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Abstract

The primary goal of this paper is to study the range of the random field X(t) =
PN

j=1 Xj(tj),

where X1, . . . , XN are independent Lévy processes in Rd.
To cite a typical result of this paper, let us suppose that Ψi denotes the Lévy exponent of Xi

for each i = 1, . . . , N . Then, under certain mild conditions, we show that a necessary and sufficient
condition for X(RN

+ ) to have positive d-dimensional Lebesgue measure is the integrability of the
function Rd 3 ξ 7→QN

j=1 Re {1+Ψj(ξ)}−1. This extends a celebrated result of (Kesten 1969; Bre-
tagnolle 1971) in the one-parameter setting. Furthermore, we show that the existence of square
integrable local times is yet another equivalent condition for the mentioned integrability criterion.
This extends a theorem of Hawkes (1986) to the present random fields setting, and completes the
analysis of local times for additive Lévy processes initiated in the companion paper Khoshnevisan,
Xiao and Zhong (2002).
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1 Introduction

An N -parameter d-dimensional random field X = {X(t); t ∈ RN
+} is an additive Lévy process if X has

the following pathwise decomposition:

X(t) = X1(t1) + · · ·+ XN (tN ), ∀t ∈ RN
+ ,

where X1, · · · , XN are independent classical Lévy processes on Rd. Using tensor notation, we will often
write X = X1⊕· · ·⊕XN for brevity, and will always assume that Xj(0) = 0 for all j = 1, . . . , N . Finally,
if Ψ1, . . . , ΨN denote the Lévy exponents of X1, . . . , XN , respectively, we define the Lévy exponent of X
to be Ψ = (Ψ1, . . . , ΨN ). See the companion paper Khoshnevisan, Xiao and Zhong (2002) for more
detailed historical information, as well as a number of collected facts about additive Lévy processes.

The following question is the starting point of our investigation:

“When can the range of X have positive Lebesgue measure?′′ (1.1)

In the one-parameter setting, i.e., when N = 1, this question has a long history as well as the following
remarkable answer, discovered in (Bretagnolle 1971; Kesten 1969): If λd denotes Lebesgue measure
in Rd,

E{λd(X(R+))} > 0 ⇐⇒
∫

Rd

Re
(

1
1 + Ψ(ξ)

)
dξ < +∞, (1.2)

where Ψ denotes the Lévy exponent of X, and Re z denotes the real part of z ∈ C. In the sequel, the
imaginary part and the conjugate of z will be denoted by Im z and z, respectively.

The primary objective of this paper is to answer Question (1.1) for the range of an additive Lévy
process X = {X(t); t ∈ RN

+}. It is quite standard to show that
∏N

j=1 Re {1 + Ψj}−1 ∈ L1(Rd) is a
sufficient condition for E{λd(X(RN

+ ))} > 0. The converse is much more difficult to prove, and we have
succeeded in doing so as long as there exists a positive constant ϑ > 0 such that

Re
( N∏

j=1

1
1 + Ψj(ξ)

)
≥ ϑ

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
; (1.3)

see Theorem 1.1 below. We note that when N = 1, Condition (1.3) holds vacuously with ϑ = 1.
Among other things, we will show in this paper that when (1.3) holds, the proper setting for the

analysis of question (1.1) is potential theory and its various connections to the random field X, as well as
energy that we will describe below. Various aspects of the potential theory of multiparameter processes
have been treated in Evans (1987a, b), Fitzsimmons and Salisbury (1989), Hirsch (1995), Hirsch
and Song (1995a, 1995b), and Khoshnevisan and Xiao (2002a).

As we mentioned earlier, we propose to derive the following multiparameter version of (1.2). It will
be a consequence of some of the later results of this article.

Theorem 1.1 Let X be an additive Lévy process in Rd with Lévy exponent (Ψ1, . . . , ΨN ), and suppose
that Condition (1.3) holds. Then,

E{λd(X(RN
+ ))} > 0 ⇐⇒

∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ < +∞.
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Remark 1.2 We record the fact that Condition (1.3) is only needed for proving the direction “=⇒.”
We also mention the fact that under the conditions of Proposition 6.5 below, λd(X(RN

+ )) is almost
surely equal to +∞ (respectively, 0), if

∫
Rd

∏N
j=1 Re {1 + Ψj(ξ)}−1 dξ is finite (respectively, infinite). ¤

Theorem 1.1 has the following equivalent formulation which addresses existence questions for the
local times of the companion paper Khoshnevisan, Xiao and Zhong (2002). When N = 1, it is a
well known theorem of Hawkes (1986).

Theorem 1.3 Let X be an additive Lévy process in Rd that satisfies Condition (1.3). Then X has
square integrable local times if and only if

∏N
j=1 Re {1 + Ψj}−1 is integrable in Rd, where (Ψ1, . . . , ΨN )

is the Lévy exponent of X.

We have already mentioned that Theorem 1.3 is an equivalent probabilistic interpretation of Theorem
1.1. But, in fact, our formulation of Theorem 1.3 lies at the heart of our proof of Theorem 1.1 and its
further refinements; cf. Theorem 2.1 below.

Remark 1.4 When N = 1, Condition (1.3) always holds with ϑ = 1. Hence, our theorems extend
those of Bretagnolle (1971), Kesten (1969) and Hawkes (1986). ¤

In general, any additive Lévy process X with Lévy exponent Ψ = (Ψ1, . . . , ΨN ) induces an energy
form EΨ that can be described as follows: For all finite measures µ on Rd, and/or all integrable functions
µ : Rd → R,

EΨ(µ) = (2π)−d

∫

Rd

|µ̂(ξ)|2
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ, (1.4)

where ̂ denotes the Fourier transform normalized as f̂(ξ) =
∫
Rd eiξ·xf(x) dx [f ∈ L1(Rd)].

Frequently, we may refer to “the energy” of a measure (or function) in the context of an additive
Lévy process X without explicitly mentioning its dependence on the Lévy exponent of X. This makes
for a simpler presentation and should not cause ambiguities.

Having introduced energies, we can present a key result of this paper. When N = 1, it can be found
in Bertoin (1996, p. 60).

Theorem 1.5 Consider any d-dimensional additive Lévy process X, whose Lévy exponent Ψ satisfies
(1.3). Then, given any nonrandom compact set F ⊂ Rd, E{λd(X(RN

+ ) ⊕ F )} > 0 if and only if F
carries a finite measure of finite energy.

We have adopted the notation that for all sets A and B, A ⊕ B = {a + b; a ∈ A, b ∈ B}. This
should not be confused with our tensor notation for X = X1 ⊕ · · · ⊕XN .

Note, in particular, that if we choose F to be a singleton in Theorem 1.5, we immediately obtain
Theorem 1.1.

Next, we apply Theorem 1.5 to compute the Hausdorff dimension of the range of an arbitrary
additive Lévy process.

Theorem 1.6 Given an additive Lévy process X in Rd with Lévy exponent (Ψ1, . . . , ΨN ) that satisfies
(1.3),

dim
(
X(RN

+ )
)

= d− η, P-a.s.,
where

η = sup
{

α > 0 :
∫

ξ∈Rd: ‖ξ‖>1

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ

‖ξ‖α
= +∞

}
.

Here, dim(•) denotes Hausdorff dimension, sup∅ = 0, and ‖ • ‖ denotes the Euclidean `2-norm.
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Remark 1.7 It can be checked directly that

η = inf
{

α > 0 :
∫

ξ∈Rd: ‖ξ‖>1

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ

‖ξ‖α
< +∞

}
.

Furthermore, one always has η ≤ d. ¤

When N = 1, i.e., when X is an ordinary Lévy process in Rd, Pruitt (1969) has shown that the
Hausdorff dimension of the range of X is

γ = sup
{

α ≥ 0 : lim sup
r→0

r−α

∫ 1

0

P {|X(t)| ≤ r} dt < +∞
}

.

In general, this computation is not satisfying, since the above lim sup is not easy to evaluate. Pruitt
(1969, Theorem 5) addresses this issue by verifying the following estimate for γ in terms of the Lévy
exponent Ψ of X:

γ ≥ sup
{

α < d :
∫

‖ξ‖≥1

1
|Ψ(ξ)|

dξ

‖ξ‖d−α
< +∞

}
.

Moreover, it is shown there that if, in addition, Re Ψ(ξ) ≥ 2 log ‖ξ‖ (for all ‖ξ‖ large), then,

γ = sup
{

α < d :
∫

Rd

Re
(

1− e−Ψ(ξ)

Ψ(ξ)

)
dξ

‖ξ‖d−α
< +∞

}
.

See Fristedt (1974, 377–378) for further discussions on Pruitt’s work in this area.
Our Theorem 1.6 readily implies the following representation for the index γ that holds under no

restrictions. To the best of our knowledge, it is new.

Corollary 1.8 If X denotes a Lévy process in Rd with Lévy exponent Ψ,

γ = sup
{

α < d :
∫

ξ∈Rd: ‖ξ‖>1

Re
(

1
1 + Ψ(ξ)

)
dξ

‖ξ‖d−α
< +∞

}
.

Remark 1.9 To paraphrase Kesten (1969, p.7), Eq. (1.2) has the somewhat unexpected consequence
that the range of a Lévy process {X(t); t ≥ 0} has a better chance of having positive Lebesgue’s measure
than the range of its symmetrization {X(t) − X ′(t); t ≥ 0}, where X ′ is an independent copy of X.
Thanks to Corollary 1.8, this qualitative statement has a quantitative version. Namely, with probability
one, dim(X(R+)) ≥ dim(Y (R+)), where Y (t) = X(t) − X ′(t) is the symmetrization of X. To prove
this, one need only note that Re {1 + Ψ}−1 ≤ {1 + ReΨ}−1, pointwise. ¤

Remark 1.10 The preceding Remark can be adapted to show that for any additive Lévy process
{X(t); t ∈ RN

+} that satisfies Eq. (1.3),

dim(X(RN
+ )) ≥ dim(Y (RN

+ )), a.s. (1.5)

Here, Y is the symmetrization of X defined by Y (t) = X(t)−X ′(t), where X ′ is an independent copy
of X. To verify the displayed inequality, we first note that Y also satisfies Eq. (1.3); cf. Example 1.16
below. Thus, our claim follows from Theorem 1.6 and the elementary pointwise inequality:

∏N
j=1 Re {1+

Ψj}−1 ≤ ∏N
j=1{1+ReΨj}−1. Furthermore, we note that the strict inequality in (1.5) may hold even for

N = 1; see Pruitt (1969, §4) for an example. This example was also noticed by Taylor (1973, p.401),
but there was a minor error in his statement on line -3: “smaller” should be “larger”. It is worthwhile
to point out that Hawkes (1974), by modifying the construction of Pruitt (1969), defined another Lévy
process X in R such that its range has positive 1-dimensional Lebesgue measure, while the Hausdorff
dimension of the range of its symmetrization is strictly smaller than 1. ¤
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Remark 1.11 There are several interesting “indices” for Lévy processes, one of which is the index γ
mentioned earlier. These indices arise when studying various properties of the sample paths of Lévy
processes, and include the upper index β, the lower indices β′ and β′′ (Blumenthal and Getoor
1961), and the index γ′ (Hendricks 1983). Rather than reintroducing these indices, we only mention
that

0 ≤ β′ ∧ d ≤ γ ≤ γ′ ≤ β ∧ d.

Pruitt and Taylor (1996) discuss some open problems regarding these indices. ¤

The following is an outline of the paper: In Section 2 (Theorem 2.1) we state a complete character-
ization of all compact sets E ⊂ RN

+ for which the stochastic image X(E) can have positive Lebesgue
measure. After establishing a number of preparatory lemmas about the semigroup and the resolvent of
an additive Lévy process in Section 3, we complete our proof of Theorem 2.1 in Section 4. Our proofs
of Theorems 1.1, 1.3, and 1.5 can be found in Section 5. In Section 6 we briefly discuss some of the
existing connections between the energy EΨ(µ)—introduced in (1.4)—and classical convolution-based
energy forms. In Section 7 we utilize additive Lévy processes to describe a probabilistic interpretation
of all sets of positive α-dimensional Bessel–Riesz capacity where α ≥ 0 is arbitrary. This probabilistic
representation is used in Section 8 where Theorem 1.6 derived. In a final Section 9, we have stated
some remaining open problems.

Since Condition (1.3) will play an important role in our arguments, we end this section with some
examples of additive Lévy processes that satisfy (1.3).

Example 1.12 Consider the following condition:

At least N − 1 of the Lévy processes X1, . . . , XN are symmetric. (1.6)

By using induction, we can see that the above implies that

Re
( N∏

j=1

1
1 + Ψj(ξ)

)
=

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
. (1.7)

In particular, Condition (1.6) implies (1.3) with ϑ = 1. [It may help to recall that an ordinary Lévy
process Y is symmetric if Y (1) and −Y (1) have the same distribution.] ¤

Example 1.13 Consider a two-parameter additive Lévy process R2
+ 3 t 7→ X1(t1) + X2(t2), where X1

and X2 are i.i.d. Lévy processes on Rd with exponent Ψ1 each. Then, it is possible to directly check
that Condition (1.3) holds if and only if

∃δ ∈ (0, 1) : ∀ξ ∈ Rd, |ImΨ1(ξ)| ≤ δ(1 + ReΨ1(ξ)). (1.8)

This is a kind of sector condition on Ψ1. ¤

Example 1.14 Suppose X1 and X2 are independent Lévy processes on Rd, and with Lévy exponents
Ψ1 and Ψ2, respectively. Then, one can checks directly that the two-parameter additive Lévy process
R2

+ 3 t 7→ X1(t1)−X2(t2) satisfies Condition (1.3) as long as

ImΨ1(ξ) · ImΨ2(ξ) ≥ 0, ∀ξ ∈ Rd.

In particular, if X1 and X2 are i.i.d., Condition (1.3) always holds for the process t 7→ X1(t1)−X2(t2).
This process arises in studying the self-intersections of Lévy processes. ¤
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Example 1.15 Suppose N > 2, and consider the N -parameter additive Lévy process X = X1 ⊕
· · · ⊕ XN , where X1, . . . , XN are i.i.d. Lévy processes on Rd, all with the same Lévy exponent Ψ1.
Writing in polar coordinates, we have {1 + Ψ1(ξ)}−1 = reiθ where r = |1 + Ψ1(ξ)|−1, and cos(θ) =
|1 + Ψ1(ξ)|−1{1 + ReΨ1(ξ)}. According to Taylor’s formula,

cos(Nθ) ≥ 1− 1
2
N2θ2 ≥ 1

2
≥ 1

2
(cos θ)N ,

as long as |θ| ≤ N−1. Consequently, |θ| ≤ N−1 implies Condition (1.3). Equivalently,

|ImΨ1(ξ)| ≤ tan( 1
N ) |1 + Re Ψ1(ξ)|, ∀ξ ∈ Rd

implies Condition (1.3). ¤

Example 1.16 (Symmetrization) Suppose X1, . . . , Xk; X̄1, . . . , X̄k are independent Lévy processes
on Rd with Lévy exponents Ψ1, . . . , Ψk; Ψ1, . . . , Ψk, respectively, where Ψ` denotes the complex conju-
gate of Ψ` (` = 1, . . . , k). Then, the additive Lévy processes V satisfies Condition (1.3) with ϑ = 1,
where

V = X1 ⊕ · · · ⊕Xk ⊕ X̄1 ⊕ · · · ⊕ X̄k.

If, in addition, Y is an arbitrary Rd-valued Lévy process that is independent of V , the additive Lévy
process V ⊕ Y also satisfies (1.3) with ϑ = 1. ¤

2 Images and Local Times

Throughout, we let X = X1⊕· · ·⊕XN denote a d-dimensional additive Lévy process with Lévy exponent
Ψ = (Ψ1, . . . , ΨN ). In this section we seek to find a general condition that guarantees that the image
X(E) of a compact set E ⊂ RN

+ can have positive Lebesgue measure. Under regularity conditions on
X, this was achieved in Khoshnevisan and Xiao (2002a,b). Our goal, here, is to find conditions for
the positivity of the image λd(X(E)) that hold quite generally.

Any finite measure µ on RN
+ defines an occupation measure Oµ on Rd via the prescription

Oµ(A) =
∫

RN
+

1lA(X(s)) µ(ds), A ∈ B(Rd), (2.1)

where 1lA(·) is the indicator function of A and B(Rd) is the Borel σ-field of Rd.
We take the distribution approach to measures. In particular, we tacitly identify the preceding

random measure with the random linear operator Oµ defined as

Oµ(f) =
∫

RN
+

f(X(s)) µ(ds).

The following result is the main inequality of this section, where P(E) is the collection of all probability
measures on E.

Theorem 2.1 For all compact sets E ⊂ RN
+ ,

[
(2π)−d inf

µ∈P(E)
E

{
‖Ôµ‖2

L2(Rd)

}]−1

≤ E {λd(X(E))} ≤ 16N

[
(2π)−d inf

µ∈P(E)
E

{
‖Ôµ‖2

L2(Rd)

}]−1

.
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Remark 2.2 Condition (1.3) is not needed here. ¤

Consequently, in order for λd(X(E)) to have positive expectation, it is necessary, as well as sufficient,
that for some probability measure µ on E, the L2(Rd)-norm of the Fourier transform of Oµ be square
integrable with respect to P.

Suppose, then, that E{λd(X(E))} > 0. Thanks to the foregoing discussion, there exists µ ∈ P(E)
such that ‖Ôµ‖

L2(Rd)
is in L2(P); in particular, it is finite, a.s. By Plancherel’s theorem, Oµ is absolutely

continuous with respect to λd, a.s. Let Lx
µ denote this density. In other words, Lµ = {Lx

µ; x ∈ Rd} is
the process defined by the following: For all measurable functions f : Rd → R+,

Oµ(f) =
∫

Rd

f(x)Lx
µ dx; (2.2)

cf. (2.1). We can always choose a measurable version of Rd × Ω 3 (x, ω) 7→ Lx
µ(ω), which we take for

granted. Of course, Ω denotes the underlying probability space. Furthermore, we can apply Plancherel’s
formula, once again, to deduce that

‖L•µ‖2
L2(Rd)

= (2π)−d ‖Ôµ‖2
L2(Rd)

, P-a.s. (2.3)

The process Lµ is the local times of X, under the measure µ. The above, together with Theorem 2.1,
shows the following.

Corollary 2.3 In order for E{λd(X(E))} to be positive, it is necessary and sufficient that there exists
a probability measure µ on E, under which there are local times Lµ such that E{‖L•µ‖2

L2(Rd)
} is finite.

We have developed the requisite material for the lower bound (i.e., the “easy half ”) in Theorem 2.1.

Proof of Theorem 2.1: Lower Bound Without loss of generality, we may assume that there
is a probability measure µ on the Borel set E such that E{‖Ôµ‖2

L2(Rd)
} < +∞. Let Lµ denote the

corresponding local times. It follows from (2.2) with f(x) = 1lX(E)(x) that P-a.s.,

1 =
∣∣Oµ(Rd)

∣∣2

=
∣∣∣∣
∫

X(E)

Lx
µ dx

∣∣∣∣
2

≤ (2π)−d ‖Ôµ‖2
L2(Rd)

· λd(X(E)),

thanks to (2.3) and to the Cauchy–Schwarz inequality. Next, recall that for all positive random variables
Z, E{Z−1} · E{Z} ≥ 1. This also follows from the Cauchy–Schwarz inequality, or from Jensen’s
inequality. Thus, we obtain

E {λd(X(E))} ≥ (2π)d E
{
‖Ôµ‖−2

L2(Rd)

}

≥ (2π)d
[
E

{
‖Ôµ‖2

L2(Rd)

}]−1

.

This proves the lower bound in Theorem 2.1. ¤

We conclude this section with the following analytical description of E{‖Ôµ‖2
L2(Rd)

}. Its derivation

is simple, but we include it as a natural way to introduce the associated process X̃ in (2.4) below. The
remainder of Theorem 2.1 is proved in Section 4 after our presentation of Section 3 that is concerned
with some calculations.
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Lemma 2.4 For any finite measure µ on RN
+ ,

E
{
‖Ôµ‖2

L2(Rd)

}
=

∫

Rd

∫∫

RN
+×RN

+

e−
PN

j=1 |sj−tj |Ψj(sgn(sj−tj)ξ) µ(ds)µ(dt) dξ.

Proof This is an exercise in Fubini’s theorem. Indeed, by (2.1),

E
{
‖Ôµ‖2

L2(Rd)

}
=

∫

Rd

∫∫

RN
+×RN

+

E
{

eiξ·[X(s)−X(t)]
}

µ(ds) µ(dt) dξ.

Define the N -parameter process X̃ = {X̃(t); t ∈ RN} by

X̃(t) =
N∑

j=1

sgn(tj)Xj(|tj |), ∀t ∈ RN . (2.4)

We emphasize that X̃ is a process indexed by all of RN , and that

∀s, t ∈ RN
+ : X(t)−X(s) has the same distribution as X̃(t− s). (2.5)

Moreover,
E

{
eiξ· eX(t)} = e−

PN
j=1 |tj |Ψj(sgn(tj)ξ), ∀ξ ∈ Rd, t ∈ RN . (2.6)

Our lemma follows. ¤

3 Some Calculations

Recall the associated process X̃ from (2.4), and let P = {Pt; t ∈ RN} be the family of operators on
L∞(Rd) defined by

Ptf(x) = E
{

f(X̃(t) + x)
}

, ∀t ∈ RN , f ∈ L∞(Rd) and x ∈ Rd. (3.1)

This is not an N -parameter semigroup; i.e., it is not true that Pt+s = PtPs for all s, t ∈ RN . However,
each of its 2N restrictions {Pt; t ∈ (±R)N} is an N -parameter semigroup. Let U denote the 1-potential
of the family P . That is, for all f ∈ L∞(Rd)

Uf(x) =
∫

RN

e−
PN

j=1 |sj |Psf(x) ds, ∀x ∈ Rd. (3.2)

We will also need the following potential operator

U+f (x) =
∫

RN
+

e−
PN

j=1 sj Psf(x) ds, ∀x ∈ Rd. (3.3)

Our next lemma computes Ptf(x), Uf(x) and U+f(x) in terms of the Lévy exponent of X. In light
of Theorem 1.1, it shows that X̃ and its 1-potential U are the “right” objects to consider. Indeed, the
integral of Theorem 1.1 is nothing but Uδ0(0), where δa is point mass at a ∈ Rd, while Condition (1.3)
allows us to compare Uδ0(0) and U+δ0(0).
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Lemma 3.1 The operators Pt, U and U+, are convolution operators. Moreover, if f, f̂ ∈ L1(Rd), then
for all t ∈ RN and all x ∈ Rd,

Ptf(x) = (2π)−d

∫

Rd

eix·ξ f̂(−ξ) e−
PN

j=1 |tj |Ψj(sgn(tj)ξ) dξ,

Uf(x) = 2N (2π)−d

∫

Rd

eix·ξ f̂(−ξ)
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ,

U+f(x) = (2π)−d

∫

Rd

eix·ξ f̂(−ξ)
N∏

j=1

1
1 + Ψj(ξ)

dξ.

Proof Temporarily let µt denote the distribution of −X̃(t) to see that Ptf(x) = µt ? f(x) and
Uf(x) =

∫
RN e−

PN
j=1 |tj |µt ? f(x) dt, where ? denotes convolution. Since f ∈ L1(Rd), it follows from

Fubini’s theorem and (2.6) that

P̂tf(ξ) = f̂(ξ)µ̂t(ξ)

= f̂(ξ)e−
PN

j=1 |tj |Ψj(−sgn(tj)ξ). (3.4)

Hence, the asserted formula for Ptf(x) follows from the inversion theorem of Fourier transforms, after
making a change of variables. To obtain the second equation, we integrate Ptf , viz.,

Uf(x) = (2π)−d

∫

Rd

eix·ξ f̂(−ξ)
∫

RN

exp
{
−

N∑

j=1

|sj | [1 + Ψj(sgn(sj)ξ)]
}

ds dξ.

On the other hand,

∫

RN

e−
PN

j=1 |sj |[1+Ψj(sgn(sj)ξ)] ds =
N∏

j=1

{∫ ∞

0

e−s[1+Ψj(ξ)] ds +
∫ ∞

0

e−s[1+Ψj(ξ)] ds

}

= 2N
N∏

j=1

Re {1 + Ψj(ξ)}−1.

The mentioned computation of Uf(x) follows readily from this. Our computation of U+f is made in
like fashion, and we omit the details. ¤

Throughout, we assume that the underlying sample space Ω is the collection of all paths ω : RN
+ → Rd

that have the form ω(t) =
∑N

j=1 ωj(tj) for t ∈ RN
+ , where ωj is in DRd [0,∞)—the usual space of Rd-

valued cadlag functions—for every j = 1, . . . , N . The space Ω inherits its Borel field from the Skorohod
topology on DRd [0,∞) in a standard way. The additive Lévy process X of the Introduction is in
canonical form if

X(t)(ω) = ω(t), ∀ω ∈ Ω, t ∈ RN
+ .

Since we are only interested in distributional results about X, we can assume, with no loss in generality,
that it is in canonical form under a fixed probability measure, denoted by P. This is a standard result
and we will not dwell on it here. Henceforth, the canonical form of X is tacitly assumed. We will also
assume, with no further mention, that Ψ = (Ψ1, . . . , ΨN ) is the Lévy exponent of the additive process
X. We note for future reference that this is equivalent to

E{eiξ·X(t)} = e−t·Ψ(ξ), ∀t ∈ RN
+ , ξ ∈ Rd. (3.5)
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In agreement with the notation of classical Lévy processes, we define Px to be the law of x + X
for any x ∈ Rd, and let Ex be the corresponding expectation operator. To be precise, we define for all
Borel sets A ⊂ Ω,

Px{ω ∈ Ω : ω ∈ A} = P{ω ∈ Ω : x + ω ∈ A},
where (x + ω)(t) = x + ω(t) for all ω ∈ Ω and t ∈ RN

+ . This allows us to also define a sigma-finite
measure P

λd
, and a corresponding integration (or expectation) operator, E

λd
, via

P
λd
{A} =

∫

Rd

Px{A} dx, ∀A ⊂ Rd Borel, and

E
λd
{Z} =

∫

Rd

Ex{Z} dx, ∀Z : Ω → R+, measurable.

The last line holds for a larger class of random variables Z by standard monotone class arguments.
Let Π = {1, . . . , N}, and for all A ⊆ Π define the partial order 4

(A)
on RN by

s 4
(A)

t ⇐⇒
{

si ≤ ti, for all i ∈ A,

si ≥ ti, for all i ∈ A{.

We may also write t <
(A)

s for s 4
(A)

t. We note that, used in conjunction, the partial orders {4
(A)

; A ⊆ Π}
totally order RN in the sense that for all s, t ∈ RN , we can find A ⊆ Π such that s 4

(A)
t. We will use

this simple fact several times. The final piece of notation is that of filtrations in each partial order 4
(A)

.
Namely, we define FA(t) to be the sigma-field generated by {X(r); r 4

(A)
t}. We can, and will, assume

that each FA(t) is Px-complete for all x ∈ Rd, and each FA is 4
(A)

-right continuous. The latter means
that for all t ∈ RN

+ , FA(t) = ∩s<
(A)

t FA(s).
The following key fact is borrowed from Khoshnevisan and Xiao (2002a), which we reproduce

for the sake of completeness.

Proposition 3.2 (The Markov property) Suppose that A ⊆ Π, and that s4
(A)

t where s and t are
both in RN

+ . Then, for any measurable function f : Rd → R+,

E
λd

{
f(X(t))

∣∣ FA(s)
}

= Pt−sf(X(s)),

P
λd

-a.s., where Pt is defined in (3.1).

Remark 3.3 This is not generally true under Px. Also note that conditional expectations under the
sigma-finite measure P

λd
are defined in exactly the same manner as those with respect to probability

measures. ¤

Proof Consider measurable functions f, g, h1, . . . , hm : Rd → R+ and times t, s, s1, . . . , sm ∈ RN
+ such

that t<
(A)

s <
(A)

sj for all j = 1, . . . ,m. Then, since the Xj ’s are independent from one another, and by
appealing to the independent-increments property of each Xj , we deduce

E
λd

{
f(X(t)) · g(X(s)) ·

m∏

j=1

hj(X(sj))
}

=
∫

Rd

E
{

f(X(t) + x) · g(X(s) + x) ·
m∏

j=1

hj(X(sj) + x)
}

dx

=
∫

Rd

E {f (X(t)−X(s) + y)} · E
{ m∏

j=1

hj

(
X(sj)−X(s) + y

)}
g(y) dy.
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Thanks to (2.4), (2.5), and (3.1), the first term under the integral equals Pt−sf(y). Noting that, under
the measure P

λd
, the distribution of X(s) is λd, we see that the desired result follows. ¤

Lemma 3.4 Suppose f, g : Rd → R are in L1(Rd)∩L2(Rd) and their Fourier transforms are in L1(Rd).
Then, for all s, t ∈ RN

+ ,

E
λd
{f(X(s)) g(X(t))} = (2π)−d

∫

Rd

f̂(ξ) ĝ(ξ) e−
PN

j=1 |tj−sj |Ψj(sgn(tj−sj)ξ) dξ.

Proof Find A ⊆ Π such that s 4
(A)

t. Then,

E
λd
{f(X(s)) g(X(t))} = E

λd

{
f(X(s))E

λd

{
g(X(t))

∣∣ FA(s)
}}

= E
λd
{f(X(s))Pt−sg(X(s))} ,

thanks to Proposition 3.2. Since the P
λd

-distribution of X(s) is λd for any s ∈ RN
+ and both f, g ∈

L2(Rd), we can deduce the following from Plancherel’s formula:

E
λd

{
f(X(s)) g(X(t))

}
=

∫

Rd

f(x) Pt−sg(x) dx

= (2π)−d

∫

Rd

f̂(ξ) P̂t−sg(ξ) dξ.

Our lemma follows from (3.4). ¤

Next, we recall the occupation measures Oµ from (2.1). The following is a function analogue of
Lemma 2.4.

Lemma 3.5 For all f : Rd → R+ in L1(Rd) ∩ L2(Rd) such that f̂ ∈ L1(Rd), and for all probability
measures µ on RN

+ ,

E
λd

{
|Oµ(f)|2

}
= (2π)−d

∫

Rd

∣∣f̂(ξ)
∣∣2 Qµ(ξ) dξ,

where
Qµ(ξ) =

∫∫

RN
+×RN

+

e−
PN

j=1 |tj−sj |Ψj(sgn(tj−sj)ξ) µ(ds) µ(dt). (3.6)

Proof This follows from Lemma 3.4 and Fubini’s theorem, once we verify that the function Qµ is
nonnegative. On the other hand,

Qµ(ξ) = E
{∣∣∣∣

∫

RN
+

eiξ·X(t) µ(dt)
∣∣∣∣
2}

, ∀ξ ∈ Rd, (3.7)

thanks to (2.5) and (2.6). This implies the pointwise positivity of Qµ, thus concluding our proof. ¤

4 Proof of Theorem 2.1: Upper bound

In Section 2 we proved the easy half (i.e., the lower bound) in Theorem 2.1. We now use the results of
the previous section to derive the hard half of Theorem 2.1.

For all measurable f : Rd → R+, all probability measures µ on RN
+ , and all A ⊆ Π, define the

process MA
µf by

MA
µf(t) = E

λd

{
Oµ(f)

∣∣ FA(t)
}
, ∀t ∈ RN

+ . (4.1)
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Lemma 4.1 Suppose f : Rd → R+ is in L1(Rd) ∩ L2(Rd), and f̂ ∈ L1(Rd), A ⊆ Π, and µ is a
probability measure on RN

+ . Then, recalling (3.6), we have

E
λd
{MA

µf(t)} =
∫

Rd

f(x) dx, ∀ξ ∈ Rd, and

sup
t∈RN

+

E
λd

{∣∣MA
µf(t)

∣∣2} ≤ (2π)−d

∫

Rd

∣∣f̂(ξ)
∣∣2 Qµ(ξ) dξ.

Proof The P
λd
-expectation of MA

µf(t) follows immediately from Fubini’s theorem, and the elementary
fact that E

λd
{f(X(t))} =

∫
Rd f(x) dx. For the second identity, we note that, by the Cauchy–Schwarz

inequality for conditional expectation under P
λd

, for all t ∈ RN
+ , E

λd
{|MA

µf(t)|2} ≤ E
λd
{|Oµ(f)|2}. The

lemma follows from Lemma 3.5. ¤

Lemma 4.2 For all s ∈ RN
+ , all measurable functions f : Rd → R+ in L1(Rd) ∩ L2(Rd) with f̂ ∈

L1(Rd), and for any probability measure µ on RN
+ , P

λd
-almost surely, the following holds:

∑

A⊆Π

MA
µf(s) ≥

∫

RN
+

Pt−sf(X(s)) µ(dt).

Moreover,

E
λd

{
sup

s∈QN
+

∣∣MA
µf(s)

∣∣2
}
≤ 4N (2π)−d

∫

Rd

∣∣f̂(ξ)
∣∣2 Qµ(ξ) dξ.

Remark 4.3 Since our filtrations satisfy the “usual conditions,” one can show that when f is bounded,
say, MA

µf has a 4
(A)

-right continuous modification. Consequently, for this modification, the former
inequality holds almost surely, where the null set in question is independent of t ∈ RN

+ . See Bakry
(1979) for a version of such a regularity result. ¤

Proof For the first expression, we note, from (4.1), that since f ≥ 0,

MA
µf(s) ≥ E

λd

{ ∫

t<
(A)

s

f(X(t)) µ(dt)
∣∣∣∣ FA(s)

}

=
∫

t<
(A)

s

Pt−sf(X(s)) µ(dt),

P
λd

-a.s. for any probability measure µ on Rd, thanks to Proposition 3.2. Summing this over all A ⊆ Π
and recalling that, together, the 4

(A)
’s order RN

+ , we obtain the first inequality. The second inequality
requires a little measure theory, and Cairoli’s maximal inequality; cf. Walsh (1986) for the latter. We
provide a brief, but self-contained proof below.

We define one-parameter “filtrations” FA
1 , FA

2 , . . . , FA
N for each A ⊆ Π, by insisting that FA

j (tj) is
the sigma-field generated by {Xj(r); r ≥ tj} if j ∈ A, whereas {Xj(r); 0 ≤ r ≤ tj} if j ∈ A{. We add all
Px-null sets for all x ∈ Rd to these without changing our notation. A little thought shows the following:
For any t ∈ RN

+ , given FA(t), the sigma-fields FA
1 (t1), . . . , FA

N (tN ) are conditionally independent under
the sigma-finite measure P

λd
. Consequently, by standard arguments from the theory of Markov random

fields, applied to the sigma-finite measure P
λd

,

E
λd

{
Z

∣∣ FA(t)
}

= E
λd

[ · · ·E
λd
{Z |FA

N (t1)} · · ·
∣∣ FA

N (tN )
]
,
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P
λd

-a.s. for any nonnegative measurable function Z on Ω; cf. Rozanov (1982) where this sort of result
is systematically developed for probability measures. The same arguments work for P

λd
. Consequently,

we apply Doob’s maximal inequality, one parameter at a time, to obtain

E
λd

{
sup

t∈QN
+

∣∣MA
µf(t)

∣∣2
}
≤ 4N sup

t∈RN
+

E
λd

{∣∣MA
µf(t)

∣∣2
}

,

all the time noting that by applying the method used to prove Kolmogorov’s maximal inequality, one
verifies that Doob’s maximal inequality also works for P

λd
-martingales; we refer to Dellacherie-

Meyer (1982, 40.2, p. 34) for the one-parameter discrete setting. One generalizes this development to
the multiparameter setting by applying the arguments of R. Cairoli; cf. Walsh (1986). Thus, Lemma
4.1 concludes our proof. ¤

We are ready to begin our

Proof of Theorem 2.1: Upper bound Henceforth, we may assume that

E{λd(X(E))} > 0, (4.2)

for, otherwise, there is nothing left to prove.
For any δ > 0, define Eδ to be the closed δ-enlargement of E, which is of course a compact set itself.

Choose some point ∆ 6∈ RN
+ , and let T δ denote any measurable (QN

+ ∩ Eδ) ∪∆-valued function on Ω,
such that T δ 6= ∆ if and only if |X(T δ)| ≤ δ. This can always be done, since the Xj ’s have cadlag
paths, and since B(0, δ) = {x ∈ Rd : |x| ≤ δ} has an open interior, where | • | denotes the `∞-norm in
any Euclidean space. Informally, T δ is any measurably selected point in Eδ such that |X(T δ)| ≤ δ, as
long as such a point exists. If not, T δ is set to ∆. We now argue that for all δ > 0, and all k > 0 large,
µδ,k ∈ P(Eδ), where

µδ,k(•) =
P

λd
{T δ ∈ • , T δ 6= ∆ , |X(0)| ≤ k}
P

λd
{T δ 6= ∆ , |X(0)| ≤ k} .

Indeed, note that, by Fubini’s theorem,

P
λd
{T δ 6= ∆ , |X(0)| ≤ k} = P

λd
{X(Eδ) ∩B(0, δ) 6= ∅ , |X(0)| ≤ k}

=
∫

[−k, k]d
P{X(Eδ) ∩B(x, δ) 6= ∅} dx

= E
{

λd

(
(X(Eδ)⊕B(0, δ)) ∩ [−k, k]d

)}
. (4.3)

In particular, P
λd
{T δ 6= ∆ , |X(0)| ≤ k} is greater than E{λd(X(E)∩ [−k, k]d)} > 0 for all k > 0 large,

thanks to (4.2). Thus, once we argue that P
λd
{T δ 6= ∆ , |X(0)| ≤ k} < +∞, this development shows

that µδ,k ∈ P(Eδ), as asserted. But

P
λd
{T δ 6= ∆ , |X(0)| ≤ k} ≤ P

λd
{|X(0)| ≤ k} = (2k)d,

which is finite. Thus, we indeed have µδ,k ∈ P(Eδ).
We apply Lemma 4.2 to µ = µδ,k and s = T δ on {T δ 6= ∆}, and note that on the latter, T δ ∈ QN

+ ,
so there are no problems with null sets. In this way we obtain the following, where f : Rd → R+ is any
measurable function:

∑

A⊆Π

sup
s∈QN

+

MA
µδ,kf(s) ≥

∫

RN
+

inf
x∈Rd: |x|≤δ

Pt−T δf(x)µδ,k(dt) · 1l{T δ 6=∆ , |X(0)|≤k},
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P
λd

-a.s., where the null set is independent of the choice of δ > 0. The special choice of µδ,k yields the
following upon squaring and taking P

λd
-expectations:

E
λd

{∣∣∣∣
∑

A⊆Π

sup
s∈QN

+

MA
µδ,kf(s)

∣∣∣∣
2}

≥
∫

RN
+

[∫

RN
+

inf
x∈Rd: |x|≤δ

Pt−sf(x)µδ,k(dt)
]2

µδ,k(ds)

× P
λd
{T δ 6= ∆ , |X(0)| ≤ k}

≥
[∫

RN
+

∫

RN
+

inf
x∈Rd: |x|≤δ

Pt−sf(x)µδ,k(dt)µδ,k(ds)
]2

× P
λd
{T δ 6= ∆ , |X(0)| ≤ k},

thanks to the Cauchy–Schwarz inequality. Consequently, for all δ0 > 0, δ ∈ (0, δ0) and all k > 0 large,

E
λd

{∣∣∣∣
∑

A⊆Π

sup
s∈QN

+

MA
µδ,kf(s)

∣∣∣∣
2}

≥
[∫

RN
+

∫

RN
+

inf
x∈Rd: |x|≤δ0

Pt−sf(x)µδ,k(dt)µδ,k(ds)
]2

· P
λd
{T δ 6= ∆ , |X(0)| ≤ k}.

(4.4)

Another appeal to the Cauchy–Schwarz inequality reveals the following estimate for the left-hand side
of the above:

E
λd

{∣∣∣∣
∑

A⊆Π

sup
s∈QN

+

MA
µδ,kf(s)

∣∣∣∣
2}

≤ 2N
∑

A⊆Π

E
λd

{∣∣∣∣ sup
s∈QN

+

MA
µδ,kf(s)

∣∣∣∣
2}

≤ 16N (2π)−d

∫

Rd

∣∣f̂(ξ)
∣∣2 Qµδ,k(ξ) dξ, (4.5)

by Lemma 4.2. We now choose a “good” f in both (4.4) and (4.5). Namely, consider f = fε for any
ε > 0 such that f is of the form

fε(x) = (2πε)−
d
2 exp

(
−‖x‖

2

2ε

)
, ∀x ∈ Rd. (4.6)

Trivially, fε ≥ 0,
∫

fε dλd = 1, f̂ε(ξ) = exp(− 1
2ε‖ξ‖2), and both fε, f̂ε ∈ L1(Rd) ∩ L2(Rd).

We apply (4.4) and (4.5) for this choice of fε, and wish to take δ → 0. Since δ0 is fixed, the explicit
form of Ptf shows that (x, s, t) 7→ Pt−sf(x) is continuous on B(0, δ0) × Eδ × Eδ. Since Eδ ↓ E are
all compact, and since µδ,k ∈ P(Eδ), Prohorov’s theorem, together with the mentioned continuity fact
about infx Pt−sf(x), implies the existence of a µ ∈ P(E), such that along some subsequence δ′ → 0 and
k′ →∞,

∫∫

RN
+×RN

+

inf
|x|≤δ0

Pt−sfε(x)µδ′,k′(dt) µδ′,k′(ds) →
∫∫

RN
+×RN

+

inf
|x|≤δ0

Pt−sfε(x)µ(dt)µ(ds).

Furthermore, P
λd
{T δ 6= ∆ , |X(0)| ≤ k} → E{λd(X(E))}, as k ↑ ∞ and then δ ↓ 0; cf. (4.3). [Here,

X(E)) denotes the closure of X(E).]
The preceding argument, used in conjunction with (4.4) and (4.5) (let δ0 ↓ 0), yields

16N (2π)−d lim sup
δ′→0
k′→∞

∫

Rd

∣∣f̂ε(ξ)
∣∣2Qµδ′,k′ (ξ) dξ

≥
[∫∫

RN
+×RN

+

Pt−sfε(0) µ(dt) µ(ds)
]2

· E{
λd(X(E))

}
.
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Now, 0 ≤ Qµδ′,k′ (ξ) ≤ 1 for all ξ ∈ Rd [cf. (3.7)], and f̂ε ∈ L2(Rd). Finally,

lim
δ′→0,k′→∞

Qµδ′,k′ = Qµ,

pointwise [cf. (3.6)]. Thus, by Lebesgue dominated convergence theorem,

16N (2π)−d

∫

Rd

∣∣f̂ε(ξ)
∣∣2Qµ(ξ) dξ ≥

[∫∫

RN
+×RN

+

Pt−sfε(0)µ(dt)µ(ds)
]2

· E{
λd(X(E))

}

= (2π)−2d

[∫

Rd

f̂ε(ξ)Qµ(ξ) dξ

]2

· E{
λd(X(E))

}
,

thanks to Lemma 3.1. Our choice of fε guarantees that for all ξ ∈ Rd, f̂ε(ξ) ≥ |f̂ε(ξ)|2. Thus, we use
the square integrability of fε and the positivity and boundedness of Qµ, once more, to obtain

E
{
λd(X(E))

} ≤ 16N

[
(2π)−d

∫

Rd

∣∣f̂ε(ξ)
∣∣2Qµ(ξ) dξ

]−1

,

since the right-hand side is obviously not zero; cf. (3.6) and (3.7). Let ε ↓ 0 and use Lebesgue monotone
convergence theorem to see that

E
{
λd(X(E))

} ≤ 16N

[
(2π)−d

∫

Rd

Qµ(ξ) dξ

]−1

= 16N
[
(2π)−d E

{
‖Ôµ‖2

L2(Rd)

}]−1

,

by Lemma 2.4. This concludes our proof. ¤

5 Proofs of Theorems 1.1, 1.3 and 1.5

Theorem 1.3 follows from Theorem 1.1 by invoking the very argument that lead to Corollary 2.3. Hence,
we only concentrate on proving Theorems 1.1 and 1.5.

We divide the proofs of Theorems 1.1 and 1.5 in three parts:

(i) The easy half of Theorem 1.1, that is

∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ < +∞ =⇒ E{λd(X(RN

+ ))} > 0.

Of course, this statement is a special case of Part (iii) below. We give a simple and direct proof
using Theorem 2.1.

(ii) The hard half of Theorem 1.5; i.e., for any fixed compact set F ⊂ Rd,

E{λd(X(RN
+ )⊕ F )} > 0 =⇒ ∃µ ∈ P(F ) such that EΨ(µ) < ∞.

The hard half of Theorem 1.1 follows from this and (1.4) upon selecting F = {0}.
(iii) The easy half of Theorem 1.5, i.e.,

F carries a finite measure of finite energy =⇒ E{λd(X(RN
+ )⊕ F )} > 0.
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For simplicity, we use the following suggestive notation: For all finite measures µ on RN
+ , define

‖µ‖2e = (2π)−d E
{
‖Ôµ‖2

L2(Rd)

}
.

We may refer to ‖µ‖e as the energy norm of µ, although strictly speaking it is only a seminorm as the
following shows.

Lemma 5.1 For any two finite measures µ and ν on Rd,

‖µ + ν‖e ≤ ‖µ‖e + ‖ν‖e.

Proof Since µ 7→ Oµ is linear, so is µ 7→ Ôµ. The lemma follows from Minkowski’s inequality. ¤

Throughout, we define the 1-killing measure, κ ∈ P(RN
+ ), as

κ(ds) = e−
PN

j=1 sj ds, ∀s ∈ RN
+ . (5.1)

Recalling (2.1), we note the killed occupation measure is defined by

Oκ(f) =
∫

RN
+

f(X(s))e−
PN

j=1 sj ds.

Note that Oκ is a random probability measure carried by X(RN
+ ).

The relevance of the killing measure κ to the proofs of Theorems 1.1 and 1.5 is given by the following
lemma.

Lemma 5.2 Let κ be the killing measure defined above, then the energy norm of κ ∈ P(RN
+ ) is described

by

‖κ‖2e = (2π)−d

∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ.

Proof By Lemma 2.4,

‖κ‖2e = (2π)−d

∫

Rd

N∏

j=1

[∫ ∞

0

∫ ∞

0

e−|s−t|Ψj(sgn(s−t)ξ)e−s−t ds dt

]
dξ

= (2π)−d

∫

Rd

N∏

j=1

[∫ ∞

0

∫ ∞

s

(· · · ) dt ds +
∫ ∞

0

∫ ∞

t

(· · · ) ds dt

]
dξ

= (2π)−d

∫

Rd

N∏

j=1

[ 1
2

1 + Ψj(ξ)
+

1
2

1 + Ψj(ξ)

]
dξ

= (2π)−d

∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ,

since {1 + z}−1 + {1 + z}−1 = 2Re {1 + z}−1 (z ∈ C). ¤

Lemma 5.2 suffices for our

16



Proof of Theorem 1.1: Easy half The lower bound in Theorem 2.1 shows that

E
{
λd(X(E))

} ≥ ‖κ‖−2
e . (5.2)

Thus, Lemma 5.2 shows that the integrability of
∏N

j=1 Re {1 + Ψj}−1 guarantees the positivity of
E{λd(X(E))}. This finishes Part (i) of the proof. ¤

We start working toward proving the hard half of Theorem 1.5. We begin with some prefatory
results.

Recalling our definition of energy from (1.4), and the function Qκ from (3.6), we have

Lemma 5.3 For all ξ ∈ Rd,

Qκ(ξ) =
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
.

Consequently, whenever f : Rd → R and its Fourier transform are both in L1(Rd) ∩ L2(Rd),

E
λd

{∣∣Oκ(f)
∣∣2

}
= EΨ(f).

Proof In light of Lemma 3.5 and our definition of energy [(1.4)], it suffices to compute Qκ as given.
On the other hand,

Qκ(ξ) =
N∏

j=1

∫ ∞

0

∫ ∞

0

e−s−t−|s−t|Ψj(sgn(s−t)ξ) ds dt

=
N∏

j=1

[∫ ∞

0

∫ ∞

t

(· · · ) ds dt +
∫ ∞

0

∫ ∞

s

(· · · ) dt ds

]

=
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
.

The few remaining details in the above are the same as those in the proof of Lemma 5.2. ¤

Recalling (4.1), we are interested in MΠ
κf , where we also recall that Π = {1, . . . , N}. The operator

U+ below was defined in (3.3).

Lemma 5.4 If f : Rd → R+ is in L1(Rd) ∩ L2(Rd), then

E
λd

{
sup

s∈QN
+

∣∣MΠ
κf(s)

∣∣2
}
≤ 4NEΨ(f). (5.3)

Furthermore, for any r > 0, f ∈ L1(Rd) whose Fourier transform is also in L1(Rd), and for all
s ∈ (0, r)N , the following holds P

λd
-a.s.:

MΠ
κf(s) ≥ e−NrU+f(X(s)). (5.4)
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Proof Equation (5.3) is a consequence of Lemmas 4.2 and 5.3 albeit in slightly different notation.
To prove (5.4), we proceed as in our proof of Lemma 4.2, but adapt the argument to the present

setting. Since f ≥ 0, the same reasoning as in the latter Lemma gives the following for all s ∈ (0, r)N :

MΠ
κf(s) ≥ E

λd

{ ∫

t<
(Π)

s

f(X(t)) e−
PN

j=1 tj dt

∣∣∣∣∣ FΠ(s)
}

=
∫

t<
(Π)

s

Pt−sf(X(s)) e−
PN

j=1 tj dt,

P
λd

-a.s. Now, we move in a somewhat new direction by noticing that since s ∈ (0, r)N ,

MΠ
κf(s) ≥ e−Nr

∫

t<
(Π)

s

Pt−sf(X(s)) e−
PN

j=1(tj−sj) dt

≥ e−Nr

∫

RN
+

Ptf(X(s))e−
PN

j=1 tj dt

= e−NrU+f(X(s)),

by (3.3). Thus, our lemma follows. ¤

Henceforth, we define the capacity of a compact set F ⊂ Rd by

CΨ(F ) =
[

inf
µ∈P(F )

EΨ(µ)
]−1

, (5.5)

where, we recall, P(F ) denotes the collection of all probability measures on F .

Our proof of the hard half of Theorem 1.5 is based on the following.

Lemma 5.5 Suppose X is an additive Lévy process in Rd that satisfies Condition (1.3), and that∫
Rd

∏N
j=1 |1 + Ψj(ξ)|−1 dξ < +∞, where Ψ = (Ψ1, . . . , ΨN ) denotes the Lévy exponent of X. Then, for

all compact sets F ⊂ Rd, and for all r > 0,

E
{
λd(X([0, r]N )⊕ F )

} ≤ ϑ−2(4e2r)N · CΨ(F ),

where ϑ > 0 is the constant in Condition (1.3).

Before proving it, we appeal to Lemma 5.5 to conclude Part (ii) of our proof, i.e., the hard half of
Theorem 1.5. Clearly, the following will suffice.

Proposition 5.6 Suppose X is an additive Lévy process in Rd that satisfies Condition (1.3). Let
Ψ = (Ψ1, . . . , ΨN ) denote the Lévy exponent of X. Then, for all compact sets F ⊂ Rd, and for all
r > 0,

E
{
λd(X([0, r]N )⊕ F )

} ≤ ϑ−2(4e2r)N+b d
2 c+1 · CΨ(F ).

Proof of Proposition 5.6 Let us bring in M = bd
2c + 1 continuous Brownian motions in Rd,

B1, . . . , BM , all totally independent from one another, as well as X [under P]. Having done so, for
any δ > 0, we can define an (N + M)-parameter process Xδ in Rd by

Xδ = X1 ⊕ · · · ⊕XN ⊕
√

2δB1 ⊕ · · · ⊕
√

2δBM .
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To be concrete, Xδ(t) =
∑N

j=1 Xj(tj) +
√

2δ
∑M

j=1 Bj(tj+N ), for all t ∈ RN+M
+ .

Define

Φj(ξ) =

{
Ψj(ξ), if j = 1, . . . , N,

δ‖ξ‖2, if j = N + 1, . . . , N + M,

where ‖x‖ is the `2-norm of x ∈ Rd. Then, Xδ is an (N + M)-parameter additive Lévy process in Rd

whose Lévy exponent is Φ = (Φ1, . . . , ΦN+M ). Furthermore,

∫

Rd

N+M∏

j=1

|1 + Φj(ξ)|−1 dξ ≤
∫

Rd

{1 + δ‖ξ‖2}−M dξ < +∞, (5.6)

since M > d
2 . Thus, we can apply Lemma 5.5 to the process Xδ and obtain

E
{
λd(Xδ([0, r]N+M )⊕ F )

} ≤ ϑ−2(4e2r)N+M · CΦ(F ). (5.7)

Of course, by (5.6), the above capacity is strictly positive.
Now, consider a sequence of probability measures, µ1, µ2, . . ., all on F , such that

lim
n→∞

EΦ(µn) = [CΦ(F )]−1
.

Without loss of generality, we can assume that all these energies are finite, and by tightness, extract a
subsequence n′ and a probability measure µ∞ on F such that µn′ converges weakly to µ∞. Thanks to
(5.6) and to the continuity of the Φj ’s, we see that limn′ EΦ(µn′) = EΦ(µ∞). Equivalently, we have found
a probability measure µ∞ on F whose Φ-energy is the reciprocal of the Φ-capacity of F . Changing the
notation to allow for the dependence of µ∞ on the parameter δ, we see that there exists a probability
measure νδ on F such that it has finite Φ-energy, and

E{λd(Xδ([0, r]N+M )⊕ F )} ≤ ϑ−2(4e2r)N+M

EΦ(νδ)
.

This holds for all δ > 0. Now, fix an arbitrarily small δ0 > 0, and for all δ ∈ (0, δ0) deduce the cruder
bound:

E{λd(Xδ([0, r]N+M )⊕ F )} ≤ ϑ−2(4e2r)N+M

∫
Rd |ν̂δ(ξ)|2

∏N
j=1 Re {1 + Ψj(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ

.

By considering further subnets of δ, and by appealing to (5.6) once more, we can infer the existence of
a probability measure ν0 on F such that

lim inf
δ→0

E{λd(Xδ([0, r]N+M )⊕ F )} ≤ ϑ−2(4e2r)N+M

∫
Rd |ν̂0(ξ)|2

∏N
j=1 Re {1 + Ψj(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ

.

On the other hand,
Xδ([0, r]N+M ) = X([0, r]N )⊕

√
2δB([0, r]M ),

where B = B1⊕· · ·⊕BM . By compactness, as δ ↓ 0, this random set converges downwards to X([0, r]N ),
the closure of X([0, r]N ). Consequently, by the monotone convergence theorem of Lebesgue,

E{λd(X([0, r]N )⊕ F )} ≤ ϑ−2(4e2r)N+M

∫
Rd |ν̂0(ξ)|2

∏N
j=1 Re {1 + Ψj(ξ)}−1 · {1 + δ0‖ξ‖2}−M dξ

,

for all δ0 > 0. Let δ0 ↓ 0, and apply Lebesgue monotone convergence one more time to finish. ¤
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It remains to present our

Proof of Lemma 5.5 It follows from (1.4) that CΨ(−F ) = CΨ(F ) for any compact set F , where
−F = {−a; a ∈ F}. Hence, we can reduce our problem to showing that

E{λd(F ªX([0, r]N ))} ≤ ϑ−2(4e2r)NCΨ(F ),

where AªB = {a− b; a ∈ A, b ∈ B}.
Let F ε denote the closed ε-enlargement of F . The integrability condition of the statement of the

lemma, the continuity of the Ψj ’s, and Lebesgue dominated convergence theorem, together show that if
ε > 0, then limε→0 CΨ(F ε) = CΨ(F ). [This involves a tightness argument that we have already utilized
while proving Proposition 5.6.] Hence, it suffices to show that

E{λd(F ªX([0, r]N ))} ≤ ϑ−2(4e2r)NCΨ(F ε). (5.8)

The above holds trivially unless the left-hand side is strictly positive, which we will assume henceforth.
We observe that, by Fubini’s theorem,

P
λd
{X([0, r]N ) ∩ F 6= ∅} =

∫

Rd

P
{(

x⊕X([0, r]N )
) ∩ F 6= ∅

}
dx

=
∫

Rd

P{x ∈ F ªX([0, r]N )} dx

= E{λd(F ªX([0, r]N ))}. (5.9)

Thus, the above assumption is equivalent to assuming that

P
λd
{X([0, r]N ) ∩ F 6= ∅} > 0. (5.10)

Next, we add a cemetery point ∆ 6∈ RN
+ to RN

+ , and consider any QN
+ ∪{∆}-valued random variable

Tε such that

• Tε = ∆ if and only if X([0, r]N ) ∩ F ε = ∅; and

• on the event {X([0, r]N ) ∩ F ε 6= ∅}, X(Tε) ∈ F ε.

We remark that since F ε has an open interior, and since Xi’s are cadlag, we can always choose Tε ∈
QN

+ ∪ {∆} [as opposed to RN
+ ∪ {∆}]. Consider

µε,k(•) =
P

λd
{X(Tε) ∈ • , Tε 6= ∆ , |X(0)| ≤ k}
P

λd
{Tε 6= ∆ , |X(0)| ≤ k} ,

ϕη(x) = (2πη2)−
d
2 exp

(
− ‖x‖2

2η2

)
,

where η, k > 0 and x ∈ Rd. Owing to (5.10), µε,k is a probability measure on F ε for all ε > 0 and k > 0
large. We can smooth µε,k by convoluting it with ϕη:

fε,k;η = µε,k ? ϕη.

The function fε,k;η has the following nice properties that are simple to check: (i) fε,k;η ≥ 0 is bounded;
and (ii) both fε,k;η, f̂ε,k;η ∈ L1(Rd) ∩ L2(Rd). Thus, we can apply Lemma 5.4 [(5.4)] to obtain

sup
t∈[0,r]N

MΠ
κfε,k;η(t) ≥ e−NrU+fε,k;η

(
X(Tε)

) · 1l{Tε 6=∆ , |X(0)|≤k},
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P
λd

-a.s. [There are no problems with null sets, since on {Tε 6= ∆}, Tε ∈ QN
+ .] We square this and take

E
λd
-expectations to obtain the following as a consequence of Lemma 5.4 [(5.3)]:

4NEΨ(fε,k;η) ≥ e−2NrE
λd

{∣∣U+fε,k;η(X(Tε))
∣∣21l{Tε 6=∆ , |X(0)|≤k}

}

= e−2Nr

∫

Rd

∣∣U+ fε,k;η(x)
∣∣2 µε,k(dx) · P

λd
{Tε 6= ∆ , |X(0)| ≤ k}

≥ e−2Nr

∣∣∣∣
∫

Rd

U+fε,k;η(x)µε,k(dx)
∣∣∣∣
2

· P
λd
{Tε 6= ∆ , |X(0)| ≤ k}, (5.11)

thanks to the Cauchy–Schwarz inequality. We can apply Lemma 3.1 to see that
∫

Rd

U+ fε,k;η(x)µε,k(dx) = (2π)−d

∫

Rd

∫

Rd

eix·ξ f̂ε,k;η(−ξ)
N∏

j=1

1
1 + Ψj(ξ)

dξ µε,k(dx)

= (2π)−d

∫

Rd

|µ̂ε,k(ξ)|2 ϕ̂η(−ξ)Re
( N∏

j=1

1
1 + Ψj(ξ)

)
dξ

≥ ϑ(2π)−d

∫

Rd

|µ̂ε,k(ξ)|2 e−
1
2 η2‖ξ‖2

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ

(η→0)−→ ϑEΨ(µε,k).

In the above, the second equality follows from the fact that |µ̂ε,k(ξ)|2 ϕ̂η(−ξ) ≥ 0, and the inequality
follows from Condition (1.3). On the other hand, by (5.9),

lim
k→∞

P
λd
{Tε 6= ∆ , |X(0)| ≤ k} = P

λd
{Tε 6= ∆}

= E
{
λd

(
F ε ªX([0, r]N )

)}

≥ E{
λd

(
F ªX([0, r]N )

)}
,

since F ⊂ F ε. Finally, the integrability condition of our lemma allows us to take limits, and conclude
that limη→0 EΨ(fε,k;η) = EΨ(µε,k). Thus, (5.11) implies (5.8) after letting k ↑ ∞, from which our lemma
follows. ¤

Next, we proceed to Part (iii) of our proof. The following proposition verifies the easy half of
Theorem 1.5. Namely, if F carries a finite measure with finite energy, then the Lebesgue measure of
X(RN

+ )⊕ F has a positive expectation.

Proposition 5.7 Suppose X is an additive Lévy process in Rd with Lévy exponent Ψ = (Ψ1, . . . , ΨN ).
If F ⊂ Rd is a compact set and CΨ(F ) > 0, then for any r > 0,

E
{
λd(X([0, r]N )⊕ F )

}
> 0.

Proof Since CΨ(−F ) = CΨ(F ), as in the proof of Lemma 5.5 we only need to show that if CΨ(F ) > 0,
then for any r > 0,

E
{
λd(X([0, r]N )ª F )

}
> 0. (5.12)

We note that whenever E{λd(X([0, r]N ))} > 0, then E{λd(X([0, r]N ) ª F )} > 0 for all compact
sets F ⊂ Rd, and the proposition holds trivially. Moreover, if there exist some n ≤ N − 1, distinct
i1, . . . , in ∈ {1, . . . , N}, and a compact set F ⊂ Rd such that

E
{
λd(Xi1...in([0, r]n)ª F )

}
> 0,
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where Xi1...in = Xi1 ⊕ · · · ⊕ Xin is an n-parameter additive Lévy process, then inequality (5.12) also
holds. Hence, without loss of generality, we can and will assume that

E
{
λd(Xi1...in([0, r]n)ª F )

}
= 0 (5.13)

for all n ≤ N − 1 and distinct i1, . . . , in ∈ {1, . . . , N}.
For any ε > 0, define

ϕε(x) = (2ε)−d1l{|x|≤ε}, x ∈ Rd,

where |x| is the `∞-norm of x ∈ Rd. Then, whenever µ is a probability measure on F , µε := µ ? ϕε is
a probability measure on F ε, where ? denotes convolution, and F ε is the closed ε-enlargement of F in
the `∞-norm. To maintain some notational simplicity, we write µε both for the measure and its density
with respect to Lebesgue measure λd.

Since the P
λd
-distribution of X(t) is λd for all t ∈ RN

+ ,

E
λd

{∫

[0,r]N
e−
PN

j=1 sj µε(X(s)) ds

}
= (1− e−r)N . (5.14)

On the other hand, by Lemma 5.3, and the definition of energy [(1.4)],

E
λd

{[∫

[0,r]N
e−
PN

j=1 sj µε(X(s)) ds

]2}
≤ EΨ(µε) ≤ EΨ(µ), (5.15)

since |ϕ̂ε(ξ)| ≤ 1. Recall the Paley–Zygmund inequality: For any measure ν on the underlying measure
space, and for any nonnegative g ∈ L2(ν) ∩ L1(ν),

ν{g > 0} ≥
‖g‖2L1(ν)

‖g‖2L2(ν)

;

cf. Kahane (1985, page 8). We apply this with ν = P
λd

and

g(ω) =
∫

[0,r]N
e−
PN

j=1 sj µε(X(s)) (ω) ds.

Thanks to (5.14) and (5.15), we have ‖g‖L1(ν) = (1− e−r)N and ‖g‖2L2(ν) ≤ EΨ(µ). Therefore,

P
λd
{X([0, r]N ) ∩ F ε 6= ∅} ≥ P

λd
{g > 0} ≥ (1− e−r)2N [EΨ(µ)]−1.

It follows from (5.9) that

P
λd
{X([0, r]N ) ∩ F ε 6= ∅} = E{λd(X([0, r]N )ª F ε)}.

Thus, we can let ε ↓ 0 to obtain

E{λd(X([0, r]N )ª F )} ≥ (1− e−r)2N [EΨ(µ)]−1, (5.16)

for all probability measures µ on F that have finite energy. Since each Xj has only a countable number
of jumps, the assumption (5.13) implies that

λd

((
X([0, r]N ) \X([0, r]N )

)ª F
)

= 0, P-a.s.

Therefore, (5.16) becomes

E{λd(X([0, r]N )ª F )} ≥ (1− e−r)2N [EΨ(µ)]−1,
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for all probability measures µ on F that have finite energy. Defining 1 ÷ 0 = ∞ as we have, we can
optimize over all probability measures µ on F to deduce that

E{λd(X([0, r]N )ª F )} ≥ (1− e−r)2NCΨ(F ).

This proves (5.12), and our proposition follows. ¤

6 Convolution-Based Energies

This is a brief section on connections between the energy forms of the Introduction and the notion of
mutual energy based on convolutions. Some of this material is classical, and can be found in standard
references such as (Carleson 1983; Kahane 1985).

Any locally integrable function K : Rd \ {0} → R+ defines a mutual energy on the space of all
measures crossed itself. To be precise, the K-mutual energy of measures µ and ν is defined by

(µ, ν)K = 1
2

∫∫
K(a− b)µ(da) ν(db) + 1

2

∫∫
K(b− a)µ(da) ν(db). (6.1)

This is clearly a symmetric form, i.e., (µ, ν)K = (ν, µ)K . It also induces a capacity CK on subsets of
Rd:

CK(F ) =
[

inf
µ∈P(F )

(µ, µ)K

]−1

,

where P(F ) is the collection of all probability measures that are carried by F .
We say that K is the 1-potential density of an additive Lévy process X = {X(t); t ∈ RN

+} in Rd if
for all f : Rd → R+,

E

{∫

RN
+

e−
PN

j=1 sj f(X(s)) ds

}
=

∫

Rd

K(a)f(a) da.

It is easy to see that if the 1-potential density K(a) exists, then
∫
Rd K(a) da = 1 and K(a) > 0 for

almost every a ∈ X(RN
+ ). A sufficient condition for the existence of the 1-potential density is that X(s)

has a density function ps(a) for all s ∈ (0,∞)N . In this case,

K(a) =
∫

RN
+

e−
PN

j=1 sj ps(a) ds. (6.2)

See Hawkes (1979, Lemma 2.1) for a necessary and sufficient condition for the existence of a 1-potential
density.

Lemma 6.1 Let X be an additive Lévy process in Rd with Lévy exponent Ψ and 1-potential density K,
and suppose Condition (1.3) holds. Then, for all finite measures µ on Rd,

2−N (µ, µ)
K
≤ EΨ(µ) ≤ ϑ−1(µ, µ)

K
.

Furthermore, if (1.7) holds, then EΨ(µ) = (µ, µ)K .
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Proof Define K?(a) = 1
2 [K(a) + K(−a)] to be the symmetrization of K. Then,

K̂?(ξ) =
1
2

[ N∏

j=1

1
1 + Ψj(ξ)

+
N∏

j=1

1
1 + Ψj(ξ)

]

= Re
( N∏

j=1

1
1 + Ψj(ξ)

)
. (6.3)

We note that K̂? is a real function and, under Condition (1.3), it is also nonnegative. Hence, by Fubini’s
theorem,

(µ, µ)
K

=
∫∫

Rd×Rd

K?(a− b)µ(da) µ(db)

= (2π)−d

∫∫ ∫
e−iξ·(a−b)K̂?(ξ) dξ µ(da)µ(db)

= (2π)−d

∫

Rd

|µ̂(ξ)|2 K̂?(ξ) dξ. (6.4)

Together, this and (6.3) imply the second portion of the lemma, as well as the asserted upper bound
on EΨ(µ). It remains to verify the corresponding lower bound for EΨ(µ).

Note that if f : Rd → R+ is measurable, U+f ≤ Uf , pointwise; cf. (3.2) and (3.3). In particular,
∫

Rd

f(x)U+f(x) dx ≤
∫

Rd

f(x)Uf(x) dx. (6.5)

Thanks to Lemma 3.1, for all nonnegative functions f ∈ L1(Rd) ∩ L2(Rd) with f̂ ∈ L1(Rd), (6.5) is
equivalent to:

∫

Rd

|f̂(ξ)|2Re
( N∏

j=1

1
1 + Ψj(ξ)

)
dξ ≤ 2N

∫

Rd

|f̂(ξ)|2
N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ.

Now, given any finite measure µ on the Borel subsets of Rd, we can replace, in the preceding display, f
by fε ? µ, where fε is the Gaussian mollifier of (4.6), and obtain

∫

Rd

|µ̂(ξ)|2e− ε
2‖ξ‖2Re

( N∏

j=1

1
1 + Ψj(ξ)

)
dξ ≤ 2N

∫

Rd

|µ̂(ξ)|2e− ε
2‖ξ‖2

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
dξ.

Thanks to (1.3), both integrands are nonnegative. Thus, we can let ε ↓ 0, and appeal to Lebesgue
monotone convergence theorem to deduce that

(2π)−d

∫

Rd

|µ̂(ξ)|2Re
( N∏

j=1

1
1 + Ψj(ξ)

)
dξ ≤ 2NEΨ(µ).

Owing to (6.4), the left-hand side equals (µ, µ)K , which completes our proof. ¤

Proposition 6.2 Suppose X is an additive Lévy process on Rd with Lévy exponent Ψ that satisfies
Condition (1.3) and X has a 1-potential density K. Then, for any compact set F ⊂ Rd, the following
are equivalent:
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(i) There exists a finite measure µ on F with (µ, µ)
K

< +∞.

(ii) λd(HF ) > 0, where
HF =

{
a ∈ Rd : P

[
X(RN

+ ) ∩ ({a} ⊕ F ) 6= ∅]
> 0

}
.

(iii) HF 6= ∅.

If, in addition, K is almost everywhere positive, then the above is also equivalent to

(iv) HF = Rd.

Remark 6.3 In the classical setting where N = 1, this theorem is well known. For instance, when F is
a singleton, this proposition was considered first by Orey (1967), and later on by Kesten (1968) and
Bretagnolle (1971). The same remark applies to the equivalence of (iv) and (ii). When F ⊂ Rd is a
general closed set, this result can be found in Bertoin (1996, Chapter II). Furthermore, the equivalence
of (ii) and (iii) appears in Hawkes (1979, Theorem 2.1). ¤

Proof We observe that by (5.9), and by Fubini’s theorem,

E
{
λd(X(RN

+ )ª F )
}

=
∫

Rd

P{X(RN
+ ) ∩ [{a} ⊕ F ] 6= ∅} da. (6.6)

Hence, (i) ⇐⇒ (ii) follows from Theorem 1.5 and Lemma 6.1. It is also clear that (ii) ⇒ (iii). To
prove (iii) ⇒ (ii), note that for all s ∈ RN

+ and all a ∈ Rd,

P
{
X

(
(s,∞)

) ∩ [{a} ⊕ F ] 6= ∅
}

=
∫

Rd

P
{
X(RN

+ ) ∩ [{a− b} ⊕ F ] 6= ∅
}
P{X(s) ∈ db},

where (s,∞) = {t ∈ RN
+ ; t< s}. We multiply the above by exp(−∑

j sj) and integrate [ds] to obtain
∫

RN
+

P
{
X

(
(s,∞)

) ∩ [{a} ⊕ F ] 6= ∅
}
e−
PN

j=1 sj ds

=
∫

Rd

P
{
X(RN

+ ) ∩ [{a− b} ⊕ F ] 6= ∅
}
K(b) db.

(6.7)

If (iii) holds, then for some a ∈ Rd, the left-hand side of (6.7) is positive. Therefore,

P
{
X(RN

+ ) ∩ [{a− b} ⊕ F ] 6= ∅}
> 0,

for b in a set of positive Lebesgue measure, which implies λd(HF ) > 0. This prove the first half of the
proposition. Since it is clear that (iv) ⇒ (i), it remains to prove (i) ⇒ (iv).

If (iv) did not hold, there would exist an a ∈ Rd such that the left-hand side of (6.7) would equal 0.
This would then imply that

∫

Rd

P
{
X(RN

+ ) ∩ [{a− b} ⊕ F ] 6= ∅}
K(b) db = 0.

Since K > 0 almost everywhere, we would have

P
{
X(RN

+ ) ∩ [{a− b} ⊕ F ] 6= ∅
}

= 0 λd-almost every b ∈ Rd.

Equation (6.6) would then imply that E{λd(X(RN
+ ) ª F )} = 0. Using Theorem 1.5 and Lemma 6.1

again, we would derive a contradiction to (i). We have shown that (i) ⇒ (iv), which completes our
proof. ¤
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Remark 6.4 The almost everywhere positivity of the function K is indispensable, as can be seen by
considering a nonnegative stable subordinator X, and by letting F = [−2,−1]. In this case (iii) clearly
does not hold. ¤

In the following, we prove a zero-infinity law for λd(X(RN
+ )).

Proposition 6.5 Suppose X is an additive Lévy process on Rd with Lévy exponent Ψ that satisfies
Condition (1.3), and has an a.e. positive 1-potential density K. Then,

λd(X(RN
+ )) ∈ {0,+∞}, P-a.s.

Proof Assuming that E{λd(X(RN
+ ))} < ∞, we first show that the value of this expectation is, in

fact, zero. Bearing this goal in mind, we note that for any n > 0,

E{λd(X(RN
+ ))} ≥ E{λd(X([0, n]N ))}+ E{λd(X((n,∞)N ))}

−E{λd[X([0, n]N ) ∩X((n,∞)N )]}
= E{λd(X([0, n]N ))}+ E{λd(X(RN

+ ))}
−E{λd[X([0, n]N ) ∩X ′(RN

+ )]},
where X ′ is an independent copy of X. Consequently, we see that if E{λd(X(RN

+ ))} < ∞,

E{λd(X([0, n]N ))} ≤ E{λd[X([0, n]N ) ∩X ′(RN
+ )]}.

Let n ↑ ∞ to see that as long as E{λd(X(RN
+ ))} < ∞,

E{λd(X(RN
+ ))} ≤ E{λd[X(RN

+ ) ∩X ′(RN
+ )]}.

Define ϕ(a) = P{a ∈ X(RN
+ )}, and note that the above is equivalent to

∫

Rd

ϕ(a) da ≤
∫

Rd

ϕ2(a) da.

Since 0 ≤ ϕ(a)(1− ϕ(a)) ≤ 1 for all a ∈ Rd, we have

ϕ(a) ∈ {0, 1}, λd-almost every a ∈ Rd.

Consequently, if E{λd(X(RN
+ ))} is finite,

E{λd(X(RN
+ ))} = λd(ϕ−1{1}). (6.8)

It follows from Proposition 6.2 that either ϕ(a) = 0 for all a ∈ Rd or > 0 for all a ∈ Rd. This means that
λd(ϕ−1{1}) = 0; for, otherwise, ϕ−1{1} = Rd, which has infinite λd-measure, and this would contradict
(6.8). In order words, we have demonstrated that

E{λd(X(RN
+ ))} < ∞ =⇒ λd(ϕ−1{1}) = 0 =⇒ E{λd(X(RN

+ ))} = 0.

We now “remove the expectation” from this statement and finish our proof. Suppose E{λd(X(RN
+ ))}

> 0 (which means that E{λd(X(RN
+ ))} = ∞), and note that for any ν > 0,

λd(X(RN
+ )) ≥ sup

n≥0
λd(X([n, n + ν]N )) = sup

n≥0
Γν

n.

Since Γν
0 ,Γν

1+ν , Γν
1+2ν , . . . are i.i.d., by the Borel-Cantelli lemma, for any ν > 0,

λd(X(RN
+ )) ≥ E{Γν

0} = E{λd(X([0, ν]N ))}, P-a.s.

We can let ν ↑ ∞ along a sequence of rational numbers to deduce from E{λd(X(RN
+ ))} = ∞ that

λd(X(RN
+ )) = ∞, a.s. ¤
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7 Bessel–Riesz Capacities

The α-dimensional Bessel-Riesz (sometimes only Riesz-) energies and capacities on Rd are those that
correspond to K = R(α), where

R(α)(a) =





1, if α < 0,

ln(1/‖a‖), if α = 0,

‖a‖−α, if α > 0,

∀a ∈ Rd. (7.1)

In this case we will write (µ, µ)(α) , in place of the more cumbersome (µ, µ)
R(α)

, and write C(α) for
the corresponding capacity.

There are deep connections between α-dimensional Bessel-Riesz capacities and ordinary one-parameter
Lévy processes when 0 < α ≤ 2. In this section, we show that, by considering additive Lévy processes,
one can have a probabilistic interpretation of sets of positive α-dimensional capacity for any α > 0.

Example 7.1 Suppose B = B1 ⊕ · · · ⊕ BN is additive Brownian motion in Rd. That is, Bi’s are
independent d-dimensional Brownian motions. Then, by (6.2), it is easy to see that the 1-potential
density of B is

K(a) =
1

(2π)
d
2 (N − 1)!

∫ ∞

0

e−t− ‖a‖2
2t t−

d
2 +N−1 dt, ∀a ∈ Rd.

This calculation only requires the elementary fact that

λk

({q ∈ Rk
+ : q1 + · · ·+ qk ≤ x}) =

1
k!

xk, ∀x ≥ 0, k = 1, 2, . . . ,

which, itself, follows form symmetry considerations. Furthermore, it is a simple matter to check that

lim
a→0

K(a)
R(d−2N)(a)

=
Λ

(
d
2 −N

)

(2π)
d
2 (N − 1)!

,

where R(α) is defined in the Riesz kernel of (7.1), and for all x ∈ R,

Λ(x) = 2x+Γ(|x|),

where x+ = max(x, 0). Consequently, we can deduce that for any compact set F ⊂ Rd, there are two
constants, A1 and A2 such that for all x ∈ F ª F ,

A1R(d−2N)(x) ≤ K(x) ≤ A2R(d−2N)(x).

This, Lemma 6.1, and Theorem 1.5, together, combine to show that B(RN
+ ) ⊕ F can have positive

Lebesgue measure if and only if C(d−2N)(F ) > 0. ¤

With a little more work, and motivated by this example, we can find additive Lévy processes that
correspond to any Bessel–Riesz capacity of interest. Recall that X1 ⊕ · · · ⊕ XN is additive stable of
index α ∈ (0, 2], if X1, . . . , XN are independent isotropic stable processes with index α each.

Theorem 7.2 Suppose X = X1⊕ · · · ⊕XN is an additive stable process of index α ∈ (0, 2], and in Rd.
Then, for any compact set F ⊂ Rd,

E{λd(X(RN
+ )⊕ F )} > 0 ⇐⇒ C(d−αN)(F ) > 0.
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Remark 7.3 Upon varying d,N ∈ N, and α ∈ (0, 2], we see that this theorem associates an additive
Lévy process to any Bessel–Riesz capacity, including those with dimension > 2. ¤

Theorem 7.2 follows from Theorem 1.5 and the arguments of Example 7.1, once we establish

Proposition 7.4 Let X denote an N -parameter additive stable process in Rd. Then, X has a 1-
potential density, K, whose asymptotics at the origin are described by the following:

lim
a→0

K(a)
R(d−Nα)(a)

= C(α, d, N), (7.2)

where R(•) is the Riesz kernel of (7.1), and C(α, d, N) is a positive and finite constant depending on
α, d and N only. Moreover, there exists a positive constant C̃ = C̃(α, d,N) such that

K(a) ≤ C̃ R(d−Nα)(a), ∀a ∈ Rd. (7.3)

Proof In light of Example 7.1, we can assume, without loss generality, that 0 < α < 2.
We denote the density function of X1(1) by p1(x). Here, p1 is scaled as

e−‖ξ‖
α

=
∫

Rd

eix·ξp1(x)dx.

It is possible to show that p1(x) is a continuous and strictly positive function on Rd that is isotropic,
i.e., it depends on x only through ‖x‖.

Direct calculations reveal that the 1-potential density of X is

K(a) =
1

(N − 1)!

∫ ∞

0

tN−1−d/αe−t p1(at−1/α) dt, ∀a ∈ Rd. (7.4)

On the other hand, by using Bochner’s subordination, we can write

p1(x) = ‖x‖−d

∫ ∞

0

ν

(
s

‖x‖2
)

g(α/2)(s) ds, (7.5)

where the function ν is defined as

ν(s) = (4πs)−d/2 exp
(
− 1

4s

)
,

g(α/2)(s) is the density function of the random variable τ(1), and where τ = {τ(t), t ≥ 0} is a stable
subordinator of index 1

2α; cf. for example, Bendikov (1994). It should be recognized that that
a 7→ K(a) is isotropic and strictly decreasing in ‖a‖.

It follows from (7.4) and (7.5), combined with Fubini’s theorem, that

K(a) =
‖a‖−d

(N − 1)!

∫ ∞

0

∫ ∞

0

tN−1 e−t ν

(
st2/α

‖a‖2
)

g(α/2)(s) ds dt

=
α/2

(4π)d/2(N − 1)!
‖a‖αN−d

∫ ∞

0

s−αN/2g(α/2)(s) ds×

×
∫ ∞

0

u
1
2 (αN−d)−1 exp

(
−‖a‖

α

sα/2
uα/2

)
exp

(
− 1

4u

)
du. (7.6)
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When d− αN > 0, (7.6) and the monotone convergence theorem imply

lim
a→0

K(a)
R(d−Nα)(a)

=
α/2

(4π)d/2(N − 1)!

∫ ∞

0

s−
αN
2 g(α/2)(s) ds

∫ ∞

0

u
1
2 (αN−d)−1 exp

(− 1
4u

)
du.

Hence, when d− αN > 0, we can identify the constant C(α, d, N) in (7.2) as

C(α, d, N) =
α2d−αN−1

(4π)d/2(N − 1)!
Γ
(1
2
(d− αN)

) ∫ ∞

0

s−
αN
2 g(α/2)(s) ds

In the above, note that
∫ ∞

0

s−
αN
2 g(α/2)(s)ds = E[τ(1)−

αN
2 ] =

∫ ∞

0

P
{

τ(1) ≤ x−
2

αN

}
dx < +∞, (7.7)

by a well known estimates for P{τ(1) ≤ ε} as ε → 0; see, e.g., Hawkes (1971), or Bertoin (1996, p.
88).

If d− αN = 0, we split the last integral in (7.6) as

∫ ‖a‖−1

0

(· · · ) du +
∫ ∞

‖a‖−1
(· · · ) du = I1(a) + I2(a). (7.8)

We note that

exp
(
−‖a‖

α/2

sα/2

) ∫ ‖a‖−1

0

u−1 exp
(
− 1

4u

)
du ≤ I1(a) ≤

∫ ‖a‖−1

0

u−1 exp
(
− 1

4u

)
du,

and, thanks to L’Hopital’s rule,

lim
a→0

∫ ‖a‖−1

0
u−1 exp

(− 1
4u

)
du

log ‖a‖−1
= 1.

Thus,

lim
a→0

I1(a)
log ‖a‖−1

= 1. (7.9)

On the other hand,

exp
(
−‖a‖

4

) ∫ ∞

‖a‖−1
u−1 exp

(
−‖a‖

α

sα/2
uα/2

)
du ≤ I2(a) ≤

∫ ∞

‖a‖−1
u−1 exp

(
−‖a‖

α

sα/2
uα/2

)
du,

and by using L’Hopital’s rule again, we obtain

lim
a→0

I2(a)
log ‖a‖−1

= lim
a→0

1
log ‖a‖−1

∫ ∞

‖a‖−1
u−1 exp

(− ‖a‖α

sα/2
uα/2

)
du

= lim
a→0

[
− exp

(
−‖a‖

α/2

sα/2

)
+

α‖a‖α

sα/2

∫ ∞

‖a‖−1
u−1+α/2 exp

(
−‖a‖

α

sα/2
uα/2

)
du

]

= 1. (7.10)

It follows from (7.6), (7.8), (7.9) and (7.10), combined with Lebesgue dominated convergence theorem
(the above upper bounds for I1(a) and I2(a) are used here), that when d− αN = 0,

lim
a→0

K(a)
R(0)(a)

=
α

(4π)d/2(N − 1)!

∫ ∞

0

s−
αN
2 gα/2(s) ds.
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In case d− αN < 0, (7.6) tells us that we only need to show that the following limit exists:

lim
a→0

‖a‖αN−d

∫ ∞

0

u
1
2 (αN−d)−1 exp

(
−‖a‖

α

sα/2
uα/2

)
exp

(
− 1

4u

)
du.

After changing variables and appealing to the monotone convergence theorem, we can see that the
above limit equals ∫ ∞

0

v
1
2 (αN−d)−1 exp

(
−vα/2

sα/2

)
dv.

Hence, in this case, we apply (7.6), and change variables once more, to show that (7.2) holds with

C(α, d, N) =
Γ
(
N − d

α

)

(4π)d/2(N − 1)!

∫ ∞

0

s−d/2g(α/2)(s) ds,

where, as in (7.7), the last integral is finite.
Finally, the inequality (7.3) follows readily by adapting the aforementioned arguments. For example,

when d− αN > 0, it follows from (7.6) that

K(a)
R(d−Nα)(a)

≤ α/2
(4π)d/2(N − 1)!

∫ ∞

0

s−αN/2gα/2(s)ds ·
∫ ∞

0

u
1
2 (αN−d)−1 exp

(
− 1

4u

)
du.

We omit the other two cases, and declare the proof of Proposition 7.4 complete. ¤

8 Proof of Theorem 1.6

We will use Frostman’s theorem of potential theory; cf. Kahane (1985; Chapter 10) or Carleson
(1983). Recall that the latter states that for any Borel set G ⊂ Rd, the capacitary and the Hausdorff
dimensions of G agree. That is,

dim(G) = sup
{
γ > 0 : C(γ)(G) > 0

}
, (8.1)

where C(γ) is the Bessel–Riesz capacity of §7, and sup∅ = 0.
Now, we introduce an M -parameter additive stable process Y in Rd whose index is α ∈ (0, 2]. The

process Y is totally independent of X, and we will determine the constants M and α shortly. Note that
X⊕Y is an (N +M)-parameter additive Lévy process in Rd whose Lévy exponent Φ = (Φ1, . . . , ΦN+M )
is given by

Φj(ξ) =

{
Ψj(ξ), if j = 1, . . . , N ,
1
2‖ξ‖α, if j = N + 1, . . . , N + M .

Clearly,

∫

Rd

N+M∏

j=1

Re
(

1
1 + Φj(ξ)

)
dξ < +∞ ⇐⇒ I(Mα) < +∞,

where for all γ ∈ R,

I(γ) =
∫

ξ∈Rd: ‖ξ‖>1

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
‖ξ‖−γ dξ.
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Thus, we can apply Theorem 1.1 to the process X ⊕ Y , and see that

E
{
λd(X(RN

+ )⊕ Y (RM
+ ))

}
> 0 ⇐⇒ I(Mα) < +∞.

On the other hand, we can also apply Theorem 7.2, conditionally on F = X(RN
+ ), to deduce that

E
{
λd(X(RN

+ )⊕ Y (RM
+ ))

}
> 0 ⇐⇒ E

{
C(d−Mα)(X(RN

+ ))
}

> 0.

We combine the latter two displays to obtain:

E
{
C(d−Mα)(X(RN

+ ))
}

> 0 ⇐⇒ I(Mα) < +∞.

Consequently, when I(Mα) = +∞, C(d−Mα)(X(RN
+ )) = 0, P-almost surely. From Frostman’s theorem

[(8.1)], we deduce that I(Mα) = +∞ implies that P-a.s., dim(X(RN
+ )) ≤ d −Mα. On the other hand,

we can choose M ∈ {1, 2, . . .}, and rational α1, α2, . . . ∈ (0, 2] such that Mαj ↑ η; this shows that
dim(X(RN

+ )) ≤ d − η, P-almost surely. In particular, if η = d, then dim(X(RN
+ )) = 0, P-almost

surely, and this constitutes half of our theorem. For the other half, we use the same argument, but
quantitatively.

For the converse half, we only need to consider the case when η < d. With this in mind, choose
α ∈ (0, 2] and M ∈ {1, 2, . . .} such that η < Mα < d. Thus, we can deduce from the preceding
paragraph that

I(Mα) < +∞.

We now recall the killed occupation measure Oκ from (2.1) and (5.1). This is a Borel probability
measure carried by X(RN

+ ), and we claim that as long as 0 < d− αM < d− η,

(Oκ,Oκ)(d−Mα) < +∞, P-a.s., (8.2)

where (Oκ,Oκ)(γ) is the γ-dimensional Bessel–Riesz energy of Oκ as defined in §7. Together with
Frostman’s theorem [(8.1)], this shows that with probability one, dim(X(RN

+ )) ≥ d−Mα. This is the
key part of our proof, since we can approximate η from above arbitrarily well by numbers of the form Mα
(M ∈ {1, 2, . . .}, α ∈ (0, 2]∩Q). In this way, we deduce that with probability one, dim(X(RN

+ )) ≥ d−η,
as asserted.

At this point, we only need to establish (8.2). For this purpose, recall the process Y , as above, and
consider its Lévy exponent Λ = (Λ1, . . . , ΛM ), where Λi(ξ) = 1

2‖ξ‖α, i = 1, . . . ,M . The process Y has
a 1-potential density K whose asymptotics are described by Proposition 7.4. After applying Lemma
6.1 to Y , we deduce that (Oκ,Oκ)K = EΛ(Oκ), P-almost surely. In particular, Lemma 5.2 gives

E
{
(Oκ,Oκ)

K

}
= (2π)−d

∫

Rd

|Ôκ(ξ)|2 · {1 + 1
2‖ξ‖α}−M dξ

= (2π)−d

∫

Rd

N∏

j=1

Re
(

1
1 + Ψj(ξ)

)
· {1 + 1

2‖ξ‖α}−M dξ,

which is finite, since I(Mα) < +∞. Therefore, we have found a random measure Oκ on the random
set X(RN

+ ) such that with probability one, (Oκ,Oκ)
K

< +∞. Thanks to Proposition 7.4, there is a
positive and finite constant C ′, depending on α, d and N only, such that

R(d−Nα)(a) ≤ C ′K(a), ∀a ∈ Rd with ‖a‖ ≤ 1.

Hence,
(Oκ,Oκ)(d−Mα) ≤ 1 + C ′ × (Oκ,Oκ)

K
< +∞.

This verifies (8.2), whence Theorem 1.6 follows. ¤
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9 Concluding Remarks

A number of interesting questions remain unresolved some of which are listed below.

Question 9.1 Do Theorems 1.1 and 1.5 hold for all additive Lévy processes? One only needs to worry
about the necessity since in both theorems the sufficiency has already been shown to hold generally.

A possible approach for proving Theorem 1.1 without Condition (1.3) is as follows: In light of
Lemma 5.2 and the upper bound in Theorem 2.1, it suffices to show that

∃µ ∈ P(E) : ‖µ‖e < +∞ =⇒ ‖κ‖e < +∞. (9.1)

When ‖ • ‖e is an energy norm based on a positive definite convolution kernel, one can prove such a
result by appealing to simple Fourier analytical arguments. In the present general setting, however, we
do not know how to proceed. In the Appendix below, we derive an analytical estimate that may be of
independent interest, and which barely falls short of settling this open problem by way of verifying the
preceding display. ¤

Question 9.2 A simpler, but still interesting open problem is to find a necessary and sufficient condition
for X(RN

+ )⊕F to have positive Lebesgue measure with positive probability when Xi’s are independent
[but, otherwise, arbitrary] subordinators. Equivalently, we ask for a necessary and sufficient condition
for the existence of local times of N -parameter additive subordinators without a condition such as (1.3).
¤

Question 9.3 In light of Theorem 1.6, it would be interesting to determine an exact Hausdorff measure
function that gauges the size of X([0, 1]N ). For stable sheets and two-parameter additive subordinators,
related results can be found in Ehm (1981) and Hu (1994). ¤

10 Appendix

In this Appendix we present a possible alternative approach for proving Theorem 1.1 without Condition
(1.3) that involves an estimate that may be of independent analytical interest. As we mentioned in
Section 9, the key is to prove (9.1). In the present general setting, we are only able to verify a partial
derivation; cf. Proposition 10.3 and Remark 10.4 below.

Given any measure µ on RN
+ , and given s ∈ RN , write

µ(s)(•) = µ(•+ s)

for the s-shift of µ. We note that µ(s) need not be a measure on RN
+ although µ is assumed to be.

Lemma 10.1 (Shift invariance of energy norm) The map µ 7→ ‖µ‖e is shift invariant in the sense
that whenever µ and µ(s) are both finite measures on RN

+ ,

‖µ‖e = ‖µ(s)‖e.

Proof This follows immdiately from our computation of ‖µ‖e in Lemma 2.4. ¤

Next, we prove that convolutions reduce the norm. To be more precise,

Lemma 10.2 (Norm reduction of convolutions) Suppose ϕ is a probability density function on
RN such that ϕ ? µ and µ are both in P(RN

+ ). Then,

‖ϕ ? µ‖e ≤ ‖µ‖e.
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Proof We write ϕ ? µ for both the measure, and its density with respect to Lebesgue measure λN . In
this way we can write the corresponding occupation measure as

Oϕ?µ(f) =
∫

RN
+

f(X(s))ϕ ? µ(s) ds.

Using Fubini’s theorem, twice in succesion, we obtain

Ôϕ?µ(ξ) =
∫

RN
+

eiξ·X(s) ds

∫

RN
+

ϕ(s− t)µ(dt)

=
∫

RN
+

µ(dt)
∫

RN
+ª{t}

eiξ·X(v+t) ϕ(v)dv

=
∫

RN

ϕ(v)dv

∫

RN
+ª{v}

eiξ·X(v+t) µ(dt)

=
∫

RN

Ôµ(v)(ξ)ϕ(v) dv.

To this, we apply the Cauchy–Schwarz inequality twice as follows:

‖ϕ ? µ‖2e = (2π)−d

∫

Rd

∫∫

RN×RN

E
{
Ôµ(u)(ξ)Ôµ(v)(ξ)

}
ϕ(u)ϕ(v) du dv dξ

≤ (2π)−d

∫

Rd

∣∣∣∣
∫

RN

√
E

{ ∣∣∣Ôµ(v)(ξ)
∣∣∣
2 }

ϕ(v) dv

∣∣∣∣
2

dξ

≤ (2π)−d

∫

Rd

∫

RN

E
{
|Ôµ(v)(ξ)|2

}
ϕ(v) dv dξ

= ‖µ‖2e,
thanks to Lemma 10.1. ¤

We conclude this appendix by showing that if there are any probability measures of finite norm on
a given compact set F , Lebesgue measure on F is also of finite norm.

Proposition 10.3 Suppose F ⊂ RN
+ is compact. Then,

‖λNcF ‖e ≤ 2N sup
t∈F

|t|N inf
µ∈P(F )

‖µ‖e,

where λNcF
denotes the restriction of λN to F .

Proof First, we suppose that F is a compact subset of (0,∞)N . At the end of our proof, we show
how this condition can be removed.

Since F ⊂ (0,∞)N , its closed ε-enlargement (written as F ε) is a subset of RN
+ for all ε > 0 small

enough.
For all ε > 0, define the function ϕε, on RN , by

ϕε(r) = (2ε)−N1lB(0,ε)(r), ∀r ∈ RN ,

where

B(s, r) =
{
t ∈ RN : |t− s| ≤ r

}
, ∀s ∈ RN , r > 0,
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and |t| = max1≤i≤N |ti| is the `∞-norm on RN . We note the following logical sequence:

µ ∈ P(F ) =⇒ ϕε ? µ ∈ P(F ε)

=⇒ ∀ε > 0 small, ϕε ? µ ∈ P(RN
+ )

=⇒ ∀ε > 0 small, ‖ϕε ? µ‖e ≤ ‖µ‖e,

the last inequality following from the norm reduction of convolutions; cf. Lemma 10.2. For each η > 0,
let fη denote the density of η

1
2 times a d-dimensional vector of independent standard Gaussians; cf.

(4.6). We note that for all ε > 0 sufficiently small,

Oϕε?µ(fη) = (2ε)−N

∫
fη(X(s))µ

(
B(s, ε)

)
ds.

[The only reason for our insisting on the smallness of is to ensure that ϕε ? µ ∈ P(RN
+ ). Of course,

here, “small” means “small enough to ensure that F ε ⊂ RN
+ .”] We will use this formula, and a covering

argument, to obtain a simple bound.
For any compact set K ⊂ RN

+ , and for all ε > 0, let NK(ε) denote the minimum number of `∞-balls
of radius ε needed to cover K. NK is sometimes called the metric entropy of K. Plainly, if ε > 0 is fixed
but sufficiently small, we can find s1, . . . , sNF (ε) ∈ RN

+ such that B(sj , ε) ⊂ RN
+ and ∪NF (ε)

j=1 B(sj , ε) ⊇ F.

Consequently,
∑NF (ε)

j=1 µ(B(sj , ε)) ≥ µ(F ) = 1. We can deduce the existence of a point s? ∈ RN
+ such

that µ(B(s?, ε)) ≥ [NF (ε)]−1. [Warning: s? may depend on ε.] On the other hand, for all s ∈ B(s?, ε),
B(s, 2ε) ⊇ B(s?, ε), thanks to the triangle inequality. In other words, we have shown that for

inf
s∈B(s?,ε)

µ
(
B(s, 2ε)

) ≥ 1
NF (ε)

.

The display preceding the above, then, shows that

Oϕ2ε?µ(fη) ≥ 1
(4ε)NNF (ε)

∫

B(s?,ε)

fη(X(s)) ds

=
1

(4ε)NNF (ε)
OλNcB(s?,ε)

(fη).

In other words,

E
λd

{∣∣Oϕ2ε?µ(fη)
∣∣2} ≥ 1

(4ε)2N [NF (ε)]2
E

λd

{∣∣OλNcB(s?,ε)
(fη)

∣∣2}.

We apply Lemma 3.5 to see that for any finite measure ν, on RN
+ ,

E
λd

{∣∣Oν(fη)
∣∣2} ↑ ‖ν‖2e, as η ↓ 0. (10.1)

Thus, we have shown that for all ε > 0 sufficiently small,

‖ϕ2ε ? µ‖2e ≥
1

(4ε)2N [NF (ε)]2
‖λNcB(s?,ε)‖2e.

Since convolutions decrease the energy norm, the first term is bounded above by ‖µ‖2e; cf. Lemma 10.1.
By shift invariance, we then conclude that for any `∞-ball B of radius ε,

‖µ‖2e ≥
1

(4ε)2N [NF (ε)]2
‖λNcB

‖2e,
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as long as ε > 0 is sufficiently small. But ‖ • ‖e is a seminorm [Lemma 5.1]. Thus,

‖λNcF
‖e ≤

NF (ε)∑

j=1

‖λNcB(sj,ε)
‖e

≤ 4NεN |NF (ε)|2 · ‖µ‖e, (10.2)

for any ε > 0 that makes F ε ⊂ RN
+ . We now claim that this holds for all ε > 0, and remove the

assumption that F ⊂ (0,∞)N in one sweep.
For any real number c > 0, consider the set 〈c〉 + F = {〈c〉 + s; s ∈ F}, where 〈c〉 is the N -vector

all of whose coordinates are c. By shift invariance, λNcF
and λNc〈c〉+F

have the same energy norm
[Lemma 10.1]. Furthermore, N〈c〉+F = NF . Thus, if we only know that F ⊂ RN

+ , by considering 〈c〉+F
in place of F in (10.2), we arrive at the following:

‖λNcF ‖e ≤ 4NεN |NF (ε)|2 · ‖µ‖e,

whenever (〈c〉+ F )ε ⊂ RN
+ , which holds when c > ε. Since the above inequality is independent of c, we

can deduce that (10.2) holds for all compact sets F ⊂ RN
+ , and for all ε > 0. Let ε equal the `∞-radius

of F and note that, for this choice of ε, NF (ε) = 1, while εN ≤ 2−N supt∈F |t|N . ¤

Remark 10.4 Proposition 10.3 comes very close to showing that Theorem 1.1 holds without restrictions
such as Condition (1.3). Indeed, suppose that E{λd(X(RN

+ ))} > 0. Then, by Theorem 2.1, there exists
a nonrandom t ∈ RN

+ , and a µ ∈ P([0, t]) such that ‖µ‖e < +∞. Proposition 10.3, then, shows that
‖λNc[0,t]‖e < +∞. We now appeal to Theorem 1.3 to deduce the existence of a local time process,
RN

+ 3 t 7→ `t(•) = LλNc[0,t](•), such that for all t ∈ RN
+ , and all bounded measurable f : Rd → R, the

following holds P-a.s.: ∫

[0,t]

f(X(s)) ds =
∫

Rd

f(a)`t(a) da.

Moreover, `t ∈ L2(Rd), P-almost surely. Theorem 1.1 can be shown to follow, if we could show that
this fact would imply that

∫
RN

+
exp(−∑N

j=1 tj)‖`t‖L2(Rd) dt has a finite expectation. When N = 1, this
follows from the strong Markov property. (Of course, when N = 1, Condition (1.3) holds tautologically.)
However, when N > 1, we do not know if such a fact holds. ¤
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