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My Research

My research interest consists of two major parts:

Statistical Machine Learning
I Large dimensional covariance and inverse covariance matrices estimation.
I Big data optimization problems.

Quantitative Genetics
I Estimation of genetic heritability for big data.
I Quantitative Trait Loci (QTL) mapping.
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Introduction

Notation:
I Σ0,Γ0 : Population covariance and correlation matrices respectively.
I Ω0 = Σ−1

0 , Ψ0 = Γ−1
0 : be their inverse counterparts respectively.

I S, R : Sample covariance and correlation matrix respectively.
I I is the identity matrix of appropriate dimension.

For a matrix M :
I ‖M‖1 denote its `1 norm defined as the sum of absolute values of the entries of

matrix M ,
I ‖M‖F denote the Frobenius norm of matrix M defined as square root of sum of

squared elements of M ,
I ‖M‖ denote the operator norm (also called spectral norm) defined as largest

absolute eigenvalue of M ,
I M− denote matrix M where all diagonal elements are set to zero,
I σi(M) denote the ith largest eigenvalue of M ,
I σ̄(M) denotes the average of eigenvalues of M , and
I ‖M‖∗ be its trace norm defined as sum of its singular values.



Introduction: What is a Covariance Matrix?

“Covariance is a measure of how the change in one variable is
linearly associated with the change in the other variable.”

Figure: Types of Covariance

Sample Covariance Matrix: Let X := (X1, X2, ..., Xn) set of p-variate
random vectors from a population with mean µ and variance covariance matrix
Σ. The sample covariance matrix is given by,

S = [[Sij ]] where Sij = 1
n− 1

n∑
k=1

(
Xik − X̄i

)(
Xkj − X̄j

)
.



Introduction

Why We Care About Covariance Matrix?



Introduction: Some Applications

I Statistical Network Analysis
Network of Neurons: Which part of brain communicates during a
given task?

I Climate Data Analysis
The climate correlations among geographical regions.

I Financial Data Analysis
Portfolio management in Finance.

I Statistical Genetics
Genetic networks of quantitative variations in complex traits.

I Many more.



Introduction: 1. Colon Tumor Classification Example
Data:

I Gene expression levels of 62 tissue
samples described by 2000 genes.

Two types of tissues:
I Normal and Tumorous.

Goal:
I Classification of normal and

tumorous tissues using gene
expression data.

How to do it ?
I Using Linear Discriminant Model

(LDA)
I The LDA classifier is function

of the inverse covariance
matrix.
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Introduction: 2. PCA Application in Image Compression

I X be data matrix of 512× 512 gray scale
image.

I Goal: To compress X and recover it without
loosing much of originality.

I How to do it ?
Representing the X in lower dimension, which is equivalent to
finding set of orthogonal vector ~a such that variance of linear
projection X~a is maximized.

I It turns out that, ~a is the leading eigenvector of covariance matrix
XTX.
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Sample Covariance Matrix Estimator

Low Dimensional Setting: n < p, S is a good estimator of its
population counterpart. In fact,

I It is consistent. For fixed p, E(X4) <∞ ⇒ S
n→∞−−−−→ Σ a.s.

I It is invertible and extensively used in linear models and time series
analysis.

I Its eigenvalues are well behaved and good estimators of their
population counterparts.

I It is unbiased.
I It is an approximate Maximum Likelihood Estimator.
I Together X̄, the set (X̄, S) is sufficient statistics for the family of

Gaussian distributions.

Because of the these properties, it is extensively used for both structure
estimation and prediction in many data analysis applications.



What is wrong with Sample Covariance Matrix?

High Dimensional Setting: p is very large compared to n.

S is not a good estimator of Σ. In fact,

I For n < p, no more positive definite and invertible.
I Its eigenvalues are over-dispersed. Moreover p - n eigenvalues are

exactly equal to zero.
I Not Sparse. Generally very noisy and therefore biased for Σ, and
I LDA breaks down if p/n→∞.

Not very useful in high dimensional setting.



What is Wrong with Sample Covariance Matrix?
1. Over-dispersion in sample eigenvalues.

Data: Multivariate Gaussian with mean vector zero and Identity covariance
matrix.

I case (i): n=500,p=50,
I case (ii): n=50,p=50.

Figure: Eigenvalues of Sample and True Covariance Matrices



What is Wrong with Sample Covariance Matrix

2. Lack of Sparsity

Data: Multivariate Gaussian with mean vector zero and neighborhood type
covariance matrix, n=20,p=20.

Figure: Graph of Population and Sample Covariance Matrix



Notion of Well-Condition in High-Dimensions



Notion of Well-Condition in High-Dimensions

“By a well-conditioned covariance matrix, we mean that its condition
number (ratio of maximum and minimum eigenvalues) is bounded from
above by a positively finite constant”.

Why we need well-conditioned covariance matrix?

1. Invertible and positive definiteness.
LDA requires inverse of covariance matrix.

2. Well-conditioned estimator reduces estimation error. [Ledoit and Wolf
[2004]]

Regression Analysis: The regression coefficients estimates are function of inverse
covariance matrix of independent variables. The estimated coefficients tend to have
huge bias if the corresponding inverse covariance matrix is ill-conditioned.

3. Improved estimation of eigenvalues
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Notion of Well-Condition... Literature Review
I Stein’s Estimator: Stein [1975]

Let S = UDUT be the eigen-decomposition of S, where D is diagonal
matrix of eigenvalues, and U is matrix of eigenvectors. Let
D =diag(d11, d22, · · · , dpp). The Stein’s estimator is

Σ̂ = UDnewUT , (0.1)
where

Dnew = diag(dnew1 , dnew2 , · · · , dnewp ), with

dnewii = ndii
/(
n− p+ 1 + 2dii

p∑
i 6=j

1
dii − djj

)
.

Advantage: Reduces the over-dispersion in eigenvalues.
Limitations: Not sparse, not necessarily positive definite, not suitable in
high dimensions.
Related work: Stein [1986],Dey and Srinivasan [1985], Lin and
Perlman [1985].



Notion of Well-Condition... Literature Review

I Ledoit and Wolf’s Estimator: Ledoit and Wolf [2004].

Σ̂ = ρS + (1− ρ)I, ρ is estimated from data. (0.2)

Advantage: Well-Conditioned.
Limitation: Uniform shrinkage, not sparse.

I Won et al. [2012]

Σ̂ = arg max
Σ

L(S,Σ) subject to σmax(Σ)
σmax(Σ) ≤ κmax. (0.3)

Σ̂ invertible if κmax finite and well-conditioned if κmax is moderate.

Advantage: Well-conditioned
Limitation: Hard to say if the it gives improved estimation of
eigen-structure.



Notion of Sparsity in High-Dimensions



Notion of Sparsity in High Dimensions

“ A covariance matrix is said to be sparse if most of its entries
are zero. Equivalently most of the variables are uncorrelated with
each other.”

Why we need a sparse estimation of a covariance matrix?
I To avoid curse of

dimensionality:
For a p× p matrix, total # of
free parameters = p(p+ 1)/2.
When n < p, this is ill defined
problem.

I The high dimensional
covariance structures can be
represented by few
parameters, which is the case
in many scientific studies.

Figure: Dense and Sparse Covariance and
Precision Matrices



Notion of Sparsity in High Dimensions

Real Life Data Examples:

I Correlation network of colon
tumor gene expression data:
Study [Alon et al. [1999]] shows
that among given set of more
than 2000 gene expression, each
gene shows a strong correlation
with on the order of 1% of other
genes.

I Climate data analysis: Study of
correlation of weather
temperature across a geographical
area.

Figure: Correlation network of colon
tumor gene expression data

Figure: Weather temperature across
China, 07/22/2011



Notion of Sparsity in High Dimensional: Literature Review

Two broad class of sparse covariance matrices:

1. Natural ordering among
variables:
The variables far apart are weakly
correlated.

Example: Time series analysis.

Estimation procedure:
Assumes structure such as
underlying covariance matrix is
Toeplitz type.

Bickel and Levina [2008a,b], Cai
et al. [2015]

Figure: Toeplitz type matrix



Notion of Sparsity in High Dimensional: Literature Review

2. No natural ordering among variables:
A prior knowledge of any canonical ordering among variables is not

available.

Example: Gene expression data.

Earlier work:
(i) Bien and Tibshirani [2011]

Σ̂ = argmin
Σ�0

[
log(det(Σ)) + tr(SΣ−1) + λ‖Σ‖1

]
, λ > 0.

(ii) Positive Definite Sparse Covariance Estimator (PDSCE):[Rothman
[2012]]

Σ̂ = argmin
Σ=ΣT

[
‖Σ− S‖2F + λ‖Σ−‖1 − γ log(det(Σ))

]
, λ, γ > 0.

(iii) Chaudhuri et al. [2007], Xue et al. [2012].



Simultaneous Estimation of Sparse and
Well-Conditioned Covariance Matrices



Joint Penalty (JPEN): A Well-Conditioned and Sparse
Estimation

Goal: A Sparse and Well-Conditioned Estimator. (First consider
estimation of correlation matrix Γ.)
Let Γ̂ be the solution to the following optimization problem:

Γ̂ = argmin
Γ=ΓT ,tr(Γ)=tr(R)

[
||Γ−R||2F+λ‖Γ−‖1+γ

p∑
i=1
{σi(Γ)−σ̄(Γ)}2

]
. (0.4)

I For a large value of λ, the penalty λ‖Γ−‖1 shrinks the smaller elements
of Γ to zero.

I By tr(Γ) = tr(R), the total variation in Γ̂ remains as that in R.

I For a large value of γ, the variance of eigenvalue penalty, reduces the
over-dispersion in the covariance matrix.

It turns out that Γ̂ is sparse and reduces the over-dispersion in
eigenvalues of R. However simulation shows that Γ̂ need not be positive
definite for all values of (λ, γ).
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JPEN: A Well-Conditioned and Sparse Estimation

Proposed Estimator:
The proposed JPEN estimator is given by:

Γ̂ = argmin
Γ=ΓT |(λ,γ)∈ŜR

1 ,tr(Γ)=tr(R)

[
||Γ−R||2F+λ‖Γ−‖1+γ

p∑
i=1
{σi(Γ)−σ̄(Γ)}2

]
.

where

ŜR1 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√

log p
n : λ < σmin(R+γI)

C σmax(sign(R))

}
,

C ≥ 0.5, and sign(R) is matrix of signs of elements of R.

The corresponding JPEN covariance matrix estimator is:

Σ̂R = DΓ̂DT

where D is diagonal matrix of sample standard deviations.
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JPEN: Why we need two penalties?

Case (i): For γ = 0, the JPEN estimator is soft-thresholding estimator
and it is given by:

Σ̂ii = sii, and Σ̂ij = sign(sij) max
(
|sij | −

λ

2 , 0
)
, i 6= j. (0.5)

I A sufficiently large value of λ will
result in sparse covariance matrix
estimate.

I However the estimator Σ̂ of (0.2)
need not be positive definite.

I Moreover it is hard to say whether
it overcomes the over-dispersion in
the sample eigenvalues.

I Eigenvalues of the JPEN estimator
are well aligned with those of the
true covariance matrix.

Figure: Comparison of Eigenvalues of
Covariance Matrix Estimates



JPEN: Why we need two penalties?

Case (ii): For λ = 0, the JPEN estimator is given by:

Σ̂ = (S + γI)/(1 + γ). (0.6)

Note that,

σmin(Σ̂) = (σmin(S) + γ)/(1 + γ) ≥ γ/(1 + γ) > ε,

for all ε > c/(1− c).

Therefore the variance of eigenvalues penalty improves S to be
well-conditioned.



JPEN: A More Generic Estimator
For any {ai : 0 < ai <∞, i = 1, 2, · · · , p}; a weighted JPEN correlation matrix
estimator is given by:

Γ̂a = argmin
Γ=ΓT |(λ,γ)∈ŜR,a

1 ,tr(Γ)=tr(R)

[
||Γ−R||2F + λ‖Γ−‖1 + γ

p∑
i=1

ai{σi(Γ)− σ̄(Γ)}2
]
,

where

ŜR,a1 =
{

(λ, γ) : λ, γ > 0 : λ < 2σmin(R)(1 + γ max(ai)−1)
(1 + γ min(ai))−1p

+ γ min(ai)
p

}
.

The covariance matrix estimator is:

Σ̂ = DΓ̂aDT .

Advantage:

I Choice of weights ai allows non-uniform shrinkage of eigenvalues towards
their mean.

I The weighted estimator yields improved eigenvalues estimation.
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JPEN: A Very Fast Algorithm

The JPEN correlation matrix estimator is:

Γ̂ij = 1
1+γ sign(Rij) ∗max{abs(Rij + γ I)− λ

2 , 0}, i 6= j and;
Γ̂ii = 1.

Choice of λ and γ:
For given value of γ, we can find the value of λ satisfying

λ < σmin(R+γI)
C σmax(sign(R)) .

For C ≥ 0.5, the estimator is positive definite. A smaller value of C yields a
solution which is more sparse but the estimator may not remain positive
definite.
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JPEN: Computational Complexity

I JPEN: O(p2) (very fast) as
there are (p2 + 2p)
multiplication, and at most
p2 operations for entry-wise
maximum computations.

I Graphical Lasso (Glasso)
[Friedman et al. [2007]],
PDSCE [Rothman, A.
[2012]]: At least O(p3),
very slow for large p.

I Here n = 500, p =
500, 1000, 2000, 4000, 6000.

I Total time includes
computation of optimal
tuning parameters.

Figure: Timing comparison of JPEN,
Graphical Lasso, PDSCE.



Asymptotic Consistency of JPEN Estimators



JPEN: Asymptotic Consistency of Estimators- Set up

Assumptions:

I A0: X1, X2, · · · , Xn be mean zero, sub-Gaussian random vectors
with true covariance matrix Σ0.

I A1: With E = {(i, j) : i 6= j,Σ0ij 6= 0}, the |E| ≤ s for some
positive integer s.

I A2: There exists some finite positive real number k̄ > 0 such that
1/k̄ ≤ σmin(Σ0) ≤ σmax(Σ0) ≤ k̄.

Goal:

I Establish theoretical consistency of estimators in both operator and
Frobenius norm.

I The applicability of proposed methods in high dimensional set up.



JPEN: Asymptotic Consistency of Estimators- Results
Under the assumptions A0,A1,A2:

Correlation Matrix Estimation

‖Γ̂− Γ0‖F = OP

(√
s log p
n

)
.

Covariance Matrix Estimation

‖Σ̂R − Σ0‖ = OP

(√
(s+1)log p

n

)
.

I The JPEN estimator Σ̂R is mini-max optimal in operator norm.
I In high dimensional setting, for sparse matrices with s = O(log p),

the JPEN estimator is consistent in operator norm even when the
dimension grows exponentially with sample size.
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Joint Penalty: Inverse Covariance Matrix Estimation



JPEN: Inverse Covariance Matrix Estimation

Computing Ω̂ is a two step approach:

I First compute a well-conditioned estimator Γ̂ of Γ.
I Use Γ̂−1 as starting point to estimate the JPEN inverse correlation matrix

estimator.

The JPEN estimator of inverse correlation matrix Γ−1
0 is given by

Ψ̂−1 = argmin
Ψ=ΨT |(λ,γ)∈ŜR

2 ,tr(Ψ)=tr(Γ̂−1)

[
||Ψ−Γ̂−1||2F+λ‖Ψ−‖1+γ

p∑
i=1

{σi(Ψ)−σ̄(Ψ)}2
]
,

where

ŜR2 =
{

(λ, γ) : λ, γ > 0, λ � γ �
√

log p
n

: λ < σmin(Γ̂−1+γI)
C1 σmax(sign(Γ̂−1))

}
and C1 ≥ 0.5.



JPEN: Inverse Covariance Matrix Estimation

An estimator of inverse covariance matrix Ω is given by

Ω̂R = D−1Ψ̂D−1T

where D is diagonal matrix of sample standard deviations.



JPEN: Asymptotic Consistency of Estimators: Set up

Assumptions:

I B0: X1, X2, · · · , Xn be mean zero, sub-Gaussian random vectors
with true covariance matrix Σ0. Denote Ω0 := Σ−1

0 as the true
inverse covariance matrix.

I B1: With E = {(i, j) : i 6= j,Ω0ij 6= 0}, the |E| ≤ s for some
positive integer s.

I B2: There exists some finite positive real number k̄ > 0 such that
1/k̄ ≤ σmin(Ω0) ≤ σmax(Ω0) ≤ k̄.

Goal:

I Establish theoretical consistency of estimators in both operator and
Frobenius norm.

I The applicability of proposed methods in high dimensional set up.
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Under the assumptions B0,B1,B2:
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(√
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the JPEN estimator is consistent in operator norm even when the
dimension grows exponentially with sample size.



Simulation Studies and an Application to Colon Tumor Gene
Expression Data



Simulated Examples: Settings
Model: Yi ∼MVN(0,Σ0). n = 100 and p = 500, 1000. We assume following
structures of Σ0.



Simulated Examples: Settings
Competing Methods:

I Covariance Matrix Estimation:
I JPEN: Joint Penalty,
I Glasso: Graphical Lasso [Friedman et al. (2007)],
I Ledoit-Wolf Estimator of Covariance Matrix [Ledoit and Wolf (2004)],
I PDSCE: Positive Definite Sparse Covariance Matrix Estimator,
I BLThresh: Bickel and Levina’s Thresholding Estimator [Bickel and Levina

(2008)].
I Inverse Covariance Matrix Estimation

I JPEN,
I Graphical Lasso (Glasso),
I SPICE: Sparse Permutation Invariant Covariance Estimation [Rothman et

al. (2008)].

Performance Criteria: Average Relative Error (ARE)

ARE(Σ0, Σ̂) =
|log(L(S, Σ̂)) − log(L(S,Σ0))|

|log(L(S,Σ0))|
,

where L(S, ·) is likelihood function of multivariate normal distribution.



Simulated Examples: Results
I The height of a bar corresponds to ARE. Smaller bars are better.
I The size of arrow corresponds to standard error. Smaller arrows are

better.
Figure: Average relative error and standard errors based on 100 replications



Simulated Example : Sparse (Zeros) Recovery
Figure: Heat-map of zeros identified in covariance matrix out of 50
realizations. White color is 50/50 zeros identified, black color is 0/50 zeros
identified.



Simulated Example : Eigenvalues Recovery
Figure: Recovery of population eigenvalues of Dense type of covariance
matrix. Eigenvalues vary from 0.005 to 3872.



Inverse Covariance Matrix Estimation: Simulated Results

I JPEN performs better in neighborhood and dense setting.

Figure: Average relative error and standard errors



Application to Colon Tumor Gene Expression Data

Data: Colon adenocarcinoma tissue samples (40 tumorous and 22 normal)
described by 2000 genes.

Performance Comparison:
I Covariance matrix based methods: Graphical Lasso, SPICE, JPEN.

LDA Rule: Classify an observation x to either class k using ,

δk(x) = arg max
k

{
xT Ω̂µ̂k −

1
2 µ̂kΩ̂µ̂k + log(π̂k)

}
,

where π̂k and µ̂k are the proportion and sample mean of class k
observations, and Ω̂ is an estimate of the inverse of the common
covariance matrix.

I Other traditional methods: Logistic Regression, Support Vector
Machines, Naive Bayes.



Application to Colon Tumor Gene Expression Data

I Further reduce the gene expression set to p = 50, 100, 200 genes based on
`1 regularized logistic regression.

I Tuning parameters are selected based on 5-fold cross validation error.

Table: Mean and standard errors of classification errors based on 100
replicates in %.

Method p=50 p=100 p=200
Logistic Regression 21.0(0.84) 19.31(0.89) 21.5(0.85)
SVM 16.70(0.85) 16.76(0.97) 18.18(0.96)
Naive Bayes 13.3(0.75) 14.33(0.85) 14.63(0.75)
Glasoo 10.9(1.3) 9.4(0.89) 9.8(0.90)
SPICE 9.0(0.57) 9.1(0.58) 10.2(0.52)
JPEN 9.9(0.98) 8.9(0.93) 8.2(0.81)

I Covariance matrix based methods outperform other methods.
I With full data analysis of 2000 genes, the classification error was 32%.
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Summary

I Broadly Applicable New Method: JPEN covariance matrix estimation
does not assume any particular structure on the data distribution and
hence fully non-parametric. It is broadly applicable method for any sparse
covariance and inverse covariance matrix estimation.

I Mini-max Optimal: JPEN is mini-max optimal in operator norm and
hence we expect that PCA will be one of the most important applications
of the method. The estimator is also consistent in Frobenius norm.

I A Very Fast Algorithm: The proposed algorithm is exact, very fast, and
easily scalable to large data analysis problem. The computational
complexity is only O(p2) as compared to O(p3) of other methods of
estimation.

I JPEN estimation allows one to take advantage of any prior structure if
known on the eigenvalues of true covariance matrix.
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Joint Convex Penalty (JCP): A Likelihood Based
Method for Inverse Covariance Matrix Estimation



JCP Inverse Covariance Matrix Estimation

Let X ∼ Np(0,Σ), Σ � 0.

Proposed Estimator: JCP inverse covariance matrix estimator is given by

arg minΩ� 0 F (Ω) := f(Ω) + g1(Ω) + g2(Ω), (0.7)

where

f(Ω) = − log(det(Ω)) + tr(SΩ),
g1(Ω) = λ‖Ω‖1, and g2(Ω) = τ‖Ω‖∗, λ, τ > 0.

I f(Ω) is a convex function, `1 norm is a smooth convex function except at
origin and trace norm is convex surrogate of rank over the unit ball of
spectral norm Fazal [2002]. Therefore the optimization problem above is
convex optimization problem with non-smooth constratints.



JCP: Proximal Gradient Method

Let h(Ω) be a lower semi-continuous convex function of Ω, which
is not identically equal to +∞. Then proximal point algorithm
[Rockafellar [1976]] generates a sequence of solutions
{Ωk, k = 1, 2, 3, ...} to the following optimization problem,

Ωk = Proxh(Ωk−1) = arg minΩ� 0

(
h(Ω) + 1

2‖Ω− Ωk−1‖22
)
.

(0.8)
The sequence {Ωk, k = 1, 2, 3, ...} weekly converges to the
optimal solution of minΩ�0 h(Ω) (Rockafellar [1976]). To use the
structure of the above optimization algorithm, we use quadratic
approximation of f(Ω), which is justified since f is strictly convex.



JCP: Proximal Gradient Method

Basic Approximation Model
For any L > 0 , consider the following quadratic approximation model of f(Ω) at Ω′ :

QL(Ω,Ω
′
) := f(Ω

′
) + < Ω− Ω

′
,5f(Ω

′
) > +

L

2
‖Ω− Ω

′
‖22 (0.9)

where <A,B> is the inner product of A and B, and L is a positive constant.
Proximal Gradient Operators

I `1-norm:
Let M ∈ Rm×n. The proximal operator of ‖.‖1 with constant λ is given by

Proxλ‖·‖1 (M) =sign(M) max(abs(M)− λ, 0) , λ > 0.

I Trace norm:
Let M = UΣV T be singular value decomposition of M . Then proximal
operator of ‖.‖∗ with constant τ is given by

Proxτ‖·‖∗ (M) = UΣτV T ,

where Στ is diagonal matrix with ((Στ ))ii = max(0,Σii − τ), and
τ < mini≤p(Σii)− ε for some ε > 0.



JCP: Simulation Analysis

Block Type Precision Matrix

Table: Average Relative Error with Standard Error over 20 replications

n=50 n=100 n=200

p=50
JCP 0.0865(0.005) 0.013(0.003) 0.0641(0.0024)

Graphical Lasso 0.1891(0.0076) 0.092(0.0044) 0.0085(0.001)
SPICE 0.029(0.006) 0.0279(0.0036) 0.0669(0.0019)

p=100
JCP 0.1132(0.0039) 0.019(0.002) 0.0623(0.0013)

Graphical Lasso 0.3732(0.0043) 0.2131(0.0028) 0.0345(0.001)
SPICE 0.028(0.003) 0.0458(0.0048) 0.0729(0.0022)

p=200
JCP 0.1844(0.0064) 0.048(0.003) 0.048(0.002)

Graphical Lasso 0.715(0.0171) 0.4275(0.0023) 0.1248(0.0014)
SPICE 0.07(0.004) 0.0493(0.0051) 0.0904(0.0013)



JCP: Simulation Analysis

Hub Graph Type Precision Matrix

Table: Average Relative Error with Standard Error over 20 replications

n=50 n=100 n=200

p=50
JCP 0.0795(0.0031) 0.0421(0.002) 0.012(0.001)

Graphical Lasso 0.0786(0.0043) 0.049(0.003) 0.016(0.001)
SPICE 0.0103(0.001) 0.01(0.001) 0.0137(0.0008)

p=100
JCP 0.137(0.005) 0.0714(0.0031) 0.021(0.0005)

Graphical Lasso 0.177(0.006) 0.1001(0.004) 0.036(0.001)
SPICE 0.023(0.001) 0.008(0.001) 0.016(0.001)

p=200
JCP 0.229(0.0014) 0.1274(0.0008) 0.0415(0.0003)

Graphical Lasso 0.343(0.003) 0.2121(0.001) 0.075(0.0004)
SPICE 0.06(0.001) 0.034(0.001) 0.003(0.0003)



Summary

I Broadly Applicable New Method: JCP covariance matrix estimation
allows simultaneous estimation of sparse and well-conditioned inverse
covariance matrices. Compared to other methods, it is more flexible in
penalizing the over-dispersion in sample eigenvalues.

I Broadly Applicable Algorithm: The proposed algorithm is can be used
to solve number of problems in covariance matrix estimation, multi-task
learning. A limitation of the proposed algorithm is that it is slow for large
p due to non-smooth penalty constraints.
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Future Work Directions



Future Work and Extensions

1. Spatio-Temporal Covariance Matrix Estimation:
In time varying (dynamic) setup, the data observed at different time points and
locations are not independent.

Figure: Sub-networks of World Trade Network Over Time



Future Work and Extensions

Applications:
I Statistical genetics: Many of the quantitative traits are dynamic in

nature. For example the estimation of the dynamic structure of complex
traits will advance our knowledge of how the gene networks evolve over
time.

I Network Analysis: Estimation of traffic networks, cellular networks,
world trade networks.

2. Prediction of Time Varying Networks
I Prediction of how a diseases spreads over time and space.

3. Consistent Estimation of Eigen-vectors in High Dimensional Setting.
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Appendix



Types of Cov Matrices

We consider the following five different types of covariance matrices in our simulations.
(i) Hub Graph: Here the rows/columns of Σ0 are partitioned into J equally-sized disjoint groups:
{V1 ∪ V2 ∪, ...,∪ VJ} = {1, 2, ..., p}, each group is associated with a pivotal row k. Let size |V1| = s. We
set σ0i,j = σ0j,i = ρ for i ∈ Vk and σ0i,j = σ0j,i = 0 otherwise. In our experiment,
J = [p/s], k = 1, s + 1, 2s + 1, ..., and we always take ρ = 1/(s + 1) with J = 20.
(ii) Neighborhood Graph: We first uniformly sample (y1, y2, ..., yn) from a unit square. We then set
σ0i,j = σ0j,i = ρ with probability (

√
2π)−1

exp(−4‖yi − yj‖2). The remaining entries of Σ0 are set to
be zero. The number of nonzero off-diagonal elements of each row or column is restricted to be smaller than
[1/ρ], where ρ is set to be 0.245.
(iii) Toeplitz Matrix: We set σ0i,j = 2 for i = j; σ0i,j = |0.75||i−j| , for |i− j| = 1, 2; and
σ0i,j = 0 , otherwise.
(iv) Block Toeplitz Matrix: In this setting Σ0 is a block diagonal matrix with varying block size. For p = 500,
number of blocks is 4 and for p = 1000, the number of blocks is 6. Each block of covariance matrix is taken to be
Toeplitz type matrix as in the case (iii).

(v) Cov-I type Matrix: In this setting, we first simulate a random sample (y1, y2, ..., yp) from standard normal

distribution. Let xi = |yi|3/2 ∗ (1 + 1/p1+log(1+1/p2)). Next we generate multivariate normal random

vectors Z = (z1, z2, ..., z5p) with mean vector zero and identity covariance matrix. Let U be eigenvector

corresponding to the sample covariance matrix of Z. We take Σ0 = UDU′, where D = diag(x1, x2, ....xp).

This is not a sparse setting but the covariance matrix has most of eigenvalues close to zero and hence allows us to

compare the performance of various methods in a setting where most of eigenvalues are close to zero and widely

spread as compared to structured covariance matrices in the cases (i)-(iv).



PCA Application: Retail Data

I Database D of N customers measured over T time points.
I N can be very big often in millions and T in thousands.
I Goal is to compress D into data matrix C of dimension N × r where
r << T , without increasing the compression error.

I This can be done by projecting D onto vectors(s) a(s), such that the
variance of Da is maximized. This is equivalent to solving following
problem:

maximize
(
Da
)T (

Da
)

subject to aT a = 1

Or (DTD − λI)a = 0
(0.10)

I In other words, a is the eigen-vector of covariance matrix DTD and λ is
the corresponding eigenvalue .
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