# STT 200 - LECTURE 1, SECTION 2,4 Recitation 5 (10/2/2012) 

TA: Zhen (Alan) Zhang

## zhangz19@stt.msu.edu

 Office hour: (C500 WH) 1:45-2:45PM Tuesday (office tel.: 432-3342)Help-room: (A102 WH) 11:20AM-12:30PM, Monday, Friday

Class meet on Tuesday:
3:00-3:50PM A122 WH, Section 02 12:40-1:30PM A322 WH, Section 04

## Overview

- We will discuss following problems:
$\square$ Chapter 7 "The standard deviation as a rule and the normal model" (Page 186): \#1, 3, 4, 6
$\square$ Chapter 6 "The standard deviation as a rule and the normal model" (Page 148): \#52
- All recitation PowerPoint slides available at here
- Chapter 7 (Page 186): \#1:

Association: which response variable, which explanatory variable? What expect to see the scatterplot? Direction, form and strength.
$\square$ Apple: weight (gram) and weight (ounces)
$\square$ Apple: circumference (inch), weight (ounces)

- College freshmen: shoe size, GPA
$\square$ Gasoline: \# of miles you drove since filling up, gallons remaining in your tank.
- Chapter 7 (Page 186): \#1 (continued):

X denotes explanatory variable and Y denotes response variable. Reason will be "to predict Y based on X".

- Apple: weight (gram) $[\mathrm{X}]$ and weight $[\mathrm{Y}]$ (ounces), exchangeable. Positive, straight, strong (perfect linear)
- Apple: circumference[X] (inch), weight[Y] (ounces): positive, linear, moderately strong.
$\square$ College freshmen: shoe size[X], GPA[Y]. No direction, no form, very weak.
- Gasoline: \# of miles you drove since filling up[X], gallons remaining in your tank[Y]. Negative, straight, moderate.
- Chapter 7 (Page 186): \#3:

Association: which response variable, which explanatory variable? What expect to see the scatterplot? Direction, form and strength.
$\square$ When climbing a mountain: altitude, temperature.
$\square$ For each week: ice cream cone sales, air-conditional sales.
$\square$ People: age, grip strength
$\square$ Drivers: blood alcohol level, reaction time.

- Chapter 7 (Page 186): \#3 (continued):

X denotes explanatory variable and Y denotes response variable.
Reason will be "to predict Y based on X ".

- When climbing a mountain: altitude[X], temperature[Y]: negative, possibly straight, weak to moderate.
- For each week: ice cream cone sales[X], air-conditional sales[Y]. The other direction works as well: positive, straight, moderate.
$\square$ People: age[X], grip strength[Y]: curved down, moderate, very young and elderly would have grip strength less than that of adults.
- Drivers: blood alcohol level[Y], reaction time[X]. The other direction is possible: positive, nonlinear, moderately strong.
- Chapter 7 (Page 186): \#4:

Association: which response variable, which explanatory variable? What expect to see the scatterplot? Direction, form and strength.
$\square$ Long-distance calls: time (minutes), cost

- Lighting strikes: distance from lighting, time delay of the thunder.
- A streetlight: its apparent brightness, your distance from it.

Cars: weight of car, age of owner

- Chapter 7 (Page 186): \#4 (continued):

X denotes explanatory variable and Y denotes response variable. Reason will be "to predict Y based on X".
$\square$ Long-distance calls: time (minutes)[X], cost[Y]: positive, straight, strong.

- Lighting strikes: distance from lighting[Y], time delay of the thunder[X]: positive, straight, strong.
- A streetlight: its apparent brightness[X], your distance from it[Y] : negative, curved, moderate.
- Cars: weight of car[X], age of owner[Y]: no direction, no shape, very weak.
- Chapter 7 (Page 186): \#6: Which of the scatterplots Show

Little or no association?

- A negative association?
- A linear association?



$\square$ A moderately strong association?
$\square$ A very strong association?
- Chapter 7 (Page 186): \#6 (continued): Which of the scatterplots show
- Little or no association?(1)
- A negative association? (4)
- A linear association?
(2) and (4)
- A moderately strong association?
$\square$ A very strong association? (2) and (4)
- Chapter 6 (Page 152): \#52:

Normal with mean 32,000 , standard deviation 2500, unit: mile.

- Reasonable for 40,000 miles?
- Fraction of those less than 30,000 miles?
- Fraction of those between 30,000 and 35,000 miles?
- IQR?
$\square$ Refund to no more than 1 of 25 customers, what mileage can be guaranteed to last?
- Chapter 6 (Page 152): \#52 (continued):

Normal with mean 32,000 , standard deviation 2500, unit: mile.

- Reasonable for 40,000 miles? (No, more than 3 SDs above the mean)
- Fraction of those less than 30,000 miles? (21.2\%)
- Fraction of those between 30,000 and 35,000 miles? (67.3\%)
$\square$ IQR? (30,314 and 33,686 miles, so 3372 miles.)
$\square$ Refund to no more than 1 of 25 customers, what mileage can be guaranteed to last? $(1 / 25=0.04$, calculate using invNorm( $0.04,32000,2500)=27623$ miles. $)$

