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Abstract 

We show that any finite-dimensional compact Lie group is isomorphic to the symmetry group of a full probability 
measure. The novelty of our proof is that an explicit formula for the measure and its support is given in terms of the Lie 
group. We also construct a full operator stable probability measure whose symmetry group has as its tangent space the 
tangent space of a given group. This provides a method for constructing an operator stable probability measure having 
a specified collection of exponents. A characterization of the compact groups of operators on a finite-dimensional space 
which can be the symmetry group of a full probability measure on that same space is given. 
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1. Introduction 

Probabi l i ty  measures on R d which are invariant  
under  a specified g roup  of  linear operators  play an 
impor tan t  role in modern  statistical theory. The 
group  of  operators  leaving a given probabil i ty 
measure invariant  is called the symmetry  g roup  of  
the measure. We will show that  any compact  g roup  
of  linear operators  is i somorphic  to the symmetry  
g roup  of  a full probabil i ty measure. Al though this 
result can be deduced from the work  of  previous 
authors  (for example, Bedford and Dadok ,  1987, 
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Theorem 3), our  me thod  of  p roof  gives a formula 
for the probabil i ty measure in terms of  the g roup  of  
operators.  Also, the construct ion explicitly displays 
the suppor t  of  the measure, which is a subset of  the 
unit sphere. This explicit representation of  the 
measure and its suppor t  can be extremely useful in 
applications. Indeed, in our  application at the end 
of  the paper  we make  heavy use of  the explicit form 
of the measure constructed. We also provide 
a characterizat ion of  the compac t  groups  of  linear 
operators  on R a which can occur as symmetry  
groups  of  full probabil i ty measures on that  same 
space. 

If  # is a probabil i ty measure on R a, the symmet-  
ries of /~  are those linear operators  h on R d for 
which hp = p. Here the measure hp is defined by 
hp(A) = #(h-1A).  A probabil i ty measure on R a is 
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said to be full if it is not supported in any proper 
hyperplane of R a. Billingsley (1966) showed that the 
collection of symmetries ~ ( # )  of a full probability 
measure # on R a is a compact  group. The symmetry 
group inherits the Lie group structure of the set 
GL(R d) of invertible linear operators on ~d. 

Billingsley pointed out that not every compact  
group of operators on R d can be the symmetry 
group of a full probabili ty measure on that same 
space. For  example, if every rotation is a symmetry 
then so is any reflection. Therefore the group of 
rotations cannot  be the symmetry group of a full 
probability measure. Paradoxically, while the 
group of rotations on R d cannot be the symmetry 
group of any full probabili ty measure on ~d, there is 
a full probabili ty measure on R d2 whose symmetry 
group is isomorphic to the group of rotations on 
R a" 

The study of the construction of probability 
measures with a specified symmetry group was 
motivated by the authors '  continuing study of oper- 
ator stable probabili ty measures. Opera tor  stable 
probabili ty measures are the higher-dimensional 
analogs of the classical stable measures on the real 
line. In the last section of this paper the techniques 
developed here are used to partially solve the pro- 
blem of constructing a full operator  stable prob- 
ability measure with a specified symmetry group. 
We also provide there a brief summary  of the 
theory of operator  stable probability measures. 

2. Results 

The first objective of this paper  is to show that, 
up to isomorphism, any compact  Lie group is the 
symmetry group of some probability measure. 

Theorem 1. Let G be a finite-dimensional compact 
Lie group. Then there exists a full probability 
measure on R" for some n whose symmetry group is 
isomorphic to G. 

measure constructed has compact  support  which is 
a subset of the unit sphere in R". 

The second objective of this paper  is to charac- 
terize those compact groups of operators on ~d 
which are the symmetry group of some full prob- 
ability measure on the same space R a. The charac- 
terization is as follows. Begin by defining an equiv- 
alence relation ~ on the class of all subgroups of 
G L ( R  a) by saying that G 1 ~ G2 if Gax = G 2 x  for 
all x e ~a. Let [G] denote the equivalence class of G. 
We also partial order the subsets of GL(R a) by set 
inclusion. 

Theorem 2. A compact subgroup G of  GL(R a) is the 
symmetry group of  some full probability measure on 
~a if and only if G is a maximal element of  [G]. 

3. Proofs 

We begin with a lemma which establishes the 
invariance of the support  of a measure under the 
action of its symmetries. 

Lemma 1. Let # be a full probability measure on R a 
with symmetry group 5"(#). Each h ~ 5"(#) maps the 
support of  # onto itself. 

Proof. Denote the support  of # by S. Note  that if 
h e r e ( # )  then h-1 e ra (# )  as well, and both h and 
h -1 are continuous. Suppose that x e S  and 
h - l (x )  ~ S. Since S is closed, by continuity of h-1 
there is an open set A c R d with x e A  and 
h- I (A)  c S c. Since S is the support  of #, we also 
have # ( A ) > 0 .  Since h # = #  we also have 
# ( h - I A ) = # ( A ) .  But the left-hand side of this 
equality is zero, while the right-hand side is strictly 
positive. This contradiction shows that there is no 
such x. We have thus proved that h - I S  c S. Since 
this inclusion holds for all symmetries h of #, it also 
holds when h is replaced by h-1. Thus hS ~ S, i.e., 
S ~ h - l S .  [] 

If the group G is a group of operators on ~a, the 
proof  of T h e o r e m  1 yields a full measure on R" 
where n = d 2. The proof  leans heavily on ideas 
contained in Bedford and Dadok  (1987), and in fact 
shows how to construct such a measure. The 

Suppose G is a finite-dimensional compact  Lie 
group. By Theorem 6.1.1 of Price (1977), G is 
isomorphic to a subgroup of the orthogonal group 
on •a for some d. We can therefore imbed G as 
a subgroup of the orthogonal group on R a2 by 
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letting G 'act diagonally'. This means the following. 
First we identify an element h of G with its matrix 
relative to the standard basis for R d. Then we con- 
struct a d 2 x d 2 block diagonal matrix with d identi- 
cal blocks, each of which is the d x d matrix of h. 
This block diagonal matrix is the matrix of an 
orthogonal linear operator on R d~ with respect to 
the standard basis for that space. The embedding 
maps h onto this operator. 

Lemma 2. There exists a finite collection of  unit 
vectors x l  . . . . .  xN in ff~d2 with the property that if h is 
a linear operator on R a2 and hxieGx~ for all 
l <~ i <<. N then h E G. 

Proof. Let xl . . . . .  xa~ be the standard basis for ~n~. 
Then for i = l  . . . . .  d define x n 2 + i = ( x i + x d + i +  

• .. + xta_l)d+i)/x//-d. Finally let xN = (xl + xd+2 

+ ... + xd2)/x/~, where N = d 2 + d + 1. Suppose 
h is a linear operator on R d' and that hx~ ~ Gx~ for 
1 ~<i~< N. This means that there are elements 
91 . . . . .  gN of G so that hx~ = g~xi for 1 ~< i ~< N. 
Since all elements of G act diagonally, it is easy to 
use the fact that hx~ = g~x~ for 1 ~< i ~< d 2 to show 
that the matrix of h relative to the standard basis 
for R n' is block diagonal, with d possibly unequal 
d x d block elements. Then by using the vectors 
xg for d 2 + 1 ~< i < N, one easily sees that the block 
elements of h are in fact equal. Finally, by using the 
vectors xN one sees that there is a 9 e G which is 
equal to the given h. [] 

Lemma 3. There is no proper hyperplane of  R d: 
which contains the vectors Xx . . . . .  xu o f  Lemma 2. 

Proof. A hyperplane in R d~ consists of the vectors 
x which are solutions of one or more equations of 
the form (x, v ) =  c for some vector v and some 
constant c. If the vectors xl . . . . .  xN of Lemma 
2 solve such an equation we see by using the first d 2 
of the x's that the vector v has all of its components 
equal to c. Using the vector xN shows that c = 0 
and hence v = 0. Thus any hyperplane containing 
x~ . . . . .  xN coincides with ~d2. [] 

Proof  of  Theorem 1. Following the discussion pre- 
ceding Lemma 2 we will construct a full probability 

measure # on g~a2 with the property that ha(#) = G. 
Let xa . . . . .  xN be as in Lemma 2 and let ~ be the 
Haar probability measure on G. Because of the 
compactness of G and the continuity of the group 
action each of the orbits Gx~ is a compact set. Also 
the number of connected components of an orbit is 
no more than the (finite) number of connected 
components of G. Note that two orbits are either 
disjoint or coincide. After relabeling if necessary we 
suppose that Gxl . . . . .  Gxs is a list of the distinct 
orbits among Gxl . . . . .  GxN. Suppose the orbit Gx~ 
has n~ connected components. Define 

v ( A ) =  ~ f ( in i ) '6x , (gA)d.~(9) .  
i= l  

Then p(A) = v(A) /v(R n2) is a probability measure 
on R d2, and from our construction it is immediate 
that every 9 e G  is a symmetry of p. Since the 
support of p contains the vectors xl . . . . .  xN of 
Lemma 2, Lemma 3 shows that # is full. Thus it 
only remains to show that every h~SP(t~) is an 
element of G. 

Suppose that hE S g(#). Then Lemma 1 implies 
that h maps the support of/z onto itself. It is easy to 
see that the support of p is the union of the orbits, 
U{  = 1 Gxi" Each connected component of the sup- 
port of # consists of one of the connected compo- 
nents of some orbit Gx~. Note also that all connec- 
ted components of the orbit Gx~ have equal mass, 
namely ' s ~/~k = 1 knk" Since h is continuous, the image 
of one of the connected components of the support 
of # under h must be another connected compon- 
ent. Since h is a symmetry and the connected com- 
ponents of different orbits have different measure 
we must have hGx~ = Gx~ for all 1 ~< i ~ J. If j > J 
then Gxj = Gx~ for some 1 ~< i ~< J, and so we have 
hGx~=Gx~ for all l~<i~<N.  By Lemma 2, 
h e  G. [] 

We have shown that every compact subgroup of 
GL(R a) is isomorphic to the symmetry group of 
some full probability measure on ~d2. There re- 
mains the question of which compact subgroups 
are actually the symmetry groups of some full prob- 
ability measure on R a. To address this question we 
need to review some further facts from Lie theory. 
Some details are presented for the benefit of those 
who are not familiar with Lie theory. 
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We first recall that if L is a Lie group, then the 
connected component  of the identity, C, is a normal 
subgroup of L. This is easily seen from the fact that 
the map  x ~ 9x9-a is continuous and maps the 
identity to itself. This implies that 9C#-1 ~ C for 
all O eL.  Hence C is normal. (Similar arguments 
show that C is a subgroup). We also recall that if 
L is compact  then L/C is a finite group and the 
order of this quotient group is equal to the number  
of connected components  of L. This is easily seen 
by noting that C is open and thus {0C: 0 e L} forms 
an open cover of L which by compactness must 
have a finite subcover. 

Suppose G ~ H and both are finite-dimensional 
compact  Lie groups. We claim that if the inclusion 
is proper then either the dimension of G is strictly 
less than the dimension of H or the number of 
components  of G is strictly less than the number  of 
components  of H. Let us recall that the dimension 
of a Lie group G is the dimension of the corres- 
ponding Lie algebra (or tangent space) TG. (When 
G is a set of linear operators, the tangent space is 
the collection of all operators which can be written 
as l im,~o(G,  - 1)/9, where {G,} is a sequence of 
operators from G and {9,} is a sequence of real 
numbers which converges to 0.) Since G c H we 
have TG ~ TH. If  the dimension did not decrease, 
then the Lie algebras are equal. Since the exponen- 
tial map  sends the Lie algebra onto the connected 
component  of the identity, we see that in this case 
the connected component  of the identity, C say, of 
the two groups is the same. Now we have 
G/C c H/C where both are finite groups. If the 
inclusion were not proper, we would conclude that 
G = H. Hence if the dimension did not decrease, 
the number  of components must decrease. It 
follows that any decreasing sequence of properly 
nested compact  finite dimensional Lie groups must 
eventually terminate. 

1966). Since W(J W -1 ~-- J°~ ( W[A) and [ WG W-1]  = 
W [ G ]  W-1 we see that the assumption that G is 
a subgroup of the orthogonal group causes no loss 
of generality. To continue the proof, we suppose 
that H e  [G] with G c H and we will show that 
H = G. Since H e [ G ]  we have Hx = Gx for all 
x e •a. It is easily seen that since G is a subgroup of 
the orthogonal group then so is H. Let ~(x) denote 
the characteristic function of #. A linear operator  
A belongs to the Symmetry group of # if and only if 
#(A*x) =/~(x) for all x e  A a. For  any h e l l  and any 
x E ~a there is some 9 e G such that 9*x = 9 - i x =  
h - i x  = h 'x ,  so ~(h*x)= #(O*x)= /~(x). Hence 
G c H c 5~(/~) = G. This shows that G is maximal. 

It remains to show that if G is maximal then there 
is a full probability measure # such that 5¢(~) = G. 
If X is a finite set of elements in A a, use the con- 
struction of Theorem 1 to define a probability 
measure #x which is supported on the union of the 
disjoint orbits Gx for x eX ,  with the property that 
G c 5~(~x). Now observe that if X c Y, then 
5P(pr) c 5~(px) since the restriction of #r to the 
support  of #x is just a constant multiple of #x. Let 
Xo be an arbitrary finite set of vectors in R d for 
which PXo is full. If  5¢(#xo)X = Gx for all x e A n 
then 5~(#Xo) ~ G, and since G is maximal we must 
have G = ~(#Xo). Otherwise, there exists some 
nonzero vector x E A n such that Gx is strictly con- 
tained in 5¢(#xo)X. Set X1 = Xo w {x} and con- 
sider the probability measure Pxl. Since 
5¢(pxl)X = Gx, the containment 5¢(px~) c 5¢(PXo) 
must be strict. Continue in this manner  to obtain 
a strictly decreasing nested sequence of symmetry 
groups {5°(px,)} all of which contain G. By the 
above discussion, we must have G = 5¢(px,) for 
some i. [] 

4. Application 

Proof of Theorem 2. We begin by showing that if 
G is a symmetry group of a full probability 
measure, G = 6¢(#) say, then G is maximal. Before 
doing this we note that since G is a symmetry 
group of a full measure G is compact.  If G is not 
a subgroup of the orthogonal  group there is a 
positive-definite operator  W so that WG W-1 is a 
subgroup of the orthogonal  group (see Billingsley, 

As mentioned in the introduction, the original 
motivation for studying symmetry groups was as 
part  of the authors '  ongoing research into the struc- 
ture of operator  stable probability measures. We 
present a brief review of the theory of operator  
stable probability measures and then use the 
techniques developed in this paper to construct 
a full operator  stable probability measure whose 
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symmetry group has a specified tangent space. An 
open question is whether a similar construction can 
yield an operator  stable probabili ty measure with 
a specified symmetry group. A brute force construc- 
tion of one example of this sort was carried out in 
Meerschaert and Veeh (1992). 

The theory of operator  stable probabili ty 
measures was begun by Sharpe (1969). A probabil-  
ity measure /~ on R d which is full is said to be 
operator  stable if there is a linear operator  B on R d 
(called an exponent of #) and a vector valued func- 
tion bt so that, for all t > 0, 

ff = tB/x * 6(bt). 

Here p is known to be infinitely divisible, so if, the 
tth convolutory power, can be defined by the char- 
acteristic function. The operator  t B is defined via 
power series as exp {B In t}. A linear operator  A is 
said to be a symmetry of the full operator  stable 
measure /x if there exists a vector a so that 
A/x = / x .  6(a). We use this alternate definition of 
symmetry only for operator  stable measures. Under 
this alternate definition the collection of all sym- 
metries of a full operator  stable probabili ty 
measure form a compact  group which we continue 
to denote 6a(/x). 

In the case d = 1 the operator  stable measures 
are exactly the classical stable measures and the 
exponent is uniquely determined as the reciprocal 
of the classical index of stability. In general, oper- 
ator stable probabili ty measures do not have 
unique exponents. If g(#)  denotes the collection of 
exponents of the operator  stable measure # then 
Holmes, et al. (1982) established that 

~(/x) = B + TSP(#), 

where B E #(it). Since the exponents of an operator  
stable measure play a role analogous to the role of 
the index of stability in the theory of the classical 
stable measures on R 1 it is desirable to be able to 
construct operator  stable measures with a specified 
symmetry group. One can then use the above rela- 
tion to see what the collection of exponents is. 

A key element in our construction is the fact that 
an operator  stable measure is infinitely divisible. 
Hence if the operator  stable measure has no Gaus-  
sian component  it is determined by its L6vy 
measure. Furthermore,  the L6vy measure M of an 

operator  stable measure can always be represented 
a s  

M ( E ) = f s f o l e ( t B x ) t - 2 d t d K ( x ) ,  

where K is a Borel measure on a Borel set S which 
is intersected exactly once by each orbit {tnv: t > 0}. 
For  more details of this representation, see Hudson 
et al. (1986). The measure K is called the mixing 
measure. In our construction we will always take 
S to be the surface of the unit sphere. 

There is an intimate connection between the 
symmetries of the operator  stable measure/x,  the 
symmetries of its L6vy measure M, and the sym- 
metries of its mixing measure K. From the unique- 
ness of the L6vy-Khinchine representation it fol- 
lows that if A e 6a(/x) then A M  = M. Since for Borel 
subsets E of S we have the formula K(E) = M({tBx: 
t > 1, x e E } )  it is easy to see that a symmetry of the 
operator  stable measure which commutes with 
B will be a symmetry of the mixing measure pro- 
vided that the symmetry leaves the set S invariant. 
It should be remarked that fullness of # does not 
imply fullness of K, so that the collection of sym- 
metries of K is neither a group nor compact  in 
general. This will not pose a problem for our con- 
struction since we will construct a full mixing 
measure K and use it to construct M and # which 
will then necessarily be full. 

Suppose we are given a compact  subgroup G of 
the orthogonal group on R d and we wish to con- 
struct an operator  stable probabili ty measure hav- 
ing G as its symmetry group. Of  course, this will not 
be possible in general if the operator  stable measure 
is required to be supported in R a. As in the first part  
of this paper  we let G act diagonally on R d2 and we 
will continue to denote this imbedded group by G. 
We now construct an operator  stable measure/x on 
R a2 for which T ~ ( p )  = TG. 

We have seen that an operator  stable probabili ty 
measure with no Gaussian component  can be spe- 
cified by specifying an exponent and a mixing 
measure. We begin the construction of the mixing 
measure by letting Vl,...,VN be the vectors of 
the proof  of Lemma 2. After relabeling if necessary 
we let C1 . . . . .  Cj  be the distinct orbits among 
Gvl . . . . .  GvN. Define the mixing measure K on the 
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Borel subsets of  the unit sphere in ~a2 by the for- 
mula 

K ( A ) =  i:1 ~ fG (Ini)~vt(g/~)d'~(g)" 

Here the no ta t ion  is as in the p roof  of  Theorem 1. 
We use K to construct  a full opera tor  stable prob-  
ability measure # on •d2 with exponent  B = I. We 
now claim that  TS~(p) = TG. To prove the claim, it 
suffices to show that  G is bo th  open and closed in 
5e(#). This is sufficient because if G is both  open 
and closed, then G must  contain  the connected 
componen t  of  the identity in S~(#) since G is 
a group.  It  is the connected componen t  of  the 
identity which determines the tangent  space. Since 
G is a compac t  g roup  it is closed in 5a(/~). It remains 
to show that  G is open in 6a(/~). It would be easy to 
establish this if it were known  that  5e(p) = 6e(K)  
(in fact, this would imply 6 a ( # ) =  G). But it is 
not  known  that  ~(/~) consists only of  o r thogona l  
operators,  so the elements of  6a(#) need not  leave 
the set S invariant. Thus there is no immediate  
connect ion between elements of  6e(#) and symmet-  
ries of  K. 

To proceed, first note that  since/~ is full, 5~(/z) is 
compac t  so there is a positive definite opera tor  
W so that  W S e ( # ) W  -x  = 5a(W#) is contained in 
the o r thogona l  g roup  (see Billingsley, 1966). 

We claim that  if g ~ G then W9 = g W. To see this, 
we observe that  since W o W -  ~ is o r thogona l  we 
have ( W g W - l x ,  W g W - X y )  = ( x ,  y )  for all x and 
y. Hence ( g x ,  W Z g y )  = ( x ,  W Z y )  for all x and y. 
Similarly, since g is o r thogona l  we have 
( g x ,  g W 2 y ) =  ( x ,  W Z y )  for all x and y. By equat-  
ing these two expressions and using the fact that  
x and y are arbi t rary we obtain g I'VZ = W2g • Since 
W is positive-definite we have g W = W9, as de- 
sired. 

We now pause to unders tand the structure of the 
mixing measure of  Wp. Since W commutes  with 
each element of  G we see that  WCi = G Wvi. If we 
denote C~ = (1/1[ Wv~ll)WG, then the set C~ is the 
G orbit  of  Wvdll Wv~ll so all elements of  C~ lie on 
the surface of  the unit sphere. It  is not  difficult to 
see that  the mixing measure K '  of  Wp has as its 

t 
support  U[=a  c i .  Define 

6 : inf{ IIx - yll: x ~ C ~ ,  y E C ) ,  i ~ J ,  j E J ,  i ~ j } .  

Note  that  6 > 0  since the C; are disjoint and 
compact .  

Suppose gEG.  We claim that  if hESS(#) with 
I[ Wh W -  x _ g 11 < 6 then h ~ G. This will show G is 
open. N o w  W h W - x  is a symmetry  of  W/~ and is 
or thogonal .  Hence it is a symmetry  of  K' .  Thus by 
Lemma 1 W h W  -1 permutes the C;. Since gC~ = C; 
and II W h W  -1 - 011 < ~i we see that  

WhW-1C~ c7. C~ : aW v i / l l  Wv~ll. 

F r o m  the definition of  C~ this means hvg~Gvi for 
l~<i-%<J, and hence for all l ~ < i ~ < N .  As in the 
p roof  of Lemma 2 we now see that  h~G.  This 
shows that  G is open in 6e(p) and completes the 
construction.  

Acknowledgements 

The authors  would like to thank  Professor James 
F. Davis at Indiana  University for helpful dis- 
cussions, and for bringing the paper  of  Bedford and 
D a d o k  to our  attention. 

References 

Bedford, E. and J. Dadok (1987), Bounded domains with pre- 
scribed group of automorphisms, Comment. Math. Helvetici 
62, 561-572. 

Billingsley, P. (1966), Convergence of types in k-space, Z. 
Wahrsch. verw. Geb. 5, 175-179. 

Holmes, J., W. Hudson and J.D. Mason (1982), Operator stable 
laws: multiple exponents and elliptical symmetry, Ann. Prob- 
ab. 10, 602-612. 

Hudson, W., Z. Jurek and J. Veeh (1986), The symmetry group 
and exponents of operator stable probability measures, Ann. 
Probab. 14, 1014-1023. 

Meerschaert, M. and J. Veeh (1993), The structure of the expo- 
nents and symmetries of an operator stable law, Journal of 
Theoretical Probability 6, 713-726. 

Price, J. (1977), Lie Groups and Compact Groups, London Math. 
Society Lecture Notes, Vol. 25 (Cambridge University Press, 
London). 

Sharpe, M. (1969), Operator stable probability distributions on 
vector groups, Trans. Amer. Math. Soc. 136, 51-65. 


