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Abstract 

Background: The genetic etiology of complex human disease has been commonly viewed as a 

complex process involving both genetic and environmental factors functioning in a complicated 

manner. Quite often the interactions among genetic variants play major roles in determining the 

susceptibility of an individual to a particular disease. Statistical methods for modeling interactions 

underlying complex diseases between single genetic variants (e.g. SNPs) have been extensively 

studied. Recently, haplotype-based association analysis gains its popularity in genetic association 

study. When multiple sequence or haplotype interactions are involved in determining an 

individual’s susceptibility to a disease, it presents daunting challenges in statistical modeling and 

testing of the interaction effects, due to the complicated higher order epistatic complexity.  

Results: In this article, we propose a new strategy in modeling haplotype-haplotype interactions 

under the penalized logistic regression framework with adaptive L1-penalty. We consider 

interactions of  sequence variants between haplotype blocks. The adaptive L1-penalty allows 

simultaneous effect estimation and variable selection in a single model. We proposed a new 

parameter estimation method which estimates and shrinks parameters by the modified 

Gauss-Seidel method nested within the EM algorithm. Simulation studies showed low false 

positive rate and reasonable power in detecting haplotype interactions. The method was applied 

to test haplotype interactions involved in mother and offspring genome in a small for gestational 

age (SGA) neonates data set, and significant interactions between different genomes were 

detected.  

Conclusions: Demonstrated by the simulation studies and real data analysis, the developed 

approach provides an efficient tool for the modeling and testing of  haplotype interactions.  

Availability: The implementation of the method in R codes can be freely downloaded from 

http://www.stt.msu.edu/~cui/software.html 
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Background 

It has been commonly recognized that most human diseases are complex involving joint effort 

of multiple genes, complicated gene–gene as well as gene–environment interactions [1]. The 

identification of disease risk factors for monogenic diseases has been quite successful in the past. 

Due to the small effect of many single genetic variants on the risk of a disease, the identification 

of disease variants for complex multigenic diseases has not been very successful [2]. There are 

multiple reasons for this. First, most complex diseases involve multiple genetic variants each 

conferring a small or moderate effect on a disease risk. Second, the complexity relies on the 

complicated interactions among disease variants, on a single-single variants or multiple-multiple 

variants basis. Third, but not the last, gene-environment interaction also plays pivotal roles in 

determining the underlying complexity of disease etiology. Studies on testing gene-gene 

interactions have been commonly pursued in the past, but little has been achieved, despite its 

importance in determining a disease risk (see [3] for a comprehensive review).  

 Mapping genetic interactions has been traditionally pursued in model organisms to identify 

functional relationships among genes [4]-[6]. With the seminal work in quantitative trait loci 

(QTL) mapping by Lander and Botstein [7], extensive work has been focused on experimental 

crosses to study the genetic architecture of complex traits. Along the line, methods for mapping 

QTL interactions have also been developed [8][9]. The recent development of human HapMap 

and radical breakthrough in genotyping technology have enabled us to generate high throughput 

single nucleotide polymorphisms (SNPs) data which are dense enough to cover the whole 

genome [10]. This advancement allows us to characterize variants at a sequence level that encode 

a complex disease phenotype, and opens a prospective future for disease variants identification 

[11][12].  

 Genetic interaction, or termed epistasis, occurs when the effect of one genetic variant is 

suppressed or enhanced by the existence of other genetic variants [13]. In align with this 

definition, Mani et al. [14] recently defined two distinct genetic interactions, namely the synergistic 

interaction in which extreme phenotype is expected whenever double mutations are present, and 

the alleviating interaction where one mutation in one gene masks the effect of another mutation by 

impairing the function of relative pathways. As an important component of the genetic 

architecture of many biological traits, the role of epistasis in shaping an organism’s development 

has been unanimously recognized [15][16]. An increasing number of empirical studies have also 

revealed the role of epistasis in the pathogenesis of most common human diseases, such as 

cancer or cardiovascular disease [17][18].  

 The high-dimensional SNP data present unprecedented opportunity as well as daunting 

challenges in statistical modeling and testing in identifying genetic interactions. However, for 

most complex diseases, it remains largely unknown which combination of genetic variants is 

causal to the disease. Given that most traits or diseases are multifactorial and genetically complex, 

it is very unlikely that the function of  a single variant can induce an overt disease signal without 

modeling the gene networks or pathways. Lin and Wu [19] proposed a sequence interaction 

model in a linear regression framework for a quantitative phenotype. Zhang et al. [20] proposed 

an entropy-based method for searching haplotype-haplotype interactions using unphased 

genotype data with applications in type I diabetes. Musani et al. [21] and Cordell [3] recently gave 



a comprehensive review of  statistical methods developed for detecting gene-gene interactions. 

While most methods are nonparametric in nature such as the popular multifactor dimensionality 

reduction (MDR) method [22], they do not provide effect estimates for gene-gene interactions. 

Thus methods focusing on data reduction ignore the biological interpretation of  the interaction. 

For instance, if  two SNPs are identified to have interaction, how do they interact in genetics? 

What are the modes of  gene action? 

 In Cui et al. [12], a novel approach was proposed to group haplotypes to detect risk 

haplotypes associated with a disease. In an extension to this work, we proposed a new statistical 

method to model haplotype-haplotype interactions responsible for a binary disease phenotype. 

We assume a population-based case-control design where a disease phenotype is assumed 

dichotomous. Due to high-order interactions, we propose a penalized logistic regression 

framework with adaptive L1-penalty, commonly termed adaptive LASSO [23]. The adaptive 

L1-penalty allows effect estimation and variable selection simultaneously in a single model. 

Moreover, it preserves the oracle property of  variable selection [23]. Due to the binary nature of  

the response, we proposed a modified Gauss-Seidel method nested within the EM algorithm to 

estimate parameters. The model is applied to a real data set in which significant haplotype 

interactions were detected between mother and offspring genomes in responsible for disease 

risks in pregnancy.  

Methods 

We first explain our method for a model involving interactions of  haplotypes in 2 different 

haplotype blocks containing 2 SNPs in each. More complex models could be easily extended. 

Assume we are studying a population of  n samples with n1 cases and n2 controls. All the n 

individuals are unrelated. A number of  SNPs can be genotyped either in a genome-wide scale or 

in a candidate gene-based scale. Following the notation given in Liu et al. [11] and Cui et al. [12], 

we can construct composite diplotypes by defining a distinct haplotype termed as “risk” 

haplotype for each haplotype block. Assuming two SNPs in each block, there could be nine 

possible genotypes observed numerically denoted as 11/11, 11/12, 11/22, 12/11, 12/12, 12/22, 

22/11, 22/12, 22/22. Without loss of  generality, we assume [11] to be the “risk” haplotype. We 

denote the risk haplotype [11] asH and all other non-risk haplotype asH . By doing this, we can 

map the observed genotypes to three possible composite diplotypes, i.e., HH ,HH and HH . 

Except for the double heterozygote 12/12 which is phase ambiguous and could be from two 

possible composite diplotypes, all other genotypes could be mapped to unique composite 

diplotypes. A detailed list of  the configuration is given in Table 1. 

 

The epistasis model 

We consider two haplotype blocks s and t, each with two SNPs. There are total 81 possible 

genotype combinations. In each block, only the double heterozygote has ambiguous linkage 

phase, thus 64 genotypes could be mapped to unique composite diplotypes. Let 1H , 1H  and 



2H , 2H  be the risk and non-risk haplotypes at the two blocks, respectively. Expressed in terms 

of  composite diplotypes, the four haplotypes can form nine distinct composite diplotypes 

expressed as 1 1 2 2H H H H , 1 1 2 2H H H H , 1 1 2 2H H H H , 1 1 2 2H H H H , 1 1 2 2H H H H , 1 1 2 2H H H H , 

1 1 2 2H H H H , 1 1 2 2H H H H  and 1 1 2 2H H H H . The effects of  the nine distinct composite 

diplotypes can be modeled through the traditional quantitative genetics model. Specifically, we 

use the Cockerham’s orthogonal partition method [24] in which the genetic mean of  an 

interaction model between blocks s and t can be expressed as 

st s s t t s s t t aa s t ad s t da s t dd s ta x a x d z d z i x x i x z i z x i z zµ µ= + + + + + + + +         (1) 

where  

1 1

1 1

1 1

  1    for 

  0    for  

1   for 

s

H H

x H H

H H




= 
−

       

1 1

1 1

1 1

1/2   for 

  1/2    for 

1/2   for 

s

H H

z H H

H H

−


= 
−

 

tx and
tz can be defined similarly. With the above definition, ( )s ta and ( )s td can be interpreted as 

the additive and dominance effects for the risk haplotype at block s(t); aai , adi , dai , ddi can be 

interpreted as the additive×additive, additive×dominance, dominance×additive, and 

dominance×dominance interaction effects between the two blocks, respectively.  

 Let y denote a measured disease trait which is dichotomous taking value 1 or 0, 

corresponding to affected or unaffected individual, respectively. Let gX  denote a matrix of  

numerical codes corresponding to the two composite diplotypes as well as their interactions, and 

let eX  denote a matrix of  measured covariates, including the intercept as the first column. 

Assuming that these factors influence the mean of  a trait, so that their effects can be 

summarized by a function of  linear predictors
g eX Xη β γ= + , where 

[ , , , , , , , ]Ts t s t aa ad da dda a d d i i i iβ =  contain regression parameters for the genetic effects of  

composite diplotypes on a disease trait; γ contain the effects of  overall mean and the covariates. 

Given a binary disease response, we can apply a conditional logistic model with the form 
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Compared to most non-parametric methods in detecting gene-gene interactions, such as the 

multifactor dimensionality reduction (MDR) method which only provides an interaction test [19], 

the above interaction model allows one to identify which ones are the risk haplotypes in two 

haplotype blocks, and to further quantify the specific structure and effect size of  epistatic 



interactions between the two haplotype blocks. We argue that this model-based epistatic test 

provides biologically more meaningful results than a non-parametric method such as MDR.   

Likelihood function 

Assuming independence between individuals, we can construct the joint likelihood function. 

Define  
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and let ( 1| , )i i g ep y X Xπ = = , then the log likelihood function can be expressed as 
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where 
00

n  is the number of  individuals without phase ambiguity in both blocks; 
10

n is the 

number of  individuals with only phase ambiguity in block s; 
01

n is the number of  individuals 

with only phase ambiguity in block t; and 
11n  is the number of  individuals with phase ambiguity 

in both blocks. The total data set can be grouped as four distinct groups according to the above 

definition. Except the 
00

n  group, all other groups involve phase ambiguity genotypes, hence are 

modeled with mixture distributions.   

Variable selection methods such as LASSO [25] or adaptive LASSO [23] have been 

commonly applied when the number of  predictors is large. These methods can achieve 

parameter estimation and variable selection simultaneously and have gained large popularity in 

genetic and genomic data analysis. Considering the large number of  genetic parameters to be 

estimated in the model, we applied the adaptive LASSO to our model since it has been shown 

that the adaptive LASSO preserves the oracle property and is consistent for variable selection 

[23]. Instead of  maximizing the above log likelihood, we estimate the parameters by maximizing 

the log likelihood with the adaptive lasso penalty. 
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where λ is a balance parameter for the likelihood and penalty term, and is chosen by the 

minimum BIC criterion. When 1iw =  for every i, this leads to a general LASSO penalty. 

Previous study showed that when 1/| |i OLSw β= , the adaptive LASSO estimate enjoys the 

oracle property, which is much more attractive than the general LASSO estimate [23]. 

Missing data and the EM algorithm 

The phase ambiguous genotypes lead to missing data. The currently developed algorithms 

LASSO or adaptive LASSO estimation can not be directly applied to maximize the penalized 

likelihood (3). However, this could be solved by applying an EM algorithm detailed as follows: 

  

Computational algorithm for maximizing the penalized log likelihood 

In the M step, parameters ,β γ are updated by calculating LASSO estimate. The LASSO 

regression with continuous response has been well studied. Some very efficient algorithms have 

been proposed, such as the shooting algorithm and the LARS [26][27]. The estimation has been 

a challenge for the generalized linear model due to the non-linearity of  the likelihood function, 

especially with an adaptive penalty term. No exact solution exists for parameter estimation in this 

setting. Here we propose a computational algorithm using a Gauss-Seidel method [28] to solve 

an unconstrained optimization problem. More detail about this method can be found in Shevade 

[29]. 

 We first derive the first order optimality conditions for likelihood (3) which is defined by  
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M-step: 

• Update ,β γ  by maximize the penalized log likelihood function (3). 

Repeat until convergence. 
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Based on the above conditions, we define 
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For a given λ  and , 1.....jw j p= , we further define { : 0, 0};z jI j jβ= = >  and 

}0,0:{}0{ >≠∪= jjI jnz β . The detailed estimation procedure is given as: 

 

For computation precision reasons, the 0jVilo >  condition is relaxed to 510jVilo −>  in our 

computation. 

 This method is based on the convexity of  the likelihood function. The computation 

procedure tries to update one jβ  by the violation of  the optimality conditions. The algorithm 

is relatively efficient because it does not involve matrix inverse. The convexity condition warrants 

1. Initialize 0, 0,1......j j pβ = =  

2. While any 0jVilo >  in zI  

Find the maximum violator kV  

   Update kβ  by optimize 'L . 

While any 0jVilo >  in nzI  

     Find the maximum violator lV  

     Update lβ  by optimize 'L . 

    Until no violator exists in nzI  

  Until no violator exists in 
zI  



one and only one solution for each update. 

 

Risk haplotype selection 

We treat each possible haplotype as a potential “risk” haplotype. The one with minimum BIC 

information defined below is chosen as the “risk” haplotype. 

2 log( )BIC L d n= − +  

where d is number of  non-zero parameters in the model and n is the total sample size. 

Results 

Simulation study 

We conducted a series of  simulation scenarios to evaluate the statistical property of  the 

proposed method. Within each block, the minor allele frequencies of  the two SNPs are assumed 

to be 0.3 and 0.4 with a linkage disequilibrium D=0.02. The simulation is conducted under 

different sample sizes (i.e., n=200, 500, 1000)  

 Data were simulated by assuming one haplotype is distinct from the other ones for each 

block. Haplotypes were simulated assuming Hardy-Weinberg equilibrium. A disease status was 

simulated from a Bernoulli distribution with given genetic effects under different scenarios 

(Table 2). The intercept was adjusted to make the sample size ratio between cases and controls at 

approximately 1. Scenario S0 assumes no genetic effect at all. Other scenarios assume different 

structure of  genetic effects. Scenario S1 is an extreme case where all parameters are significant. 

The purpose of  this simulation is to compare the selection power of  different genetic 

parameters. Scenario S2 assumes that only one haplotype block has effects; Scenario S3 assumes 

both blocks having a genetic contribution to a disease phenotype without interaction between 

them; and Scenario S4 assumes both main and interaction effects between the two blocks. Data 

simulated with these configurations were subject to analysis with the proposed method. Results 

from 200 Monte Carlo repetitions were recorded. 

 Figure 1 shows the results for variable selection under different simulation scenarios. For 

each genetic parameter, the three bars in color correspond to different sample sizes (see figure 

legend). The top figure corresponds to Scenario S0, in which the proportion of selection is 

equivalent to the false positive (or selection) rate. It can be seen that the false selection rates for 

all parameters are all under the nominal level of 0.05, indicating a good false positive control. For 

the other scenarios (S1-S4), a clear pattern is that the selection power increases as the sample size 

increases. The selection rates for true negatives are also under reasonable control. Also as we 

expected, the selection power for the main effects is generally larger than the interaction effect 

(S1). Among the four interaction effects, the dominance×dominance effect performs the worst 

(S1 and S4). The simulation results also indicate that small sample size (n=200) generally 

performs badly given the large number of genetic parameters to be estimated. Generally, at least 

500 samples are required to achieve reasonable power to detect interactions.  

A case study 

We applied our model to a perinatal case-control study on small for gestational age (SGA) 

neonates as part of  a large-scale candidate gene-based genetic association studies of  pregnancy 



complication conducted in Chile. A total of  991 mother-offspring pairs (406 SGA cases and 585 

controls) were genotyped for 1331 SNPs involving 200 genes. Maternal and fetal genome 

interaction is a primary genetic resource for SGA neonates. So we focus our analysis on 

identifying haplotype interactions between the maternal and fetal genome.  

 We first excluded SNPs that had a minor allele frequency of  less than 5% or that did not 

satisfy Hardy-Weinberg equilibrium (HWE) in the combined mother and offspring control 

population by a Chi-squares test with a cut-off  p-value of  0.001. We further used the computer 

software Haploview [30] to identify haplotype blocks for SNPs within each gene. Two tag SNPs 

were used to represent each block. A sliding window approach was applied to search for 

interactions between two blocks. 

 We picked two SNPs within each block and applied our model to study the main effects as 

well as the haplotype interaction effects between a mother and her offspring genome. By fitting 

our model as described in previous section and controlling other variables including maternal age 

and BMI, we successfully identified several SNP haplotypes with interaction effects through the 

adaptive LASSO logistic regression model. To ensure the significance, permutation tests of  1000 

runs were further conducted to assess the significance. In each permutation test, the phenotypes 

were permuted and the model was fitted with different parameter estimate. An empirical p-value 

for effect j was calculated which is defined by  
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 Results of  the real data analysis were summarized in Table 3. Among the identified pairs, 

genes HPGD and MMP9 only show main block effects. All the other five show significant 

interaction effect. Permutation p-values confirm the statistical significance of  the detected effects. 

We used the maternal-fetal pairs to show the utility of  our method. We could also do the analysis 

focusing on the fetal genome only. We thought an interaction between the maternal and fetal 

genome is more interesting, thus used this as an example. 

Model extension 

Our method is illustrated with two SNPs only. The model can be easily extended to more than 

two SNPs. When three or more SNPs are involved in each haplotype block, Cui et al. [12] gave 

an explicit derivation for possible “risk” haplotype structure. In fact no matter how may SNPs 

are involved, three possible composite diplotypes can be constructed as illustrated by Cui et al. 

[12]. The only challenge for this extension is to deal with the number of  heterozygous loci. For 

example, when three SNPs are considered in a block, there are a total of  seven possible 

phase-ambiguous genotypes. In a single block haplotype analysis, there could be four mixture 

distributions when constructing the likelihood function. When we consider interactions between 

two blocks, there are a total of  16 possible mixture distributions in the likelihood function. This, 

however, definitely will increase the programming challenge and the computing burden. 

Fortunately, the increasing of  the mixture components will not affect the number of  parameters 

to be estimated. We still have four main effects and four interactions, as these parameters are 

defined based on the “risk” haplotype structure.  



 Another possible solution to the challenges mentioned above is to do a sliding window 

search with each window covering two SNPs at a time. This is similar to the sliding window 

haplotype analysis commonly applied in some software such as PLINK.  

Discussion 

Although it has been reported that gene-gene interaction plays a major role in genetic studies of  

complex diseases, the detection of  gene-gene interaction has been traditionally pursued on a 

single SNP level, i.e., focusing on single SNP interaction. Intuitively, SNP-SNP interaction can 

not represent gene-gene interaction as single SNPs can not capture the total variation of  a gene. 

Thus, extending the idea of  single SNP interaction to haplotype interaction could potentially 

gain much in terms of  capturing variations in genes. The proposed method defines gene-gene 

interaction through haplotype block interactions and offers an alternative strategy in finding 

potential interactions between two genes. We argue that the definition of  haplotype block 

interaction could provide additional biological insights into a disease etiology, compared to a 

single SNP-based interaction analysis. 

 One of  the advantages of  our method is in grouping, hence reducing data dimension. By 

mapping genotypes to composite diplotypes, the data dimension is significantly reduced. Then 

we can use Bayesian information criterion to select potential “risk” haplotypes (Cui et al. 2007). 

The selection of  “risk” haplotype renders another advantage of  the method. We can identify 

significant haplotype structures and further quantify its main and interaction effects. This greatly 

enhances our model interpretability and biological relevance.  

 Our simulation study showed the reasonable false positive control and selection power for 

the genetic parameters. As we expected, the interaction effects have lower selection power 

compared to the main effects. As sample size increases, we are able to achieve an optimal power 

for the interaction effects. Another novelty of  the method is through the modeling of  the “risk” 

haplotype, which leads to the partition of  composite diplotypes. No matter how many SNPs are 

modeled, it always ends up with three types of  composite diplotypes. Thus, the number of  

genetic parameters is always fixed regardless of  the number of  SNPs modeled. The only cost is 

that we need to search for possible “risk” haplotypes through a larger parameter space.  

 We applied our method to a SGA study data set. Several SNP pairs were selected with either 

main or interaction effects. The permutation test confirmed the statistical significance of  the 

selected effect. Our findings confirmed other findings in gene selection in the literature. Gene 

PON1 was previously reported to be associated with preterm birth, which is one of  the potential 

genetic resources leading to SGA [31]. Gene FLT4 has been found to be association with the 

growth of  human fetal endothelia cells and early human development [32][33]. Gene HPGD was 

also reported being involved in human intrauterine growth restriction [34]. Gene MMP9 has 

been suggested to be related with placenta function [35]. These evidences strongly indicate the 

biological relevance of  our method.    
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Figures 

 

Figure 1: The bar plot of variable selection results under different simulation scenarios 

(Parameter values are listed in Table 2). The three sets of colored bars correspond to different 

sample sizes (Blue:200; Green:500; Red:1000). The horizontal dashed line indicates the nominal 

level of 0.05. 
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Tables 

 

 

Table 1: The configuration of  two SNP combinations 

Diplotype Observed 

Genotype Configuration Frequency Relative Freq. 

Composite 

Diplotype 

11/11 [11][11] 2
11p  1 HH  

11/12 [11][12] 11 122 p p  1 HH  

11/22 [12][12] 2
12p  1 HH  

12/11 [11][21] 11 212 p p  1 HH  

12/12 
[11][22]

[12][21]





 
11 22

12 21

p p

p p





 
1

φ

φ




−
 

HH

HH





 

12/22 [12][22] 12 222 p p  1 HH  

22/11 [21][21] 2
21p  1 HH  

22/12 [21][22] 21 222 p p  1 HH  

22/22 [22][22] 2
22p  1 HH  

Where 11 22

11 22 12 21

p p

p p p p
φ =

+
 



Table 2: List of parameter values under different simulation designs 

 

 

Scenario as at ds dt iaa iad ida idd 

S0 0 0 0 0 0 0 0 0 

S1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

S2 0.8 0.8 0 0 0 0 0 0 

S3 0.8 0.8 0.8 0.8 0 0 0 0 

S4 0.8 0 0.8 0 0.8 0.8 0.8 0.8 



Table 3: List of  selected genes, corresponding “risk” haplotype structure, effect estimates and 

permutation p-values 

SNP ID 

(allele) 

Gene 

(region) 

“Risk” 

haplotype  
as ds at dt iaa iad ida idd 

 

0 

 

0 

 

0 

 

0 

 

0 

 

-0.45 

 

0 

 

0 

9508994 

(C/T)M 

20209376 

(C/T)O 

PON1  

(intron 1)M 

PON1  

(intron 5)O 

[TC]M 

 

[CC]O     p*=0.001  

 

0 

 

0 

 

0 

 

0 

 

-0.33 

 

0 

 

0 

 

0 

659435566 

(C/T)M 

659435702 

(C/G)O 

NFKB1 

(exon 12)M 

NFKB1 

(intron 22)O 

[CC]M 

 

[TC]O    p*=0.001   

 

0 

 

0 

 

0 

 

0 

 

0 

 

-0.30 

 

0 

 

0 

22767327 

(A/T)M 

22175087 

(C/T)O 

FLT4  

(intron 7)M 

FLT4 

(intron 8)O 

[AT]M 

 

[TC]O     p*<0.001  

 

0 

 

-0.38 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0.245 

1125300 

(G/T)M 

1125290 

(G/T)O 

SPARC 

(intron 3)M 

SPARC 

(intron 5)O 

[TT]M 

 

[TT]O p*=0.001    p*<0.001 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0.68 

634841108 

(A/C)M 

634841123 

(A/G)O 

TIMP2 

(intron 2)M 

TIMP2 

(exon 3)O 

[AG]M 

 

[CG]O       p*<0.001 

 

0 

 

0 

 

0.44 

 

0 

 

0 

 

0 

 

0 

 

0 

634018768 

(A/G)M 

636105057 

(A/G)O 

HPGD 

(promoter)M

HPGD 

(promoter)O 

[AG]M 

 

[GA]O  p*<0.001     

 

0 

 

0 

 

0.53 

 

0 

 

0 

 

0 

 

0 

 

0 

17252653 

(G/T)M 

17254821 

(C/G)O 

MMP9 

(intron)M 

MMP9 

(exon 10)O 

[GC]M 

 

[TC]O  p*<0.001     

M mother’s SNP, gene and “risk” haplotype information; O offspring’s SNP, gene and “risk” haplotype information.  

p* is the permutation p-value. 


