STT 200 - LECTURE 1, SECTION 2,4 Recitation 4 (9/25/2012)

TA: Zhen (Alan) Zhang

zhangz19@stt.msu.edu

 Office hour: (C500 WH) 1:45-2:45PM Tuesday (office tel.: 432-3342)Help-room: (A102 WH) 11:20AM-12:30PM, Monday, Friday

Class meet on Tuesday:
3:00-3:50PM A122 WH, Section 02 12:40-1:30PM A322 WH, Section 04

Overview

- We will discuss following problems:
\square Chapter 6 "The standard deviation as a rule and the normal model" (Page 148): \#16, 20, 28, 44, 46, 48
- All recitation PowerPoint slides available at here
- Chapter 6 (Page 148): \#16:

Exam 1: Mean=80, Stdev=4, Reginald: 80 Sara: 88
Exam 2: Mean=70, Stdev=15, Reginald: 85 Sara: 65

- Explain Sara's point of view of deserving higher grade than Reginald.
$\square Z$ scores: Reginald: 0, and 1, with total 1

$$
\text { Sara: } 2.0 \text { and }-0.33, \text { with total } 1.67
$$

Sara has higher total Z-scores.

- Chapter 6 (Page 149): \#20:

Mean=23.84, Stdev=3.56, speed limit=20 (mph)
\square Speed limit 20 is how many Stdev from the mean?
(23.84-20)/3.56
\square Which observation is more unusual, 34 or 10 ?
$34-23.84<23.84-10$. So 10 is more distant from
the mean 23.84 and hence more unusual.

- Chapter 6 (Page 149): \#28:

Mean=100, Stdev=16
\square Draw the normal model with 68-95-99.7 rule.

- We did in class.
- Central 95\% interval (mean-2stdev, mean+2stdev)
\% above 116 (116=mean+1stdev, so (100-68)/2 \%)
- \% between 68 and 84 (95-68)/2 \%, why?
\square \% above 132 (100-95)/2 \%
- Chapter 6 (Page 151): \#44: $\mathrm{N}(100,16)$
- \% over 80 calculator: $\operatorname{normcdf(80,100000,100,16)~}$
\square \% under 90 calculator: normcdf(-100000, 90,100,16)
- \% between 112 and 132
- calculator: $\operatorname{normcdf}(112,132,100,16)$
\square Note: use negative sign (-) instead of subtraction - !
Otherwise you will get syntax error.
- Chapter 6 (Page 151): \#46:
$\mathrm{N}(100,16)$, find cut-off value bound for
\square the highest 5%
\square calculator: $\operatorname{inv} \operatorname{Norm}(0.95,100,16)$
\square the lowest 30\%
\square calculator: $\operatorname{invNorm}(0.3,100,16)$
\square the middle 80\%
\square calculator: $\operatorname{invNorm}(0.1,100,16)$
- calculator: invNorm(0.9, 100,16)
- Chapter 6 (Page 152): \#48:

All IQ's follows $\mathrm{N}(100,16)$,
\square what IQ represents the $15^{\text {th }}$ percentile?

- calculator: $\operatorname{inv} \operatorname{Norm}(0.15,100,16)$
\square what IQ represents the $98^{\text {th }}$ percentile?
- calculator: $\operatorname{inv} \operatorname{Norm}(0.98,100,16)$
\square the IQR?
$\square \operatorname{inv} \operatorname{Norm}(0.75,100,16)-\operatorname{inv} \operatorname{Norm}(0.25,100,16)$
- Summary
- Z-score follows standard normal distribution (mean=0, stdev=1). To compare over multiple normal distributions, we can standardize the data and use the Z-score.
- Learn 68-95-99.7 rule and the fact that Normal distribution is symmetric!
- Given quantile, find percentile: normcdf(lower bound, upper bound, mean, stdev)
- Given percentile, find quantile: invNorm(percentile, mean, stdev)
- Percentile is defined in left-tail (or lower tail)
- Percentile is a number from 0 to 1(or 0\% to 100%). Quantile can be any number, usually of same order of magnitude as the normal mean.

