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Abstract This is for the discussion of the paper (Lin
et al., 2014). In genetical genomics studies, it is im-
portant to jointly analyze gene expression data and ge-
netic variants in exploring their associations with com-
plex traits, where the dimensionality of gene expressions
and genetic variants can both be much larger than the
sample size.
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1 Preliminary

Alcohol assumption has been found in observational studies to have a positive effect on
coronary heart disease and negative effects on liver cirrhosis, some cancers and mental
health problems. These findings, however, are strongly suspected to be confounded by
factors like diet, lifestyle and socioeconomic factors. Thus, in order to inform public
health recommendations on alcohol intake, for example, it’s important to verify which,
if any, of these observed associations is in fact causal for the relevant health outcome.

Suppose we are interested in the causal effect of cholesterol on coronary heart disease,
and then what can we do?

1. Randomized controlled trials (RCTs), rendering all other explanations unlikely by
design.
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2. What if we are in the observational study situation? We need to have some other
information to help to overcome the problem of unobserved confounding. Basically,
we need to have another variable that is predictive of cholesterol but has no effect
on coronary heart disease and is independent of the unobserved confounders.

3. But in general it’s hard to find a variable that can be verified as a suitable IV for
any particular problem.

4. Generic variants that are associated with cholesterol will be good candidates as IV
because of Mendelian randomization.

Now let’s introduce formally what is instrumental variables through conditional inde-
pendence: (X,Y, U,G) where X is the predictor, Y is the response, U is unobservable
confounder between X and Y , G is the instrument,

1. G |= U , that is G must be marginally independent of the confounder.

2. G 2 X, that is G must not be marginally independent of X.

3. G |= Y |(X,U), that is, conditionally on X and the confounder U , the instrument
and the response are independent.

In the linear model
Y = Xᵀβ0 + ε,

we usually assume that Cov(X, ε) = 0 or more stringently E(ε|X) = 0, which is called
exogeneity. Fan et al. (2014) discussed this issue in high dimensional setting. The
exogeneity can leads to inconsistency for the OLS. One classical way to solve this issue
is to introduce the instrumental variables.

A good reference for this is Didelez et al. (2010).

2 Summary of the paper

In this article, the authors focus on the application of high dimensional sparse Instrumen-
tal Variables (IV) models to genetical genomics, where they are interested in associating
gene expression data with a complex trait to identify potentially causal genes by using
genetic variants as instruments.

Although this paper explained from the aspect that genetic variants can be used as
instruments to help solve the issue of confounding when discovering the associations of
gene expressions with the response of interest (Figure 2), we are interested in that this
IV model can jointly analyze gene expression data and genetic variants in exploring their
associations with complex traits.
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Figure 1: Biology Dogma.

2.1 Models

Consider the following linear IV model

Y = Xβ0 + η,

X = ZΓ0 + E
(1)

where β0 ∈ Rp,Γ0 := (γ1, · · · ,γp) ∈ Rq×p are unknown parameters, η ∈ Rn,E :=
(ε1, · · · , εn)ᵀ ∈ Rn×p are errors, and (εᵀi , ηi) ∈ Rp+1

∣∣Z ∼ N(0,Σ). Y ∈ Rn are re-
sponses (disease traits), X ∈ Rn×p are predictors (expression levels) and Z ∈ Rn×q are
instruments (generic variants). Without loss of generality, we assume the each variable
is centered about zero and each column of Z is standardized to have L2 norm

√
n. We

assume that this model is sparse in the sense that only a small subset of the regression
coefficients in β0 and Γ0 are nonzero.

We are not only interested in selecting and estimating important covariate effects, but
also interested in identification and estimation of optimal instruments. That is our goal
is to identify and estimate the nonzero coefficients in both β0 and Γ0.

Remark. 1. In order for Z to be valid instruments, we have to check the three
conditions listed in the preliminary section, which can not be easily testable from
the observed data, but can often be justified on the basis of plausible biological
assumption.

2. Under the above model assumption, one important thing to notice is that we
are not assuming that η and X be uncorrelated (E(ηiX) = E(ηi(ZiΓ

0 + εi)) =
E(ηiεi) = Σ1:p,p+1). One standard way of eliminating such endogeneity issue is to
replace the covariates by their expectations conditional on the instruments. This
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Figure 2: Casual diagrams. Causal diagrams showing the relationships between two
genotypes z1 and z2, two gene expression levels x1 and x2, a clinical pheno-
type y, an unobserved phenotype w that confounds the associations between
gene expression levels and the clinical phenotype, and an unobserved variable
u representing possibly present population substructure. The population sub-
structure (a) is not present, (b) affects genotypes and gene expression levels
or (c) affects genotypes and the clinical phenotype.

idea leads to the classical two-state least squares method, in which the covariates
are first regressed on the instruments and the response is then regressed on the
first-state predictions of the covariates.

2.2 Two-Stage Regularization

According to the above remark, the authors proposed the following 2SR methodology:

1. Regress the predictors on the instruments: prediction of the covariates X̂ = ZΓ̂:

Γ̂ = arg min
Γ∈Rq×p

{
‖X− ZΓ‖2F /(2n) +

q∑
k=1

p∑
j=1

pλj (|γkj |)
}
. (2)

2. Regress the response on the predicted covariates:

β̂ = arg min
β∈Rp

{
‖Y − X̂β‖22/(2n) +

p∑
j=1

pµ(|βj |)
}
. (3)

The penalty function pλ(t), λ > 0, t ≥ 0 could be chosen as the Lasso penalty, SCAD
penalty, or MCP penalty. These penalties belong to the class of quadratic spline func-
tions on [0,∞) allows for a closed form solution to the corresponding penalized least
squares problem in each coordinate, leading to very efficient implementation via coordi-
nate descent algorithm (Mazumder et al., 2011).

And the p + 1 tuning parameters {λj , µ, j = 1, 2, · · · , p} are selected by K-fold cross
validation.
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2.3 Theory—Under LASSO Penalty

To derive nonasymptotic bounds on the estimation and prediction loss of the regularized
estimator Γ̂ and β̂, we impose the following conditions through the restricted eigenvalue
condition which is defined in general for A ∈ Rn×m and 1 ≤ s ≤ m

κ2(A, s) := min
S:|S|≤s

min
β 6=0:β∈C (S,3)

βᵀ(AᵀA/n)β

βᵀβ
(4)

where C (S, 3) := {β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1}. And we say that A satisfies RE(s, 3).

1. (C1) There exists κ1 > 0 such that κ(Z, r) ≤ κ1 with r = max1≤j≤p ‖γ0
j‖0.

2. (C2) There exists κ2 > 0 such that κ(ZΓ0, s) ≤ κ2 with s = ‖β0‖0.

We also assume that ‖Γ0‖1 ≤ L and ‖β0‖1 ≤M for some constants L,M .
We have to recall several important results in Theorem 7.2 from Bickel et al. (2009):

Theorem 1 (Bickel et al. (2009)). For the following linear model

Y = Xβ0 + ε, ε ∼ N(0, σ2I), (5)

where Y ∈ Rn is a response vector, X ∈ Rn×p is a fixed design matrix with columns
standardized such that the diagonal elements of Σ = XᵀX/n are all equal 1, and β0 ∈ Rp
is a vector of unknown regression coefficients with ‖β0‖0 ≤ s where 1 ≤ s ≤ p. And we
assume that p ≥ 2, n ≥ 1. Assume that X satisfies RE(s, 3). Consider the lasso solution
β̂

β̂ := β̂(λ) = arg min
β∈Rp

‖Y −Xβ‖22/(2n) + λ‖β‖1, λ > 0, (6)

with λ = Cσ
√

log p
n and C > 2

√
2. Then with probability at least 1− p1−C2/8, we have

‖β̂ − β0‖1 ≤
16C

κ2(X, s)
σs

√
log p

n
, (7)

‖X(β̂ − β0)‖22/n ≤
16C2

κ2(X, s)
σ2s log p/n. (8)

Remark. In raw form, we have with probability at least 1 − p exp(−nλ2/(8σ2)), we
have

‖β̂ − β0‖1 ≤
16

κ2(X, s)
sλ, (9)

‖X(β̂ − β0)‖22/n ≤
16

κ2(X, s)
sλ2. (10)

Then by decomposing the optimization problem (2) into p penalized least squares

problems, with ‖A‖1 := maxj
∑

i |aij | and ‖A‖F =
√∑

i

∑
j a

2
ij , we have
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Theorem 2. Under condition (C1), if we choose λj = C
√

Σj,j

√
log p+log q

n with a con-

stant C > 2
√

2, then with probability at least 1 − (pq)1−C
2/8, we have with σmax :=

max1≤j≤p
√

Σj,j

‖Γ̂− Γ0‖1 ≤
16C

κ21
σmaxr

√
log p+ log q

n
, (11)

‖Z(Γ̂− Γ0)‖2F ≤
16C

κ21
σ2maxrp(log p+ log q). (12)

Proof. This follows from the union bound and that with probability 1−q exp(−nλ2j/(8Σj,j))

‖γ̂j − γ0
j‖1 ≤

16

κ21
rλj , (13)

‖Z(γ̂j − γ0
j )‖22/n ≤

16

κ21
rλ2j , (14)

by taking λj = C
√

Σj,j

√
(log p+ log q)/n.

Theorem 3. Under conditions (C1) and (C2), if we choose λj = C
√

Σj,j

√
log p+log q

n

with a constant C > 2
√

2, and λmax(2L + λmax) ≤ κ21κ
2
2

322rs
, where λmax = max1≤j≤p λj,

then there exits constants c0, c1, c2 > 0 such that, if we choose µ = C0
κ1

√
r(log p+log q)

n ,

where C0 = c0Lmax(
√

Σp+1,p+1,Mσmax), then with probability at least 1− c1(pq)c2, we
have

‖β̂ − β0‖1 ≤
64C0

κ1κ22
s

√
r(log p+ log q)

n
, (15)

‖X̂(β̂ − β0)‖22 ≤
64C2

0

κ21κ
2
2

rs(log p+ log q). (16)

Proof. This proof follows that if we choose λj = C
√

Σj,j

√
log p+log q

n with a constant

C > 2
√

2, and λmax(2L+λmax) ≤ κ21κ
2
2

322rs
, where λmax = max1≤j≤p λj , with probability at

least 1−
∑p

j=1 q exp(−nλ2j/(8Σj,j)), the matrix X̂ = ZΓ̂ satisfies

κ(X̂, s) ≥ κ2/2.

This one actually just follows from Theorem 2 by comparing ZΓ̂ and ZΓ0.
And similar to the proof of Theorem (1) together with the result from Theorem (2),

we have the fundamental inequalities under our conditions that

‖X̂(β̂ − β0)‖22/(2n) + µ‖β̂ − β0‖1/2 ≤ 2µ‖β̂S − β0
S‖1.
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Once we have these two, the result follows directly from the definition of κ(X̂, s). In
fact since

‖X̂(β̂ − β0)‖22/(2n) ≤ 2µ‖β̂S − β0
S‖1 ≤ 2µ

√
s‖β̂S − β0

S‖2
µ‖β̂ − β0‖1/2 ≤ 2µ‖β̂S − β0

S‖1 ⇒ ‖β̂Sc − β0
Sc‖ ≤ 3‖β̂S − β0

S‖1

⇒ ‖β̂S − β0
S‖2 ≤

‖X̂(β̂ − β0)‖2√
nκ(X̂, s)

≤ 2‖X̂(β̂ − β0)‖2√
nκ2

together we have

‖X̂(β̂ − β0)‖22 ≤
64

κ2
nsµ2

and

‖β̂ − β0‖1 ≤ 4‖β̂S − β0
S‖1 ≤ 4

√
s‖β̂S − β0

S‖2 ≤
64

κ22
sµ.

Under some conditions, with the strong irrepresentable condition holds, the authors
also proved the model selection consistency.

3 Simulation

We tried the simulation for the following date generation:

n=200;p=100;q=100

Gamma matrix: for each column, it has r=5 non-zero entries which are

IID from U([-1,-0.75],[0.75,1])

r=5

gam <- matrix(0, q, p)

for (j in 1:p)

gam[sample(1:q, r), j] <- (2*rbinom(r, 1, 0.5) - 1)*runif(r, 0.75, 1)

beta vector: it has s=5 non-zero entries which are IID from

U([-1,-0.5],[0.5,1])

s=5

bet <- rep(0, p)

ind <- sample(1:p, s)

bet[ind] <- (2*rbinom(s, 1, 0.5) - 1)*runif(s, 0.5, 1)

Sigma matrix: for the first p*p submatrix, it’s AR 1 structure with

rho=0.2, and for the last row (and then by symmetry also last column),

the (p+1, p+1) element is 1, and there are other s0=10 entries with

value 0.3, in particular, 5 of them are corresponding to the places with

non-zero beta’s.

s0=10
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sig <- matrix(, p + 1, p + 1)

sig <- 0.2^abs(row(sig) - col(sig))

sig[1:p, p + 1] <- 0

sig[c(ind, sample(setdiff(1:p, ind), s0 - s)), p + 1] <- 0.3

sig[p + 1, 1:p] <- sig[1:p, p + 1]

sig[,1+p]

e <- mvrnorm(n, rep(0, p + 1), sig)

z <- matrix(rbinom(n*q, 1, 0.5), n, q)

x <- z %*% gam + e[, 1:p]

y <- drop(x %*% bet) + e[, p + 1]

Note that although the parameters are generated randomly (and the authors did the
simulation 50 times with randomly generated parameters for each time), we are going
to fix the parameters and only randomly generated Z,E and η for 100 repetitions.

We compare the penalized least squares (PLS) method without using the instruments
and the 2 stage regularization (2SR) method for the five measures:

1. L1 estimation error: ‖β̂ − β0‖1;

2. Prediction error: ‖X(β̂ − β0)‖2/
√
n;

3. True positives: number of successfully recovered signals;

4. Model size: number of selected variables;

5. Matthews correlation coefficient (MCC): a larger MCC indicates a better variable
selection performance.

Table 1: Simulation results for (n = 200, p = 100, q = 100, nsim = 100). Each perfor-
mance measure was averaged over nsim=100 replicates with standard deviation
shown in parentheses.

Method L1 estimation loss Prediction loss True Positive Model size MCC

Lasso PLS 2.36 (0.44) 0.74 (0.09) 5 (0) 43.9 (9.11) 0.27 (0.05)
2SR 1.79 (0.72) 0.89 (0.33) 5 (0) 15.89 (4.70) 0.55 (0.09)

SCAD PLS 2.06 (0.52) 0.76 (0.10) 5 (0) 28.43 (7.68) 0.38 (0.08)
2SR 1.26 (0.46) 0.73 (0.26) 5 (0) 12.92 (3.24) 0.61 (0.10)

MCP PLS 2.01 (0.56) 0.75 (0.10) 5 (0) 22.67 (7.23) 0.44 (0.09)
2SR 1.35 (0.62) 0.83 (0.33) 5 (0) 9.59 (2.90) 0.73 (0.12)

Oracle PLS 0.80 (0.10) 0.54 (0.08) 5 (0) 5 (0) 1 (0)
2SR 0.62 (0.24) 0.49 (0.18) 5 (0) 5 (0) 1 (0)
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Table 2: Simulation results for (n = 200, p = 100, q = 100, nsim = 100) without en-
dogeneity. Each performance measure was averaged over nsim=100 replicates
with standard deviation shown in parentheses.

Method L1 estimation loss Prediction loss True Positive Model size MCC

Lasso PLS 0.91 (0.33) 0.38 (0.08) 5 (0) 21.98 (8.73) 0.46 (0.11)
2SR 1.62 (0.59) 0.82 (0.26) 5 (0) 15.66 (4.63) 0.55 (0.09)

SCAD PLS 0.30 (0.23) 0.20 (0.10) 5 (0) 7.63 (5.26) 0.88 (0.19)
2SR 1.12 (0.54) 0.67 (0.26) 5 (0) 12.33 (3.63) 0.63 (0.10)

MCP PLS 0.29 (0.19) 0.20 (0.08) 5 (0) 6.8 (3.69) 0.91 (0.16)
2SR 1.23 (0.67) 0.78 (0.29) 5 (0) 9.51 (3.19) 0.74 (0.12)

Oracle PLS 0.20 (0.07) 0.17 (0.05) 5 (0) 5 (0) 1 (0)
2SR 0.58 (0.19) 0.48 (0.16) 5 (0) 5 (0) 1 (0)

4 Discussion

1. Here we introduce the instrumental variables in such a linear way. Any other way
to introduce the instrumental variables?

2. How to study the uncertainty of the estimation and significance assignment?

3. For the model Y = α0Z + Xᵀβ0 + ε, we want to do inference for α0. One way to
try is to do penalized least squares without penalty for α0, i.e. to select important
variables from X and then do post selection inference if we can insure that the
selection procedure will include all of the important variables. But the issue here
is that since most of the selection procedures are designed for prediction instead
of learning about model parameters, any variable that is highly correlated with Z
will tend to be dropped since including such a variable will tend not to add much
predictive power for the outcome given that Z is already in the model.

Since we never know whether we observed enough covariates or not and we may
have lots of other unobserved predictors in ε, why not we also put X back to ε
since we are only interested in Z itself? And then the collinearity issue between Z
and X becomes the endogeneity problem between Z and the new error ε. Now in
order to deal with the endogeneity issue, what if we regard X as instruments for
Z? We then regress Z on X first to select the important instruments Z = Xγ + η
by assuming sparsity for γ. This is exactly the idea of Zhang and Zhang (2014).

Then what if consider

Y = α0Z + Xᵀβ0 + ε (17)

Z = Xγ + η (18)
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and post-double-selection method for inference proceeds by applying model selec-
tion methods to both equations and taking the selected controls as the union of
controls selected from each equation? This selection is than followed by applying
OLS to the selected controls. This is considered in Belloni et al. (2014).
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