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Abstract

We provide sufficient conditions for a real-valued Gaussian
random field X = {X(t), t ∈ RN} to be strongly locally non-
deterministic. As applications, we establish small ball probability
estimates, Hausdorff measure of the sample paths, sharp Hölder
conditions and tail probability estimates for the local times of a
large class of Gaussian random fields.
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1 Introduction and definitions of local non-
determinism

In recent years, many authors have applied Gaussian processes and fields
with stationary increments as stochastic models in telecommunications,
turbulence, image processing, geostatistics, hydrology and finance. See,
for example, Addie et al. (1999), Anh et al. (1999), Mannersalo and
Norros (2002), Mueller and Tribe (2002), Bonami and Estrade (2003),
Cheridito (2004), Benson et al. (2006), Biermé et al. (2007). These
applications have raised many interesting theoretical questions about
Gaussian random fields in general.

One of the major difficulties in studying the probabilistic, analytic
or statistical properties of Gaussian random fields is the complexity of
their dependence structures. As a result, many of the existing tools from
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theories on Brownian motion, Markov processes and martingales fail for
Gaussian random fields; and one often has to use general principles for
Gaussian processes or to develop new tools. In this paper, we show that
in many circumstances, the properties of local nondeterminism can help
us to overcome this difficulty so that many elegant and deep results of
Brownian motion (and Markov processes) can be extended to Gaussian
random fields.

This paper is a companion to Xiao (2006), where several results in
this paper have been announced without proof. Further developments on
other forms of local nondeterminism, especially for anisotropic Gaussian
random fields, and their applications have been given in Khoshnevisan
and Xiao (2004), Khoshnevisan, Wu and Xiao (2006), Wu and Xiao
(2006), Ayache, Wu and Xiao (2006) and Xiao (2006b).

The concept of local nondeterminism (LND, in short) of a Gaussian
process was first introduced by Berman (1973) to unify and extend his
methods for studying the existence and joint continuity of local times of
Gaussian processes. Let X = {X(t), t ∈ R+} be a separable Gaussian
process with mean 0 and let J ⊂ R+ be an interval. Assume that
E[X(t)2] > 0 for all t ∈ J and there exists δ > 0 such that

σ2(s, t) = E
[
(X(s)−X(t))2

]
> 0

for all s, t ∈ J with 0 < |s− t| < δ. Recall from Berman (1973) that X
is called locally nondeterministic on J if for every integer m ≥ 2,

lim
ε→0

inf
tm−t1≤ε

Vm > 0, (1.1)

where Vm is the relative prediction error:

Vm =
Var

(
X(tm)−X(tm−1)|X(t1), . . . , X(tm−1)

)

Var
(
X(tm)−X(tm−1)

)

and the infimum in (1.1) is taken over all ordered points t1 < t2 < · · · <
tm in J with tm − t1 ≤ ε.

This definition of LND was extended by Cuzick (1978) who defined
local φ-nondeterminism by replacing the variance σ2(tm, tm−1) by φ(tm−
tm−1), where φ : R+ → R+ is an arbitrary function with φ(0) = 0.
It follows from Berman (1973, Lemma 2.3) that (1.1) is equivalent to
the following property: For every integer m ≥ 2, there exist positive
constants cm and ε (both may depend on m) such that

Var
( m∑

k=1

uk

(
X(tk)−X(tk−1)

)) ≥ cm

m∑

k=1

u2
k σ2(tk−1, tk) (1.2)

for all ordered points t1 < t2 < · · · < tm in J with tm−t1 < ε and uk ∈ R
(k = 1, . . . , m). Pitt (1978) used (1.2) to define local nondeterminism



Strong Local Nondeterminism and Sample Path Properties 3

of a Gaussian random field X = {X(t), t ∈ RN} with values in Rd by
introducing a partial order among t1, . . . , tm ∈ RN .

Roughly speaking, (1.2) suggests that the increments of X are as-
ymptotically independent so that many of the results on the local times
of Brownian motion can be extended to general Gaussian random fields.
For example, Berman (1972, 1973), Pitt (1978) have applied LND to
prove the joint continuity and Hölder conditions of the local times of
a large class of Gaussian processes. See the comprehensive survey of
Geman and Horowitz (1980) and the references therein for further infor-
mation. Moreover, local nondeterminism has also been applied by Cuzick
(1978) to study the moments of the zero crossing number of a station-
ary Gaussian process; by Rosen (1984) and Berman (1991) to study the
existence and regularity of intersection local times; by Kahane (1985)
to study the geometric properties of the images and level sets of frac-
tional Brownian motion. Because of its various applications, it has been
an interesting question to determine when a Gaussian process is locally
nondeterministic. Some sufficient conditions for Gaussian processes to
be locally nondeterministic can be found in Berman (1973, 1988, 1991),
Cuzick (1978) and Pitt (1978).

On the other hand, it is known that the property of local nonde-
terminism defined in (1.1) or (1.2) is not enough for establishing fine
regularity properties such as the law of the iterated logarithm and the
modulus of continuity for the local times of Gaussian processes. For
studying these and many other problems on Gaussian processes, the
concept of strong local nondeterminism (SLND) has proven to be more
appropriate. See Monrad and Pitt (1987), Csörgő et al. (1995), Monrad
and Rootzén (1995), Talagrand (1995, 1998), Xiao (1996, 1997a, b, c),
Kasahara et al. (1999), Xiao and Zhang (2002), just to mention a few.

The following definition of the strong local φ-nondeterminism was
essentially given by Cuzick and DuPreez (1982) for Gaussian processes
(i.e., N = 1). For Gaussian random fields, Definition 1.1 is more general
than the definition of strong local α-nondeterministism of Monrad and
Pitt (1987).

Definition 1.1. Let X = {X(t), t ∈ RN} be a real-valued random field
with 0 < E[X(t)2] < ∞ for t ∈ J , where J ⊆ RN is a hyper-rectangle.
Let φ : R+ → R+ be a given function such that φ(0) = 0 and φ(r) > 0
for r > 0. Then X is said to be strongly locally φ-nondeterministic
(SLφND) on J if there exist positive constants c0 and r0 such that for
all t ∈ J and all 0 < r ≤ min{|t|, r0},

Var
(
X(t)|X(s) : s ∈ J, r ≤ |s− t| ≤ r0

) ≥ c0 φ(r). (1.3)

For a stationary Gaussian process X = {X(t), t ∈ R}, Cuzick and
DuPreez (1982) have given a sufficient condition for X to be strongly
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locally φ-nondeterministic in terms of its spectral measure F . More
precisely, they have proven that if the absolutely continuous part of
dF (λ) has the property that

dF (λ/r)
φ(r)

≥ h(λ)dλ, ∀0 < r ≤ r0 (1.4)

and ∫ ∞

0

log h(λ)
1 + λ2

dλ > −∞, (1.5)

then X is SLφND. Their proof uses the ideas from Cuzick (1977) and
relies on the special properties of stationary Gaussian processes.

Cuzick and DuPreez (1982, p. 811) point out that it appears to be
difficult to establish conditions under which general Gaussian processes
possess the various forms of strong local nondeterminism. There have
only been a few known examples of strongly locally nondeterministic
Gaussian random fields, one of them is the fractional Brownian motion
which has been under extensive investigations in the last decade. A
(standard) fractional Brownian motion Bα = {Bα(t), t ∈ RN} of index
α (0 < α < 1) is a centered, real-valued Gaussian random field with
covariance function

E
(
Bα(t)Bα(s)

)
=

1
2
(|t|2α + |s|2α − |t− s|2α

)
.

The strong local φ-nondeterminism of Bα with φ(r) = r2α follows from
Lemma 7.1 of Pitt (1978), where the self-similarity of Bα has played
an essential role. Note that when N = 1, the property of strong local
r2α-nondeterminism of Bα can also be derived from the above result of
Cuzick and DuPreez (1982) by using the Lamperti transformation.

In the studies of Gaussian processes X = {X(t), t ∈ R}, due to the
simple order structure of R, it is sometimes enough to assume that X is
one-sided strongly locally φ-nondeterministic, namely, for some constant
c0 > 0

Var
(
X(t)|X(s) : s ∈ J, r ≤ t− s ≤ r0

) ≥ c0 φ(r); (1.6)

see Cuzick (1978), Berman (1972, 1978), Monrad and Rootzén (1995).
When X = {X(t), t ∈ R} is a Gaussian process with stationary in-
crements, some sufficient conditions in terms of the variance function
σ2(h) = E

[(
X(t + h)−X(t)

)2] for the one-sided strong local nondeter-
minism have been obtained earlier. Marcus (1968) and Berman (1978)
have proved that if σ(h) → 0 as h → 0 and σ2(h) is concave on (0, δ) for
some δ > 0, then X is one-sided strongly locally φ-nondeterministic for
φ(r) = σ2(r).

The main objective of this paper is to prove a sufficient condition for a
Gaussian random field X = {X(t), t ∈ RN} with stationary increments
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to be strongly locally φ-nondeterministic [cf. Theorem 2.1 below]. In
particular, we show that a spectral condition similar to that of Berman
(1988) for the ordinary LND of X actually implies that X is strongly
locally φ-nondeterministic and, moreover, φ(r) is comparable to the vari-
ance function σ2(h) with |h| = r; see Theorem 2.5 for details.

Our results on SLφND have many applications. In Section 3, we
apply them to study the sample path properties of Gaussian processes
with stationary increments. In particular, we extend the small ball prob-
ability estimates of Monrad and Rootzén (1995), Shao and Wang (1995)
and Stoltz (1996), the results on the exact Hausdorff measure of Tala-
grand (1995) and Xiao (1996, 1997a, b), the local and uniform Hölder
conditions and tail probability of the local times of Xiao (1997a) and
Kasahara et al. (1999), to more general Gaussian random fields. More
applications of SLφND to other problems for Gaussian random fields can
be found in Shieh and Xiao (2006), Tudor and Xiao (2006).

Throughout the rest of this paper, unspecified positive and finite
constants will be denoted by K which may have different values from
line to line. Specific constants in Section j will be denoted by K

j,1 ,Kj,2 ,
. . .. For two non-negative functions f and g on RN , we denote f ³ g if
there exists a finite constant K ≥ 1 such that K−1f(x) ≤ g(x) ≤ K f(x)
for all x in some neighborhood of 0 or infinity. This will be clear from
the context.

2 Spectral conditions for strong local non-
determinism

Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random
field with X(0) = 0. We assume that X has stationary increments and
continuous covariance function R(s, t) = E

[
X(s)X(t)

]
. According to

Yaglom (1957) [see also Dudley (1973)], R(s, t) can be represented as

R(s, t) =
∫

RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ) + 〈s, Qt〉, (2.1)

where 〈x, y〉 is the ordinary scalar product in RN , Q is an N ×N non-
negative definite matrix and ∆(dλ) is a nonnegative symmetric measure
on RN\{0} satisfying

∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞. (2.2)

The measure ∆ is called the spectral measure of X.
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It follows from (2.1) that X has the following stochastic integral
representation:

X(t) =
∫

RN

(ei〈t,λ〉 − 1)W (dλ) + 〈Y, t〉, (2.3)

where Y is an N -dimensional Gaussian random vector with mean 0 and
W (dλ) is a centered complex-valued Gaussian random measure which is
independent of Y and satisfies

E
(
W (A)W (B)

)
= ∆(A ∩B) and W (−A) = W (A)

for all Borel sets A, B ⊆ RN . From now on, we will assume Y = 0.
This is equivalent to assuming Q = 0 in (2.1). Consequently, we have

σ2(h) = E
[(

X(t + h)−X(t)
)2] = 2

∫

RN

(
1− cos 〈h, λ〉) ∆(dλ). (2.4)

It is important to note that σ2(h) is a negative definite function and
can be viewed as the characteristic exponent of a symmetric infinitely
divisible distribution; see Berg and Forst (1975) for more information on
negative definite functions.

If the function σ2(h) depends only on |h|, then X is called an isotropic
random field. In this paper, we only consider Gaussian random fields
which are approximately isotropic, that is, σ2(h) ³ φ(|h|) in a neigh-
borhood of h = 0 for some nondecreasing function φ. As shown by
Ayache and Xiao (2005), Ayache, Wu and Xiao (2006), the properties of
anisotropic Gaussian random fields can be very different from those con-
sidered in this paper. For a systematic studies of anisotropic Gaussian
random fields, see Xiao (2007a).

Our main results of this section are Theorems 2.1 and 2.5 below.
Their proofs rely on the ideas from Kahane (1985), Pitt (1975, 1978)
and Berman (1988, 1991).

Theorem 2.1. Let X = {X(t), t ∈ RN} be a mean zero, real-valued
Gaussian random field with stationary increments and X(0) = 0, and
let f be the density function of the absolutely continuous part ∆c of the
spectral measure ∆ of X. Assume that there exist two locally bounded
functions φ(r) : R+ → R+ and q(λ) : RN → R+ satisfying the following
conditions: φ(0) = 0 and φ(r) > 0 for r > 0,

f(λ/r)
φ(r)

≥ rN

q(λ)
, ∀ r ∈ (0, 1] and λ ∈ RN (2.5)

and there exists a positive and finite constant η such that

q(λ) ≤ |λ|η, ∀ λ ∈ RN with |λ| large enough. (2.6)
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Then for every T > 0, there exists a positive constant K2,1 such that for
all t ∈ [−T, T ]N\{0} and all 0 < r ≤ min{1, |t|},

Var
(
X(t)|X(s) : s ∈ I, |s− t| ≥ r

) ≥ K2,1 φ(r). (2.7)

In particular, X is strongly locally φ-nondeterministic on the hypercube
[−T, T ]N .

In order to prove Theorem 2.1, we will make use of the following
lemma which implies that SLND of X is determined by the behavior of
the spectral measure ∆ at infinity.
Lemma 2.2. Assume the density function f of ∆c satisfies the conditions
(2.5) and (2.6). Then for any fixed constants T > 0 and K2,2 > 0, there
exists a positive and finite constant K2,3 such that for all functions g of
the form

g(λ) =
n∑

k=1

ak

(
ei〈sk,λ〉 − 1

)
, (2.8)

where ak ∈ R and sk ∈ [−T, T ]N , we have

∣∣g(λ)
∣∣ ≤ K2,3 |λ|

( ∫

RN

|g(ξ)|2 f(ξ) dξ
)1/2

(2.9)

for all |λ| < K2,2 .

Proof. It follows from (2.5) and (2.6) that there exists a positive con-
stant K such that

f(λ) ≥ K

|λ|η for all λ ∈ RN with |λ| large.

Hence Proposition 5 of Pitt (1975) implies that for every constant T > 0,
the measure ∆c is regular at [−T, T ]N . [Pitt (1975, p.304) gives the
definition of regularity for finite measures only, an extension to any σ-
finite measure is immediate]. Let G be the collection of the functions
g(z) defined by (2.8) with ak ∈ R, sk ∈ [−T, T ]N and z ∈ CN . Since
each g ∈ G is an entire function, it follows from Proposition 1 of Pitt
(1975) [see also Pitt (1978, p.326)] that

K2,3 = sup
z∈U(0,K2,2 )

{
sup
g∈G

{
|g(z)| :

∫

RN

|g(λ)|2f(λ) dλ ≤ 1
}}

< ∞,

where U(0, K2,2) = {z ∈ CN : |z| < K2,2} is the open ball of radius K2,2

in CN . Since g(0) = 0 and g is analytic in U(0, K2,2), Schwartz’s lemma
implies

∣∣g(z)
∣∣ ≤ K2,3 |z|

( ∫

RN

|g(ξ)|2 f(ξ)dξ
)1/2

for all z ∈ U(0,K2,2). This proves (2.9).
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Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Working in the Hilbert space setting, the condi-
tional variance in (2.7) is the square of the L2(P)-distance of X(t) from
the subspace generated by {X(s) : s ∈ I, |s − t| ≥ r}. Hence it is
sufficient to show that there exists a constant K2,1 such that for every
t ∈ [−T, T ]N\{0}, 0 < r ≤ min{1, |t|}, the inequality

E
(

X(t)−
n∑

k=1

akX(sk)
)2

≥ K2,1 φ(r) (2.10)

holds for all integers n ≥ 1, all ak ∈ R and sk ∈ [−T, T ]N satisfying
|sk − t| ≥ r, (k = 1, 2, . . . , n).

It follows from (2.1) or (2.3) that

E
(

X(t)−
n∑

k=1

akX(sk)
)2

=
∫

RN

∣∣∣∣ei〈t,λ〉 − 1−
n∑

k=1

ak

(
ei〈sk,λ〉 − 1

)∣∣∣∣
2

∆(dλ)

≥
∫

RN

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣
2

f(λ)dλ,

(2.11)

where a0 = 1 −∑n
k=1 ak and s0 = 0. Now we choose a bump function

δ(·) ∈ C∞(RN ) with values in [0, 1] such that δ(0) = 1 and it vanishes
outside the open unit ball. Let δ̂ be the Fourier transform of δ. It is
known that δ̂(λ) is also in C∞(RN ) and decays rapidly as λ → ∞. Let
δr(t) = r−Nδ(t/r), then the Fourier inversion formula gives

δr(t) = (2π)−N

∫

RN

e−i〈t,λ〉 δ̂(rλ) dλ .

Since min{|sk − t|, 0 ≤ k ≤ n} ≥ r we have δr(t − sk) = 0 for all
k = 0, 1, · · · , n. Hence

∫

RN

(
ei〈t,λ〉 −

n∑

k=0

ak ei〈sk,λ〉
)

e−i〈t,λ〉 δ̂(rλ) dλ

= (2π)N

(
δr(0)−

n∑

k=0

ak δr(t− sk)
)

= (2π)N r−N .

(2.12)

Now we will make use of the conditions (2.5) and (2.6). We choose the
constant K2,2 in Lemma 2.2 such that (2.6) holds for all |λ| ≥ K2,2 and
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split the integral in (2.12) over {λ : |λ| < K2,2} and {λ : |λ| ≥ K2,2}.
Denote the two integrals by I1 and I2, respectively. It follows from
Lemma 2.2 that

I1 ≤
∫

|λ|<K2,2

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣ |δ̂(rλ)| dλ

≤ K2,3

[∫

RN

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣
2

f(λ) dλ

]1/2

×
∫

|λ|<K2,2

|λ| |δ̂(rλ)| dλ

≤ K2,4

[
E

(
X(t)−

n∑

k=1

akX(sk)
)2

]1/2

,

(2.13)

where the last inequality follows from (2.11) and the boundedness of δ̂,
and where K2,4 > 0 is a finite constant depending on T and K2,2 .

On the other hand, by the Cauchy-Schwarz inequality and (2.11), we
have

I2
2 ≤

∫

|λ|≥K2,2

∣∣∣∣∣e
i〈t,λ〉 −

n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣∣

2

f(λ) dλ

×
∫

|λ|≥K2,2

1
f(λ)

∣∣∣δ̂(rλ)
∣∣∣
2

dλ

≤ E
(

X(t)−
n∑

k=1

akX(sk)

)2

× r−N

∫

|λ|≥K2,2r

1
f(λ/r)

∣∣∣δ̂(λ)
∣∣∣
2

dλ.

(2.14)

By using (2.5) and (2.6), we deduce
∫

|λ|≥K2,2r

1
f(λ/r)

∣∣∣δ̂(λ)
∣∣∣
2

dλ

≤ φ(r)−1 r−N

∫

|λ|≥K2,2r

q(λ)
∣∣∣δ̂(λ)

∣∣∣
2

dλ

≤ K φ(r)−1 r−N

{ ∫

|λ|<K2,2

q(λ)
∣∣∣δ̂(λ)

∣∣∣
2

dλ

+
∫

|λ|≥K2,2

|λ|η
∣∣∣δ̂(λ)

∣∣∣
2

dλ

}

= K φ(r)−1 r−N .

(2.15)
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Combining (2.14) and (2.15) yields

I2
2 ≤ K φ(r)−1 r−2N E

(
X(t)−

n∑

k=1

akX(sk)
)2

. (2.16)

Finally, we square both sides of (2.12) and use (2.13) and (2.16) to
obtain

(2π)2N r−2N ≤ K2,5 φ(r)−1 r−2N E
(
X(t)−

n∑

k=1

akX(sk)
)2

.

This implies (2.10) and hence the theorem is proven.

In order to apply Theorem 2.1 to investigate the sample path prop-
erties of the Gaussian random field X, we need to study the relationship
between φ(|h|) and the function σ2(h). In the following, we show that
under a condition analogous to that of Berman (1988, 1991), there is a
non-decreasing function φ such that X is SLφND and the functions φ(|h|)
and σ2(h) are comparable. More precisely, we assume that the spectral
measure ∆ is absolutely continuous and its density function f(λ) satisfies
the following condition [when N = 1, this is due to Berman (1988)]:

0 < α =
1
2

lim inf
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|}

≤ 1
2

lim sup
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|} = α < 1,

(2.17)

where β1 = 2 and for N ≥ 2, βN = µ(SN−1) is the area [i.e., the (N−1)-
dimensional Lebesgue measure) of SN−1. At the end of this section, we
will give several examples of Gaussian random fields satisfying condition
(2.17).

In the rest of this section, we define φ(r) = ∆{ξ : |ξ| ≥ r−1} and
φ(0) = 0. Then the function φ is non-decreasing and continuous on
[0,∞). The following lemma lists some properties of φ which will be
useful later.

Lemma 2.3. Assume the condition (2.17) holds. Then for any ε ∈
(0, 2min{α, 1 − α}), there exists a constant r0 > 0 such that for all
0 < x ≤ y ≤ r0, (x

y

)2α+ε

≤ φ(x)
φ(y)

≤
(x

y

)2α−ε

. (2.18)

Consequently, we have

(i). lim
r→0

φ(r)/r2 = ∞.
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(ii). The function φ has the following doubling property: there exists
a constant K2,6 > 0 such that for all 0 < r < r0/2,

φ(2r) ≤ K2,6 φ(r). (2.19)

Proof. For N = 1, (2.18) was proved by Berman (1988). Extension
to N > 1 is easy and a proof is included for completeness. Denote
G(r) = ∆{ξ : |ξ| ≥ r}. Then we can write

G(r) =
∫ ∞

r

ρN−1

∫

SN−1
f(ρ θ)µ(dθ) dρ, (2.20)

where µ is the surface measure on the unit sphere SN−1. It follows that

d

dr

[
log G(r)

]
= −rN−1

∫
SN−1 f(rθ)µ(dθ)

G(r)
.

Thus we derive the identity

G(x)
G(y)

= exp

(∫ y

x

rN
∫

SN−1 f(rθ)µ(dθ)
G(r)

dr

r

)
(2.21)

for all x, y > 0. Note that the condition (2.17) and Fatou’s lemma imply
that

0 < α ≤ 1
2

lim inf
r→∞

rN
∫

SN−1 f(rθ)µ(dθ)
G(r)

≤ 1
2

lim sup
r→∞

rN
∫

SN−1 f(rθ)µ(dθ)
G(r)

≤ α < 1.

(2.22)

Hence for any ε ∈ (0, 2min{α, 1− α}), there exists r0 > 0 such that for
all r ≥ r−1

0 , we have

2α− ε <
rN

∫
SN−1 f(rθ)µ(dθ)

G(r)
< 2α + ε. (2.23)

Therefore, (2.18) follows from (2.21) and (2.23).

Remark 2.4 The equation (2.18) shows that, under the assumption that
the spectral measure ∆ has a density f(λ), Condition (2.17) is more
general than assuming φ is regularly varying at 0. Using the terminology
of Bingham et al. (1987, pp.65-67), (2.18) implies that φ is extended
regularly varying at 0 with upper and lower Karamata indices 2α and
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2α, respectively. Under (2.17), a necessary and sufficient condition for
φ(r) to be regularly varying at 0 of index 2α is that the limit

α =
1
2

lim
r→∞

rN
∫

SN−1 f(rθ)µ(dθ)
∆{ξ : |ξ| ≥ r}

exists; this follows from Theorem 2.1.1 in Bingham et al. (1987) and
(2.23). ¤

The following theorem shows that the assumption (2.17) implies that
X is SLφND and φ(r) is comparable with σ2(h) with |h| = r near 0.
In Section 3, we will show that it is often more convenient to use the
function φ to characterize the probabilistic and geometric properties of
X.

Theorem 2.5. Let X = {X(t), t ∈ RN} be a mean zero, real-valued
Gaussian random field with stationary increments and X(0) = 0. As-
sume that the spectral measure ∆ of X has a density function f that
satisfies (2.17). Then

0 < lim inf
h→0

σ2(h)
φ(|h|) ≤ lim sup

h→0

σ2(h)
φ(|h|) < ∞. (2.24)

Moreover, for every T > 0, X is strongly locally φ-nondeterministic on
the hypercube [−T, T ]N .

Proof. The proof of (2.24) is based on the proof of Theorem 3.1 of
Berman (1991) which deals with the case of N = 1. Let T, τ > 0 be any
constants with Tτ < 1. By (2.4), we can write σ2(h) as

σ2(h) = 2
∫

|λ|≤T

(
1− cos 〈h, λ〉)f(λ)dλ

+ 2
∫

T<|λ|≤1/τ

(
1− cos 〈h, λ〉)f(λ)dλ

+ 2
∫

|λ|>1/τ

(
1− cos 〈h, λ〉)f(λ)dλ

:= 2(J1 + J2 + J3).

(2.25)

First we prove the left inequality in (2.24). Let 0 < ε < 2min
{
α, 1−

α
}

be fixed. Condition (2.17) implies the existence of a τ0 ∈ (0, r0) [r0

is given in Lemma 2.3] such that

2α− ε ≤ βN |λ|Nf(λ)
φ(1/|λ|) ≤ 2α + ε (2.26)
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for all λ ∈ RN with |λ| ≥ 1/τ0. It follows from (2.26) and Lemma 2.3
that for τ = |h| < τ0 in (2.25),

J3

φ(|h|) ≥
2α− ε

βN

∫

|λ|>1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≥ 2α− ε

βN

∫

|λ|>1/|h|

(
1− cos 〈h, λ〉) 1

(|λ||h|)2α+ε

dλ

|λ|N

=
2α− ε

βN

∫

|ξ|>1

(
1− cos 〈 h

|h| , ξ〉
) dξ

|ξ|N+2α+ε

≥ K2,7 ,

(2.27)

where K2,7 is a positive constant. In the above, the equality follows from
a change of variable and the last inequality follows from Lemma 3.3 in
Xiao (2003). It is clear that (2.25) and (2.27) imply the left inequality
in (2.24).

In order to prove the right inequality in (2.24), we estimate J1, J2

and J3 separately. Since 1− cos 〈h, λ〉 ≤ |h|2|λ|2, we have

J1

φ(|h|) ≤
∫

|λ|≤T

|h|2|λ|2 f(λ)
φ(|h|) dλ

≤ K
|h|2

φ(|h|) → 0 as h → 0,

(2.28)

by (2.2) and Lemma 2.3. Next, suppose we have chosen the constant
T > 1/τ0 so that (2.26) holds for all λ ∈ RN with |λ| > T . Thus by
taking τ = |h| < τ0 in (2.25), we derive

J2

φ(|h|) ≤
2α + ε

βN

∫

T<|λ|≤1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≤ 2α + ε

βN

∫

T<|λ|≤1/|h|

(
1− cos 〈h, λ〉) 1(|h||λ|)2α+ε

dλ

|λ|N

≤ 2α + ε

βN

∫

|ξ|≤1

dξ

|ξ|N−2(1−α)+ε
< ∞.

(2.29)

Similar to (2.29), we use (2.26), Lemma 2.3 and the inequality 1 −
cos 〈h, λ〉 ≤ 2 to deduce

J3

φ(|h|) ≤
2α + ε

βN

∫

|λ|≥1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≤ 2α + ε

βN

∫

|λ|≥1/|h|

(
1− cos 〈h, λ〉) 1(|h||λ|)2α−ε

dλ

|λ|N

≤ 2(2α + ε)
βN

∫

|ξ|≥1

dξ

|ξ|N+2α−ε
< ∞.

(2.30)
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Therefore the right inequality in (2.24) follows from (2.28), (2.29) and
(2.30). This finishes the proof of (2.24).

Finally, note that Condition (2.17), together with Lemma 2.3, implies
that (2.5) and (2.6) hold with q(r) = K2,8 rN+2α+ε. Therefore, for any
T > 0, the strong local φ-nondeterminism of X on I = [−T, T ]N follows
from Theorem 2.1.

Let X = {X(t), t ∈ RN} be a stationary random field with mean 0,
variance 1 and spectral measure ∆. Then X can be represented as

X(t) =
∫

RN

ei〈t,λ〉W (dλ), ∀t ∈ RN . (2.31)

Clearly, Theorems 2.1 and 2.5 are applicable to the Gaussian random
field Y = {Y (t), t ∈ RN} defined by Y (t) = X(t)−X(0). Furthermore,
we remark that the proofs of Theorems 2.1 and 2.5 remain effective for
X itself. Either way we have the following partial extension of the result
of Cuzick and DuPreez (1982) mentioned in the Introduction to N > 1.
It is not known to me whether (2.6) can be replaced by the weaker
condition (1.5).

Corollary 2.6. Let X = {X(t), t ∈ RN} be a stationary Gaussian random
field with mean 0 and variance 1. The following statements hold:

(i). If the spectral measure ∆ of X has an absolutely continuous part
with density f satisfying (2.5) and (2.6), then for every T > 0, X
is strongly locally φ-nondeterministic on the hypercube [−T, T ]N .

(ii). If the spectral density of X satisfies (2.17), then (2.24) holds and
X is SLφND on the hypercube [−T, T ]N .

We end this section with some examples of Gaussian random fields
whose SLND can be determined.

Example 2.7 Let Bα = {Bα(t), t ∈ RN} be an N -parameter fractional
Brownian motion in R with Hurst index α ∈ (0, 1), then its spectral
density is given by

fα(λ) = c(α,N)
1

|λ|2α+N
,

where c(α, N) > 0 is a normalizing constant such that σ2(h) = |h|2α; see
e.g., Kahane (1985). Clearly, the condition (2.17) holds with α = α = α.
As mentioned earlier, the strong local nondeterminism of Bα was first
proved by Pitt (1978). ¤
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Example 2.8 Consider the mean zero Gaussian random field X = {X(t),
t ∈ RN} with stationary increments and spectral density

fγ,β(λ) =
c(γ, β,N)

|λ|2γ(1 + |λ|2)β
,

where γ and β are constants satisfying

β + γ >
N

2
, 0 < γ < 1 +

N

2
and c(γ, β, N) > 0 is a normalizing constant. Since the spectral density
fγ,β involves both the Fourier transforms of the Riesz kernel and the
Bessel kernel, Anh et al. (1999) call the corresponding Gaussian random
field the fractional Riesz-Bessel motion with indices β and γ; and they
have shown that these Gaussian random fields can be used for modelling
simultaneously long range dependence and intermittency.

It is easy to check that Condition (2.17) is satisfied with α = α =
γ + β − N

2 . Moreover, since the spectral density fγ,β(x) is regularly
varying at infinity of order 2(β + γ) > N , by a result of Pitman (1968)
we know that, if γ + β − N

2 < 1, then σ(h) is regularly varying at 0 of
order γ + β −N/2 and

σ(h) ∼ |h|γ+β−N/2 as h → 0.

Theorem 2.5 implies that X is SLND with respect to σ2(h). Hence,
many sample path properties of the d-dimensional fractional Riesz-Bessel
motion X with indices β and γ can be can be derived from the results
in Section 3. ¤

Example 2.9 Let 0 < α < 1 and 0 < c1 < c2 be constants such that
(αc2)/c1 < 1. For any increasing sequence {bn, n ≥ 0} of real numbers
such that b0 = 0 and bn →∞, define the function f on RN by

f(λ) =
{

c1 |λ|−(2α+N) if |λ| ∈ (b2k, b2k+1],
c2 |λ|−(2α+N) if |λ| ∈ (b2k+1, b2k+2].

(2.32)

Some elementary calculation shows that, when limn→∞ bn+1/bn = ∞,
Condition (2.17) is satisfied with α = (αc1)/c2 < α = (αc2)/c1. Note
that in this case,

c1

c(α, N)
|h|2α ≤ σ2(h) ≤ c2

c(α, N)
|h|2α, ∀ h ∈ RN ,

where c(α,N) is the constant in Example 2.7, and

c1 βN

2α
r2α ≤ φ(r) ≤ c2 βN

2α
r2α, ∀ r > 0.

However, both functions are not regularly varying at the origin. ¤
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Next, we present a class of Gaussian random fields for which (2.17)
does not hold, but Theorem 2.1 is still applicable.

Example 2.10 For any given constants 0 < α1 < α2 < 1 and any
increasing sequence {bn, n ≥ 0} of real numbers such that b0 = 0 and
bn →∞, define the function f on RN by

f(λ) =
{ |λ|−(2α1+N) if |λ| ∈ (b2k, b2k+1],
|λ|−(2α2+N) if |λ| ∈ (b2k+1, b2k+2].

(2.33)

Using such functions f as spectral densities, we obtain a quite large
class of Gaussian random fields with stationary increments that are sig-
nificantly different from the fractional Brownian motion. If X is such a
Gaussian random field, then it follows from (2.4) and (2.20) that there
exist positive constants K2,9 and K2,10 ≥ 1 such that

K−1
2,9
|h|2α2 ≤ σ2(h) ≤ K2,9 |h|2α1 (2.34)

for all h ∈ RN with |h| ≤ 1, and

K−1
2,10

r2α2 ≤ φ(r) ≤ K2,10 r2α1 , ∀ 0 < r ≤ 1. (2.35)

Now we choose a strictly increasing sequence {bn} such that for all
k ≥ 1,

b2α2
2k+1

(
b−2α1
2k − b−2α1

2k+1

)
≤ 1, (2.36)

b2−2α1
2k+1 − b2−2α1

2k ≤ b2−2α2
2k

1
k2

(2.37)

and
b2k+2

b2k+1
≥ (k + 1)1/α2 . (2.38)

This can be done inductively: choose b2k+1 close to b2k so that both
(2.36) and (2.37) hold; then choose b2k+2 so that (2.38) holds.

We claim that the following properties hold:

(i) φ(r) ³ r2α2 for r ∈ (0, 1).

(ii) σ2(h) ³ |h|2α2 for all h ∈ RN with |h| ≤ 1.

(iii) Condition (2.17) is not satisfied.

(iv) the corresponding Gaussian random field X is SLφND on all hy-
percubes I = [−T, T ]N .

In order to verify (i), by (2.35), we only need to show φ(r) ≤ K2,11r
2α2

for some finite constant K2,11 . For any r > 0 small, there exists an integer
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k0 > 0 such that either r−1 ∈ [b2k0 , b2k0+1) or r−1 ∈ [b2k0+1, b2k0+2). In
the first case

φ(r) ≤
∫

b2k0≤|λ|≤b2k0+1

|λ|−(2α1+N) dλ

+
∫

b2k0+1≤|λ|≤b2k0+2

|λ|−(2α2+N) dλ + · · ·

=
K

2α1

[
b−2α1
2k0

− b−2α1
2k0+1 + b−2α1

2k0+2 − b−2α1
2k0+3 + · · · ]

+
K

2α2

[
b−2α2
2k0+1 − b−2α2

2k0+2 + b−2α2
2k0+3 − b−2α2

2k0+4 + · · · ] .

(2.39)

Clearly, the second sum is bounded above by K r2α2 . It follows from
(2.36) and (2.38) that the first sum is bounded above by K r2α2 as well.
This verifies (i) when r−1 ∈ [b2k0 , b2k0+1).

In the second case when r−1 ∈ [b2k0+1, b2k0+2), we have

φ(r) ≤
∫

r−1≤|λ|≤b2k0+2

|λ|−(2α2+N) dλ

+
∫

b2k0+2≤|λ|≤b2k0+3

|λ|−(2α1+N) dλ + · · ·

=
K

2α2

[
r2α2 − b−2α2

2k0+2 + b−2α2
2k0+3 − b−2α2

2k0+4 + · · · ]

+
K

2α1

[
b−2α1
2k0+2 − b−2α1

2k0+3 + b−2α1
2k0+4 − b−2α1

2k0+5 + · · · ]

≤ K r2α2 ,

(2.40)

where the last inequality follows from (2.36) and (2.38).
Next we verify (ii). Because of (2.34), we only need to show σ2(h) ≤

K2,12 |h|2α2 for all h ∈ RN with |h| ≤ 1. Fix such an h ∈ RN , let k1 be
the integer such that |h|−1 ∈ [b2k1 , b2k1+1) or |h|−1 ∈ [b2k1+1, b2k1+2).
In both cases, (2.36) and (2.37) imply |〈h, λ〉| ≤ |h| |λ| ≤ 2 for all |λ| ∈
[b2k, b2k+1) and all k ≤ k1. For such λ, 1 − cos 〈h, λ〉 ≤ (|h| |λ|)2. It
follows from (2.4) that

σ2(h) ≤ 2
∫

RN

(1− cos 〈h, λ〉) dλ

|λ|2α2+N

+ 2
k1∑

k=0

∫

b2k≤|λ|≤b2k+1

(|h| |λ|)2 dλ

|λ|2α1+N

+ 2
∞∑

k=k1+1

∫

b2k≤|λ|≤b2k+1

dλ

|λ|2α1+N
.

(2.41)
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By Example 2.7, the first integral equals K |h|2α2 . Moreover, a few lines
of elementary calculation using (2.36) and (2.37) show that both sums
in (2.41) are at most K |h|2α2 . This proves (ii).

It follows from (2.39) that

lim sup
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|} = ∞.

Thus (2.17) is not satisfied.
Finally, (2.33) and (i) above imply that (2.5) and (2.6) hold with

q(λ) = |λ|N+2α2 . Therefore, Theorem 2.1 implies that the Gaussian
random field X with spectral density (2.33) is SLφND. ¤

So far we have not considered SLφND for Gaussian random fields
with stationary increments and discrete spectral measures. A systematic
treatment for such Gaussian random fields will be given in Xiao (2007b).
Here we content ourselves with the following example: Let {Xn, Yn, n ≥
0} be a sequence of independent standard normal random variables.
Then for each t ∈ R, the random Fourier series

Y (t) =
√

8
π

∞∑
n=0

1
2n− 1

(
Xn cos((2n− 1)t) + Yn sin((2n− 1)t)

)
(2.42)

converges almost surely [see Kahane (1985)], and Y = {Y (t), t ∈ R} is
a centered, periodic and stationary Gaussian process with mean 0 and
covariance function

R(s, t) = 1− 2
π
|s− t| for − π ≤ s− t ≤ π. (2.43)

It can be verified that the spectrum measure ∆ of Y is discrete with
∆({2n − 1}) = (2n − 1)−2 for all n ∈ R. Shieh and Xiao (2006) have
proved that Y is strongly locally φ-nondeterministic with φ(r) = r, and
it satisfies (3.3) in Section 3.

3 Sample path properties of Gaussian ran-
dom fields

In the studies of Gaussian random fields with stationary increments, the
variance function σ2(h) has played a significant role and it is typically
assumed to be regularly varying at 0 and/or monotone in |h|. See Csörgő
et al. (1995), Kasahara et al. (1999), Monrad and Rootzén (1995),
Talagrand (1995, 1998), Xiao (1996, 1997a, b, 2003) and the references
therein. In this section, we show that the regularly varying assumption
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on σ2(h) can be significantly weakened and the monotonicity assumption
can be removed.

We will consider the Gaussian random field X = {X(t), t ∈ RN} in
Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (3.1)

where the coordinator processes X1, . . . , Xd are independent copies of a
real-valued, centered Gaussian random field Y = {Y (t), t ∈ RN}. We
call Y the associated random field. In the rest of this paper, we will
often assume that Y satisfies the following Condition (C):

(C1) There exist positive constants δ0, K3,1 , K3,2 and a non-decreasing,
right continuous function φ : [0, δ0) → [0,∞) such that φ(0) = 0
and

φ(2r)
φ(r)

≤ K3,1 ∀ r ∈ [0, δ0/2) (3.2)

and for all t ∈ RN and h ∈ RN with |h| ≤ δ0,

K−1
3,2

φ(|h|) ≤ E[(
Y (t + h)− Y (t)

)2] ≤ K3,2φ(|h|). (3.3)

(C2) For any T > 0, the process Y is strongly locally φ-nondeterministic
on [−T, T ]N .

It follows from Theorem 2.5 that for any Gaussian random field Y
with stationary increments and spectral density satisfying (2.17), Condi-
tion (C) is satisfied. We point out that the setting of this section is more
general than that of Section 2. In particular, our results in this section
are applicable to Gaussian random fields with stationary increments and
discrete spectral measures, as long as they satisfy Condition (C).

3.1 Small ball probability

In recent years, there has been much interest in studying the small ball
probability of Gaussian processes. We refer to Li and Shao (2001) and
Lifshits (1999) for extensive surveys on small ball probabilities, their
applications and open problems.

Our next theorem gives estimates on the small ball probability of
Gaussian random fields satisfying the condition (C). In particular, the
upper bound in (3.4) confirms a conjecture of Shao and Wang (1995),
under a much weaker condition.

Theorem 3.1. Let X = {X(t), t ∈ RN} be a Gaussian random field in
R satisfying the condition (C). Then there exist positive constants K3,3
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and K3,4 such that for all x ∈ (0, 1),

exp
(
− K3,3

[φ−1(x2)]N

)
≤ P

{
max

t∈[0,1]N
|X(t)| ≤ x

}

≤ exp
(
− K3,4

[φ−1(x2)]N

)
,

(3.4)

where φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse func-
tion of φ.

Proof. Equip I = [0, 1]N with the canonical metric

d(s, t) = (E|X(s)−X(t)|2)1/2, s, t ∈ I

and denote by Nd(I, ε) the smallest number of d-balls of radius ε > 0
needed to cover I. Then it is easy to see from (C1) that for all ε ∈ (0, 1),

Nd(I, ε) ≤ K
( 1

φ−1(ε2)

)N

:= Ψ(ε).

Moreover, it follows from Condition (C1) that Ψ has the doubling prop-
erty, i.e., Ψ(ε) ≤ Ψ(ε/2) ≤ K Ψ(ε). Hence the lower bound in (3.4)
follows from a result of Talagrand (1993); see also Ledoux (1996, p.257).

The proof of the upper bound in (3.4) is based on Condition (C2)
and an argument in Monrad and Rootzén (1995). For any integer n ≥ 2,
we choose nN points tn,i ∈ [0, 1]N , where

tn,i =
( i1

n
, . . . ,

iN
n

)
, i = (i1, . . . , iN ) ∈ {1, . . . , n}N ,

and denote them [in any order] by tn,k (k = 1, 2, . . . , nN ). Then

P
{

max
t∈[0,1]N

|X(t)| ≤ x

}
≤ P

{
max

1≤k≤nN
|X(tn,k)| ≤ x

}
. (3.5)

By Anderson’s inequality for Gaussian measures and the SLφND of X,
we derive the following upper bound for the conditional probabilities

P
{
|X(tn,k)| ≤ x

∣∣X(tn,j), 1 ≤ j ≤ k − 1
}
≤ Φ

(
K x

φ1/2(n−1)

)
, (3.6)

where Φ(x) is the distribution function of a standard normal random
variable. It follows from (3.5) and (3.6) that

P
{

max
t∈[0,1]N

|X(t)| ≤ x

}
≤

[
Φ

(
K x

φ1/2(n−1)

)]nN

. (3.7)

By taking n to be the smallest integer ≥ [
φ−1(x2)

]−1, we obtain the
upper bound in (3.4).
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Combining Theorem 3.1 with Theorem 7.1 in Li and Shao (2001)
yields the following Chung’s law of the iterated logarithm. When σ is
regularly varying, this is also obtained in Xiao (1997a).

Corollary 3.2. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random
field defined by (3.1). Suppose that the associated Gaussian random
field Y has stationary increments and spectral measure ∆. If Y satisfies
Condition (C) and its spectral measure ∆ satisfies

lim inf
λ→∞

|λ|N+2∆
(
B(λ, r)

)
> 0, (3.8)

where B(λ, r) = {x ∈ RN : |x − λ| ≤ r}. Then there exists a positive
and finite constant K3,5 such that

lim inf
r→0

supt∈[0,r]N |X(t)|
φ1/2

(
r/(log log(1/r))1/N

) = K3,5 a.s. (3.9)

Proof. By applying Theorem 3.1 and slightly modifying the proof of
Theorem 7.1 in Li and Shao (2001) to each component Xk (k = 1, . . . , d)
of X, we derive that there exists a positive constant K3,6 ≥ 1 such that

K−1
3,6

≤ lim inf
r→0

supt∈[0,r]N |X(t)|
φ1/2

(
r/(log log(1/r))1/N

) ≤ K3,6 a.s. (3.10)

Since the components of X are independent, (3.8) implies that the zero-
one law of Pitt and Tran (1979) holds for X at t = 0. Hence (3.9) follows
from this and (3.10).

Remark 3.3 When ∆ has a density function which satisfies (2.17), (3.8)
follow easily from (2.26) and Lemma 2.3. Hence (3.9) holds. ¤

We can also consider the small ball probability of Gaussian random
fields under the Hölder-type norm. Let κ : R+ → R+ be a continuous
and non-decreasing function such that κ(r) > 0 for all r > 0. For any
function y ∈ C0([0, 1]N ), we consider the functional

‖y‖κ = sup
s,t∈[0,1]N ,s6=t

|y(s)− y(t)|
κ(|s− t|) . (3.11)

When κ(r) = rα, ‖·‖κ is the α-Hölder norm on C0([0, 1]N ) and is denoted
by ‖ · ‖α.

The following theorem uses SLφND to improve the results of Stolz
(1996). We mention that the conditions of Theorem 2.1 of Kuelbs, Li
and Shao (1995) can be weakened in a similar way.
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Theorem 3.4. Let X = {X(t), t ∈ RN} be a Gaussian random field in R
satisfying the condition (C). If for some constant β > 0,

φ1/2(r)
κ(r)

³ rβ , ∀r ∈ (0, 1). (3.12)

Then there exist positive constants K3,7 and K3,8 such that for all ε ∈
(0, 1),

exp
(
− K3,7

εN/β

)
≤ P

{
‖X‖κ ≤ ε

}
≤ exp

(
− K3,8

εN/β

)
. (3.13)

Proof. The lower bound in (3.13) follows directly from Theorem 1.1 of
Stolz (1996). The proof of the upper bound in (3.13) is a modification of
the proof of Theorem 1.3 of Stolz (1996), using (C2) in place of Lemma
7.1 of Pitt (1978). We leave it to the interested reader.

3.2 Hausdorff dimension and Hausdorff measure of
the range

In this section we consider the fractal properties of the range X([0, 1]N )
and graph GrX([0, 1]N ) = {(t,X(t)) : t ∈ [0, 1]N} of the Gaussian ran-
dom field in Rd defined by (3.1). In particular, we will show that the
Hausdorff dimension of X([0, 1]N ) and GrX([0, 1]N ) can be determined
mainly by the upper index of φ at 0 defined by

α∗ = inf
{

β ≥ 0 : lim
r→0

φ(r)
r2β

= ∞
}

(3.14)

with the convention inf ∅ = ∞. Analogously, we can define the lower
index of φ at 0 by

α∗ = sup
{

β ≥ 0 : lim
r→0

φ(r)
r2β

= 0
}

. (3.15)

Clearly, 0 ≤ α∗ ≤ α∗ ≤ ∞. When the real-valued Gaussian random field
Y = {Y (t), t ∈ RN} associated with (3.1) has stationary increments
and a continuous covariance function. Then the above upper and lower
indices α∗ and α∗ coincide with the upper and lower indices of σ(h),
where

σ2(h) = E
[(

Y (t + h)− Y (t)
)2]

, ∀h ∈ RN . (3.16)

In this case, we also call α∗ and α∗ the upper and lower indices of Y .
See Adler (1981) for more information.

The following example shows that it is possible to have α∗ = ∞.
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Example 3.5 Let N ≥ 2 and let ∆ be a Borel measure on RN with
support in a linear subspace L of RN and satisfying (2.2). If Y is a
Gaussian random field with stationary increments and spectrum measure
∆, then for all h in the linear subspace of RN that is orthogonal to L,
we have σ2(h) = 0. Thus α∗ = ∞. ¤

Lemma 3.6 below shows that under quite general conditions the in-
equality α∗ ≤ 1 holds. In particular, this is true for all the Gaussian
random fields considered in Section 2.

Lemma 3.6. Let Y = {Y (t), t ∈ RN} be a Gaussian random field in
R with stationary increments and spectrum measure ∆. If N = 1, or
N ≥ 2 and ∆ has an absolutely continuous part with density f(λ). Then
α∗ ≤ 1.

Proof. It follows from (2.4) that

σ2(h) ≥
∫

|λ|≤|h|−1
(1− cos 〈h, λ〉)∆(dλ)

≥ K|h|2
∫

|λ|≤|h|−1
〈 h

|h| , λ〉
2 ∆(dλ).

(3.17)

It is clear that when N = 1, we have σ2(h) ≥ K|h|2 for all h ∈ R with
|h| small enough. This implies α∗ ≤ 1 whenever N = 1.

Now we assume that N ≥ 2. It follows from (3.17) that

σ2(h) ≥ K|h|2
∫

|λ|≤|h|−1
〈 h

|h| , λ〉
2 f(λ) dλ

≥ K |h|2
∫

SN−1
〈 h

|h| , θ〉
2 µ(dθ)

∫ |h|−1

0

ρN+1f(ρθ) dρ.

(3.18)

Since f(λ) > 0 on a set of positive N -dimensional Lebesgue measure, we
see that for all h ∈ RN with |h| small enough,

∫

SN−1
〈 h

|h| , θ〉
2 µ(dθ)

∫ |h|−1

0

ρN+1f(ρθ) dρ ≥ K3,9 (3.19)

for some constant K3,9 > 0. Hence we have α∗ ≤ 1.

Remark 3.7 It follows from Lemma 2.3 that if the spectral measure ∆
has a density function that satisfies the condition (2.17), then α ≤ α∗ ≤
α∗ ≤ α. Example 2.9 shows that it is possible to have α < α∗ = α∗ < α.
¤
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The following result gives general formulas for the Hausdorff dimen-
sions of the range X([0, 1]N ) and the graph GrX([0, 1]N ) = {(t,X(t)) :
t ∈ [0, 1]N} in terms of the upper index α∗. When α∗ = α∗ ∈ (0, 1),
(3.20) and (3.21) are essentially due to Adler (1981); otherwise, they
seem to be new.
Theorem 3.8. Let X = {X(t), t ∈ RN} be the Gaussian random field in
Rd defined by (3.1). If the associated random field Y satisfies Condition
(C1) and 0 < α∗ ≤ α∗ < 1, then

dimHX([0, 1]N ) = min
{

d,
N

α∗

}
a.s. (3.20)

dimHGrX([0, 1]N ) = min
{

N + (1− α∗)d,
N

α∗

}
a.s., (3.21)

where dimH denotes Hausdorff dimension.

Remark 3.9 (a). We can allow the components X1, . . . , Xd in (3.1) to
have different distributions. If the upper index of Xi is α∗i , then the
formulae for dimHX([0, 1]N ) and dimHGrX([0, 1]N ) analogous to those
in Theorem 2.1 in Xiao (1995) hold.

(b). The proof of Theorem 3.8 also gives explicit expressions for
dimHX(E) and dimHGrX(E) for all Borel sets E ⊂ RN with dimHE =
dimPE, where dimP denotes packing dimension [see Falconer (1990)].
However, the question of determining dimHX(E) and dimHGrX(E) for
an arbitrary Borel set E ⊂ RN is more involved and remains to be open.

(c). Another open problem is to determine the packing dimensions of
X([0, 1]N ) and GrX([0, 1]N ). We conjecture that, under the assumptions
of Theorem 3.8, the packing dimension analog of (3.20) and (3.21) hold
with α∗ being replaced by α∗. ¤

For the proof of Theorem 3.8 as well as the proofs of Theorems 3.11
and 3.14 below, we need the following lemma on the modulus of con-
tinuity of Y , which is reminiscent to Corollary 2.3 or Theorem 2.10 of
Dudley (1973), and on the tail probability of the supremum of Y .
Lemma 3.10. Assume that the Gaussian random field Y = {Y (t), t ∈
RN} in R satisfies Conditions (C1) and 0 < α∗ ≤ α∗ < 1. Let

ωY (δ) = sup
t, t + s ∈ [0, 1]N

|s| ≤ δ

|Y (t + s)− Y (t)|

be the uniform modulus of continuity of Y (t) on [0, 1]N . Then there
exists a finite constant K3,10 > 0 such that

lim sup
δ→0

ωY (δ)√
φ(δ) log 1

δ

≤ K3,10 , a.s. (3.22)
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If, in addition, there is a constant K3,11 > 0 such that

∫ ∞

1

(φ(ae−u2
)

φ(a)

)1/2

du ≤ K3,11 for all a ∈ [0, δ0). (3.23)

Then there exist positive constants K3,12 and K3,13 such that for all r > 0
small enough and u ≥ K3,12 φ1/2(r), we have

P
{

sup
|t|≤r

|Y (t)| ≥ u

}
≤ exp

(
− u2

K3,13 φ(r)

)
. (3.24)

Proof. Because 0 < α∗ ≤ α∗ < 1, the first part, i.e., (3.22), follows from
Corollary 2.3 in Dudley (1973). The proof of the second part is based
on the Gaussian isopermetric inequality [cf. Talagrand (1995)] and is
standard. We include it for completeness.

Let r < δ0 and S = {t : |t| ≤ r}. It follows from (3.3) that d(s, t) ≤
K1/2

3,2
φ1/2(|t− s|), we have

D := sup{d(s, t); s, t ∈ S} ≤ K1/2
3,2

φ1/2(r)

and

Nd(S, ε) ≤ K

(
r

φ−1
(
ε2/K3,2

)
)N

,

where φ−1 the inverse function of φ defined as in Theorem 3.1. Since
α∗ > 0, there exists η > 0 such that

σ(r) ≤ rη for all r ∈ [0, δ0). (3.25)

Some simple calculations and (3.3) yield

∫ D

0

√
log Nd(S, ε) dε ≤ K

∫ K1/2
3,2

φ1/2(r)

0

√
log

( r

φ−1
(
ε2/K3,2

)
)

dε

≤ K

∫ r

0

√
log(r/t) dφ1/2(t)

= K

∫ 1

0

1
u
√

log(1/u)
φ1/2(ur)du

≤ K

(
φ1/2(r) +

∫ ∞

1

φ1/2(re−u2
)du

)

≤ K3,14 φ1/2(r) ,

where the last inequality follows from (3.23). It follows from Lemma 2.1



26 Yimin Xiao

in Talagrand (1995) that for all u ≥ K3,14 φ1/2(r),

P
{

sup
|t|≤r

|Y (t)| ≥ 2 u

}

≤ P
{

sup
|t|≤r

|Y (t)| ≥ u +
∫ D

0

√
log Nd(S, ε) dε

}

≤ exp
(
− u2

K3,15φ(r)

)
.

(3.26)

This proves (3.24) and the lemma.

Proof of Theorem 3.8. The proofs of the lower bounds in (3.20) and
(3.21) using a standard capacity argument are the same as in Adler
(1981) or Kahane (1985), which also complete the proof of Theorem 3.8
when α∗ = 0.

Now we prove the upper bound in (3.20). Since dimHX([0, 1]N ) ≤ d
automatically, we only need to show dimHX([0, 1]N ) ≤ N/α∗ a.s. Note
that for any γ′ < γ < α∗, it follows from (3.14) that there exists a
sequence rn → 0 such that φ(rn) ≤ r2γ

n . For each fixed n ≥ 1, divide
[0, 1]N into r−N

n subcubes Cn,i (i = 1, . . . , r−N
n ) of side-length rn. It

follows from (3.22) in Lemma 3.10 that a.s. for n large enough, each
X(Cn,i) can be covered by a ball of radius rγ′

n in Rd. This implies
that dimHX([0, 1]N ) ≤ N/γ′ a.s. Since γ′ < α∗ is arbitrary, we have
dimHX([0, 1]N ) ≤ min{d,N/α∗} a.s. This proves (3.20). The proof of
the upper bound in (3.21) is similar and hence omitted.

Now we consider the exact Hausdofff measure of the image X([0, 1]N ).

Theorem 3.11. Let X = {X(t), t ∈ RN} be a Gaussian random field de-
fined in (3.1) such that the associated real-valued Gaussian random field
Y has stationary increments and satisfies Condition (C). In addition, we
assume that the function φ satisfies (3.23) and there exists a constant
K3,16 > 0 such that

∫ δ0/a

1

( φ(a)
φ(ax)

)d/2

xN−1dx ≤ K3,16 (3.27)

for all a ∈ (0, δ0), then

0 < ϕ1-m
(
X([0, 1]N )

)
< ∞ a.s., (3.28)

where ϕ1(r) =
[
φ−1(r2)

]N log log 1/r.
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Remark 3.12 If the random field Y has stationary increments with spec-
tral density f satisfying Condition (2.17), then it follows from Lemma 2.3
that (3.23) always holds and, moreover, (3.27) holds whenever N < α d.
¤

Proof. Since the proof of (3.28) is similar to that in Xiao (1996), we will
only point out the places where modifications have to be made.

To prove the lower bound in (3.28), we follow the standard procedure
of using the upper density theorem of Rogers and Taylor (1961). For
notational convenience, we assume δ0 = 1 and define the sojourn time

T (r) =
∫

[0,1]N
1lB(0,r)(X(t)) dt

of X in the closed ball B(0, r).
In order to establish a law of the iterated logarithm for T (r) [the

upper half], it is sufficient to show the following estimate of the moments:
There exists a positive and finite constant K3,17 such that for all integers
n ≥ 1,

E
[
T (r)n

] ≤ Kn
3,17

n!
[
φ−1(r2)

]Nn
. (3.29)

This can be proved by using induction, which is where the property of
strong local nondeterminism will be needed. The details are given in
Xiao (1996) and we only check (3.29) for n = 1. Denote ψ(r) = φ−1(r2).
Note that φ(ψ(r)) ≥ r2. Hence by (3.3), a change of variables and (3.27),
we derive

E
[
T (r)

] ≤
∫

[0,1]N
min

{
1, K

( r

φ1/2(|t|)
)d

}
dt

≤ K

∫ 1

0

min
{

1, K
( r2

φ(ρ)

)d/2
}

ρN−1 dρ

≤ K

∫ ψ(r)

0

ρN−1dρ + K

∫ 1

ψ(r)

(
r2

φ(ρ)

)d/2

ρN−1dρ

≤ K ψ(r)N

{
1 +

∫ 1/ψ(r)

1

(
φ(ψ(r))
φ(ψ(r)x)

)d/2

xN−1dx

}

≤ K ψ(r)N < ∞.

(3.30)

In order to prove the upper bound in (3.28), we need to construct a
sequence of economical coverings {Bn, n ≥ 1} for X([0, 1]N ) such that
diamBn → 0 as n → ∞ and almost surely

∑
n ϕ1(diamBn) < ∞. This

has been done by Talagrand (1995) for fractional Brownian motion and
by Xiao (1996) for any Gaussian random field with stationary increments
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such that its variance function σ2(h) is regularly varying at 0. By exam-
ining carefully the proofs in Xiao (1996), we see that the key ingredient
for the construction of the desired coverings of X([0, 1]N ), Proposition
3.1 in Xiao (1996), is still valid under the present conditions. The rest of
the proof is the same as in Xiao (1996). Therefore (3.28) is proven.

Remark 3.13 In a similar way, the results on the exact Hausdorff measure
of the graph set GrX([0, 1]N ) in Xiao (1997a, c) can be extended to
Gaussian random fields in this paper. ¤

3.3 Local times and level sets of Gaussian random
fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with stationary
increments in Rd defined by (3.1). Suppose the associated real-valued
random field Y satisfies (3.3) and for some ε > 0,

∫

[0,1]N

dh

σd+ε(h)
< ∞.

If Y is locally nondeterministic on a cube I ⊂ RN , say, I = [0, 1]N , then
it follows from Theorem 26.1 in Geman and Horowitz (1980) [see also
Berman (1973) and Pitt (1978)] that X has a jointly continuous local
time L(x, t) := L(x, [0, t]) for (x, t) ∈ Rd× I and satisfies certain Hölder
conditions in the time and space variables, respectively.

Under the assumptions of strong local nondeterminism and regular
variation of σ2(h), Xiao (1997a) has established sharp local and uniform
Hölder conditions for the local time L(x, t) in the time variable t. Be-
sides interest in their own right, such results are also useful in studying
the fractal properties of the sample paths of X. In the following, we
show that the results in Xiao (1997a) and Kasahara et al. (1999) still
hold under the more general Condition (C). For simplicity, we will only
consider the case N = 1.

Theorem 3.14. Let X = {X(t), t ∈ R} be a mean zero Gaussian process
in Rd defined by (3.1) satisfying Condition (C). In addition, we assume
that the function φ satisfies (3.23) and there exist constants γ0 ∈ (0, 1)
and K3,18 > 0 such that

∫ 1

0

( φ(a)
φ(as)

) d
2 +γ0

ds ≤ K3,18 (3.31)

for all a ∈ (0, δ0). Then the following properties hold:
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(i) X has a local time L(x, t) that is jointly continuous in (x, t) almost
surely.

(ii) For any B ∈ B(R) define L∗(B) = supx∈Rd L(x,B) be the maxi-
mum local time. Then there exists a positive constant K3,19 such
that for all t ∈ R,

lim sup
r→0

L∗(B(t, r))
ϕ2(r)

≤ K3,19 a.s. (3.32)

and for all intervals I ⊆ R, there exists a positive finite constant
K3,20 such that

lim sup
r→0

sup
t∈I

L∗(B(t, r))
ϕ3(r)

≤ K3,20 a.s., (3.33)

where B(t, r) = (t− r, t + r),

ϕ2(r) =
r

φ(r(log log 1/r)−1)d/2
and ϕ3(r) =

r

φ(r(log 1/r)−1)d/2
.

Remark 3.15 If X has stationary increments and its spectral measure
satisfies (2.17) then (3.23) always holds. Moreover, if 1 > α d, then
Lemma 2.3 implies that (3.31) is satisfied for any γ0 ∈ (0, (1−αd)/(2α)).
¤

The following states that the local Hölder condition for the maximum
local time is sharp.

Remark 3.16 By the definition of local times, we have that for any
interval Q ⊆ R,

|Q| =
∫

X(Q)

L(x,Q) dx

≤ L∗(Q) ·
(

sup
s,t∈Q

|X(s)−X(t)|
)d

.

(3.34)

If X has stationary increments and satisfies the conditions of Theorem
3.14, then Theorem 3.1 and the proof of Theorem 7.1 in Li and Shao
(2001) imply the existence of a constant K3,21 ≥ 1 such that for every
t ∈ R,

K−1
3,21

≤ lim inf
r→0

sups∈B(t,r) |X(s)−X(t)|
φ1/2

(
r/(log log(1/r))1/N

) ≤ K3,21 a.s. (3.35)

By taking Q = B(t, r) in (3.34) and using the upper bound in (3.35), we
derive the lower bound in the following

K3,22 ≤ lim sup
r→0

L∗(B(t, r))
ϕ2(r)

≤ K3,19 a.s., (3.36)
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where K3,22 > 0 is a constant and the upper bound is given by (3.32). A
similar lower bound for (3.33) could also be established by using (3.34),
if one proves that for every interval I ⊆ R,

lim inf
r→0

inf
t∈I

sup
s∈B(t,r)

|X(s)−X(t)|
φ1/2(r/(log 1/r)1/N )

≤ K3,23 a.s. (3.37)

This is left to the interested reader. ¤

The proof Theorem 3.14 is similar to Xiao (1997a) which is based on
getting sharp moment estimates for L(x,B) and L(x+y, B)−L(x, B) and
on a chaining argument. We will not reproduce all the details. Instead,
we give a simplified proof of the following key estimates.

Lemma 3.17. Under the conditions of Theorem 3.14, there exist positive
constants K3,24 and K3,25 such that for all integers n ≥ 1, r(0, δ0), x ∈ Rd

and 0 < γ < γ0 , we have

E
[
L(x, r)n

] ≤ Kn
3,24

rn

φ(r/n)nd/2
(3.38)

and

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn
3,25
|y|nγ rn

[
φ(r/n)

](d+2γ)n/2
(n!)γ . (3.39)

For the proof of Lemma 3.17, we will need several lemmas. Lemma
3.18 is essentially due to Cuzick and DuPreez (1982) and Lemma 3.19
extends Lemma 3 of Kasahara et al. (1999).

Lemma 3.18. Let Z1, · · · , Zn be mean zero Gaussian variables which are
linearly independent. Then for any measurable function g : R→ R+,

∫

Rn

g(v1)e−
1
2Var(

Pn
j=1 vjZj) dv1 · · · dvn

=
(2π)n−1

(detCov(Z1, · · · , Zn))1/2

∫

R
g
( v

σ1

)
e−v2/2dv,

(3.40)

where detCov(Z1, · · · , Zn) denotes the determinant of the covariance
matrix of (Z1, · · · , Zn), and σ2

1 = Var(Z1|Z2, · · · , Zn) is the conditional
variance of Z1 given Z2, · · · , Zn.

Lemma 3.19. Let U(x) be a right continuous, non-decreasing function
on R+ with U(0) = 0. If there exists a constant K3,26 > 0 such that
U(2t) ≤ K3,26U(t) for all t > 0, then as n →∞,

[ ∫

Rn
+∩{0<t1+t2+···+tn≤1}

dU(t1) · · · dU(tn)
]1/n

³ U(1/n). (3.41)
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Proof. The lower bound follows easily from
∫

Rn
+∩{0<t1+t2+···+tn≤1}

dU(t1) · · · dU(tn)

≥
∫ 1/n

0

· · ·
∫ 1/n

0

dU(t1) · · · dU(tn)

=
[
U(1/n)

]n
.

(3.42)

To prove the upper bound, we follow the argument of Kasahara et al.
(1999) and define the distribution functions Fn on R+ by

Fn(t) =
∫

Rn
+∩{0≤t1+t2+···+tn≤t}

dU(t1) · · · dU(tn).

Then the integral on the left-hand side of (3.42) is Fn(1). Note that the
Laplace transform of Fn can be written as

∫ ∞

0

e−stdFn(t) =
(∫ ∞

0

e−st dU(t)
)n

.

Hence we have

Fn(1) ≤ en

∫ 1

0

e−ntdFn(t) ≤ en

∫ ∞

0

e−ntdFn(t)

≤
(

e

∫ ∞

0

e−ntdU(t)
)n

.

(3.43)

It follows that

lim sup
n→∞

1
U(1/n)

[
Fn(1)

]1/n ≤ lim sup
n→∞

e

U(1/n)

∫ ∞

0

e−ntdU(t). (3.44)

Now we split the last integral in (3.44) over the intervals [0, n−1) and
[n−12k−1, n−12k) (k ≥ 1), which gives

∫ ∞

0

e−ntdU(t) ≤ U(1/n) +
∞∑

k=1

e−2k−1
U(2k/n)

≤ U(1/n)
[
1 +

∞∑

k=1

e−2k−1
Kk

3,26

]

= K3,27 U(1/n),

(3.45)

where in deriving the second inequality, we have made use of the doubling
property of U . Therefore, the upper bound in (3.41) follows from (3.44)
and (3.45).
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Proof of Lemma 3.17. It follows from (25.5) and (25.7) in Geman and
Horowitz (1980) [see also Pitt (1978)] that for any x, y ∈ Rd, B ∈ B(R)
and any integer n ≥ 1, we have

E
[
L(x,B)

]n = (2π)−nd

∫

Bn

∫

Rnd

exp
(
− i

n∑

j=1

〈uj , x〉
)

× E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt

(3.46)

and for any even integer n ≥ 2,

E
[
L(x + y, B)− L(x, B)

]n

= (2π)−nd

∫

Bn

∫

Rnd

n∏

j=1

(
e−i〈uj ,x+y〉 − e−i〈uj ,x〉

)

× E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt,

(3.47)

where u = (u1, · · · , un), t = (t1, · · · , tn), and each uj ∈ Rd, tj ∈ R. In
the coordinate notation we then write uj = (u1

j , · · · , ud
j ).

Take B = [0, r]. It follows from (3.46) and the proof of Lemma 2.5
in Xiao (1997a) that for all integers n ≥ 1,

E
[
L(x, r)n

] ≤ (2π)−nd/2

∫

[0, r]n

1
[
detCn(t1, · · · , tn)

]d/2
dt1 · · · dtn,

(3.48)
where Cn(t1, · · · , tn) denotes the covariance matrix of the Gaussian vari-
ables X1(t1), . . . , X1(tn). It is well known that

det
(
Cn(t1, · · · , tn)

)

= Var
(
X1(t1)

) n∏

j=2

Var
(
X1(tj)|X1(t1), · · · , X1(tj−1)

)
.

(3.49)

We apply (C2) to derive that for any 0 < t1 < t2 < . . . < tn,

Kn
n∏

j=1

φ(tj − tj−1) ≤ det
(
Cn(t1, · · · , tn)

) ≤
n∏

j=1

φ(tj − tj−1), (3.50)

where t0 = 0. By (3.48)–(3.50) and a simple substitution, we deduce
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that

E
[
L(x, r)n

] ≤ Kn n!
∫

0<t1<...<tn≤r

n∏

j=1

1
(
φ(tj − tj−1)

)d/2
dt1 · · · dtn

≤ Kn n! rn

∫

0<s1+···+sn≤1

dU1(s1) · · · dU1(sn),

(3.51)

where the function U1(t) is defined by

U1(t) =
∫ min{t,1}

0

ds

(φ(rs))d/2
for all t ≥ 0.

Since φ is non-decreasing, we see that U1(2t) ≤ 2U1(t) for all t ≥ 0.
Hence it follows from Lemma 3.19 that

E
[
L(x, r)n

] ≤ Kn
3,28

n! rn
[
U1(1/n)

]n
. (3.52)

On the other hand, by (3.31), we derive that

U1(t) ≤ K3,29

t
(
φ(rt)

)d/2
for all 0 ≤ t ≤ 1. (3.53)

Therefore, (3.38) follows from (3.52), (3.53) and Stirling’s formula.
Now we turn to the proof of (3.39). By (3.47) and the elementary

inequality

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R, 0 < γ < 1,

we see that for all even integers n ≥ 2 and any 0 < γ < 1,

E
[
L(x + y, r)− L(x, r)

]n ≤ (2π)−nd2(1−γ)n|y|nγ

∫

[0, r]n

∫

Rnd

n∏

j=1

|uj |γ

× exp

(
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
))

du dt. (3.54)

Since for any 0 < γ < 1, |a + b|γ ≤ |a|γ + |b|γ , we have
n∏

j=1

|uj |γ ≤
∑′ n∏

j=1

|ukj

j |γ , (3.55)

where the summation
∑

´ is taken over all (k1, · · · , kn) ∈ {1, · · · , d}n.
Fix such a sequence (k1, · · · , kn) and fix n points 0 < t1 < · · · < tn ≤ r,
we consider the integral

I3 :=
∫

Rnd

n∏

j=1

|ukj

j |γ exp

(
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
))

du.
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It follows from (C2) that the Gaussian random variables Xl(tj) (l =
1, · · · , d, j = 1, · · · , n) are linearly independent. Hence we use the
generalized Hölder’s inequality and Lemma 3.18 to deduce that I3 is
at most

n∏

j=1

{∫

Rnd

|ukj

j |nγ exp
[
− 1

2
Var

( n∑

j=1

d∑

l=1

ul
jXl(tj)

)]
du

}1/n

=
(2π)nd−1

[
detCov(Xl(tj), 1 ≤ l ≤ d, 1 ≤ j ≤ n)

]1/2

×
∫

R
|v|nγ exp

(
−v2

2

)
dv

n∏

j=1

1
σγ

j

≤ Kn (n!)γ

[
detCov(Y (t1), · · · , Y (tn))

]d/2

n∏

j=1

1
σγ

j

,

(3.56)

where σ2
j is the conditional variance of Xkj (tj) given Xl(ti) (l 6= kj or

l = kj , i 6= j) and the last inequality follows from Stirling’s formula.
It follows from the independence of the Gaussian random fields X1,

· · · , Xn and Condition (C) that

σ2
j ≥ K min

{
φ(tj − tj−1), φ(tj+1 − tj)

}
,

where t0 := 0. Hence
n∏

j=1

1
σγ

j

≤ Kn
n∏

j=1

1[
φ(tj − tj−1)

]γ (3.57)

Combining (3.56), (3.49), (3.50) and (3.57), we obtain

I3 ≤ Kn (n!)γ
n∏

j=1

1
[
φ(tj − tj−1)

](d+2γ)/2
(3.58)

It follows from (3.54), (3.55) and (3.58) that

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn, |y|nγ(n!)1+γ

×
∫

0<t1<···<tn≤r

n∏

j=1

1
[
φ(tj − tj−1)

](d+2γ)/2
dt1 . . . dtn

≤ Kn|y|nγ(n!)1+γ rn

∫

0<s1+···+sn≤1

dU2(s1) · · · dU2(sn)

(3.59)

where the function U2(t) is defined by

U2(t) =
∫ min{t,1}

0

ds

(φ(rs))(d+2γ)/2
, t ≥ 0.
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Again U2 has the doubling property. Hence it follows from Lemma 3.19
that

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn
3,30

|y|nγ(n!)1+γ rn
[
U2(

1
n

)
]n

. (3.60)

Finally, (3.31) implies that

U2(t) ≤ K3,31

t
[
φ(rt)

](d+2γ)/2
for all t ∈ [0, 1]. (3.61)

Therefore, (3.39) follows from (3.60), (3.61) and Stirling’s formula.

Theorem 3.14 can be applied to determine the Hausdorff dimension
and Hausdorff measure of the level set X−1(x) = {t ∈ R : X(t) = x},
where x ∈ Rd. See Berman (1970, 1972), Adler (1981), Monrad and Pitt
(1987) and Xiao (1997a). In the following theorem we prove a uniform
Hausdorff dimension result for the level sets of the Gaussian process
X, extending the previous results of Berman (1972), Monrad and Pitt
(1987).
Theorem 3.20. Let X = {X(t), t ∈ R} be a Gaussian process in Rd

defined by (3.1) satisfying the conditions of Theorem 3.14. Then with
probability one,

dimHX−1(x) = 1− α∗d for all x ∈ O, (3.62)

where O is the random open set defined by

O =
⋃

s,t∈Q; s<t

{
x ∈ Rd : L(x, [s, t]) > 0

}
.

Proof. Let Ω0 be the event on which the modulus of continuity for X
[cf. (3.22)] and Theorem 3.14 hold. Clearly, P(Ω0) = 1. Now we choose
and fix an ω ∈ Ω0, and prove our conclusion for the sample path X(·, ω).

To prove the upper bound in (3.62), it is sufficient to show that
almost surely,

dimH

(
X−1(x) ∩ [0, 1]

) ≤ 1− α∗d for all x ∈ Rd. (3.63)

For any integer n ≥ 1, we divide the interval [0, 1] into 2n subintervals
In,k = [(k − 1)2−n, k2−n] (k = 1, . . . , 2n). For every x ∈ Rd, denote
by N(n, x) the number of k’s such that x ∈ X(In,k). The modulus
of continuity of X in Lemma 3.10 implies that if x ∈ X(In,k) then
X(In,k) ⊆ B(x, ρn), where ρn = K

√
φ(2−n) log 2n. Since the local time

L(y, 1) is a continuous in y, it is bounded on B(x, ρn). Hence we have

N(n, x) 2−n ≤
∫

B(x,ρn)

L(y, 1)dy ≤ K3,32 ρd
n, (3.64)
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where K3,32 depends on ω. This gives

N(n, x) ≤ K3,32 2n ρd
n. (3.65)

Hence for every 0 < γ < α∗, there exists a sequence {nk} of positive
integers such that N(nk, x) ≤ K3,32 2nk(1−γd). This implies (3.63).

To prove the lower bound in (3.62), we note that the jointly contin-
uous local time L(x, t) of X can be extended to become a random Borel
measure, denoted by L(x, ·), on X−1(x); see Adler (1981). Moreover, for
every x ∈ O, L(x, ·) is a positive measure.

Now for any γ > α∗, (3.33) of Theorem 3.14 implies that almost
surely, L(x,B(t, r)) ≤ K r1−γd for all x ∈ Rd, all t ∈ [0, 1] and r > 0
small. By the Frostman lemma [cf. Kahane (1985)], we have almost
surely dimHX−1(x) ≥ 1 − γd for all x ∈ O. Since γ > α∗ is arbitrary,
this proves the lower bound in (3.62) and hence the theorem.

Remark 3.21 It is an interesting question to characterize the random
open set O. Monrad and Pitt (1987) have given a real-valued periodic
stationary Gaussian process X for which O is a proper subset of R [be-
cause the range of X is a.s. bounded]. They have shown a sufficient con-
dition in terms of the spectral measure of a stationary (N, d)-Gaussian
random field X so that O = Rd holds. Monrad and Pitt (1987) also
point out that the self-similarity of an (N, d)-fractional Brownian mo-
tion Bα implies that if N > αd then O = Rd almost surely. However,
we do not know whether O = Rd is true for the (N, d)-Gaussian random
fields satisfying the conditions of Theorem 2.5. ¤

The local time L(0, 1) [i.e., L(x, 1) at x = 0] of a Gaussian process
X sometimes appears as a limit in some limit theorems on the occupa-
tion measure of X; see, for example, Kasahara and Ogawa (1999) and
the references therein. Since there is little knowledge on the explicit
distribution of L(0, 1), it is of interest in estimating the tail probability
P{L(0, 1) > x} as x → ∞. This problem has been considered by Kasa-
hara et al. (1999) under some extra conditions on the Gaussian process
X. The next theorem is an extension of their main result.

Theorem 3.22. Let X = {X(t) : t ∈ R} be a mean 0 Gaussian process in
Rd defined by (3.1). We assume that the associated Gaussian process Y
satisfies Condition (C) and the condition (3.31) with γ0 = 0. Then for
x > 0 large enough,

− logP
{
L(0, 1) > x

} ³ 1
φ−1(1/x2)

, (3.66)

where φ−1 is the inverse function of φ as defined in Theorem 3.1.
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Theorem 3.22 follows easily from the moment estimates for L(0, 1)
in Lemma 3.24 and the following lemma on the tail probability of non-
negative random variables. When ψ is a power function or a regularly
varying function, Lemma 3.23 is well known.

Lemma 3.23. Let ξ be a non-negative random variable and let ψ : R+ →
R+ be a non-decreasing function having the doubling property. If there
exist positive constants K3,33 and K3,34 such that

Kn
3,33

ψ(n)n ≤ E(ξn) ≤ Kn
3,34

ψ(n)n

for all n large enough, then there exist positive constants K3,35 > K3,34 ,
K3,36 and K3,37 such that for all x > 0 large enough,

e−K3,36x ≤ P{ξ ≥ K3,35 ψ(x)
} ≤ e−K3,37x. (3.67)

Proof. The upper bound in (3.67) follows easily from Chebyshev’s in-
equality and a monotonicity argument. In order to prove the lower
bound, we follow the elementary argument of Talagrand (1998). By
applying the Paley-Zygmund inequality [cf. Kahane (1985), p.8] to ξn,
we have

P
{

ξ ≥ K3,33

2
ψ(n)

}
≥ P

{
ξn ≥ 1

2
E(ξn)

}

≥ 1
4

[
E(ξn)

]2
E(ξ2n)

≥ 1
4

K2n
3,33

ψ(n)2n

K2n
3,34

ψ(2n)2n
.

Now it is clear that the lower bound in (3.67) follows from the doubling
property of ψ and a standard monotonicity argument.

Lemma 3.24. There exist positive and finite constants K3,38 and K3,39

such that for all integers n ≥ 1

Kn
3,38

φ(1/n)nd/2
≤ E[

L(0, 1)n
] ≤ Kn

3,39

φ(1/n)nd/2
. (3.68)

Proof. As in the proofs of Lemma 2.5 in Xiao (1997a) or Lemma 1 in
Kasahara et al. (1999), we derive from (3.46) that for any integer n ≥ 1,

E
[
L(0, 1)n

]
= (2π)−nd/2

∫

[0, 1]n

1
[
detCn(t1, · · · , tn)

]d/2
dt1 · · · dtn.

(3.69)
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It follows from (3.49) and (3.50) that

[
E

(
L(0, 1)n

)]1/n

³

n!

∫

0<t1<...<tn≤1

n∏

j=1

1
σd(tj − tj−1)

dt1 · · · dtn




1/n

³
[
n!

∫

0<s1+s2+···+sn≤1

dU3(s1) · · · dU3(sn)
]1/n

,

(3.70)

where the function U3(t) is defined by

U3(t) =
∫ min{t,1}

0

ds

(φ(s))d/2
∀ t ≥ 0.

Since φ is non-decreasing, we see that U3(2t) ≤ 2U3(t) for all t ≥ 0.
Hence it follows from Lemma 3.19 that

[
E

(
L(0, 1)n

)]1/n

³ (n!)1/nU3(1/n). (3.71)

Therefore, (3.68) follows from (3.53) and Stirling’s formula as in the
proof of Lemma 3.17.

We end this section with the following open problem.

Question 3.25 Let X = {X(t) : t ∈ R} be the Gaussian process in
Theorem 3.22. Does the limit lim

x→∞
φ−1(1/x2) logP

{
L(0, 1) > x

}
exist?

¤
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