the following optimization problem with joint convex penalty:

argminΩ� 0 F (Ω) := f(Ω) +g1(Ω) +g2(Ω). (10.2.1)

where

f(Ω) =− log(det(Ω)) + tr(SΩ) ; g1(Ω) = λ‖Ω‖1 ; g2(Ω) = τ‖Ω‖∗ (10.2.2)

where λ and τ are non negative constants. The proposed algorithm to solve above problem

is given in chapter 11 and can be used to solve a wide array of problems in statistics and

machine learning. Some of the other important applications of this method include Matrix

Classification Problems [Tomioka and Aihara [2007], Bach [2008], Multi-Task Learning Ar-

gyriou et al. [2008]].

Note that the f(Ω) in (10.2.2) is a convex function, `1 norm is a smooth convex function

except at origin and trace norm is convex surrogate of rank over the unit ball of spectral

norm Fazel [2002]. The above problem is a convex optimization problem with non-smooth

constraints. A natural choice to solve the above optimization problem is subgradient method
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which generates a sequence of estimates {Ωk, k = 1,2,3, ...} as

Ωk = Ωk−1−α5F (Ωk−1), (10.2.3)

where α is some positive step size and 5F (Ωk−1) is sub-gradient indicating direction of

greatest value increase of the function F (Ω) at Ωk−1. This method has a well known con-

vergence rate of O(k−
1
2 ) for non-smooth convex functions (Nesterov [2005]). We employ

proximal gradient method to obtain a better rate of convergence of order O(k−1). This

method can be generalized to solve an arbitrary combination of convex functions [Bertsekas

[2010]].
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CHAPTER 11

PROXIMAL GRADIENT ALGORITHMS AND ITS CONVERGENCE
ANALYSIS

11.1 Introduction

Much like Newton’s method is a standard tool for solving unconstrained smooth opti-

mization problems of modest size, proximal gradient algorithms can be viewed as an analo-

gous tool for non-smooth, constrained, large-scale, or distributed versions of these problems.

They are very generally applicable, but are especially well-suited to problems of substantial

recent interest involving large or high-dimensional data sets. The main reason behind the

success of proximal gradient algorithm is the availability of inexpensive operators of some

well known functions, The projection gradient algorithm involves projecting a point onto a

convex set, and often admits a closed form solution that can be obtained very quickly with

a simple specialized methods. In our setup, we require computation of proximal operator for

`1 and trace norm.

11.2 Proximal Gradient Method

Let h(Ω) be a lower semi-continuous convex function of Ω, which is not identically equal

to +∞. Then proximal point algorithm [Rockafellar [1976]] generates a sequence of solutions

{Ωk, k = 1,2,3, ...} to the following optimization problem,

Ωk = Proxh(Ωk−1) = argminΩ� 0

(
h(Ω) + 1

2‖Ω−Ωk−1‖22

)
. (11.2.1)

The sequence {Ωk, k = 1,2,3, ...} weekly converges to the optimal solution of minΩ�0 h(Ω)

(Rockafellar [1976]). To use the structure of the above optimization algorithm, we use

quadratic approximation of f(Ω), which is justified since f is strictly convex.
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11.3 Basic Approximation Model

For any L > 0 , consider the following quadratic approximation model of f(Ω) at Ω′ :

QL(Ω,Ω
′
) := f(Ω

′
)+ < Ω−Ω

′
,5f(Ω

′
)>+ L

2 ‖Ω−Ω
′
‖22 (11.3.1)

where <A,B> is the inner product of A and B, and L is a positive constant. The opti-

mization problem in (11.3.1) has two convex penalties. Proximal gradient method consists

of sequential optimization of (11.3.1) by taking one constraint at a time in either cyclic or

random order. Rewriting the optimization problem (11.3.1) with single constraint

Prox 1
Lgi

(Ω′) = argminΩ� 0

(
QL(Ω,Ω′) + gi(Ω)

)

= argminΩ� 0

(
L

2 ‖Ω−{Ω
′
− 1
L
5f(Ω

′
)}‖22 + gi(Ω)

)
. (11.3.2)

In general, L is unknown and it is estimated as an upper bound of Lipschitz parameter

of 5f(Ω) [Bach et al. [2011]]. In other words L satisfies:

‖5f(Ω)−5f(Ω′)‖2 ≤ L‖Ω−Ω
′
‖2 ∀ Ω,Ω

′
∈ Dom(f). (11.3.3)

A common method of generating value of L is to do a line search. For the optimization

problem (11.3.2) we sequentially generate new estimates and increase the value of L by a

factor γ > 1 until the following condition is met :

fL(Ωk)≤ f(Ωk−1)+ < Ωk−Ωk−1,5f(Ωk−1)>+L2 ‖Ωk−Ωk−1‖22, (11.3.4)

where Ωk is a solution at kth iteration. In Lemma 11.3.1 and 11.3.2 below, we give proximal

gradient operator for `1 and trace norm.

Lemma 11.3.1. Let M ∈Rm×n. The proximal operator of ‖.‖1 with constant λ is given by

Proxλ‖·‖1(M) = argminC� 0

(
λ‖C‖1 + 1

2‖C−M‖
2
2

)
, (11.3.5)

where
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Proxλ‖·‖1(M) =sign(M)(0,abs(M)−λ)+ , λ > 0.

and abs(M) entriwise maximum function for matrix M .

Proof. Proof of the lemma is given in appendix.

Lemma 11.3.2. Let M ∈ Rm×n and M = UΣV T be singular value decomposition of M

where U ∈Rm×r and V ∈Rr×n have orthogonal columns, Σ is the diagonal matrix of singular

values of M and r is rank of matrix M . Then proximal operator of ‖.‖∗ with constant τ is

given by

Proxτ‖·‖∗(M) = argminC�0

(
τ‖C‖∗+ 1

2‖C−M‖
2
2

)
, (11.3.6)

where Proxτ‖·‖∗(M) = UΣτV T , Στ is diagonal matrix with ((Στ ))ii =max(0,Σii−τ), τ >

mini≤p(Σii).

Proof. Proof of the lemma is given in appendix.

For `1 and trace norm, the proximal operators are inexpensive to calculate. This re-

sults in efficient optimization of the objective function. The proximal operator for `1 is

elementwise soft-thresholding operator. The proximal operator for trace norm is obtained

by shrinking the singular values of precision matrix by regularization parameter. A larger

value of regularization parameter results is more shrinkage of the eigenvalues.

11.4 Algorithm for optimization

Below we summarize the optimization algorithm for (11.3.2).

Initialize L0 = 1, γ > 1,Ω0 = diag(1/diag(S)).

Iterate:

• Step 1: Set L̄= Lk−1.
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• Step 2: While F (Ω∗)> QL̄((Ω∗),Ωk−1) + g1(Ω∗) + g2(Ω∗)

(where Ω∗ = argminΩ� 0 QL̄(Ω,Ωk−1) +g1(Ω) + g2(Ω) )

Set L̄= γL̄.

• Step 3: Set Lk = L̄, Set Zk = Ωk− 1
Lk
5f(Ωk),SetZk+1 =Prox(τ/Lk)g2(Zk),SetΩk+1 =

Prox(λ/Lk)g1(Zk+1).

• Repeat until convergence.

11.5 Choosing the Regularization Parameter

The choice of regularization parameter is a challenging problem in high dimensional

data analysis. Regularization has clear benefit in producing sparse solution as well reduces

false discovery rate. A smaller value of λ accounts for a sparser structure of the precision

matrix. Some of the methods for choosing regularization parameter include K-fold cross

validation (KCV), stability approach to regularization selection (StARS) (Liu et al. [2010]),

Akaike-Information Criteria (AIC) and Bayesian Information criteria (BIC). Experiments

[Liu et al. [2010]] have shown that AIC and BIC methods tend to give poor performance for

smaller sample sizes. Also K-fold cross validation tends to select smaller values of regular-

ization parameter and results in higher false discovery rate. We follow StARS approach for

estimating the regularization parameters λ and τ. Next we present the convergence analysis

of the algorithm given in 11.4.

11.6 Convergence Analysis

We use the proposition 3.1 from Bertsekas [2010],

Lemma 11.6.1. Let {Ωn, Ln,n = 1,2, ...} be the sequence generated by algorithm given in
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§11.4. Let c > 0 be a constant satisfying,

max{5‖f(Ω)‖,5‖gj(Ω)‖} ≤ c and

max{f(Ωn)−f(Zn+j−1) , gj(Ωn)−gj(Zn+j−1)} ≤ c ‖Ωn−Zn+j−1‖, j = 1,2.

Then for a cyclic order optimization of components g1(·) and g2(·), following holds :

‖Ωn1−Ω∗‖2 ≤ ‖Ωn−Ω∗‖2 − 2
Ln

(F (Ωn)−F (Ω∗)) + 18c2/L2
n (11.6.1)

where Ωn1 = Prox(τ/Ln)g2(Ωn) and Ω∗ is a solution of (2.1) and (2.2).

Lemma 11.6.2. Let {Ωn, Ln,n= 1,2, ...} be the sequence generated by algorithm §11.4. Let

c be a constant as defined in Lemma (11.6.1). Then,

F (Ωn)−F (Ω∗)≤ Ln
4

(
‖Ωn−1−Ω∗‖2−‖Ωn−Ω∗‖2

)
+ 9c2

2Ln
− λ

2 < Ω∗−Ωn,5‖Ωn‖1 >

(11.6.2)

Proof. Proof of the Lemma 11.6.2 is given in appendix.

We give below the convergence of the algorithm § 11.4.

Theorem 11.6.1. Let {Ωk,k = 1,2, ...} be the sequence generated by algorithm §11.4. Let

c be a constant as defined in Lemma 11.6.1. In addition, we assume that there exists a

constant M <∞ such that
∞∑
n=1
|< Ω∗−Ωn,5‖Ωn‖1 > | <M , then

F (Ωk)−F (Ω∗)≤
(
γL‖Ω0−Ω∗‖2F + 18c2 + M

4k

)
, (11.6.3)

where L> 0 is the least upper Lipschitz constant of the gradient of f(Ω) and γ > 1 is constant

as defined in algorithm §11.4.

Proof. Note that Lnγ ≤ L≤ Ln , for all n= 1,2, ... Using Lemma 11.6.2, by adding F (Ωn)−

F (Ω∗) over n= 1,2, ..., we get the desired result.
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Due to the non-smoothness of the trace norm, the optimal first order black box methods

have convergence rate of O(k−
1
2 ). The proximal gradient algorithm uses the special structure

of the trace and `1 norm which improves the convergence rate for joint penalty to the order

O(k−1).

11.7 Simulation Study

To implement the proposed method, we perform a simulation study for various choices

of precision matrix. We consider different types of precision matrices as outlined in chapter

8. Here we consider the underlying true precision matrix sparse rather than the covariance

matrix. For all these choices of inverse covariance matrices, we generate random numbers

from multivariate normal distribution with varying n and p. We set n = 50,100,200 and

p = 50,100,200. The performance of proposed method is compared to graphical lasso and

SPICE estimates of precision matrix. The joint convex penalty estimate of the precision

matrix was computed using R software version 3.0.1 based on the algorithm §11.4. The

graphical lasso estimate of the precision matrix was computed using R package “glasso"

(http://statweb.stanford.edu/ tibs/glasso/). In “glasso” there is option of not penalizing

the diagonal elements by setting the option “penalizing.diagonal=FALSE", this gives SPICE

estimate.

11.7.1 Performance Criteria

For each of precision matrix estimate, we calculate Kullback-Leibler(KL) Loss, and

Average Relative Error(ARE) defined below:

KLLoss(Ω, Ω̂) = − log(det(Ω̂)) + tr(Ω−1Ω̂) + log(det(Ω)) − p

ARE(Ω, Ω̂) = | log(f(S, Ω̂)) − log(f(S,Ω))|/ log(f(S,Ω))
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where f(·, ·) is density of multivariate Gaussian distribution and S is sample covariance

matrix. The tuning parameters λand τ were estimated following the Liu et al. [2010] criteria,

which we describe below.

11.7.2 StARS Method of Tuning parameter selection:

Given a sample of size n, method generates N samples of size b, where b < n. In our

setting for n<200, we choose b=0.8n and for n≥ 200, b=10
√
n. For each of these N samples,

an estimate of precision matrix is obtained. For each entry of the precision matrix, a measure

of instability is calculated based on all N estimates. Finally a regularization parameter is

selected which minimizes the average instability over all possible entries of the estimated

precision matrix. In practice this method tends to select least amount of regularization

parameter that simultaneously makes estimates of the precision matrix sparse and replicable

under random sampling. StARS is used for estimating the penalization parameter for all the

competing methods as given in simulation viz. JCP, Graphical Lasso and SPICE.

11.7.3 Simulation Results

The simulation results are given in tables 11.7.2.1-11.7.2.4. The numbers in bracket are

standard error of the estimate based on 20 simulations. For Toeplitz type precision matrix,

the proposed method outperforms other two in terms of MSE and KL-loss for small n. For

large sample size, the Graphical lasso tends to give better performance than other methods.

This may be due to fact that graphical lasso solves the constrained quadratic regression

problem (dual of constrained objective function). For large sample size, the regression coeffi-

cients tends to approximate well the true values which results in better estimate of precision

matrix.

11.7.3.1 Toeplitz Type Precision Matrix
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Table 11.1: Average KL-Loss with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 6.15(0.065) 5.28(0.032) 4.829(0.0212)
Graphical Lasso 6.78(0.066) 5.17(0.054) 4.31(0.049)

SPICE 6.181(0.069) 5.28(0.037) 4.79(0.03)
p=100

Mixed Penalty 12.37(0.0806) 10.84(0.0444) 9.922(0.0209)
Graphical Lasso 14.01(0.079) 11.21(0.061) 8.85(0.041)

SPICE 12.38(0.076) 11.08(0.043) 10.03(0.078)
p=200

Mixed Penalty 25.35(0.117) 22.2(0.062) 20.39(0.021)
Graphical Lasso 31.5(0.124) 25.05(0.09) 18.62(0.035)

SPICE 25.4(0.122) 22.25(0.07) 20.66(0.039)

Table 11.2: Average relative error with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 0.0857(0.0075) 0.0402(0.005) 0.1106(0.0041)
Graphical Lasso 0.135(0.01) 0.03(0.004) 0.0629(0.004)

SPICE 0.038(0.005) 0.067(0.005) 0.118(0.004)
p=100

Mixed Penalty 0.0722(0.0054) 0.014(0.003) 0.1003(0.0031)
Graphical Lasso 0.24(0.006) 0.125(0.003) 0.024(0.003)

SPICE 0.031(0.01) 0.0802(0.004) 0.1235(0.004)
p=200

Mixed Penalty 0.1182(0.0032) 0.009(0.0012) 0.09(0.001)
Graphical Lasso 0.456(0.003) 0.264(0.002) 0.04(0.0014)

SPICE 0.013(0.002) 0.1032(0.0032) 0.1313(0.0014)
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11.7.3.2 Block Type Precision Matrix

Table 11.3: Average KL-Loss with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 3.624(0.067) 2.809(0.026) 2.46(0.0165)
Graphical Lasso 4.219(0.0652) 2.943(0.0321) 2.146(0.025)

SPICE 3.646(0.0644) 2.79(0.031) 2.37(0.0262)
p=100

Mixed Penalty 7.53(0.081) 6.01(0.035) 5.232(0.0163)
Graphical Lasso 9.477(0.0717) 6.791(0.0485) 4.69(0.031)

SPICE 7.602(0.0856) 6.063(0.0413) 5.002(0.0372)
p=200

Mixed Penalty 15.05(0.123) 12.34(0.0443) 10.8(0.0264)
Graphical Lasso 22.46(0.2643) 16.29(0.0807) 10.42(0.059)

SPICE 15.44(0.1296) 12.27(0.056) 10.93(0.0444)

Table 11.4: Average relative error with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 0.0865(0.005) 0.013(0.003) 0.0641(0.0024)
Graphical Lasso 0.1891(0.0076) 0.092(0.0044) 0.0085(0.001)

SPICE 0.029(0.006) 0.0279(0.0036) 0.0669(0.0019)
p=100

Mixed Penalty 0.1132(0.0039) 0.019(0.002) 0.0623(0.0013)
Graphical Lasso 0.3732(0.0043) 0.2131(0.0028) 0.0345(0.001)

SPICE 0.028(0.003) 0.0458(0.0048) 0.0729(0.0022)
p=200

Mixed Penalty 0.1844(0.0064) 0.048(0.003) 0.048(0.002)
Graphical Lasso 0.715(0.0171) 0.4275(0.0023) 0.1248(0.0014)

SPICE 0.07(0.004) 0.0493(0.0051) 0.0904(0.0013)
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11.7.3.3 Hub Graph Type Precision Matrix

Table 11.5: Average KL-Loss with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 2.813(0.0618) 1.74(0.027) 1.066(0.0175)
Graphical Lasso 3.325(0.0479) 1.962(0.022) 1.098(0.0242)

SPICE 2.697(0.056) 1.89(0.0373) 1.399(0.0213)
p=100

Mixed Penalty 6.576(0.115) 4.412(0.0545) 2.91(0.029)
Graphical Lasso 7.993(0.1087) 5.524(0.0693) 3.232(0.038)

SPICE 5.59(0.0792) 4.25(0.03) 3.46(0.0317)
p=200

Mixed Penalty 10.06(0.1076) 5.862(0.0628) 3.163(0.0292)
Graphical Lasso 16.36(0.0978) 11.66(0.0585) 5.605(0.0358)

SPICE 6.88(0.098) 4.53(0.072) 2.83(0.0267)

Table 11.6: Average relative error with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 0.0795(0.0031) 0.0421(0.002) 0.012(0.001)
Graphical Lasso 0.0786(0.0043) 0.049(0.003) 0.016(0.001)

SPICE 0.0103(0.001) 0.01(0.001) 0.0137(0.0008)
p=100

Mixed Penalty 0.137(0.005) 0.0714(0.0031) 0.021(0.0005)
Graphical Lasso 0.177(0.006) 0.1001(0.004) 0.036(0.001)

SPICE 0.023(0.001) 0.008(0.001) 0.016(0.001)
p=200

Mixed Penalty 0.229(0.0014) 0.1274(0.0008) 0.0415(0.0003)
Graphical Lasso 0.343(0.003) 0.2121(0.001) 0.075(0.0004)

SPICE 0.06(0.001) 0.034(0.001) 0.003(0.0003)
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11.7.3.4 Neighborhood Graph Type Precision Matrix

Table 11.7: Average KL-Loss with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 3.33(0.084) 2.28(0.036) 1.47(0.031)
Graphical Lasso 3.73(0.074) 2.45(0.045) 1.4(0.038)

SPICE 3.37(0.095) 2.723(0.0556) 2.274(0.0576)
p=100

Mixed Penalty 6.507(0.165) 4.351(0.0472) 2.43(0.042)
Graphical Lasso 7.846(0.117) 5.472(0.0601) 2.598(0.0395)

SPICE 5.49(0.12) 4.21(0.038) 3.083(0.0576)
p=200

Mixed Penalty 13.04(0.1767) 7.697(0.0877) 4.16(0.056)
Graphical Lasso 18.39(0.1129) 12.69(0.0815) 5.79(0.0639)

SPICE 9.3(0.131) 6.094(0.06) 4.359(0.0723)

Table 11.8: Average relative error with standard error over 20 replications

n=50 n=100 n=200

p=50
Mixed Penalty 0.0714(0.0029) 0.0323(0.0015) 0.008(0.001)
Graphical Lasso 0.068(0.0041) 0.0363(0.0022) 0.0128(0.0013)

SPICE 0.0056(0.001) 0.018(0.002) 0.0276(0.0014)
p=100

Mixed Penalty 0.139(0.006) 0.069(0.0035) 0.0235(0.0005)
Graphical Lasso 0.184(0.005) 0.096(0.005) 0.0386(0.001)

SPICE 0.019(0.002) 0.005(0.001) 0.016(0.001)
p=200

Mixed Penalty 0.2402(0.0029) 0.131(0.0013) 0.0428(0.0006)
Graphical Lasso 0.3591(0.0033) 0.2156(0.0018) 0.086(0.002)

SPICE 0.051(0.001) 0.01(0.003) 0.009(0.0004)
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11.8 Summary

For block type precision matrix, the proposed method dominates the graphical lasso

and SPICE in terms of KL-loss for small sample sizes. Also Joint Penalty and SPICE

methods have better performance than graphical lasso in terms of average relative error.

The corresponding standard error estimates for Joint Penalty and SPICE are smaller than

those of graphical lasso. For neighborhood graph type precision matrix, the Joint Penalty

method has better performance for small p in terms of KL-loss. However SPICE seems to

perform better than other methods for small n and large p in terms of Average Relative

Error.

Overall the Joint Penalty method has better performance than other the two methods

for small sample size and for all choices of the precision matrix. The performance of all three

methods methods varies over two choices of loss functions as they have different formulas.

The value of KL-loss and average relative error are substantially different for different choices

of the precision matrix. This shows that error in estimates depends upon the structure of

underlying true precision matrix. For fixed p the estimates tends to improve for increasing

sample sizes. However for fixed n, as expected, the estimators performance goes down with

increasing p. For additional simulations, refer to Maurya [2014].

11.9 Discussion

The proposed method uses a joint penalty which is more flexible for penalizing the

entries of precision matrix in different fashion than the Graphical Lasso and the SPICE. The

proposed proximal gradient method can be extended to problems where one has an arbitrary

number of convex penalty constraints. Under mild conditions the algorithm achieves sub-

linear rate of convergence which makes it attractive choice for many optimization problems.

The simulation study shows that the proposed method performs better than the other two

methods for small sample sizes and large p. The simulated examples show that performance
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of the JCP estimates of precision matrix are consistent as ARE and KL-Loss decreases

rapidly (as well as the corresponding standard errors) for increasing sample size.
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CHAPTER 12

SIMULTANEOUS ESTIMATION OF SPARSE AND WELL-CONDITIONED
PRECISION MATRIX

In this chapter, we discuss the estimation of the precision matrix based on Frobenius

norm loss function.

12.1 Motivation

Estimation of precision matrix based on the Frobenius norm loss function is not well

defined problem unless S is well-conditined. One way to solve this problem is to first ob-

tain a good estimator for the covariance matrix, then use this in place of S. We follow

this approach and consider a two step procedure of precision matrix estimation. The main

advantages of this approach are: (i) it allows to introduce sparsity in the precision matrix

itself than in the covariance matrix, and (ii) the variance of eigenvalues penalty allows to

perform optimal shrinkage in the eigenspectrum of the precision matrix. As the case in

covariance matrix estimation, the resulting optimization problem is convex, which in trun

yields an exact algorithm with low computational complexity. In this chapter we extend

the JPEN approach to estimate a well-conditioned and sparse precision matrix. Similar to

the covariance matrix estimation, we propose an estimator for the precision matrix based on

regularized inverse correlation matrix and discuss its rate of convergence in both Frobenious

and operator norm.

Notation: We shall use Z and Ω for inverse correlation and precision matrix respectively.
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12.2 Joint Penalty Estimation: A Two Step Approach

Let R̂K be a JPEN estimator for the true correlation matrix. By Lemma 6.3.2, R̂K

is positive definite and well-conditioned. Define the JPEN estimator of inverse correlation

matrix as the solution to the following optimization problem,

ẐK = argmin
Z=ZT ,tr(Z)=tr(R̂−1

K )|(λ,γ)∈ŜK
2

[
‖Z− R̂−1

K ‖
2 + λ‖Z−‖1 + γ

p∑
i=1
{σi(Z)− σ̄(Z)}2

]
(12.2.1)

where

ŜK
2 =

{
(λ,γ) : λ,γ > 0,λ� γ �

√
log p

n
,∀ε > 0,

σmin{(R̂−1
K +γt1I)− λ2 ∗ sign(R̂−1

K +γt1I)}> ε
}
,

and t1 is the average of the diagonal elements of R̂−1
K . The minimization in (12.2.1) over Z

is for fixed (λ,γ) ∈ ŜK
2 . The proposed JPEN estimator of the precision matrix (based on

regularized inverse correlation matrix estimator ẐK) is given by,

Ω̂K = (S+)−1/2ẐK(S+)−1/2,

where S+ is the diagonal matrix of the diagonal elements of S. Moreover (12.2.1) is a convex

optimization problem and ẐK is positive definite.

Next we give another estimate of the precision matrix based on Σ̂S of 6.3.3. Consider

the following optimization problem:

Ω̂S = argmin
Ω=ΩT ,tr(Ω)=tr(Σ̂−1

S )|(λ,γ)∈Ŝ S
2

[
||Ω− Σ̂−1

S ||
2
F +λ‖Ω−‖1 +γ

p∑
i=1
{σi(Ω)− σ̄Ω}2

]
,

(12.2.2)

where

Ŝ S
2 =

{
(λ,γ) : λ,γ > 0,λ� γ �

√
log p

n
, ∀ε > 0,

σmin{(Σ̂−1
S +γ t2 I)− λ2 ∗ sign(Σ̂−1

S +γt2I)}> ε
}
,
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and t2 is average of the diagonal elements of Σ̂S . The minimization in (12.2.2) over Ω is for

fixed (λ,γ) ∈ Ŝ S
2 . The estimator in (12.2.2) is positive definite and well-conditioned.

12.3 Weighted JPEN estimator for precision matrix

Similar to weighted JPEN covariance matrix estimator Σ̂K,A, a weighted JPEN estima-

tor of the precision matrix is obtained by adding positive weights ai to the term (σi(Z)−1)2

in (12.2.2). The weighted JPEN precision matrix estimator is Ω̂K,A := (S+)−1/2ẐA(S+)−1/2,

where

ẐA = argmin
Z=ZT ,tr(Z)=tr(R̂−1

K )|(λ,γ)∈Ŝ
K,A
2

[
||Z− R̂−1

K ||
2
F +λ‖Z−‖1 +γ

p∑
i=1

ai{σi(Z)−1}2
]
,

(12.3.1)

with

ŜK,A
2 =

{
(λ,γ) : λ� γ �

√
log p
n ,λ≤

(2 σmin(R−1
K ))(1+γt1max(Aii)−1)

(1+γ min(Aii)−1p + γmin(Aii)
p

}
,

and A= diag(A11,A22, · · ·App) with Aii = ai. The optimization problem in (12.3.1) is convex

and yields a positive definite estimator for (λ,γ) ∈ ŜK,A
2 .

12.4 Theoretical Analysis of JPEN estimators

In this section, we derive the rate of convergence of the proposed JPEN estimators of

precision matrix in both Frobenius and spectral norm. Let Ω0 = Σ−1
0 be the true precision

matrix. Let X = (X1,X2, · · · ,Xn) be sub-Gaussian random vectors as defined in (6.3.1). We

make the following additional assumptions about the Ω0. B0. Same as the assumption A0

of §6.3.

B1. With H = {(i, j) : Ω0ij 6= 0, i 6= j}, the |H| ≤ s, for some positive integer s.

B2. There exist 0< k̄ <∞ large enough such that (1/k̄)≤ σmin(Ω0)≤ σmax(Ω0)≤ k̄.

The next theorem gives consistency of ẐK and Ω̂K .
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Theorem 12.4.1. Under Assumptions B0, B1, B2 and for (λ,γ) ∈ ŜK
2 ,

‖ẐK −R−1
0 ‖F =OP

(√
s log p

n

)
and ‖Ω̂K −Ω0‖=OP

(√(s+ 1) log p

n

)
(12.4.1)

where R−1
0 is the inverse of true correlation matrix.

Remark 12.4.1. Note that the JPEN estimator Ω̂K achieves mini-max rate of convergence

for the class of covariance matrices satisfying assumption B0, B1, and B2 and therefore

optimal. The similar rate is obtained in Cai et al. [2015] for their class of sparse inverse

covariance matrices.

The next theorem gives consistency of Ω̂S .

Theorem 12.4.2. Let (λ,γ) ∈ Ŝ S
2 .Under Assumptions B0, B1, and B2, the Ω̂S of (12.2.1)

satisfies,

‖Ω̂S−Ω0‖F =OP

(√(s+p) log p

n

)
. (12.4.2)

Consistency of ẐA: A simple exercise shows that the estimator ẐA has similar rate

of convergence as that of ẐK .
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CHAPTER 13

SIMULATIONS AND AN APPLICATION TO REAL DATA ANALYSIS

In this chapter, we compare the performance of the proposed method to various other

methods for a number of structured precision matrices.

13.1 Simulation Results: Settings

We chose similar structures as in chapter 8 for precision matrix Ω0 i.e. we replace

Σ0 by Ω0 and for all these choices of inverse covariance matrices, generate random vectors

from multivariate normal distributions with varying n and p. We chose n = 50,100 and

p= 500,1000. The performance of proposed covariance matrix estimator Σ̂K is compared to

the following methods.

• Graphical lasso [Friedman et al. [2008]]: Graphical lasso estimates a sparse pre-

cision matrix. Here we invert the inverse, and include in our analysis. The estimate was

computed using ‘R’ package ’Glasso’. For more details, refer to http://statweb.stanford.edu/

tibs/glasso/.

• Sparse Permutation Invariant Estimation (SPICE) [Rothman [2012]]: the

SPICE was computed using ‘R’ package ’Glasso’ where we do not penalize diago-

nal elements. For more details, refer to (http://cran. r-project. org/web/ pack-

ages/PDSCE/index.html)

• Constrained `1 minimization for inverse covariance matrices (CLIME) [Cai

et al. [2011]]: Their estimate was computed using ‘R’ package ’clime’. For more

details see (https://cran.r-project.org/web/packages/clime/index.html).

All the computations were done using statistical software R on a AMD 2.8GHz processor.
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Table 13.1: Precision matrix estimation

Block type precision matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Glasoo 4.144(0.523) 1.202(0.042) 0.168(0.136) 1.524(0.028)
PDSCE 1.355(0.497) 1.201(0.044) 0.516(0.196) 0.558(0.032)
CLIME 4.24(0.23) 6.56(0.25) 6.88(0.802) 10.64(0.822)
JPEN 1.248(0.33) 1.106(0.029) 0.562(0.183) 0.607(0.03)

Hub type precision matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Glasoo 1.122(0.082) 0.805(0.007) 0.07(0.038) 0.285(0.004)
PDSCE 0.717(0.108) 0.702(0.007) 0.358(0.046) 0.356(0.005)
CLIME 10.5(0.329) 10.6(0.219) 6.98(0.237) 10.8(0.243)
JPEN 0.684(0.051) 0.669(0.003) 0.34(0.024) 0.337(0.002)

Neighborhood type precision matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Glasoo 1.597(0.109) 0.879(0.013) 1.29(0.847) 0.428(0.007)
PDSCE 0.587(0.13) 0.736(0.014) 0.094(0.058) 0.288(0.01)
CLIME 10.5(0.535) 11.5(0.233) 10.5(0.563) 11.5(0.245)
JPEN 0.551(0.075) 0.691(0.008) 0.066(0.042) 0.201(0.007)

13.2 Performance Comparison

For each of the precision matrix estimate, we calculate Average Relative Error (ARE)

based on 50 iterations based on the formula given in (8.2.1). The optimal values of tuning

parameters were obtained over a grid of values by minimizing 5−fold cross-validation as

explained in §7.1.2. The JPEN estimator Ω̂K outperforms other methods for the most of the

choices of n and p for all five types of the precision matrices. Additional simulations (not

included here) show that for n ≈ p, all the underlying methods perform similarly and the

estimates of their eigenvalues are also well aligned with true values. However in high dimen-

sional setting, for large p and small n, their performance is different as seen in simulations

of Table 13.1 and Table 13.2.
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Table 13.2: Precision matrix estimation

Toeplitz type precision matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Glasoo 2.862(0.475) 2.89(0.048) 2.028(0.267) 2.073(0.078)
PDSCE 1.223(0.5) 1.238(0.065) 0.49(0.269) 0.473(0.061)
CLIME 4.91(0.22) 7.597(0.34) 5.27(1.14) 8.154(1.168)
JPEN 1.151(0.333) 2.718(0.032) 0.607(0.196) 2.569(0.057)

Cov-I type precision matrix
n=50 n=100

p=500 p=1000 p=500 p=1000
Glasoo 54.0(0.19) 190.(5.91) 14.7(0.37) 49.9(0.08)
PDSCE 28.8(0.19) 45.8(0.32) 16.9(0.04) 26.9(0.08)
CLIME 59.8(0.82) 207.5(3.44) 15.4(0.03) 53.7(0.69)
JPEN 26.3(0.36) 7.0(0.07) 15.7(0.08) 23.5(0.3)

13.3 Colon Tumor Gene Expression Data Analysis

In this section, we compare the performance of JPEN estimator of precision matrix

for tumor classification using Linear Discriminant Analysis (LDA). The gene expression

data (Alon et al. [1999] consists of 40 tumorous and 22 non-tumorous adenocarcinoma tis-

sues. After preprocessing, data was reduced to a subset of 2,000 gene expression values

with the largest minimal intensity over the 62 tissue samples (source: http://genomics-

pubs.princeton.edu/oncology /affydata/index.html). Figure 13.1 shows the gene expression

data for both tumorous and non-tumorous tissues. Tumorous tissues are marked with arrows

on the left whereas normal tissues are unmarked. There is clear separation of normal and

tumor tissues.
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Figure 13.1: Colon tumor gene expression data

In our analysis, we reduced the number of genes by selecting p most significant genes

based on ell1 regularized logistic regression. We obtain estimates of precision matrix for

p = 50,100,200 and then use the LDA to classify these tissues as either tumorous or non-

tumorous (normal). Classify each test observation x to either class k = 0 or k = 1 using the

LDA rule

δk(x) = argmax
k

{
xT Ω̂µ̂k −

1
2 µ̂kΩ̂µ̂k + log(π̂k)

}
, (13.3.1)

where π̂k is the proportion of class k observations in the training data, µ̂k is the sample

mean for class k on the training data, and Ω̂ := Σ̂−1 is an estimator of the inverse of the

common covariance matrix computed from the training data. Tuning parameters λ and γ

were chosen using 5-fold cross validation. To create training and test sets, we randomly split

the data into a training and test set of sizes 42 and 20, respectively; following the approach

used by Wang et al. [2007], the training set has 27 tumorous tissues and 15 non-tumorous

tissues. Since we do not have separate validation set, we do the 5-fold cross validation on
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Table 13.3: Averages and standard errors of classification errors over 100 replications in %.

Method p=50 p=100 p=200
Logistic Regression 21.0(0.84) 19.31(0.89) 21.5(0.85)
SVM 16.70(0.85) 16.76(0.97) 18.18(0.96)
Naive Bayes 13.3(0.75) 14.33(0.85) 14.63(0.75)
Graphical Lasso 10.9(1.3) 9.4(0.89) 9.8(0.90)
Joint Penalty 9.9(0.98) 8.9(0.93) 8.2(0.81)

training data as following. At each split, we divide the training data into 5 subsets (fold)

where 4 subsets are used to estimate the precision matrix and one subset is used to measure

the classifier’s performance, and for each split. This procedure is repeated 5 times by taking

one of the 5 subsets as validation data. An optimal combination of λ and γ is obtained by

minimizing the 5-fold cross validation error.

The average classification errors with standard errors over the 100 splits are presented

in Table 13.3. Since the sample size is less than the number of genes, we omit the inverse

sample covariance matrix as it is not well defined and instead include the naive Bayes’, and

support vector machine classifiers. Naive Bayes has been shown to perform better than the

sample covariance matrix in high-dimensional settings (Bickel and Levina [2004]. Support

Vector Machine (SVM) is another popular choice for high dimensional classification. Among

all the methods in table 13.3, the precision matrix based LDA classifiers perform far better

than Naive Bayes, SVM and Logistic Regression. For all other classifiers the classification

performance deteriorates for increasing p. For larger p, i.e., when more genes are added to

the data set, the performance of JPEN estimate based LDA classifier initially improves but

it deteriorates for large p. For p= 2000, when all the genes are used in analysis, the classifier

based on precision matrix has accuracy of 30%. This is due to the fact that as dimension of

covariance matrix increases, the estimator does not remain very informative.
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Figure 13.2: Partial correlation network of colon tumor gene expression data

To see the underlying gene-gene interaction in inverse correlation matrix, we do the

network plot the genes that with non-zero partial correlation in the JPEN estimated inverse

correlation matrices. The network graph shows the sparse structure underlying the colon

tumor data, as there are few connected edges out of total 1225 possible edges.
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APPENDIX A

JPEN COVARIANCE MATRIX ESTIMATION

Proof. [Lemma 6.3.1]

Let

f(R) = ‖R−K‖2 +λ‖R−‖1 +γ
p∑
i=1
{σi(R)− σ̄R}2. (A.0.1)

where σ̄R is the mean of eigenvalues of R. Due to the constraint tr(R) = p, we have σ̄R = 1.

The third term of (A.0.1) can be written as

p∑
i=1
{σi(R)− σ̄R}2 = tr(R2)−2 tr(R) +p

Then,

f(R) = tr(R2)−2 tr(RK) + tr(K2) +λ‖R−‖1 +γ{tr(R2)−2 tr(R) +p}

= tr(R2(1 +γ))−2 tr(K+γ I) + tr(K2) +λ‖R−‖1 +p

= (1 +γ)‖R− (K+γ I)/(1 +γ)‖2 + tr(K2) +λ‖R−‖1 +p

(A.0.2)

This is quadratic in R with an `1 penalty to the off-diagonal entries of R, therefore a convex

function in R.

Proof. [Proof of Lemma 6.3.2] The solution to (A.0.2) satisfies:

2(R− (K+γI))(1 +γ)−1 +λ
∂‖R−‖1
∂R

= 0 (A.0.3)

where ∂‖R−‖1
∂R is given by:

∂‖R−‖1
∂R

=


1 : if Rij > 0

−1 : if Rij < 0

τ ∈ (−1,1) : if Rij = 0
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Note that ‖R−‖1 has the same value irrespective of sign of R, therefore the right hand side

of (A.0.2) is minimum if :

sign(R) = sign(K+γI) = sign(K)

for every ε > 0, using (A.0.3), σmin{(K+γI)− λ
2 sign(K)}> ε gives a (λ,γ) ∈ ŜK

1 and such

a choice of (λ,γ) guarantees the estimator to be positive definite.

Remark A.0.1. Intuitively, a larger γ shrinks the eigenvalues towards center which is 1,

a larger γ would result in positive definite estimator, whereas a larger λ results in sparse

estimate. A combination of (λ,γ) results in a sparse and well-conditioned estimator. In

particular case, when K is diagonal matrix, the λ < 2γ.

Proof. [Theorem 6.3.1] Let Q(R) = f(R)− f(R0), where R0 is the true correlation matrix

and R is any other correlation matrix. Let R = UDUT be eigenvalue decomposition of R,

where D is diagonal matrix of eigenvalues and U is matrix of eigen-vectors. R0 = U0D0UT0

is eigenvalue decomposition of R0. We have,

Q(R) = ‖R−K‖2F +λ‖R−‖1 +γ tr(D2−2 D+p)

−‖R0−K‖2F −λ‖R
−
0 ‖1−γ tr(D

2
0−2 D0 +p)

(A.0.4)

Let Θn(M) := {∆ : ∆ = ∆T , ‖∆‖2 = Mrn, 0 <M <∞ }. The estimate R̂ minimizes the

Q(R) or equivalently ∆̂ = R̂−R0 minimizes the G(∆) = Q(R0 + ∆). Note that G(∆) is

convex and if ∆̂ is its solution, then G(∆̂) ≤ G(0) = 0. Therefore, if we show that G(∆)

is non-negative for ∆ ∈ Θn(M), then ∆̂ will be within sphere of radius Mrn. We require
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rn = o
(√

(p+ s) log p/n
)
. Consider,

‖R−K‖2F −‖R0−K‖2F = tr(RTR−2RTK+KTK)− tr(RT0 R0−2R0S+KTK)

= tr(RTR−RT0 R0)−2 tr((R−R0)TK)

= tr((R0 + ∆)T (R0 + ∆)−RT0 R0)−2 tr(∆TK)

= tr(∆T∆)−2 tr(∆T (K−R0))

Next, we bound term involving K in the above expression. We have

|tr(∆T (R0−K))| ≤
∑
i6=j
|∆ij(R0ij−Kij)|

≤ max
i6=j

(|R0ij−Kij |)‖∆−‖1

≤ C0(1 + τ)
√

log p

n
‖∆−‖1 ≤ C1

√
log p

n
‖∆−‖1

holds with high probability, by a result (Lemma 1 from Ravikumar et al. [2011]) on the

tail inequality for the sample covariance matrix of sub-Gaussian random vectors and where

C1 = C0(1 + τ),C0 > 0.

Next we obtain an upper bound on the terms involving γ in (A.0.4). By Cauchy-Schwarz

inequality,

tr(D2−2D)− tr(D2
0−2D0)

= tr{R2−R2
0}−2 tr{R−R0)}= tr(R0 + ∆)2− tr(R2

0)

= 2 tr(R0∆) + tr(∆T∆)≤ 2
√
s‖∆‖F +‖∆‖2F .

To bound the term λ(‖R−‖1−‖R−0 ‖1) = λ(‖∆−+R−0 ‖1−‖R
−
0 ‖1), let E be the index set as

defined in Assumption A.2 of Theorem 6.3.1. Then using the triangle inequality, we obtain,

λ(‖∆−+R−0 ‖1−‖R
−
0 ‖1) = λ(‖∆−E +R−0 ‖1 +‖∆−

Ē
‖1−‖R0‖1)

≥ λ(‖R−0 ‖1−‖∆
−
E‖1 +‖∆−

Ē
‖1−‖R−0 ‖1)

≥ λ(‖∆−
Ē
‖1−‖∆−E‖1)
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Let λ= (C1/ε)
√

log p/n, γ = (C1/ε1)
√

log p/n, where (λ,γ) ∈ ŜK
1 , we obtain,

G(∆) ≥ tr(∆T∆)(1 +γ)−2 C1
{√ log p

n
(‖∆−‖1) + 1

ε1

√
s log p

n
‖∆‖F

}

+C1
ε

√
log p

n

(
‖∆−

Ē
‖1−∆−E‖1

)
≥ ‖∆‖2F (1 +γ)−2C1

√
log p

n

(
‖∆−

Ē
‖1 +‖∆−E‖1

)
+C1
ε

√
log p

n

(
‖∆−

Ē
‖1−∆−E‖1

)
− 2C1

ε1

√
s log p

n
‖∆‖F .

Also because ‖∆−E‖1 =∑
(i,j)∈E,i6=j∆ij ≤

√
s‖∆−‖F ,

−2C1

√
log p

n
‖∆−

Ē
‖1 + C1

ε

√
log p

n
‖∆−

Ē
‖1 ≥

√
log p

n
‖∆−

Ē
‖1
(
−2C1 + C1

ε

)
≥ 0

for sufficiently small ε. Therefore,

G(∆) ≥ ‖∆‖2F
(
1 + C1

ε1

√
log p

n

)
−C1

√
s log p

n
‖∆+‖F {1 + 1/ε+ 2/ε1}

≥ ‖∆‖2F
[
1 + C1

ε1

√
log p

n
− C1
M
{1 + 1/ε+ 2/ε1}

]
≥ 0,

for all sufficiently large n and M . Which proves the first part of theorem. To prove the

operator norm consistency, by sub-multiplicative norm property ‖AB‖ ≤ ‖A‖‖B‖,

‖Σ̂K −Σ0‖ = ‖Ŵ R̂Ŵ −WKW‖

≤ ‖Ŵ −W‖‖R̂−K‖‖Ŵ −W‖

+‖Ŵ −W‖(‖R̂‖‖W‖+‖Ŵ‖‖K‖) +‖R̂−K‖‖Ŵ‖‖W‖.

Since ‖K‖= O(1) and ‖R̂−K‖F = O(
√
s log p

n ) these together implies that ‖R̂‖= Op(1) .

Also,

‖Ŵ 2−W 2‖ = max
‖x‖2=1

p∑
i=1
|(ŵ2

i −w2
i )|x2

i ≤ max
1≤i≤p

|(ŵ2
i −w2

i )|
p∑
i=1

x2
i

= max
1≤i≤p

|(ŵ2
i −w2

i )|=Op
(√ log p

n

)
,
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by using a result (Lemma 1 from Ravikumar et al. [2011]).

Next we shall shows that ‖Ŵ −W‖ � ‖Ŵ 2−W 2‖, (where A�B means A=OP (B) and

B=OP (A)). We have,

‖Ŵ −W‖ = max
‖x‖2=1

p∑
i=1
|(ŵi−wi)|x2

i = max
‖x‖2=1

p∑
i=1
|
(ŵ2

i −w2
i

ŵi+wi

)
|x2
i

�
p∑
i=1
|(ŵ2

i −w2
i )|x2

i = C3‖Ŵ 2−W 2‖.

where we have used the fact that the true standard deviations are well above zero, i.e.,

∃ 0 < C3 <∞ such that 1/C3 ≤ w−1
i ≤ C3 ∀ i = 1,2, · · · ,p, and the sample standard devia-

tions are all positive, i.e, ŵi> 0 ∀ i= 1,2, · · · ,p. Now since ‖Ŵ 2−W 2‖� ‖Ŵ −W‖, it follows

that ‖Ŵ‖=Op(1) and we have ‖Σ̂K−Σ0‖2 =Op
(
s log p

n + log p
n

)
. This completes the proof.

Proof. [Theorem 3.2] Let

f(Σ) = ||Σ−S||2F +λ‖Σ−‖1 +γ
p∑
i=1
{σi(Σ)− σ̄Σ}2,

Similar to the proof of theorem 6.3.1, define the function,

Q1(Σ) = f(Σ)−f(Σ0)

where Σ0 is the true covariance matrix and Σ is any other covariance matrix. Let Σ =UDUT

be the eigenvalue decomposition of Σ, where D is diagonal matrix of eigenvalues and U is

matrix of eigen-vectors. Let Σ0 = U0D0UT0 is eigenvalue decomposition of Σ0. Then,

Q1(Σ) = ‖Σ−S‖2F +λ‖Σ−‖1 +γ tr(D2)− (tr(D))2/p

−‖Σ0−S‖2F −λ‖Σ
−
0 ‖1−γ tr(D

2
0)− (tr(D0))2/p

(A.0.5)

where A= diag(a1,a2, · · · ,ap). Write ∆ = Σ−Σ0, and let Θn(M) := {∆ : ∆ = ∆T , ‖∆‖2 =

Mrn, 0<M <∞ }. The estimate Σ̂ minimizes Q(Σ) or equivalently ∆̂ = Σ̂−Σ0 minimizes

G(∆) = Q(Σ0 + ∆). Note that G(∆) is convex and if ∆̂ be its solution, then we have
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G(∆̂)≤G(0) = 0. Therefore if we can show that G(∆) is non-negative for ∆ ∈Θn(M), then

∆̂ will lie within the sphere of radius Mrn. We require
√

(p+ s) log p= o
(√

n
)
.

‖Σ−S‖2F −‖Σ0−S‖2F = tr(ΣTΣ−2ΣTS+STS)− tr(ΣT0 Σ0−2Σ0S+STS)

= tr(ΣTΣ−ΣT0 Σ0)−2 tr((Σ−Σ0)S)

= tr((Σ0 + ∆)T (Σ0 + ∆)−ΣT0 Σ0)−2 tr(∆TS)

= tr(∆T∆)−2 tr(∆T (S−Σ0))

Next, we bound the term involving S in the above expression, we have

|tr(∆(Σ0−S))| ≤
∑
i6=j
|∆ij(Σ0ij−Sij)|+

∑
i=1
|∆ii(Σ0ii−Sii)|

≤ max
i6=j

(|Σ0ij−Sij |)‖∆−‖1 +√pmax
i=1

(|Σ0ii−Sii|)
√∑
i=1

∆2
ii

≤ C0(1 + τ)max
i

(Σ0ii)
{√ log p

n
‖∆−‖1 +

√
p log p

n
‖∆+‖2

}

≤ C1
{√ log p

n
‖∆−‖1 +

√
p log p

n
‖∆+‖2

}
holds with high probability, by a result (Lemma 1 from Ravikumar et al. [2011]) where

C1 = C0(1 + τ)maxi(Σ0ii),C0 > 0 and ∆+ is matrix ∆ with all off-diagonal elements set

equal to zero.

Next we obtain upper bound on the terms involving γ. we have,

tr(D2)− (tr(D))2/p− tr(D2
0)− (tr(D))2/p= tr(Σ2)− tr(Σ2

0)− (tr(Σ))2/p+ (tr(Σ0))2/p

(i)

tr(Σ2)−Σ2
0)) ≤ tr(Σ0 + ∆)2− tr(Σ0)2

= tr(∆)2 + 2 tr(∆2Σ0)≤ tr(∆)2 +C1
√
s‖∆‖F

(ii)

tr((Σ))2− (tr(Σ0))2 = (tr(Σ0 + ∆))2− (tr(Σ0))2

≤ (tr(∆))2 + 2 tr(Σ0) tr(∆)≤ p ‖∆‖2F + 2 k̄p√p‖∆+‖F .
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Therefore the γ term can be bounded by 2‖∆‖2F + (C1
√
s+ 2√pk̄)‖∆‖F . We bound the

term involving λ as in similar to the proof of Theorem 6.3.1. For λ � γ �
√

log p
n , the rest

of the proof follows very similar to Theorem 6.3.1.
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APPENDIX B

JCP FOR PRECISION MATRIX ESTIMATION

Proof. [Lemma 11.3.1] Let M∗ be a solution of (11.3.6) which exits because (11.3.6) is a

convex optimization problem. Then the following sub-gradient optimality condition holds

[Vandenberghe and Boyd [2004]]

0 ∈M∗−M +λ∂‖M∗‖1. (B.0.1)

where ((∂‖M‖1))ij = ∂|mij | and given by

∂|mij |=


+1 if mij > 0

−1 if mij < 0 i= 1,2, ...m ; j = 1,2....n.

∈ [−1,1] if mi,j = 0

Note that (B.0.1) is satisfied if and only if |mij | ≤ λ and therefore optimial solution is given

by

m∗ij = sign(mij)(mij−λ)+.

This completes the proof.

Proof. [Lemma 11.3.2] Let L∗ be a solution to (11.3.7). Then the following sub-gradient

optimality condition holds :

0 ∈ L∗−M + τ∂‖L∗‖∗ (B.0.2)

Let W = UΣτV T . We shall show that this choice of W satisfies the above optimality condi-

tion. The sub-differential ∂‖W‖∗ of ‖W‖∗ is given by Bach [2008] as

∂‖W‖∗ =
{
UV T +H such that H ∈ Rm×n,‖H‖2 ≤ 1,UTH = 0 and HV = 0

}
.

Therefore
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W −M + τ∂‖W‖∗ = UΣτV T −UΣV T + τ( UV T +H ).

Multiplying both sides by UUT , and noting that UUT = I we obtain

W −M +∂‖W‖∗ = UUT ( UΣτV T −UΣV T + τ( UV T +H ) )

= UΣτV T −U(Σ− τI)V T +UUTH = 0.

Therefore, W = UΣτV T is a solution to (11.3.7), this completes the proof.

Proof. [Lemma 11.3.2] For such choice of Ln we have

F (Wn) = f(Wn) +λ‖Wn‖1 +γ‖Wn‖∗ =QLn(Wn,Wn1) +λ‖Wn‖1 + τ‖Wn‖∗

= f(Wn1) + Ln
2 ‖Wn−Wn1‖2 + <Wn−Wn1,5f(Wn1)>+λ‖Wn‖1 + τ‖Wn‖∗

Also we have, F (W ∗) = f(W ∗) +λ‖W ∗‖1 +γ‖W ∗‖∗

f(W ∗)≥ f(Wn1) + <W ∗−Wn1,5f(Wn1)>

‖W ∗‖1 ≥ ‖Wn‖1 + <W ∗−Wn,5‖Wn‖1 >

‖W ∗‖∗ ≥ ‖Wn‖∗ + <W ∗−Wn,5‖Wn‖∗ >

We get ,

F (W ∗)−F (Wn)≥−Ln2 ‖Wn−Wn1‖2+<W ∗−Wn,5f(Wn1) +λ5‖Wn‖1 + τ5‖Wn‖∗ >

(B.0.3)

Note that Wn is solution of

5f(Wn−1) +Ln(Wn−Wn1) + τ5‖Wn‖∗ = 0 (using 11.3.1)

Therefore (11.6.2) becomes

F (W ∗)−F (Wn)≥−Ln2

(
‖Wn1−Wn‖2+2<Wn1−Wn,Wn−W ∗>−

2λ
Ln

<W ∗−Wn,5‖Wn‖1>
)

We know that for any three matrices A, B, C

‖B−A‖2 + 2<B−A,A−C > = ‖B−C‖2−‖A−C‖2
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Using this, we obtain

F (Wn)−F (W ∗)≤ Ln
2

(
‖Wn1−W ∗‖2−‖Wn−W ∗‖2−

2λ
Ln

<W ∗−Wn,5‖Wn‖1 >
)
.

Using lemma (11.3.2), we get

F (Wn)−F (W ∗)≤ Ln4

(
‖Wn−1−W ∗‖2−‖Wn−W ∗‖2

)
+ 9c2

2Ln
− λ

2 <W
∗−Wn,5‖Wn‖1> .

This completes the proof.
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APPENDIX C

JPEN FOR PRECISION MATRIX ESTIMATION

Proof. [Theorem 12.4.1] To bound the cross product term involving ∆ and R̂−1
K , we have,

|tr((R−1
0 − R̂

−1
K )∆)| = |tr(R−1

0 (R̂K −R0)R̂−1
K ∆)|

≤ σ1(R−1
0 )|tr((R̂K −R0)R̂−1

K ∆)|

≤ k̄σ1(R̂−1
K )|tr((R̂K −R0)∆)|

≤ k̄k̄1|tr((R̂K −R0)∆)|.

where σmin(R̂K)≥ (1/k̄1)> 0, is a positive lower bound on the eigenvalues of JPEN estimate

R̂K of the correlation matrix R0. Such a constant exists by Lemma 6.3.2. Rest of the proof

closely follows that of Theorem 6.3.1.

Proof. [Theorem 12.4.2] We bound the term tr((Ω̂S −Ω0)∆) similar to that in proof of

Theorem 12.4.1. Rest of the proof closely follows to that Theorem 12.4.1.
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