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Abstract

The ‘order-two’ or ‘average’ density of a measure p at a point x is defined as
limg_, (1/T) (¢ u(B(x, e™*))e™ds for appropriate «. We show that, with probability one, the
order-two density of the natural measure u on the image set or zero set of a wide class of stable
processes exists and takes the same value almost everywhere in the support of 1. We calculate
this value in certain cases.
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1. Introduction

Bedford and Fisher (1992) introduced the concept of the ‘order-two’ or ‘average’
density of fractal sets and measures, which give a finer local description than that
provided by Hausdorff dimension alone. Unlike the classical densities, the order-two
densities have the advantage that they exist for a wide variety of sets. Such sets include
many Cantor sets, self-similar and quasi-self-similar sets, mixing repellers, see Bedford
and Fisher (1992), Falconer (1992), Patzschke and Zihle (1993), and the zero set of
Brownian motion, see Bedford and Fisher (1992). Order-two densities also contain
information relating to the geometric regularity of sets, see Falconer and Springer
(1994). Parallel ideas have been used, Falconer (1992), Patzschke and Zihle (1992,
1993) to study the local behaviour of certain fractal functions and sample paths of
self-affine stochastic processes.

In this paper we study the existence of order-two densities of the image and zero sets
of the sample paths of a wide class of stable processes. We prove the existence of
a constant 5 (which depends on the process) such that, with probability one, the
order-two density of the natural measure on the image or zero set exists and equals
1 almost everywhere on the set.
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Section 2 contains the basic definitions and properties of order-two densities and
stable processes that we shall require. In Section 3, we obtain some geometrical
properties of stable processes and then we extend the method of Bedford and Fisher
(1992) to prove the existence of order-two densities of transient stable processes in R4
By using the relationship between the zero set of a stable process of index 2 > 1 and
the image of a stable subordinator of index (1 — 1/x) we deduce the existence of
order-two densities of the zero set of stable processes of index = > | in R'. We end
with a discussion of the actual value of the order-two densities of these sets.

2. Preliminaries

First we recall the definition of order-two density, due to Bedford and Fisher (1992).
Let u be a locally finite Borel measure on R? and 0 < % < oc . The a-dimensional upper
and lower order-two or average densities of u at x € R? are, respectively,

_ 1 T X. -8
D, (u, x) = limsup — [ Mds,
Tox Jo c -
1 T X, -5
D,(u, x) = liminf — J H(B(‘ii:))ds,
T—» Q € ’

where B(x, r) is the closed ball of centre x and radius r. If D,(u, x) = D> (4, x), the
common value is called the a-dimensional order-two or average density of y at x and is
denoted by D,(u. x). In this case, u is said to be order-rwo regular at x. If y is the
restriction of a Hausdorflf measure H? to a set E, we refer to the order-two density of
the set E and write D,(E, x) = D,(u, x). There is at most one value of « for which the
order-two density exists and is positive and finite, namely the Hausdorff dimension of
E or i, and this is the value of « for which order-two densities are usually of interest.

If d = 1, the right (left) order-two density D% (u, x) (respectively, Dh{p, x)) of pat x € R
is defined as above by replacing p(B(x, e "%))/e ™ * by u(x, x + ¢ *})/e* (respectively,
u((x —e ™% x))/e™ ™), and in this case, the order-two density is also referred to as the
symmetric order-two density.

A stable process of index x (0 < < 2) in R? is a stochastic process X (1) (t € R),
defined on a probability space (€2, o7, P), with X(0) = 0, with stationary and indepen-
dent increments and with characteristic function given by

E(expi(z, X(1) — X(s))) = exp( — (t — s}y (2)) (Vi >35), (2.1)
where z € RY, where (-,-> denotes the usual inner product in R% and with
Y(z) = 2| z]*[1 — thsgn(z) W(x, z)], (2.2)

where £ and h are real constants satisfying |h| < | and 2 > 0, and
Wia, z) = tanltz—“ if o #1,

Wiz = — 2lo;;g|z\‘
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If h = 0 then X (f) is called a symmetric stable process. If x = 2 and 2 = 1, then X (1)
(t € R) is the usual d-dimensional Brownian motion. If d = 1,0 < 2 < 1 and h = 1, the
corresponding real-valued process X(r)(r € R) has increasing sample paths and is
called a stable subordinator of index . In this case, the Laplace transform of the
distribution of X(t}(t € R, ) is given by

E(exp( — sX(1))) = exp( — bts*), (2.3)

where b is a positive constant.
Let X, () =X()(teR,),and X _(t) = — X(— t)(t € R, ); then the two processes
X, and X _ are independent and

where “X = y* means that the two stochastic processes X and Y have the same
finite dimensional distributions. Hence we need only to consider the process X (1)
(teR,)

We assume throughout this paper that X (1) (t € R, ) satisfies Hunt’s hypothesis (A),
see Hunt (1957). In particular, this requires the sample paths to be right continuous
and have left limits everywhere, and X(1) (re R,) to have the strong Markov
property.

It follows from (2.1) and (2.2) that the stable process of index « # 1 {(orx = 1, h = 0)
satisfies the following scaling property

d

Ya >0, X(a)=a"X() (2.4

Stochastic processes satisfying (2.4) are called 1/x self-similar processes. There has been
considerable interest in the sample path properties of self-similar processes, see Kono
(1991) and references therein.

In studying the sample path properties of transient stable processes, Taylor (1967)
distinguished stable processes of types 4 and B. Let p(r, x) be the density function of
X(1): a stable process X () of index x in R? is said to be of type A if p(1,0) > 0.
Otherwise, it is said to be of rype B. Note that if 2 > 1, all stable processes of index
o are of type A and all stable subordinators are of type B. The following theorem is
from Boylan (1964).

Theorem A. Suppose X(1)(t € Ry ) is a nondegenerate stable process in R of index
ax<d,x#1 and

1
s"loglog; if X(t) 1s of type A4,
¢(S} = ‘ 1 1-a
5 (loglog :) il X(t)is of type B.
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Then there is a finite constant ¢ > 0, depending only on parameters of the process, such
that with probability one,

H*(X(E)) = ¢m(E) (2.5)

Sor all Borel sets E = R, where X (E) = { X (t). t € E}, where m is Lebesgue measure and
where H? is ¢-Hausdorff measure.

In the case of stable subordinators, Hawkes (1973) calculated the constant ¢ ex-
plicitly: let 7(¢)(t € R, ) be a stable subordinator of index o with Laplace transform
given by (2.3) normalised so that b = 1, then with probability one,

H*(1(E)) = 2*(1 — a)' ~*m(E) (2.6)

for all Borel sets E < R, .
It is easy to verify that for the functions ¢ defined above, the Hausdorff measure H?
has the following scaling property: for any a > 0 and any H?-measurable set E,

H®(E) = ¢ H*(E). (2.7)

(See Falconer (1990) or Taylor (1986) for the definition and properties of Hausdorff
measures.)

Let Im X = X(( —oc, + o)) be the image of the process X (t). Denote the restric-
tion of H? to Im X by y; then p is a o-finite Borel measure on R% The order-two
density D,(u, x) is also called the order-two density of Im X at x and is denoted by
D,(Im X, x).

To prove the existence of the order-two density of Im X, we consider stable
processes in the following setting. Let

D? = {f:R, — RY|fis right continuous and has left limits everywhere, and
J(0) =0}

with the Skorohod metric

d(f.9)=

n

27"min (1, d,(f, 9))-

1

I =

Here for any T > 0, we define d;(f, g) to be the infimum of all those values of §
for which there exist grids O=¢y<t,<--<t, with t,>7, and
0=uo<u; <--<uy, with u, > T, such that |t; — u;] < 8,i=0,1,....k and

[f(ty—gw) < ift;<t<tipq,and u; <u <y,

fori=0,1,....k— 1.

It is shown in Pollard (1984) that under the Skorohod metric, D? is a separable
space and the Borel o-algebra 2¢ coincides with the g-algebra generated by cylinder
sets. Let Py be the distribution of the stable process X(t)(t € R,) and 2% be the
Py-completion of 2. From now on, we also refer to the triple (D¢, 2%, Py) as a stable
process in R,
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Now let C be the space of all continuous real valued functions on R, with value O at
time 0, i.e.

C = {g: R, - Rlg is continuous and ¢(0) =

with the topology 7 of uniform convergence on compact subsets of R, . Let € be the
Borel o-algebra generated by 7. Specializing from the Skorohod metric we see that

7 admits a metric, with respect to which C is a complete separable metric space (see
also Fisher (1987)) and 4 coincides with the g-algebra generated by the cylinder sets in
C (for a proof see Lemma 72 of Freedman (1983)).

We end this section by recalling from Matheron (1975) some properties of the
topology 7} on the family & of all closed subsets in R?. The topology 7} is generated
by the two families # (K € #") and Z,(G € 9), where " and ¥ are the families of
compact subsets and open subsets in R respectively, and

FX=IFeZ FnK=¢)
/G—[FE FﬁG#(]ﬁl

We denote by o, the g-algebra generated by 7. Note that ¢, is generated by the
single class #X(K € "), as well as by the single class %; (G € %).

Let {F,} be a sequence in & ; by definition, lim inf F, and lim sup F, are, respectively,
the intersection and the union of the limits of all the subsequences of {F,} that are
convergent in .

Let 2 be a topological space, and i a mapping from ): into #. Then y is called
upper semicontinuous (u.s.c.) if, for any K € &, the set 4 ' (#¥) is open in X, and ¢ is
called lower semicontinuous (Ls.c.) if, for any G € 4, the set ¥~ '(%) is open in .
Clearly, if y is us.c. or Ls.c., then  is measurable with respect to the Borel g-algebra
in X,

We need the following lemma from Matheron (1975).

Lemma 1. Let X be a separable space and \y a mapping from X into &. Then

a) ¥ is us.c. if and only if Yy(w) = limsup ¥ (w,) for any w € X and any sequence {w,}
converging to w in X.

by ¢ is Ls.c. if and only if y(w) < lim inf y(w,) for any w € X and any sequence |(w,}
converging to w in 2.

3. Main Results

In this section, we prove the existence of order-two densities of the image and zero
set of stable processes.
For a > 0, define the map 4,:D*— D¢ by

Au / t) = f(ar
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and define the scaling flow t, on D by t, = A.,, (s € R). Clearly 7,1, = 7,+5. and the
scaling property (2.4) of the stable process implies that 7,(s € R) is measure preserving,
that is, 1, is a flow. The following lemma is an immediate consequence of Proposition
4 in Patzschke and Zahle (1993).

Lemma 2. t(s € R) is an ergodic flow on (D%, %%, Py).

We require the following proposition which may be of independent interest.
Proposition 1. Let X (1) (t € R, ) be a stable process of index x in R withx # 1 or 2 = 1,
h = 0. Then with probability one,

m(t >0:|X(t)|=r)=0 forallr>0.
In particular, this implies that with probability 1 m(t > 0: X(t) € B(0, r)) is continuous
forr >0.

To prove Proposition 1, we need the following lemma.

Lemma 3. Let 0 < < 1 and M > 0 be given and let B = R* be any ball of radius M.
Then there exists a constant ¢ > 0, depending only on d, M and 5, such that for all
v,z € B,

J dx < ¢
pllz = x| —1ly = x| 7 [z =yl

Proof. Let x,y,z e B. Choose as origin the mid-point of the line segment yz. Let
x have cylindrical coordinates (r, h) with respect to a co-ordinate system with cylin-
drical axis as the line through y and z. Then

Y= xP = =y 2
z = xP = 4+ y — 2]

Hence

lz — x|~ |y — x| _ [hllz =yl

3.1
lz—x|+|y—x] — 2M -1

lz = x[ =1y —x[[ =

Let B, be the ball centre the mid-point of yz and radius 2M (note that B < B, ), then
by (3.1)

J dx <J dx
sllz = x[ =1y =x[I" 7 Jp 1z — x| — |y — x||”

dx
<M —
(M) Ll |z — ylP|h?

(where x = (r, h))

2M)P Mg}
gu_ﬁ( [\/])d‘ljv _d_%
|z — vl —am |Al

¢ —

lz — v
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Proof of Proposition 1. It is sufficient to prove that for alle >0, N >0 and M >0,
with probability one,

mitele, N} |X(t)]=r)=0 forall0<r <M. (3.2)
Define a random Radon measure u on [0, oc) by

f fluydu(u J SUX @D 0 n(| X (0)])dt

for any f'e C[0, o) then spt(u) = [0, M] and for 0 < ff < |

d du(v
L) = f J —’i(“)—“lf,”

lu—v
0. ¢ X (1) Lo, an (| X (s)])
deds
Jj XWX )] ‘
:JJ 1[OMJ |X |)1[0.M1(|X(3')|) id{ds.
e Je X)) — X X&) —1X(s) — X(&) + X ()|’

Since for any t > &, X(r) — X(¢) and X (¢) are independent, we have

E(ly(0) = JEuﬂ 11X () = %) ple, ) dx

N pN vy
:J J E[ pie. x) ~dxdrds
e de DX = X (o) + x| — [ X () — X (&) + x]|"

where p(e, x) is the density‘ function of X (¢) which is bounded and continuous, and
where the inner integral is over those x such that |X(f) — X(¢) + x| <M and
| X(s) — X(e) + x| < M. Since this inner domain of integration is contained in a ball
B of radius 2M with X(r) — X(¢) e B and X(s) — X(¢)€ B, it follows from Lemma

3 that
E(Iz(1) < J J <|XI)- S)|ﬁ>dtds<—l—ac

if0 < f# < 2. Thus almost surely (¢} < + oc and in particular i has no atoms, which
implies (3.2). O

It is well known that if 2 <d, then X(r) is a.s. transient in the sense that
{X()| > + o ast— + oc. Combining this with Theorem A and Proposition 1, we
deduce the following proposition.

Proposition 2. If o < d, there is a 1, invariant set DY (which we may take to be Borel)
contained in D such that Py(D4) = 1, and for any fe DY,| f(1)| > » ast— + oc and
H?(f(ty: | fin] = r) =0 for all r > 0.
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We define a map H:D{ - C by
H:f— H®(Im [ B(0,")),

where m is the closure of Imf = f([0, oc)). Note that, for every fe D4, Ef’diﬂ"ers
from Im fonly in the countable set of left limits f(r — 0) at points of discontinuity. The

continuity of the function H"’(ﬁfﬁ B(0,-)) follows from Proposition 2.
Proposition 3. H is (2%, €) measurable.

Proof. This may be proved in the four steps listed below. We omit the routine details.

(i) The map from D¢ into & defined by f— Im f in Ls.c. and hence is (9%.0;)
measurable. This may be shown from the definition of the Skorohod metric.

(1)) For each fixed t > 0, the map F - F n B(0,t) from & into itself is u.s.c. In
particular, it is g, measurable. This follows easily from Lemma 1(a).

(iii) For any positive Borel measure u on R, the map F — u(F) from & into R, is
(0,7, B(R")) measurable, where #(R*) is the Borel g-algebra in R,

To see this define a two-valued map 1:R*x % — {0, 1} by

Ax, F) = 1p(x);

then it is easy to verify that 4 is measurable with respect to #(R?) x ;. Hence by
Fubini’s theorem, the map F— u(F) = | A(x, F)u(dx) is 6, measurable.

(iv) The map H is (2%, %) measurable.

It follows from (i)-(iii) that for each ¢ > 0, the map H, from D{ into R, defined by

H,:f — H®(m f B(0, t))

is (2%, #(R")) measurable, which implies that for any finite cylinder set B = C, we
have H™'(B) e 9%. This proves the (2%, ¥) measurability of H. [J

Let vy be the Borel measure on C which is the image of Py under the map H and let
%y denote the completion of 4. Then by the scaling property (2.7) of the Hausdorff
measure H?, it follows that (C, €y, vy, 1,) is a flow, where 7, = Zﬂps (s € R) and, for
a >0, we define 4,:C — C by

1/2
G, N0 =" ("a 9,

Recall from Fisher (1987) the definition of homeomorphism of flows. Let (X, &, p),
(Y. %, v) be measure spaces with probability measures y, v and complete g-algebras Z,
%. By a homeomorphism y: X — Y we mean a function y: X\N — Y with N a null set,
such that y is (', %) measurable and measure preserving. A homeomorphism of flows
(X,15) and (Y, 7,) is a homeomorphism y from X\N to Y such that

Ty = v1,, M ae.

such that the null set can be taken to be the same for all s e R.
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Proposition 4. H is a homeomorphism of flows. In particular, %, is ergodic.

Proof. By the definition of vj, we know that the map H is measure preserving. It
remains to verify that for any se R,
Hoty=1%-H
on D%, or equivalently, for any a > 0,
Hed,=A4,.H (3.3)
on D{. Now given fe D4 and ¢ > 0, it follows from (2.7) that
(Ho 4,f)(0) = H*(Im 4,/ B(0, 1)
= H%(a~"*Im fr B(0, a'"*1))
=a '"H?(Imf B (0, a'’*t))
= (44 Hf ) (1),

proving (3.3). O
Now we are in a position to prove the main result of this section.

Theorem 1. Let X (1) (t € R) be a stable process of index x in R%, o < d, « # 1. Then there
exists a constant n > 0, depending only on the parameters of the process, such that with
probability one, the order-two density D,(Im X, x) exists and equals y at H®-almost all
x elm X where ¢ is defined in Theorem A. In fact 5y = 2EE(T(1)), where ¢ is the almost
sure value of H*(X ([0, 1])) and T(1) is the sojourn time of X (t)(t € R, ) in B(0, 1).

Proof. We first consider the point x = 0 and show that there is a finite constant y > 0
such that for Py-almost all fe D¢

D,(Im £, 0) = g (3.4)

Define a map F:C — R by

F(g) = g(1);

then F € L'(C, v;) and by Theorem A

j Flghvu(dg) = f H* (Im f ~ B(O, 1)) Py (d/)

=CE(T(1)) < + oo,

where T(1) = |} 1p0.1,(X (s))ds is the sojourn time of X (¢) (t € R, ) in the closed unit
ball B(0, 1) and ¢ is the constant of (2.5). The finiteness of E(7(1)) for types 4 and
B stable processes follows from Lemma 5 and Lemma 6 in Taylor (1967). Then
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Proposition 4 and the Birkhoff ergodic theorem for flows imply that for v;; almost all
geC,

] T
lim ?J F(t,g9)ds = CE(T(1)).

0

T—x

Hence for Py almost all fe D

lim JT Hm/0 BO.c Dy, epray

Tox 0 €
Letting

n=2¢E(T(1)) (3.5)
gives (3.4).

Now let D{ be the subset of DY with Py(D%) = 1 such that (3.4) holds for every
feD§. We may further assume D% is a Borel set. For any fixed teR,, let
X, (s) = X(s + 1) — X(1), then X,(s)(s€ R, )is also a stable process in R of index % < d
with X,(0) = 0. By the above, we have

D5 (X,[0, + ), 0) ='21 as. (3.6)

For any T > 0, let
Ar={(t. X)e [0, TTx D X,(-)e D4 .

Since for any s € R, the map f: R, x D! - R defined by
(t, X)— X(s)

is right continuous in t, we have that § is Z(R) x 2% measurable. Hence the map
(t, X) — X,(") is also B(R) x 2% measurable, implying that A7 is Z(R) x 2% measur-
able. By (3.6), for each fixed t €[0, 7], the set {X: (5, X) € Ay) has Py measure 1.
Therefore by Fubini’s Theorem, we deduce that, for Py almost all X € D¢,

"

Dy(X,[0, + ), 0) = 3
for m-almost all r € R, . Returning to the probability space (2, =7, P), we have with
probability one

Dy(X(t, +oc), X(1)) = g (3.7)

Dy(X(— oo, 1], X(1)) =g (3.8)

for m-almost all t € R. It follows from Theorem 3 in Taylor (1967) that with probabil-
ity one, for all 1 e R,

<20—d<o if X is of type A and 2x —d >0,

dim(X(—cc, (] X[, + °°”{=0 otherwise
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Hence
H*(Im X n B(X(t),e %)= H*(X(— oc,t]n B(X(1),e™*))
+ H%(X[1, +oc)nB(X(t),e ).
By (3.7) and (3.8) we have, with probability one, that
D,(ImX, X(t))=1n
for m-almost all r € R. Again using (2.4), we conclude that with probability one,
D,(ImX, x)=pn

for H%-almost all xe ImX. O
The following result is clear from the proof of Theorem I.

Corollary 1. Let X (1) (t € R) be a stable subordinator of index x. Then there exists
a constant # > 0, depending only on the parameters of the process, such that with
probability one, the right, left and symmetric a-dimensional order-two densities exist
and equal to #/2, 5/2 and »n, respectively at H®-almost all xelImX, where
o(s) = s*(loglog 1/s)! 7=

Remarks 1. The conclusion of Theorem 1 is also true if X(r) is a symmetric Cauchy
process (x = 1, h = 0) in R? with d > 1, the same proof working using the results in
Taylor (1967).

2. In the cases of symmetric Cauchy process in R'(i.e. 2 = d = 1, h = 0) or planar
Brownian motion (x = d = 2, h = 0), the exact Hausdorff measure functions for the
image sets were found in Ray (1963), Taylor (1964, 1967). In these cases the sojourn
time 7(1) cannot be defined as above so the method of Theorem 1 is not applicable. It
would be interesting to study the existence of order-two densities of the image sets of
these processes.

3. It seems difficult to calculate the value of the constant x in Theorem 1 explicitly.
In some special cases, we can relate  to other constants. If X(¢) (r € R) is a Brownian
motion in R?(d > 3), Ciesielski and Taylor (1962) obtained the distribution function of
the sojourn time. Using this we can express 7 as

- l//d.r
2
d.r

=
Il
[
JAN
Hagh
=

r=1

where {p,,j (r=1,2,...) are the positive zeros of the Bessel function J,(z) with
u=d/2 —2 and
_ I P’

2!1_1 1—(,“ - 1) J‘H—l(pd.r).

Now consider the case where X (1) is a stable subordinator of index (0 < x < 1)
with Laplace transform given by (2.3). Since X(-) < b'z(-), by (2.6). (2.7) and (3.5)

lpd.r




282 K.J. Falconer, Y.M. Xiao ! Stochastic Processes and their Applications 35 (1995, 271- 283

we have
n = 2bo*(1 — ) “* E(T(1)), (3.9)

where 7T(1) is the sojourn time in B(0, 1) of (t) (t€ R,). By the formula for the
inversion of a Laplace transform, the density function of t(r) is

plt, x) = £~ (exp( — t5%)

1 a+ix
=35 exp( — 18" + sx)ds
T Ja—ix

for any a > 0, where the integration is along the straight line Res = a. If « = 5, then

1 .
Pl x) = —— ¢ /4%,
2\/7?)(3/2

hence

E(T(1)) = Ef Lyco. n(x(6))dt

0
* 12 1

= f dt[ ¢ V4 dx
0 o 2./mx¥?

1 L x
= /_J dIJ e " du
\/T[ o t

2

/n

N
Thus using (3.9) we get that for stable subordinators of index » = 3 and Laplace
transform (2.3)

n=-—. (3.10)

N
Now let X (t)(tr € R) be a stable process in R! of index % > 1; we consider
Z=1{teR; X(1)=0],

the zero set of X (1)(t € R).

[t is known that the local time L(r, x) of a stable process X (¢) (t € R, ) in R' of index
% > | exists and is jointly continuous with probability 1 (Boylan (1964)). Denote the
local time at x = 0 by L(z). Stone (1963) proved that

Y()=inf{u: L(uy >t} t>0

is a stable subordinator of index ff = 1 — 1/« with the Laplace transform of Y{(t) given
by (2.3), where

- 1/x7]-1 EE
h=o¢(sinna"))v""|:Re<l +ihtan<?>> ] ) (3.11)
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Further, he showed that the zero set Z of X (¢) (re R, ) is almost surely equal to

Im Y. Thus the exact Hausdorff measure function for Z obtained by Taylor and
Wendel (1966) is a special case of Theorem A, and we have the following consequence
of Corollary 1.

Corollary 2. Let X(t) (t € R) be a stable process in R! of index « > 1. Then there exists
a constant n > 0, depending only on parameters of the process, such that with probability
one, the right, left and symmetric (1 — 1/x)-dimensional order-two densities of Z exist
and equal to n/2, n/2 and 1w, respectively, at H%-almost all xeZ, where
o(s) = s "1 (loglog 1/s)!/*.

By (3.10) and (3.11), we have that if x =2, 2 =} then X(¢) (t € R) is Brownian
motion in R',so # = 2 \/’% and Corollary 2 agrees with Theorem 5.5 in Bedford and
Fisher (1992).
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