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This paper develops extreme value theory for randomobservations separated by randomwait-
ing timeswhose exceedence probability falls off like a power law. In the casewhere thewaiting
times between observations have an infinite mean, a limit theorem is established, where the
limit is comprised of an extremal process whose time index is randomized according to the
non-Markovian hitting time process for a stable subordinator. The resulting limit distributions
are shown to be solutions of fractional differential equations, where the order of the fractional
time derivative coincides with the power law index of the waiting time. The probability that
the limit process remains below a threshold is also computed. For waiting times with finite
mean but infinite variance, a two-scale argument yields a fundamentally different limit pro-
cess. The resulting limit is an extremal process whose time index is randomized according
to the first passage time of a positively skewed stable Lévy motion with positive drift. This
two-scale limit provides a second-order correction to the usual limit behavior.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Classical extreme value theory assumes that observations are collected at regular intervals, or at non-randompoints in time. In
some applications, waiting times between observations (or between observations that exceed a given threshold) are heavy tailed.
For waiting times with regularly varying probability tails, resembling a power law, the mean waiting time or the variance of the
waiting times can be infinite. For waiting times with infinite mean, the renewal process that counts the number of observations
by time t grows at a sublinear rate, and the renewal theoremdoes not apply (see, e.g., Feller, 1971, XI.5). For the intermediate case,
where the waiting times between observations have a finite mean but infinite variance, the renewal process is asymptotically
constant, but the convergence to this constant is rather slow. Hence it is advantageous to apply a second-order correction in the
limit theory. This paper develops limit theory for both cases, and establishes explicit distributional formulae for the limit process.
It also provides a concrete expression for the probability that the limit process remains below a threshold, using a transformation
formula for stochastic integrals with respect to a subordinator.

Power law waiting times are common in many applications. In computer science, Resnick and St�aric�a (1995) show that
quiet periods J between transmissions for a networked computer terminal have a heavy tail with P(J > t) ≈ Ct−� where � ≈ 0.6.
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In finance, Mainardi et al. (2000) show that waiting times between trades of certain bond futures have a heavy tail with � ≈ 0.95.
Barabási (2005) reports � ≈ 1 for waiting time between emails, and for waiting time for a reply. Berhondo et al. (2006) estimate
1 <� <2 for waiting times between coronal mass ejections (solar flares). Brockmann et al. (2006) obtain � = 1.05 as the waiting
time for paper currency to travel beyond the limits of a metropolitan area. They also report a power law distribution in the
ensuing travel distance. Cheng et al. (1995) observe � = 1.6 in the waiting time between earthquakes, and a similar value for
waiting time between `starquakes' in neutron stars. Lavergnat and Golé (1998) measured power law waiting times with � = 0.68
between large raindrops. Smethurst and Williams (2001) find � = 1.4 in the waiting times for a doctor appointment. Sabatelli
et al. (2002) report �=0.4 for 19th century Irish stock prices, and �=1.87 for the modern Japanese Yen currency market. Benson
et al. (2007) discuss the important implications of randomwaiting times between observations, for extreme values in geophysics.

In this paper, we develop limit theorems for extremes with heavy tailed random waiting times between observations. This
involves studying the limit behavior of maxima of random number of terms. Many authors have contributed to the asymptotic
theory of sums, maxima, and general random sequences with a random number of terms. See, for example, Korolev (1994,
1995), the books of Kruglov and Korolev (1990), Bening and Korolev (2002), and the references therein. Here, however, our
focus is on convergence of processes and their connections to fractional calculus. Limit theorems for extremal processes with
random waiting times were considered by Resnick (1986), who discusses the case where the number of observations forms a
randomwalk. Our case differs, since the number of observations here is driven by a renewal process, which is the inverse of that
randomwalk. Silvestrov and Teugels (1998, 2004) develop a general theory for the joint behavior of sums andmaxima in random
observation times. Pancheva and Jordanova (2004) specifically consider the case of infinite mean waiting times (0<� <1), by
adapting arguments in Meerschaert and Scheffler (2004), along with a powerful transfer theorem (Silvestrov and Teugels, 1998,
Theorem 3). Pancheva (1998) explores self-similar extremal processes, and random time-changed extremal processes are also
considered in Pancheva et al. (2006a, b). Our Theorem 3.1 is closely related to the results of Pancheva and Jordanova (2004)
and Silvestrov and Teugels (2004). For waiting times with finite mean but infinite variance, classical renewal theory shows that
the number of observations by time t grows at a linear rate, and the renewal rate is asymptotically constant. This leads to a
well-known limit result that involves a simple change of scale in time for the extremal process (see, e.g., Resnick, 1986). For heavy
tail waiting times, convergence in the renewal theorem is slower than in the finite variance case, and thus it is advantageous to
make a second-order correction. This is accomplished using the two-scale limit procedure introduced in Becker-Kern et al. (2003)
and Meerschaert and Scheffler (2004) for random walk models.

Fractional derivatives are almost as old as their more familiar integer-order counterparts Miller and Ross (1993) and Samko
et al. (1993). Fractional differential equations are useful to model various problems in physics (see a comprehensive review by
Metzler and Klafter, 2004), finance (see a recent review by Scalas, 2006), and hydrology (Baeumer et al., 2001; Benson et al., 2001,
2000; Schumer et al., 2001). Time-fractional derivatives are connected with physical models of particle sticking and trapping
(Meerschaert et al., 2002). For events separated bywaiting times with whose exceedence probability belongs to some sum-stable
domain of attraction, a connection between limit theorems and fractional time derivatives was laid out in Becker-Kern et al.
(2003) and Meerschaert and Scheffler (2004). Specifically, we assume that the exceedence probability is regularly varying; this
means, essentially, that the probability of waiting longer than time t >0 falls off like a power law t−�. Then it turns out that
the governing equation for the cumulative probability distribution functions for the limit process solve a fractional ordinary
differential equation, where the order � of the time derivative equals the power law index of the waiting times.

This paper develops limit theorems for maxima of observations separated by randomwaiting times, by covering two substan-
tially different scenarios:

(i) infinite mean waiting times (0<� <1);
(ii) finite mean but infinite variance waiting times (1 <� <2).

The limit process in case (i) is an extremal processwhose time index is randomized via the non-Markovianhitting timeprocess of a
stable subordinatorwith index 0 <� <1. In this case,we also provide a new formula for the probability that the randomizedprocess
remains below a given threshold function, which is important for applications in insurance, hydrology, and telecommunications
(see, e.g., Pancheva et al., 2007; Lavergnat and Golé, 1998; Barabási, 2005). In case (ii), where the mean of the waiting times is
finite, the limit process is an extremal process whose time index is randomized according to the first passage time process of a
stable Lévy motion with index 1 <� <2 and positive drift depending on the mean waiting time. Our result stands in contrast to
established results in the literature, because we consider a novel two-scale limit scenario. Limit theorems for continuous time
random walks, where the waiting time between jumps is separated by random waiting times with heavy tails, were developed
in Becker-Kern et al. (2003) and Meerschaert and Scheffler (2004). In the present study, we adapt the method used there for the
waiting time process, replacing the sum in those papers with the maximum. The boundary regime when � = 1 is delicate, and
will be explored in a future work.

The paper is organized as follows. Section 2 lays out our basic assumptions, in order to establish notation. Section 3 presents a
limit theorem for the case of infinite-mean waiting times (0 <� <1). This leads to fundamental connections to fractional calculus.
Some applications, including the time the limit process from Section 3 spends below a given threshold function, are discussed
in Section 4. Section 5 addresses the case of finite-mean waiting times (1<� <2) from the perspective of a two-scale asymptotic
regime. Finally, some auxiliary results are collected in Section 6.
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2. Problem formulation and basic results

Let J1, J2, . . . be non-negative independent and identically distributed (i.i.d) random variables that model the waiting times
between observations. We set T(0)=0 and T(n)=∑n

j=1 Jj, the time of the nth jump. The observations are modeled by i.i.d. random

variables Y1,Y2, . . . on R which are assumed independent of (Ji). LetM0 = 0 andMY (n)=max{Yi : i= 1, . . . ,n}, the maximum of the
first n observations. For t�0 let

Nt = max{n�0 : T(n)� t} (2.1)

the number of observations by time t, and define

X(t) = MY (Nt) = max{Yi : i = 1, . . . ,Nt} (2.2)

the maximum observed by time t.
Assume that J1 belongs to the strict sum-domain of attraction of some stable law with index 0 <� <1. This means that there

exist bn >0 such that

bn(J1 + · · · + Jn) ⇒ D, (2.3)

where D>0 almost surely. Here ⇒ denotes convergence in distribution. The distribution � of D is stable with index �, meaning
that �t = t1/�� for all t >0, where �t is the t-th convolution power of the infinitely divisible law � and (a�){dx} = �{a−1 dx} is the
probability distribution of aD for a >0. Moreover � has a Lebesgue density g� which is a C∞-function.

For t�0 let T(t) = ∑[t]
j=1 Jj and let b(t) = b[t], where [t] denotes the integer part of t. Then b(t) = t−1/�L(t) for some slowly

varying function L(t) (so that L(�t)/L(t) → 1 as t → ∞ for any � >0, see for example Feller, 1971) and it follows from
Example 11.2.18 of Meerschaert and Scheffler (2001) that

{b(c)T(ct)}t�0
fdd�⇒{D(t)}t�0 as c → ∞, (2.4)

where
fdd�⇒ denotes convergence in distribution of all finite dimensional marginal distributions. Then {D(t)} is a strictly stable Lévy

process that is self-similar with exponent H = 1/� >1, that is,

{D(ct)}t�0
fdd={c1/�D(t)}t�0 (2.5)

for all c >0, where
fdd= denotes equality of all finite dimensional marginal distributions. Note that by Example 21.7 of Sato (1999)

the sample paths of {D(t)} are almost surely increasing. Moreover, since D(t) d= t1/�D, where d= means equal in distribution, it
follows that

D(t) → ∞ in probability as t → ∞. (2.6)

Then it follows from Theorem I.19 in Bertoin (1996) that D(t) → ∞ almost surely as t → ∞.
The sample paths of the Lévy motion {D(x)}x�0 are continuous from the right, with left-hand limits, strictly increasing, and

D(0) = 0 and D(x) → ∞ as x → ∞. Hence the hitting time process

E(t) = inf{x : D(x) > t} (2.7)

is well defined. These inverse processes are related by

{E(t)�x} = {D(x)� t} (2.8)

for all x >0 and t >0. Proposition 3.1 in Meerschaert and Scheffler (2004) shows that the process {E(t)}t�0 defined by (2.7) is
self-similar with exponent � ∈ (0, 1), that is for any c >0 we have

{E(ct)}t�0
fdd={c�E(t)}t�0.

We also have E(t) d=(D/t)−� for any t >0, where D is from (2.3), and it follows that E(t) has moments of all orders. Furthermore, the
random variable E(t) has density

ft(s) = t
�
s−1−1/�g�(ts

−1/�), (2.9)

where g� is the density of the limitD in (2.3), seeMeerschaert and Scheffler (2004, Corollary 3.1). The process {E(t)}t�0 has neither
stationary nor independent increments, but has almost surely continuous sample paths, and hence is continuous in probability.
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Recall that the function b in (2.4) is regularly varying with index −1/�. Hence 1/b is regularly varying with index 1/� >0 so by
Property 1.5.5 of Seneta (1976) there exists a regularly varying function b̃with index � such that 1/b(b̃(c)) ∼ c as c → ∞. Here we
use the notation f ∼ g for positive functions f , g if and only if f (c)/g(c) → 1 as c → ∞. Equivalently we have

b(b̃(c)) ∼ 1
c

as c → ∞. (2.10)

Theorem 3.2 in Meerschaert and Scheffler (2004) shows that

{b̃(c)−1Nct} fdd�⇒{E(t)}t�0 as c → ∞ (2.11)

andMeerschaert and Scheffler (2004, Corollary 3.3) shows that the convergence also holds in the Skorohod spaceD([0,∞), [0,∞))
with the J1-topology.

Assume that (Yi) are i.i.d. R-valued random variables independent of (Ji) and assume that Y1 belongs to the max-domain of
attraction of some non-degenerate max-stable random variable A with distribution function F(x) = P{A�x}. Then there exist
sequences an and dn such that

an(MY (n) − dn) = an(max{Yi : i = 1, . . . ,n} − dn) ⇒ A as n → ∞. (2.12)

Define the extremal process {A(t)}t>0 as in Dwass (1964) (see also Resnick, 1987) so that P{A(t)�x} = F(x)t for all t >0, and in fact,
for all 0 < t1 < · · · < td and xi ∈ R, 1� i�d,

P{A(ti)�xi, 1� i�d} = F
(

min
1� i�d

xi

)t1
F
(

min
2� i�d

x2

)t2−t1
· · · F(xd)td−td−1 .

We now define the continuous-time partial maxima process {MY (t)}t>0 as

MY (t) =
{
max{Yi : i = 1, . . . , [t]}, t�1,
Y1, 0 < t <1.

(2.13)

By Theorem 3.2 in Lamperti (1964) (see also Resnick, 1975, Theorem 2), we have

{a(c)(MY (ct) − d(c))}t>0 ⇒ {A(t)}t>0 as c → ∞, (2.14)

in the Skorohod space D((0,∞),R) of càdlág (right continuous with left-hand limits) functions defined on (0,∞) and equipped
with the J1-topology, where a(t) = a[t], d(t) = d[t].

We note that up to a scale or location parameter, the extreme value distribution F(x) can take one of the three standard forms

Gumbel : �(x) = e−e−x
for x ∈ R,

Fréchet : ��(x) = e−x−�
for x�0,

reversed–Weibull (or negative Fréchet) : ��(x) = e−(−x)� for x�0, (2.15)

where � is some positive constant.
The limit F-extremal processes {A(t)}t>0 have non-decreasing paths and are always continuous in probability (Resnick and

Rubinovitch, 1973, Proposition 1). Their behavior near t ≈ 0 and as t → ∞, however, differs depending on the type of the limit
distribution F.

(Gumbel) If F(x) = �(x), then A(t) → ∞, almost surely, as t → ∞ and also A(t) → −∞, almost surely, as t ↓ 0 (see also Resnick,
1974, Theorem 7 for more details).

(Fréchet) If F(x) = ��(x), then A(t) → ∞, almost surely, as t → ∞, but now A(t) → 0, almost surely, as t ↓ 0. In this case, one
can take d(c) = 0 in (2.14) and a(c) → 0, as c → ∞.

(reversed-Weibull) If F(x) = ��(x), then A(t) → 0, almost surely, as t → ∞ and A(t) → −∞, almost surely, as t ↓ 0. Now, the
centering d(c) in (2.14) depends on the distribution of Yi and a(c) → ∞ as c → ∞.

For detailed examples of possible normalizations a(c) and d(c) occurring in each one of the above three cases, see
e.g., Leadbetter et al. (1983, Chapter 1.7).

Remark 2.1. In the case of Fréchet marginals one can define the extremal process {A(t)} at t = 0 as zero. In the other two cases,
the process A diverges to −∞ as t ↓ 0 and it cannot be defined at t = 0.
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3. Infinite mean waiting times: limit theorems and fractional governing equations

In this section, we first present a functional limit theorem for the process {X(t)} defined in (2.2) under the distributional
assumptions of Section 2. The limiting process {M(t)}t>0 is a randomization or mixing of the extremal process {A(t)}t>0 in (2.14) by
the hitting time process {E(t)}t>0 introduced in Section 2. We then establish a fundamental relationship between the distribution
of the limiting process {M(t)}t>0 and fractional ordinary differential equations.

Recall from the paragraph before (2.10) that b̃ is regularly varying with index �. We define ã(c)=a(b̃(c)) and d̃(c)=d(b̃(c)). The
following result has already implicitly appeared in the literature (see e.g., Silvestrov and Teugels, 2004, Theorem 3.1; Pancheva
and Jordanova, 2004, Theorem 4). We arrived at it independently. For completeness, we give here a simple proof in our notation
by using the results of Silvestrov (2004).

Theorem 3.1. Under the assumptions of Section 2 we have

{ã(c)(X(ct) − d̃(c))}t>0 ⇒ {M(t)}t>0 in D((0,∞),R) as c → ∞ (3.1)

in the J1-topology, where {M(t)}t>0 = {A(E(t))}t>0 is a mixture process.

Proof. Note that since (Ji) and (Yi) are independent, the processes {MY (t)}t>0 and {Nt}t>0 in (2.2) are independent. Hence it follows
from (2.14) and Corollary 3.4 in Meerschaert and Scheffler (2004) that we also have

{(ã(c)(MY (b̃(c)t) − d̃(c)), b̃(c)−1Nct)}t>0 ⇒ {(A(t), E(t))}t>0 as c → ∞ (3.2)

in D((0,∞),R) × D((0,∞), (0,∞)) in the J1-topology. The limit processes A = {A(t)}t>0 and E = {E(t)}t>0 are independent and
continuous in probability. Since, in addition, E has continuous sample paths, by Silvestrov (2004, Theorem 3.4.1), the convergence
in (3.2) implies the convergence in (3.1) (recall (2.2)). �

Remark 3.2. An alternative proof of Theorem 3.1 can be obtained as in Pancheva and Jordanova (2004, Theorem 4), using results
from Meerschaert and Scheffler (2004) along with the transfer theorem of Silvestrov and Teugels (1998). One can also prove
Theorem 3.1 by following the proof of Theorem 4.1 in Becker-Kern et al. (2003). Indeed, by using a transfer type theorem one
can first show that (3.1) holds in the sense of finite-dimensional distributions. This, by monotonicity, yields convergence in the
J1-topology (Bingham, 1971, Theorem 3).

Recall that the distribution P{A(t)�x} = F(x)t and that E(t) has density ft(s) given by (2.9) where g� is the density of the limit D
in (2.3). Then, since {A(t)}t>0 and {E(t)}t>0 are independent stochastic processes, it follows from a simple conditioning argument
that for any t >0 we have

P{M(t)�x} =
∫ ∞

0
P{A(s)�x}ft(s) ds

=
∫ ∞

0
F(x)sft(s) ds = t

�

∫ ∞

0
F(x)ss−1−1/�g�(ts

−1/�) ds. (3.3)

We now give some intuition as to the nature of the limit process M(t) = A(E(t)) by deriving its marginal distribution in the
case of a heavy-tailed extremal process {A(t)}t>0, which is of primary interest in our applications.

Suppose that the observations (Yi) satisfy P{Yi > x} ∼ C1x−� as x → ∞ for some � >0 and C1 >0. Then we can take an = n−1/�

and d(c)= 0 and we get convergence (2.12) with F(x)= P{A�x} = e−C1x−�
for x >0. Suppose also that the waiting times (Ji) satisfy

P{Ji > t} ∼ C2t−� as t → ∞ for some 0 <� <1 and C2 >0. Then we can take bn = (C2n)
−1/�, with b̃(c) = c�/C2 (see (2.10)) and we get

convergence (2.3) where E(e−sD) = e−	(1−�)s� (see Lemma 6.3). Now ã(c) = C1/�
2 c−�/�, leading to (C−1/�

2 c)−�/�X(ct) ⇒ M(t) for all
t >0 as c → ∞. Recall that X(ct) is the largest observation by time ct where c represents a time scale. Then we can approximate
X(ct) ≈ (C−1/�

2 c)�/�M(t) for c large (long time scale) where

P{M(t)�x} = t
�

∫ ∞

0
e−sC1x−�

s−1−1/�g�(ts
−1/�) ds.

Here g� is the density of the stable subordinator D, a stable law with index �, skewness equal to one, center 
 = 0 and scale
�� = 	(1− �) cos(��/2) in the standard parameterization of Samorodnitsky and Taqqu (1994, Definition 1.1.6). (Note that � here
denotes the index of stability and not the skewness of D.) It follows that

P{X(ct)�x} ≈ P{(C−1/�
2 c)�/�M(t)�x} = P{M(C−1/�

2 ct)�x}

= C−1/�
2 ct
�

∫ ∞

0
e−sC1x−�

s−1−1/�g�(C
−1/�
2 cts−1/�) ds (3.4)

when the time scale c >0 is sufficiently large.
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Observe that the scale C2 of the waiting times Ji's and the time scale c are inversely related. Indeed, the larger the time scale c,
the more time has elapsed and hence, the larger the values of X(ct). On the other hand, the larger the scale C2, the longer the
waiting times, and hence the smaller the values of X(ct).

We discuss next the fundamental connection between the limit processM(t)= A(E(t)) in Theorem 3.1 and fractional calculus.
The extreme value distributions (2.15) are all of the form �(x) = e−a(x) where a(x) takes one of the three forms depending on the
type. The extremal process A(t) therefore has distribution function Ft(x) = e−ta(x) and obviously this function solves the ordinary
differential equation

�
�t

Ft(x) = −a(x)Ft(x), F0(x) = a(·)(x), (3.5)

where

a(·)(x) =
{
I(x�0) if a(x) = I(x�0)x−�,
1 if a(x) = I(x <0)(−x)� or a(x) = e−x.

(3.6)

The initial conditions F0(x) = a(·)(x) for the Cauchy problem in (3.5) depend on the type of the extreme value distribution.
For example, in the situation of (3.4) we have a(x) = C1x−� for some C1 >0 and � >0, and F0(x) is the Heaviside function, i.e., a
probability distribution with a unit mass at the origin. On the other hand, in the other two cases of extreme value distributions
(reversed-Weibull and Gumbel), F0(x) ≡ 1 can be interpreted as the probability distribution with a unit mass at −∞. The next
result gives the analogous governing equation for the limit processM(t) in Theorem 3.1.

The Caputo fractional derivative of order 0 <� <1 is defined by

d�

dt�
f (t) = 1

	(1 − �)

∫ t

0
f ′(t − u)u−� du, (3.7)

where 	(·) is the usual Gamma function and f ′(t) is the first derivative. Writing f̃ (�) = ∫ ∞
0 e−�tf (t) dt for the standard Laplace

transform, the Caputo fractional derivative d�f (t)/dt� has Laplace transform∫ ∞

0
e−�t d

�

dt�
f (t) dt = �� f̃ (�) − ��−1f (0), � ∈ R, (3.8)

extending the well-known formula for the integer-order derivative � = 1. See for example Caputo (1967) and Podlubny (1999).

Theorem 3.3. Under the assumptions of Theorem 3.1, the distribution function Gt(x) = P{M(t)�x} of the limit process solves the
governing ordinary differential equation

��

�t�
Gt(x) = −a(x)Gt(x), G0(x) = a(·)(x), (3.9)

where the Caputo fractional derivative appears on the left-hand side,a(·)(x) is as in (3.6), and a(x) is the exponent of the extremal limit
process A(t), so that A(t) has distribution function Ft(x) = e−ta(x) for all t >0.

Proof. From (3.3) we have

Gt(x) =
∫ ∞

0
e−sa(x)ft(s) ds,

where ft(s) is the density of E(t). Theorem 3.1 in Meerschaert and Scheffler (2008) shows that ft(s) has Laplace transform t��
given by ��−1e−s��

(take �D(�) = �� in (3.13) of that paper). Hence a simple Tonelli–Fubini argument shows that the Laplace
transform

G̃�(x) =
∫ ∞

0
e−sa(x)��−1e−s��

ds = ��−1

�� + a(x)
(3.10)

which leads to

��G̃�(x) − ��−1 = −a(x)G̃�(x).

Invert the Laplace transform using Eq. (3.8) to obtain (3.9). Note that G0(0) = 1 in all cases of extreme value distributions. Note
also that Gt(x) is continuous in t >0 since the processM(t)= A(E(t)), t >0 is continuous in probability (Lemma 6.1). Therefore, for
each x, the Laplace inversion yields a unique classical solution on t >0 for each x. See, for example, Feller (1971, p. 431). �
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Remark 3.4. It may also be possible to prove Theorem 3.3 by appealing to more general results such as Theorem 3.1 in Baeumer
andMeerschaert (2001). However, this requires establishing the appropriate semigroup conditions in a functional analytic setting,
which is tedious in the case of distribution functions.

Remark 3.5. The connection between hitting time densities for stable subordinators and Mittag–Leffler functions was noted by
Bingham (1971) and Bondesson et al. (1996). Inverting the Laplace transform (3.10) we immediately obtain an alternative form
of the limit distribution function:

Gt(x) = E�(−a(x)t�)

in terms of the Mittag–Leffler function defined by

E�(z) =
∞∑
k=0

zk

	(1 + �k)
,

see, for example, Mainardi and Gorenflo (2000).

4. A transformation formula with applications to durations

Here, we give a transformation formula linking a monotone non-decreasing càdlág function D = {D(x)}x�0 with D(0) = 0
and its (right-continuous) inverse E = {E(t)}t�0. We then use this result to derive the distribution of the duration the process
M(t) = A(E(t)) spends below a given threshold a >0, where {E(t)} is the inverse of a �-stable subordinator (0 <� <1). This result
has important applications in risk management.

Lemma 4.1. Let E(t) = inf{x�0 : D(x) > t}, t�0 for a non-decreasing càdlág function D = {D(x)}x�0 with D(0) = 0. Then for any
non-negative Borel measurable f : [0,∞) → [0,∞), we have∫

(0,∞)
f (E(t)) dt =

∫
(0,∞)

f (x) dD(x), (4.1)

where the first is a Lebesgue and the second a Lebesgue–Stieltjes integral.

Proof. One can show using (2.8) that, for all a >0

D(a) = inf{t�0 : E(t) > a} = sup{t�0 : E(t)�a}.

Since {E(t)} is monotone and non-decreasing, the last supremum equals
∫
(0,∞) I(E(t)�a) dt. This implies that

D(b) − D(a) =
∫
(0,∞)

I(a,b](E(t)) dt for all 0 < a < b. (4.2)

Let 
D(a, b]:=D(b)−D(a) for all 0 < a < b be the (random) Lebesgue–Stieltjesmeasure corresponding to the functionD and consider
the occupation measure 
E(B):=

∫
(0,∞) IB(E(t)) dt, for any Borel set B ⊂ (0,∞). Relation (4.2) implies that the �-finite measures


D and 
E agree on the semiring generated by {(a, b], 0 < a < b}, and hence they agree on all Borel sets. This implies (4.1) for any
Borel measurable function f �0. Note that f (E(t)) is Borel measurable since E is monotone. �

An application to durations: Let a >0 and let

�a := sup{t : M(t)�a} =
∫ ∞

0
I{M(t)� a} dt, (4.3)

where M(t) = A(E(t)) is the mixture F-extremal process in Theorem 3.1. The random variable �a is the first hitting time of level a
for the processM. It may also be interpreted as the duration the process spends below the threshold a.

Proposition 4.2. For the random variable �a in (4.3), we have

�a
d=(− log F(a))−1/�X1/�D(1),

where X is an Exponential random variable with mean one, independent of D.
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Proof. We have

�a =
∫ ∞

0
I{M(t)� a} dt =

∫ ∞

0
I{A(E(t))� a} dt =

∫ ∞

0
f (E(t)) dt,

where f (x) := I{x:A(x)� a}. By the independence of the processes A and D, Lemma 4.1 implies that

�a =
∫ ∞

0
f (E(t)) dt =

∫ ∞

0
f (x) dD(x) almost surely.

By Lemma 6.2, the last integral may be viewed in the sense of Samorodnitsky and Taqqu (1994, Chapter 3), as a stochastic integral
with respect to an independently scattered stable random measure. However, since f is independent of D, by conditioning,
we obtain∫ ∞

0
f (x) dD(x) d=

(∫ ∞

0
|f (x)|� dx

)1/�
D(1) =

(∫ ∞

0
1{x:A(x)� a} dx

)1/�
D(1). (4.4)

Observe that
∫ ∞
0 I{x:A(x)� a} dx is the first hitting time of level a for the F-extremal process A. As shown in Resnick (1974,

pp. 394–395), this hitting time is exponential with mean 1/(− log F(a)). Therefore, the right-hand side of (4.4) equals
(− log F(a))−1/�X1/�D(1), where X is a standard exponential variable, independent of D. �

We address next the following problem.

Problem (On the probability of staying below a threshold function). Let r(x), x >0 be a given deterministic function which plays
the role of a barrier. Let also the time scale c >0 be sufficiently large so that the rescaled process {ã(c)X(ct)}t>0 (defined in
Section 3) is well approximated by the process {M(t)}t>0 = {A(E(t))}t>0 and so

P{ã(c)X(ct)� r(t), 0� t�T} ≈ P{M(t)� r(t), 0� t�T}.

Thus, an important practical problem is to evaluate the last probability for various choices of the barrier function r and the
time horizon T. We need the following technical result.

Lemma 4.3. Let u(x)�0, x�0 be a càdlág function and let A = {A(x)}x�0 be an �-Fréchet extremal process with càdlág paths such
that P{A(1)�x} = e−x−�

, x >0. Then:

(i) For all y >0, with probability one, we have

sup
0� x� y

u(x)A(x) = sup
0� x� y

u∗(x; y)A(x), (4.5)

where u∗(x; y):=supx� z� yu(z).
(ii) For all y >0, we have

sup
0� x� y

u(x)A(x) d=
(∫ y

0
u∗(x; y)� dx

)1/�
A(1), (4.6)

where if the last integral is infinite so is the left-hand side, almost surely.

Proof. Part (i) follows easily frommonotonicity considerations. Indeed, observe that with probability one, sup0� �� x A(�)=A(x),
for all 0�x�y. Thus, the left-hand side of (4.5) equals

sup
0� x� y

u(x) sup
0� �� x

A(�) = sup
0� �� y

A(�) sup
�� x� y

u(x),

where the last relation follows from interchanging the two suprema. This completes the proof of (4.5). Note that since u is càdlág
then so is x�u∗(x; y), and observe that u∗(x; y) is non-increasing in x.

We now turn to proving (ii) and suppose first that
∫ y
0 u∗(x; y)� dx <∞. In view of (i), we can assume u(x) to be non-increasing

and hence u(x) = u∗(x; y). To prove (ii), approximate u(x) below and above as follows:

uL,n(x) =
2n∑
k=1

u(yk/2n)I[y(k−1)/2n ,yk/2n)(x)
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and

uU,n(x) =
2n∑
k=1

u(y(k − 1)/2n)I[y(k−1)/2n ,yk/2n)(x).

Thus,

uL,n(x)�u(x)�uU,n(x) for all 0 < x�y, n ∈ N.

The result is valid for the càdlág step-functions uL,n and uU,n. Indeed, by the independence and the stationarity of the max-
increments of {A(x)}x�0, we have

{A(yk/2n), 1�k�2n} d=
{
(y/2n)1/� max

1� i� k
Zi, 1�k�2n

}
,

where (Zi) are i.i.d. standard �-Fréchet variables P{Z1�x} = e−x−�
, x >0. Thus

sup
0� x� y

uL,n(x)A(x)
d= (y/2n)1/� max

1� k�2n
u(yk/2n) max

1� i� k
Zi

= (y/2n)1/� max
1� i�2n

(
max

i� k�2n
u(yk/2n)

)
Zi

= (y/2n)1/� max
1� i�2n

u(yi/2n)Zi
d=

⎛⎝ 2n∑
i=1

u(yi/2n)�y/2n

⎞⎠1/�

Z1, (4.7)

where in the last two relations we used the monotonicity of the function u and the max-stability property of the independent

Fréchet variables (Zi), i.e., the fact that max{c1Z1, c2Z2} d=(c�1 + c�2)
1/�Z3. (see, e.g., Embrechts et al., 1997; Resnick, 1987). Observe

that the sum in the right-hand side of (4.7) equals
∫ y
0 uL,n(x)

� dx, which implies (4.6) with u replaced by uL,n.
Since u(x)�0 is non-decreasing, one can show, by using the fact that uL,n(x) and uU,n(x) differ by more than �, over at most

u(y)/� number of the 2n + 1 intervals in the partition {ky/2n}2nk=1, that

lim
n→∞

∫ y

0
uL,n(x)

� dx =
∫ y

0
u(x)� dx = lim

n→∞

∫ y

0
uU,n(x)

� dx.

One has moreover that

�n := sup
0� x� y

uL,n(x)A(x)� sup
0� x� y

u(x)A(x)� sup
0� x� y

uU,n(x)A(x) =: �n, (4.8)

almost surely. Note that �n��n+1 and �n+1��n, almost surely, for all n ∈ N, and observe that the �n's and �n's are �-Fréchet
variables with scale coefficients converging to �:=(

∫ y
0 u(x)� dx)1/�. Therefore, �n and �n both converge almost surely to the same

�-Fréchet variable �= sup0� x� y u(x)A(x) which has scale coefficient �. This yields (4.6) and completes the proof in the case when∫ y
0 u∗(x; y)� dx <∞. If the last integral is infinite, then one can similarly show by using the lower bound in (4.8) that the left-hand
side of (4.6) is infinite, almost surely. �

Wecan now address the barrier problem formulated above.We consider the case of a heavy-tailed extremal process {A(x)}x�0,
which is of primary interest in our applications, that is, P{A(1)�x} = e−x−�

, x >0. Let r(x) >0 be a positive barrier and observe that

P{A(x)� r(x), 0�x�y} = P

{
sup

0� x� y
A(x)/r(x)�1

}
.

Thus, the last probability can be evaluated by using Lemma 4.3 with u(x):=1/r(x). Since Relation (4.6) is in terms of u∗(x; y) =
(infx� z� y r(z))

−1, which is non-increasing, without loss of generality, and for simplicity, we will assume that the barrier r(x) is
non-decreasing, and thus u∗(x; y) = 1/r(x). Now, by using the independence of the processes {E(t)}t�0 and {A(x)}x�0 we obtain
the following formula.

Proposition 4.4. Let r(t) >0, t�0 be a positive, non-decreasing and continuous barrier function. Under the above assumptions on the
extremal process {A(x)}x�0 and the process {E(t)}t�0, we have

P{A(E(t))� r(t), 0� t�T} = E exp

{
−

∫ E(T)

0
r−�(D(x)) dx

}
, (4.9)
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where the right-hand side is interpreted as zero if the integral diverges. In particular, for T = ∞, we obtain the probability that
M(t) = A(E(t)) never goes above the barrier r is: E exp{− ∫ ∞

0 r−�(D(x)) dx}. Here {D(x)}x�0 is a �-stable subordinator and {E(t)}t�0 is
its inverse process.

Proof. Observe that, since E(t) has almost surely continuous sample paths, in view of (2.8) we have A(E(t))�yr(t) for all 0� t�T
if and only if A(x)�yr(t(x)) for all 0�x�E(T), where t(x) = sup{t : E(t)�x} = sup{t : D(x)� t} = D(x). Hence

sup
0� t� T

r−1(t)A(E(t)) = sup
0� x� E(T)

r−1(D(x))A(x) almost surely.

Thus, in view of Lemma 4.3(ii), the left-hand side of (4.9) equals

P

{
sup

0� x� E(T)
r−1(D(x))A(x)�1

}
= E exp

{
−

∫ E(T)

0
r−�(D(x)) dx

}
,

where in the last relation, we used the independence of {A(x)} and {D(x)}.
The result for an infinite time horizon follows from the Lebesgue dominated convergence theorem by applying (4.9) for

T = Tn ↑ ∞ as n → ∞. �

5. Finite mean waiting times: two-scale asymptotics

Here, following the ideas of Becker-Kern et al. (2003), we address the case when the Ji's have a finite mean 
 but infinite
variance. We prove a functional limit theorem for the process X(c)(t)=MY (N

(c)
t ), where now N(c)

t models the arrival process of the
Ji's on two asymptotic scales c and b(c)−1 = o(c) as c → ∞. The limit process is the extremal process {A(t)} with its time index
replaced by the (left-continuous) inverse of the supremum of a Lévy stable motion with a drift.

We suppose that the Ji's are non-negative and that they belong to the sum-domain of attraction of a �-stable distribution

P
{
J1 > x

} ∼ x−�L(x) as x → ∞ where now 1 <� <2,

for a slowly varying function L. Then 
 = EJi <∞, and for a suitable b(c), as c → ∞,⎧⎨⎩b(c)
[ct]∑
i=1

(Ji − 
)

⎫⎬⎭
t�0

fdd�⇒{D(t)}t�0, (5.1)

where the limit D = {D(t)} is a strictly �-stable process (totally skewed to the right). Since � ∈ (1, 2), the process D can take
negative values with positive probability and it is not a subordinator. Nevertheless, this case is of interest in applications and it
can be handled by using the two-scale limit regime introduced in Becker-Kern et al. (2003). Indeed, let

T(c)(n) =
n∑

i=1

(c−1
 + b(c)(Ji − 
)),

and observe that the times T(c)(n) involve two asymptotic scales: a fast scale c focusing on the mean 
 of the Ji's and a slow scale
b(c)−1 =o(c) (since b(c)−1 varies regularly with index 1/� <1) which focuses on the fluctuations of the Ji's about their mean. Since
the rescaled T(c)(n)'s are not necessarily ordered in n, we let as in Becker-Kern et al. (2003),

�(c)n = max
{
T(c)(j) : 0� j�n

}
and set N(c)

t = inf
{
n�0 : �(c)n � t

}
,

for t�0. Thus �(c)n ,n = 1, 2, . . . represent the arrival times and N(c)
t is the number of events by time t in the two scales regime.

By Becker-Kern et al. (2003, Theorem 3.1), we have

{
c−1N(c)

t

}
t�0

fdd�⇒{E(t)}t�0 as c → ∞,

where {E(t)} is the left-continuous inverse of the process

D∗(t) = sup{
u + D(u) : 0�u� t},

that is, E(t) = inf{x�0 : D∗(x)� t}. Here D∗(t) is the supremum of the �-stable Lévy motion with a drift: {
t + D(t)}. The drift

t corresponds to the `fast' scale regime of the T(c)(n)'s and the stochastic component D(t) to the `slow' scale of the fluctuations
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b(c)(Ji − 
). More precisely, one has {T(c)([ct])}t�0 ⇒ {
t + D(t)}t�0 as c → ∞, in the Skorohod J1-topology, thus {�(c)[ct]}t�0 ⇒
{D∗(t)}t�0 in the J1-topology (see the proof of Becker-Kern et al., 2003, Theorem 3.1).

Theorem 5.1. Let {MY (t)} be as in (2.13) and assume that (2.14) holds. We have, as c → ∞,

{a(c)(MY (N
(c)
t ) − d(c))}t>0 fdd�⇒{A(E(t))}t>0. (5.2)

Proof. We follow closely the proof of Theorem 4.1 in Becker-Kern et al. (2003). Let

�c = P(c−1N(c)
ti

:1� i� d) and � = P(Ē(ti):1� i�d)

so that �c ⇒ � as c → ∞ by (2.11), where P(Xi:1� i� d) denotes the probability distribution of the vector (Xi)
d
i=1. Let x ∈ Rd

+,
x = (xi)

d
i=1,


c(x) = P(a(c)(MY (cxi)−d(c)):1� i� d) and �(x) = P(A(xi):1� i�d).

A transfer theorem, Proposition 4.1 in Becker-Kern et al. (2003), shows that∫

c(x) d�c(x) ⇒

∫
�(x) d�(x) (5.3)

so long as 
c(x
(c)) ⇒ �(x), for all x(c) → x, as c → ∞. Since (5.3) is equivalent to (5.2), it only remains to check the uniform weak

convergence condition.
Let 0 < x1 < · · · < xd be arbitrary and let x(c) → x as c → ∞. For any y1 < · · · < yd, we have

P
{
a(c)(MY (cxi) − d(c))�yi, 1� i�d

} = FY
(
y(c)1

)cx1
FY

(
y(c)2

)cx2−cx1 · · · FY
(
y(c)d

)cxd−cxd−1
,

where y(c)i = a(c)−1yi + d(c), i = 1, . . . ,d, and where FY (y) = P{Y1�y}. Hence, by (2.14) since the finite-dimensional distributions
of {A(t)}t>0 have no atoms, we have as c → ∞

FY
(
y(c)1

)cx1
FY

(
y(c)2

)cx2−cx1 · · · FY
(
y(c)d

)cxd−cxd−1 −→ F (y1)
x1 F (y2)

x2−x1 · · · F (yd)xd−xd−1 ,

where F(y) = P{A(1)�y}. The last convergence is also valid if the cxi's are replaced by cx(c)i = cxi + o(c) as c → ∞. This shows that

c(x

(c)) ⇒ �(x), for all x(c) → x, as c → ∞, which completes the proof of the result. �

Remark 5.2. A simple conditioning argument shows that the limit process A(E(t)) in Theorem 5.1 has distribution function

F(x, t) = P(A(E(t))�x) =
∫ ∞

0
F(x)sG(ds, t),

where F(x) = P(A(1)�x) and G(s, t) = P(E(t)� s) is the distribution function of E(t) given by formula (3.2) in Becker-Kern et al.
(2003).

Remark 5.3. If Ji are i.i.d. in the sum-domain of attraction of a normal distribution, then the results of this section still hold, where
now E(t) is the inverse or hitting time distribution of a Brownian motion with drift, which has an inverse Gaussian distribution
(Baeumer and Meerschaert, 2007 and Tweedie, 1957). In this case, the mixture according to E(t) is an asymptotic first-order
correction to the approximation c−1N(c)

t ∼ t/
 as c → ∞.

6. Some lemmas

Lemma 6.1. Let � = {�(t)}t∈R be a measurable process and let {�,�n, n ∈ N} be a sequence of random variables, independent of �. If �

is continuous in probability and �n
P→� as n → ∞, then �(�n)

P→�(�) as n → ∞.

Proof. Without loss of generality we will assume that � and the �n's are defined on the probability spaces (�1,F1, P1) and
(�2,F2, P2), respectively. By using the measurability of the process �, one can show that � = �(�) and the �n = �(�n)'s are
well-defined random variables on the product probability space (�,F, P) ≡ (�1 × �2,�(F1 ×F2), P1 × P2).
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To show that �n
P→ � as n → ∞, it is enough to prove that

E(1 ∧ |�n − �|) =
∫
�1×�2

(1 ∧ |�(�1,�n(�2)) − �(�1,�(�2))|)P1(d�1)P2(d�2) → 0,

as n → ∞, where a ∧ b = min{a, b}. By the Fubini–Tonelli Theorem, we have

E(1 ∧ |�n − �|) =
∫
�2

h(�n(�2),�(�2))P2(�2),

where h(�1, �2):=
∫
�1

(1∧|�(�1, �1)−�(�1, �2)|)P1(d�1). Since {�(t)} is continuous in probability, the function h is continuous and

h(�, �)= 0, � ∈ R. Now, since �n
P→�, for any nk → ∞ there exists a further subsequence ñk → ∞ such that �ñk

→ � almost surely,
as ñk → ∞. Thus, the continuity of h and the dominated convergence theorem (note that 0�h�1) imply E(1 ∧ |�ñk − �|) → 0
as ñk → ∞.

We have thus shown that every subsequence nk → ∞ contains a further subsequence ñk → ∞ such that E(1 ∧ |�ñk − �|) → 0

as ñk → ∞. This implies that �n
P→ � as n → ∞. �

Lemma 6.2. LetD={D(x)}x�0 be a�-stable subordinator (0 <� <1)withmonotonenon-decreasing càdlág paths and Laplace transform

Ee−sD = e−	(1−�)s� , s�0. Let MD(·,�) be the Lebesgue–Stieltjes measure corresponding to path D(·,�) of D, defined on the Borel �-
algebraBR+ .

Then, MD(·) is an independently scattered �-stable random measure on (R+,BR+ ) with control measure 
(dx) = 	(1 − �)
cos(��/2)dx and unit skewness intensity function in the sense of Samorodnitsky and Taqqu (1994, Definition 3.3.1).

Proof. By definition, the set-valued functions MD(·,�) are �-additive and �-finite measures, with probability one. Thus, it
remains to only show that:

(i) For any Borel set B ⊂ [0,∞) with finite Lebesgue measure |B|, we have that MD(B) is a �-stable random variable with scale
coefficient �� = 	(1 − �) cos(��/2)|B| and unit skewness.

(ii) For any disjoint Borel sets B1, . . . ,Bd ⊂ [0,∞), the random variablesMD(B1), . . . ,MD(Bd) are independent.

Recall that for any Borel set B ⊂ (0,∞), we have

MD(B) = inf

⎧⎨⎩
∞∑
k=1

MD(ak, bk] : B ⊂
∞⋃
k=1

(ak, bk] ⊂ (0,∞)

⎫⎬⎭ . (6.1)

By the results of LePage et al. (1981) (see also Samorodnitsky and Taqqu, 1994, Chapter 3), we may suppose that with
probability one, for all t�0,

D(t) =
∑
ti � t

�−1/�
i ,

where {(ti, �i)} are the points of a Poisson point process in [0,∞) × [0,∞) with the Lebesgue intensity measure dt × dx. Note that
D(t) is càdlág, with probability one.

Let

M̃D(B,�):=
∑

ti(�)∈B
�i(�)−1/�,

for any Borel set B ⊂ [0,∞). It is easy to see that, with probability one, M̃D(·,�) is a well-defined �-finite measure on the Borel
sets in [0,∞).

Observe thatMD(B,�)=M̃D(B,�), for allB=⋃n
k=1 (ak, bk],with0�ak < bk. Thus,withprobability oneMD(·,�) andM̃D(·,�) are

�-finite measures, which agree on the semiring of setsC:={⋃n
k=1 (ak, bk], 0�ak < bk}. This, by Caratheodory's extension theorem

(see, e.g., Billingsley, 1995, p. 166), implies that with probability one, the two measures agree on the �-algebra generated by C
i.e., on all Borel sets in [0,∞). Therefore, it is enough to show that the measure M̃D satisfies (i) and (ii). Property (ii) is immediate
since {(ti, �i)} is a Poisson point process. To prove (i), note that by the homogeneity of the intensity

∑
ti∈B

�−1/�
i

d=
∑

ti � |B|
�−1/�
i

d= |B|1/�
∞∑
k=1

	−1/�
k ,
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where |B| is the Lebesgue measure of the Borel set B, and where 0�	1�	2� · · · are the points of a standard Poisson point
process on the real line with unit intensity. As in LePage et al. (1981) (see also Samorodnitsky and Taqqu, 1994) one can show
that

∑∞
k=1 	−1/�

k is a �-stable random variable with Lévy measure (t,∞)= t−� concentrated on the positive axis t >0, and hence
(see, e.g., Meerschaert and Scheffler, 2001, Theorem 7.3.5) is totally skewed to the right with scale coefficient 	(1− �) cos(��/2).
This implies (i) for the measure M̃D and completes the proof of the lemma. �

Lemma 6.3. Let (Ji) be i.i.d. non-negative random variables such that P(Ji > t) ∼ Ct−� as t → ∞ for some 0 <� <1 and C >0. Then (2.3)
holds with bn = (Cn)−1/� and D is a �-stable positive random variable with Laplace transform Ee−sD = e−	(1−�)s� , s�0.

Proof. The proof is standard. By Feller (1971, Section XVII.5) (see also Meerschaert and Scheffler, 2001, Theorem 8.2.16,
Corollary 8.2.19, and Remark 8.2.20) we have that an(J1 + · · · + Jn) ⇒ D as n → ∞ if and only if nP(anJ1 > t) ∼ (t,∞) as
n → ∞, where  is the Lévy measure of D. It is easy to check that this convergence holds with bn = (Cn)−1/� and Lévy measure
(t,∞)= t−� concentrated on the positive axis t >0. Now compute the Laplace transform of the random variable D from the Lévy
representation

Ee−sD = exp
(∫ ∞

0
(e−st − 1)(dt)

)
following the argument in Meerschaert and Scheffler (2001, p. 264). �
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