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ABSTRACT 
 

Solute transport through regional-scale fractured rocks and heterogeneous porous media typically 
exhibits several “anomalous” features including 1) different growth rates along different directions, due to 
an anisotropic depositional or structural geologic environment; and 2) channeling along preferential flow 
paths.  Simulating such plume characteristics can be computationally intensive using a traditional 
advection-dispersion equation because anomalous features of transport generally depend on local-scale 
subsurface properties.  Here we (1) extend the fractional-order advection-dispersion equations (fADEs) to 
the case of spatially dependent coefficients, and (2) develop an alternative simulation approach that 
solves multidimensional fADEs in a Lagrangian framework using novel random walk methods.  These 
methods allow us to simulate many of the characteristics of anomalous dispersion, as well as direction-
dependent spreading rates and channeling, without the need to explicitly define local-scale heterogeneity 
in a numerical model.  We apply the new techniques to simulate results from the MADE site tracer tests. 
 

INTRODUCTION 
 

Recent laboratory and field tracer tests [e.g., Benson et al., 2000; Benson et al., 2001; Bromly and Hinz, 
2004; and Klise et al., 2004] show “anomalous” dispersion of tracers through heterogeneous porous 
media and fracture networks, including heavy leading edges, faster-than-Fickian growth rates and/or 
heavy later tails of tracer breakthrough curves.  Modeling methods based on nonlocal governing 
equations [e.g., Harvey and Gorelick, 2000; Haggerty et al., 2000; Benson et al., 2001; Dentz et al., 2004; 
among many others] have been applied successfully to capture these measured behaviors of plumes, 
without the burden of explicitly representing the local-scale subsurface heterogeneity.  Multidimensional 
realistic plumes typically exhibits two more anomalous features including 1) different growth rates along 
different directions, due to an anisotropic depositional or structural geologic environment; and 2) 
channeling along preferential flow paths. 
 
This study proposes an alternative method to simulate the features of anomalous dispersion mentioned 
above, by 1) extending the fractional-order advection-dispersion equations (fADEs) to the case of 
spatially variable coefficients (mean velocity, dispersion tensor and/or the mixing measure) describing 
multidimensional skewness, and (2) developing an alternative simulation approach that solves the 
multiscaling fADEs in a Lagrangian framework using novel random walk methods.  The dispersions in 
both time and space, captured by the space- and time-fractional derivatives in the fADEs, can be 
reflected by the dynamics of random walkers (particles).  These methods allow us to simulate many of the 
characteristics of anomalous dispersion, as well as direction-dependent spreading rates and channeling, 
without the need to explicitly define local-scale heterogeneity in a numerical model.  We apply the new 
techniques to simulate the observed two-dimensional (2-D) tritium plume from the MADE site tracer tests. 
 

METHODOLOGY DEVELOPMENT 
 
A multiscaling, spatially fractional advection-dispersion equation (ADE) where the scaling rate of diffusion 
depends on directions was proposed by Meerschaert et al. [2001]: 
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where V is the velocity vector, D is a scalar dispersion coefficient, and H-1 is the inverse of the scaling 
matrix providing the order and direction of the fractional derivatives.  The eigenvalues of the scaling 
matrix H are the scaling coefficients 1/ jα  of the growth process.  A mixing measure M(dθ) defines the 
shape and skewness of the plume in d-dimensions by assigning the strength of solute transport (or 
probability of particle jumps) in each angular dθ (either a continuous or discrete measure), and 

1=∫ )( θdM .  The corresponding intensity of particle jumps can then be defined via the scaling matrix, the 
mixing measure, and the dispersion coefficient.  In forced flow in 1-D, H-1 = 1/H =α , M(+1) =1,  M(-1) = 0, 
and Eq. (1) reduces to the commonly used 1-D fADE αα xCDxCvtC ∂∂+∂∂−=∂∂ /// .  When H-1 = 2, the 
classical second order ADE is recovered. 
 
The multiscaling fADE (1) can be extended to capture both the space-dependence of parameters and the 
trapping of particles in immobile domains.  A fADE with space-dependent characteristic coefficients may 
significantly extend the ability of the constant-parameter fADE to capture the realistic plume evolution in 
regional-scale aquifers where the subsurface heterogeneity distribution tends to be non-stationary and 
the local-scale heterogeneity is critical to solute transport.  By taking the fractional flux in the first-order 
mass conservation law [Schumer et al., 2001] and adding the time fractional derivative [Schumer et al., 
2003], we get the following multiscaling, FF-ADE (where the “FF” denotes the Fractional Flux) 
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where β  is the capacity coefficient, γ  is the order of the time fractional derivative (Caputo type) and we 
limit 10 << γ  in this study, and I is the identity matrix.  Note the velocity and the dispersion coefficient 
may vary with time, such as the transient flow case.  When the dimension reduces to one and β  = 0, Eq. 
(2) reduces to the 1-D fADE proposed by Zhang et al. [in press], which is also the same as the fractional 
Fokker-Planck equation proposed by Tsallis and Lenzi [2002]. 
 
We approximate the solutions of the above governing equation by a random walk particle tracking 
method.  Here we only describe the main steps of the approximation.  Some of the details can be found in 
Zhang et al. [in press] and Zhang et al. [in prep.]. 
 
First, the individual jump of each particle at time step i can be calculated by 

θH
ii XZ =   ,                                                                   (3) 

where rrXP i /)( 1=>  and the jump direction θ is a random unit vector drawn from the CDF of the mixing 

measure M(dθ).  Note here the travel direction of iZ  depends on the eigenvectors of the scaling matrix H.  

Further verification of (3) is provided by Zhang et al. [in prep.], and the calculations of iZ  was explored 
and applied by Zhang et al. [in press].  The particle location at time t (where t = ∑ti) is the summation of 
each jump described by (3). 
 
Second, the individual waiting time (or the trapping time) of each particle at time step i is a Lévy γ –stable 
noise re-scaled by the capacity coefficient 

)()( tdLft i γβ=  ,                                                             (4) 
where )(tdLγ  is a standard Lévy γ –stable noise.  Extensive verifications of (4) (not show here) have 
already been done recently.  Note that other forms of ti can be incorporated directly into the particle-
tracking algorithm, including 1) waiting time PDFs used in a CTRW [Dentz et al., 2004], and 2) the γ -
stable waiting time defined by any order of γ . 
 
Specific treatment is used to characterize the influence of the spatial variation of the mixing measure on 
particle movement (note the spatial variations of V and D have already been considered in Eq. (3). See 
also Zhang et al., [in press]).  If the mixing measure varies with spatial location, the particle may change 
its travel direction and/or jumping magnitude during each movement, depending on the mixing measure.  
In particular, when particles pass a heterogeneity interface (which may be caused by the abrupt contact 
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of different depositional materials), specific techniques such as the reflection scheme are necessary to 
account for the influence of discrete jumping probabilities and/or intensities on the trajectory of particles.  
This is equivalent to abrupt changes in dispersion coefficient considered by LaBolle et al. [2000]. 
 

FIELD APPLICATION 
 
Natural-gradient tracer tests have been conducted at the Columbus Air Force Base in northeastern 
Mississippi, commonly known as the Macrodispersion Experiment (MADE) site, to study solute transport 
in heterogeneous aquifers.  It is an alluvial aquifer with a much larger variance (~4.5) of the natural 
logarithm of K than those in previous natural gradient experiment sites.  The first experiment (MADE-1) 
was conducted using bromide and three organic tracers [Boggs et al., 1992; Adams and Gelhar, 1992; 
Boggs and Adams, 1992], and the second one (MADE-2) was conducted using tritium tracer [Boggs et 
al., 1993].  Anomalous dispersion was observed for non-reactive trace in the first two experiments 
through extensive 3-D sampling networks [Adams and Gelhar, 1992].  The solute plumes in both 
experiments demonstrated extreme asymmetric concentration profiles (in the longitudinal direction) with 
sharp peak near the injection source (~5m) and rapid spreading of a certain amount of mass downstream 
(150~250m). 
 
Researchers have attempted to simulate the tracer plumes in MADE-1 and MADE–2 using many different 
methods in the last decade.  For example, Adams and Gelhar [1992] found that there are obvious 
limitations of applying the traditional second-moment analysis to characterize the high skewed bromide 
plumes at MADE-1.  Zheng and Jiao [1998] applied the classical ADE combined with 3-D K–field 
simulations to modeling the bromide plume dispersion in MADE-1, and they explained the failure by the 
assumption that small-scale preferential flow paths not represented by the model affect the tracer field.  
Eggleston and Rojstaczer [1998] used a 3-D particle-tracking advection-transport model to investigate the 
plume behaviors caused by different K fields, which were generated by three different trend identification 
methods, polynomial regression, Kalman filtering, and hydrofacies delineation, as well as ordinary kriging.  
None of the K fields produced simulated plumes with the observed non-Gaussian transport behavior.  
They stated that the observed lack of simulated dispersion might be alleviated by incorporation of small-
scale K variations, artificial dispersion, or non-equilibrium partitioning.  Harvey and Gorelick [2000] found 
that a dual-domain model without dispersion might explain the large-scale behavior of the solute plume at 
the MADE site.  Feehley et al. [2000] used the same dual-domain mass transfer method (with a constant 
rate coefficient) combining with interpolated K distribution to obtain a model that reproduced the high 
concentration at the source and the extensive spreading of the measured plume.  Benson et al. [2001] 
applied a 1-D fADE with three parameters, including the mean groundwater velocity, scale-independent 
dispersion coefficient and scale index, to recover the anomalous dispersion and the complete evolution of 
bromide measured at MADE-1.  Lu et al. [2002] applied an uncalibrated 3-D orthogonal fADE, with 
fractional longitudinal dispersion and classical Gaussian horizontal dispersion, to model the tritium 
evolution in MADE-2.  They used space-independent parameters and failed to fit the observed plumes, so 
they concluded that a model with a spatially varying velocity field would give a better fit. 
 
We apply the governing equations and the corresponding numerical methods developed above to 
simulating the 2-D tritium plumes observed at MADE-2.  The improvements of this model to Lu et al. 
[2002] include 1) the capture of mass decay of tritium in the mobile phase, 2) the non-orthogonal mixing 
measure, and 3) a space-discrete longitudinal velocity. 
 
We first fit the longitudinal tritium mass distribution with a 1-D fADE, to get an initial evaluation of the 
parameters that may be used for the 2-D case.  It is similar to the 1-D model built by Benson et al. [2001] 
and Schumer et al. [2003], except that we also consider the actual mass decay of tritium in the mobile 
phase.  Simulated results (not show here) give the best-fitting parameters of the time fractional derivative 
γ  = 0.33 and the capacity coefficient β = 0.01 days-0.67.  These two parameters and others (i.e., v, D and 
α ) are similar to those obtained by Benson et al. [2001] and Schumer et al. [2003].  We keep the same 
γ  and β for the 2-D model, since the trapping of immobile domains should not change with dimensions or 
directions.  The mixing measure can be calculated by using the observed concentration profiles, or much 
more simply, it can be estimated approximately by eye.  We build a very simple space-dependent mixing 
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measure (discrete with a single interface, as showing in Fig. 1b) based on the general appearance of the 
observed plume (Fig. 1a).  Other parameters, including the two orthogonal spreading rates ( xα  = 1.5 and 

yα  = 1.2), velocity (vx = 0, vy = 0.26 m/day for y ≤ 120m, and 0.52 m/day for y > 120m) and dispersion 
coefficient (D = 0.30 mα/day, where α varies with directions), are obtained with a simple visual calibration.  
Radioactive decay of 3H is also considered, although it is small.  The discrete points in the simulated 
plume (Fig. 1c) may be smoothed by increasing the number of released particles.  
 

The best-fit velocity (and the 
dispersion coefficient) for the 2-
D model is several times larger 
than that of the 1-D model.  
This discrepancy is consistent 
with the conclusion of Lu et 
al.’s model [Lu et al., 2002], 
where the velocity calibrated 
with the 1-D plume causes a 
much slower/shorter plume in 
3-D.  In 2- or 3-D transport, a 
particle has much less 
probability of jumping along the 
same longitudinal direction 
compared to the 1-D case, and 
thus the movement of the 
particle needs to be increased 
for the higher dimensional 
cases.  As one of the 
fundamental conclusions here, 
and also as verified by 
preliminary numerical examples 
(not show here), Lu et al.’s 3-D 
model can be improved easily 
by increasing the longitudinal 
velocity and all three dispersion 
coefficients.  Or in other words, 
Benson et al’s 1-D model 
[Benson et al., 2001] can be 
extended directly to 2-D by 

increasing V and D and adding 
a discrete mixing measure, as 
demonstrated by this study.  

Most importantly, the fan shape of the measured plume (especially the extension of the leading edge) 
cannot be captured by the orthogonal model built by Lu et al. [2002].  As shown by Fig.1c, a non-
orthogonal mixing measure may be necessary to capture the radiation of the leading edge. 
 

SUMMARY 
 
The multiscaling fADE is a potential tool to characterize high dimensional, realistic plumes, without the 
detailed information of subsurface heterogeneity.  Simple random walk algorithms can be developed to 
approximate the multiscaling fADEs with variable transport parameters and mixing measures, making the 
whole method a computational efficient tool for applications. 
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Figure 1. (a) The observed concentration profile at day 224. (b) 
Operator stable parameters. The unit of v is m/day. (c) The 
simulated concentration profile. 

0 50 100 150 200 250
Y (m)

-50

0

50

X
 (m

)

2

10

100

1000

C (pci/ml)Source
Location

Main Flow DirectionA

vx = 0

ay =1.2
vy =0.26

ax =1.5x

y

0.05
0.10
0.15

B vx = 0

ay =1.2
vy =0.52

ax =1.5x

y

0.05
0.10
0.15

0 50 100 150 200 250
Y (m)

-50

0

50

X
 (m

)

C C (pci/ml)

1000

100

10

2

MODFLOW and More 2006: Managing Ground-Water Systems - Conference Proceedings, Poeter, Hill, & Zheng - www.mines.edu/igwmc/

642



Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert, 2000. Application of a fractional advection-
dispersion equation, Water Resour. Res., 36(6), 1403-1412. 

Benson, D. A., R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, 2001. Fractional dispersion, Lévy 
motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240. 

Boggs, J. M., S. C. Young, L. M. Beard, L. W. Gelhar, K. R. Rehfeldt, and E E. Adams, 1992. Field study 
of dispersion in a heterogeneous aquifer, 1, overview and site description, Water Resour. Res., 
28(12), 3281-3291. 

Boggs, J. M., and E E. Adams, 1992. Field study of dispersion in a heterogeneous aquifer, 4, 
investigation of adsorption and sampling bias, Water Resour. Res., 28(12), 3325-3336. 

Boggs, J. M., L M. Beard, and W. R. Waldrop, 1993. Transport of tritium and four organic compounds 
during a natural-gradient experiment (MADE-2), Tech. Rep. EPRI TR-101998, Electr. Power Res. 
Inst., Palo Alto, Calif. 

Bromly M., and C. Hinz, 2004. Non-Fickian transport in homogeneous unsaturated repacked sand, Water 
Resour. Res., 40, W07402, doi:10.1029/23WR002579. 

Dentz, M., A. Cortis, and B. Berkowitz, 2004. Time behaviour of solute transport in heterogeneous media: 
transition from anomalous to normal transport, Adv. Water Resour., 27, 155-173. 

Eggleston, J., and S. Rojstaczer, 1998. Identification of large-scale hydraulic conductivity trends and the 
influence of trends on contaminant transport, Water Resour. Res., 3(9), 2155-2168. 

Feehley, C. E., C. Zheng, and F. J. Molz, 2000. A dual-domain mass transfer approach for modeling 
solute transport in heterogeneous porous media, application to the MADE site, Water Resour. 
Res., 36(9), 2501-2515 

Haggerty, R., S. A. McKenna, and L. C. Meigs, 2000. On the late-time behaviour of tracer test 
breakthrough curves, Water Resour. Res., 36(12), 3467-3479. 

Harvey, C. F., and S. M. Gorelick, 2000. Rate-limited mass transfer or macrodispersion: Which dominates 
plume evolution at the Macrodispersion Experiment (MADE) site? Water Resour. Res., 36(3), 
637-650.  

Klise, K.A., V.C. Tidwell, S.A. McKenna, and M.D. Chapin, 2004. Analysis of permeability controls on 
transport through laboratory-scale cross-bedded sandstone. Geological Society of America 
Abstracts with Programs, 36(5), 573. 

LaBolle, E. M., J. Quastel, G. E. Fogg, and J. Gravner, 2000. Diffusion processes in composite porous 
media and their numerical integration by random walks: Generalized stochastic differential 
equations with discontinuous coefficients, Water Resour. Res., 36(3), 651-662. 

Lu, S. L., F. J. Molz, and G. F. Fix, 2002. Possible problems of scale dependency in applications of the 
three-dimensional advection-dispersion equation to natural porous media, Water Resour. Res., 
38(9), 1165, doi:10.1029/2001WR000624. 

Meerschaert, M. M., D. A. Benson and B. Baeumer, 2001. Operator Lévy motion and multiscaling 
anomalous diffusion, Phys. Review E, 63(2), 12-17. 

Schumer, R., D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, 2001. Eulerian derivation of the 
fractional advection-dispersion equation, J. Contami. Hydro., 48, 69-88. 

Schumer, R., D. A. Benson, M. M. Meerschaert, and B. Baeumer, 2003. Fractal mobile/immobile solute 
transport, Water Resour. Res., 39(10), 1296, doi:10.1029/2003WR002141. 

Tsallis, C., and E. K. Lenzi, 2002. Anomalous diffusion: non-linear fractional Fokker-Planck equation.  
Chem. Phys., 284, 341-347. 

Zhang, Y., D. A. Benson, M. M. Meerschaert, and H. P. Scheffler, On using random walks to solve the 
space-fractional advection-dispersion equations, J. Sta. Phys., in press. 

Zhang, Y., D. A. Benson, M. M. Meerschaert, E.M. LaBolle, and H. P. Scheffler, Random walk 
approximation of multiscaling anomalous diffusion, in preparation. 

Zheng, C., and J. J. Jiao, 1998. Numerical simulation o tracer tests in a heterogeneous aquifer, J. 
Environ. Eng., 124(6), 510-516. 

Zheng, C., and S. M. Gorelick, 2003. Analysis of the effect of decimeter-scale preferential flow paths on 
solute transport, Ground Water, 41(2), 142-155. 

MODFLOW and More 2006: Managing Ground-Water Systems - Conference Proceedings, Poeter, Hill, & Zheng - www.mines.edu/igwmc/

643




