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1 Introduction

Let Y(t) (t € RY) be a real-valued, centered Gaussian random field with
Y(0) = 0. We assume that Y (¢) (¢ € RY) has stationary increments and
continuous covariance function R(t,s) = EY (t)Y (s) given by
(1.1) R(t,s) = / (< 1) (< S AN |

R
where < x,y > is the ordinary scalar product in RY and A(d)) is a nonneg-

ative symmetric measure on R\ {0} satisfying

AP?
1.2 / A(dA o0 .
(1.2) RN 1+ |\ (@) <

Then there exists a centered complex-valued Gaussian random measure W (d\)

such that
(1.3) Y(t) = /R (@S )W ()
and for any Borel sets A, B C RV
E(W(A)W(B)) = A(ANB) and W(-A) = W(A) .
It follows from (1.3) that

(14)  E[(Y(t+h) - Y(#)] = 2/RN(1 —cos < h, A >) A(dN) .

We assume that there exist constants dg > 0, 0 < ¢ < ¢ < oo and a
non-decreasing, continuous function o : [0,d9) — [0, 00) which is regularly
varying at the origin with index a (0 < o < 1) such that for any t € R and
h € RN with |h| < dy

(1.5) E[(Y(t+h) —Y(®)] <cac’(h]) .
and for all t € RN and any 0 < r < min{|t|, do}
(1.6) Var(Y($)|Y (s) : 7 < |s —t| < o) > ca0®(r) .

If (1.5) and (1.6) hold, we shall say that Y (¢) (t € R") is strongly locally o-
nondeterministic. We refer to Monrad and Pitt[14], Berman [4] [5] and Cuzick

and Du Peez [6] for more information on (strongly) locally nondeterminism.
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We associate with Y (¢) (¢ € RY) a Gaussian random field X (¢) (t € RV)
in R? by

(1.7) X(t) = (Xa(t), -+, Xa(1))

where X7, - -+, Xy are independent copies of Y. The most important example
of such Gaussian random fields is the fractional Brownian motion of index «
(see Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

dimX ([0, 1)) = min(d, Z) :

The objective of this paper is to consider the exact Hausdorff measure of
the image set X ([0,1]"). The main result is the following theorem, which

generalizes a theorem of Talagrand [22].

Theorem 1.1 If N < ad, then with probability 1
(1.8) 0 < ¢-m(X([0,1]V)) < o0,

where .
8(s) = ¥(s)" loglog

1 is the inverse function of o and where ¢-m(X ([0, 1]V)) is the ¢-Hausdor(f
measure of X ([0, 1]V).

If N > ad, then by a result of Pitt [17], X([0,1]Y) a. s. has interior
points and hence has positive d-dimensional Lebesgue measure. In the case
of N = ad, the problem of finding ¢-m (X ([0, 1]")) is still open even in the
fractional Brownian motion case.

The paper is organized as follows. In Section 2 we recall the definition
and some basic facts of Hausdorff measure, Gaussian processes and regularly
varying functions. In Section 3 we prove the upper bound and in Section 4,
we prove the lower bound for ¢-m(X ([0, 1]")). We also give some examples
showing that the hypotheses in Theorem 1.1 are satisfied by a large class of

Gaussian random fields including fractional Brownian motion.



Another important example of Gaussian random fields is the Brownian
sheet or N-parameter Wiener process W (t) (t € RY), see Orey and Pruitt
[16]. Since W (t) (t € RY) is not locally nondeterministic, Theorem 1.1 does
not apply. The problem of finding the exact Hausdorff measure of W ([0, 1]V)
was solved by Ehm [7].

We will use K to denote an unspecified positive constant which may be

different in each appearance.

2 Preliminaries

Let @ be the class of functions ¢ : (0,0) — (0, 1) which are right continuous,
monotone increasing with ¢(04+) = 0 and such that there exists a finite
constant K > 0 for which
¢(2s)
¢(s)
For ¢ € ®, the ¢-Hausdorff measure of £ C R” is defined by

1
<K, for0<s<§5.

¢-m(E) = hf% inf{z ¢(2ri) : E C UZ, B, ri), 13 < E} ,

where B(z,r) denotes the open ball of radius r centered at x. It is known that
¢-m is a metric outer measure and every Borel set in RY is ¢-m measurable.
The Hausdorff dimension of F is defined by

dimFE = inf{a>0: s*m(E) =0}
= sup{a>0: s*m(F)=o0}.

We refer to [F] for more properties of Hausdorff measure and Hausdorff di-
mension.

The following lemma can be easily derived from the results in [18] (see
[23]), which gives a way to get a lower bound for ¢-m(FE). For any Borel
measure 1 on RY and ¢ € ®, the upper ¢-density of p at z € RY is defined
by

D’ (z) = limsup ——————-
N( ) r—0 p ¢<2r>



Lemma 2.1 For a given ¢ € ® there exists a positive constant K such that

for any Borel measure i on RN and every Borel set E C RN, we have
¢-m(E) > Ku(E) inf (D} (x)} .

Now we summarize some basic facts about Gaussian processes. Let

Z(t) (t € S) be a Gaussian process. We provide S with the following metric
d(s,t) = 1Z(s) = Z()ll2 ,

where || Z||5 = (E(Z2))2. We denote by Ny(S, €) the smallest number of open
d-balls of radius € needed to cover S and write D = sup{d(s,t) : s, t € S}.
The following lemma is well known. It is a consequence of the Gaussian

isoperimetric inequality and Dudley’s entropy bound([11], see also [22]).

Lemma 2.2 There exists an absolute constant K > 0 such that for any

u > 0, we have

P{ sup |Z(s) — Z(t)| > K(u+ /OD \/1og Ny(S, e)de)} < e:cp(—éi) :

s, t€S

Lemma 2.3 Consider a function ¥ such that Ng(S,€) < U(e) for all e > 0.

Assume that for some constant C' > 0 and all € > 0 we have
U(e)/C < np(%) < OU(e) .

Then
P{sup |7(s) = 2(0) < u} = eap(~K¥(w))

s, teS

where K > 0 is a constant depending only on C.

This is proved in [21]. It gives an estimate for the lower bound of the
small ball probability of Gaussian processes. Similar problems have also been
considered by Monrad and Rootzén [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions.
Let o(s) be a regularly varying function with index o (0 < a < 1). Then o
can be written as

o(s) =sL(s) ,
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where L(s) : [0,60) — [0,00) is slowly varying at the origin in the sense of

Karamata and hence can be represented by

Ae(t
(2.1) L(s) = exp(n(s) +/ E(t) dt) :
where n(s) : [0,00] — R, €(s) : (0, A] — R are bounded measurable functions
and
hn%n(s) =c, |c| < oo; lir%e(s) =0.
In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5
can be deduced from Theorem 2.6 and 2.7 in Seneta [19] directly.

Lemma 2.4 Let L(s) be a slowly varying function at the origin and let U =
U(s) : [0,00) — [0,00) satisfying
hH(l) U(s) =00 and lirr(l)sU(s) =0.

Then for any € > 0, as s small enough we have
U(s) “L(s) < L(sU(s)) < U(s)L(s)

and

U(s) “L(s) < L(sU(s)™") < U(s)°L(s) .

Lemma 2.5 Let o be a regularly varying function at the origin with index

a > 0. Then there is a constant K > 0 such that for r > 0 small enough, we

have

(2.2) /loo a(re’“Q) du < Ko(r) ,
(2.3) /01 o(rs) ds < Ko(r)
(2.4) /01 o(rs)sV 1 ds < Ko(r) ,

Let o : [0,d9) — [0, 00) be non-decreasing and let ¢ be the inverse function
of o, that is
Y(s) =inf{t >0:0(t) > s} .

then v (s) = s/ f(s), where f(s) is also a slowly varying function and

(2.5) o((s)) ~s and ¢(o(s)~s as s—0.



3  Upper bound for ¢-m(X([0,1]V))

Let Y(t) (t € RM) be a real-valued, centered Gaussian random field with
stationary increments and a continuous covariance function R(t, s) given by
(1.1). We assume that Y(0) = 0 and (1.5) holds. Let X(¢) (¢t € R") be the
(N, d) Gaussian random field defined by (1.7).

We start with the following lemma.

Lemma 3.1 Let Y(t) (t € RY) be a Gaussian process with Y (0) = 0 satis-
fying (1.5). Then

(i) For any r >0 small enough and u > Ko(r), we have

(3.1) P{sﬂuﬁe V()] > u} < e:cp(—w> |
(ii) Let
wy (h) = sup Y (t+s)—Y(t)]

t, t+s€[0,1]N, [s|<h

be the uniform modulus of continuity of Y (t) on [0,1]Y. Then

h
(3.2) lim sup wr () <1

h=0" o(h)\/2c11log+ 7

Proof. Let r < §p and S = {t: |t| <r}. Since d(s,t) < c10(|t — s|), we have
s.0<K()
Nyg(S,¢) < K( )
‘ (o)

D = sup{d(s,t);s, t € S} < Ko(r) .

a. S.

and

By simple calculations

/OD,/logNd(s,e) de < K /KU(” log(Kr)/w(e) de
< K/ V0og(Kr)/t do(t
: K( / u logK/u (ur)du)
C k(e i)
< Ko(r),



where the last inequality follows from (2.2). If u > Ko(r), then by Lemma

2.2 we have

P{sup Y(t)] > 2K u}

) <r
< Plswp V()= Kt 7 log Ny(5.€) de)}

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2
directly in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spec-
tral representation (1.3). Given 0 < a < b < 0o, we consider the process

Y(a,b,t) = / €S D)

Then for any 0 < a < b < @’ <V < 00, the processes Y (a,b,t) and Y (da', V', t)
are independent. The next lemma expresses how well Y (a, b, t) approximates
Y (t).

Lemma 3.2 Let Y (t) (t € RY) be defined by (1.3). If (1.5) holds, then there
exists a constant B > 0 such that for any B < a < b we have

1

(3.3) 1Y (a,,t) = Y (t)]2 < K [[tPa’0*(a") + o*(67H)]* .

Proof. First we claim that for any v > 0 and any h € R with |h| = 1/u

we have

(3.4) / <A S AN) < K/ (1—cos < h, A >)A(dN)
[Al<u RN

u

(3.5) /lm A < K(5) /[_I/U’I/U]N dv /RN(1 —cos < v, A >)A(AN)

For N =1, (3.4) and (3.5) are the truncation inequalities in [12] p209. For
N > 1 a similar proof yields (3.4) and (3.5).
Now for any a > d;' and any t € R¥\{0}, by (1.4) ,(1.5) and (3.4) we

have

(3.6) /| (1 cos <A >)AW) < <t ) >2 A(d))
A<a

Al<a
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= |1€|2c12/|| <t/(alt]), N >* A(d)) < K[t|*a*a*(a” ") .
A<a
For b > 0 large enough, by (3.5), (1.4), (1.5) and (2.4) we have
by
3.7 [ A<k [ 2(j|)d
(37) LA SKGY [ ol
VNb~!
gKW/’ 2(p)pNldp < Ko*(b™1) .
0

Combining (3.6) and (3.7), we see that there exists a constant B > 0 such
that B < a < b implies
E|(Y(a,bt) =Y (t)? =2 1—cos <t,\>) A(dA
(Y@ —y@)|=2/ ) A(dN)
Muﬂ%aA»mm+2 A(dN)
Al<a

[A|>b

IN

< K |[tPa’o*(a) +o(b7h)]
This proves (3.3).

Lemma 3.3 There exists a constant B > 0 such that for any B < a < b
and 0 < r < B™! the following holds: let A = r*a*c?(a™') + o?(b™") such
that y(v/A) < sr, then for any

UZK(M%)%

we have

(3.8) P{sup Y(t) —Y(a,b,t)| > u} < exp(—UQ) :

jt/<r KA
Proof. Let S ={t: |t| <r}and Z(t) =Y (t) — Y(a,b,t). Then
d(s,t) = |Z(t) = Z(s)]2 < cro (|t = s]) -

Hence




By Lemma 3.2 we have D < K+/A. As in the proof of Lemma 3.1,

/D\/logNd S,e) de < K /K\/Z log(Kr)/v(e) de

<K / log K/t do(rt)

Kyp(VA)/r 1
<K {\/log K/t o(rt)|i? A —1—/0 75\/177/25 O'(Tt)dt}
0g

o(Kre™)du

< K \/Alog Kr/v(VA) + K/;m

< K/ Alog Kr/4(VA)

at least for > 0 small enough, where the last step follows from (2.2). Hence
(3.8) follows immediately from Lemma 2.2.

Let Xi(a,b,t),---, Xq4(a,b,t) be independent copies of Y (a,b,t) and let
X(a,b,t) = (X1(a,b,t),---, Xa(a,b,t)) (t€RN).
Then we have the following corollary of Lemma 3.3.
Corollary 3.1 Consider B<a<b and 0 <r < B™'. Let
A=r?a*c*(a) +o*(b7")
with ¥(v/A) < %r. Then for any

K l
u > K(Alogr)>2

we have

u

2
3.9 P{s X(t) — X(a.b.t Zu}<ea: (—)
39 sup X(0) = X0, o(- s
Lemma 3.4 Given 0 < r < §y and € < o(r). Then for any 0 < a < b we

have

N

(3.10) P{ﬁug | X (a,b,t)| < e} > exp(—%v) :



Proof. 1t is sufficient to prove (3.10) for Y(a,b,t). Let S = {t : [t| < r}
and define a distance d on S by

d(s,t) =[|Y(a,b,t) —Y(a,b,s)2 .

Then d(s,t) < cio(|t — s|) and

Nu(S,€) < K(JE))N .

By Lemma 2.3 we have

P{i|u§11|Y(a,b, t)] < 6} > exp(—K;](\;)N> :

This proves lemma 3.4.

Proposition 3.1 There exists a constant 61 > 0 such that for any 0 < rg <
01, we have
1
(3.11) P{EIT € [r2, ro] such that sup |X(t)] < Ko(r(loglog )_15)}
[tI<r r

>1-— exp(—(log 7410) ) :

[N

Proof. We follow the line of Talagrand [22]. Let U = U(rg) > 1, where
U(r) satisfying

(3.12) U(r) — o0 as r—0
and for any € > 0
(3.13) rU(r) -0 as r—0,

will be chosen later. For k > 0, let r,, = roUU 2%, Let kg be the largest integer

such that
log %

ko <
0= 2loglU "’
then for any 0 < k < kg we have r3 < r; < ro. In order to prove (3.11), it

suffices to show that

B
(3.14) P{Elk < ko such that sup |X(¢)] < Ko(rg(log log)N)}

[t|<r Tk
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>1-— exp(—(log 7“10) ) .

Let ap = 75" U?*~! and we define for k =0, 1,---

N

Xi(t) = X(ag, ags1,t) ,

then Xy, Xi,--- are independent. By Lemma 3.4 we can take a constant K

such that for ro > 0 small enough

1
(3.15) P{ sup | Xx(t)] < K1o(re(log 1og)—fv>}
[t <r Tk
1 1

> cap(—~loglog —

> exp(—7 loglog rk)

B 1

T —

(log 1)}

Thus, by independence we have

1
(3.16) P{Hk < ko, sup [Xy(t)] < Kyo(rg(loglog T)‘”N)}
k

[t|<rs

1 1 ! N
>1_ - -
- ( (2log 1/7“0)1/4)

ko
>1- —_— .
- exp( (210g1/r0)1/4)
Let
Ay = riago’(a;’) + o*(agsy)

= U2 2(p, U) + U 22 L2 (ry,JU) .
Let = 2min{l — a, a} and fix an € < %B. Then by Lemma 2.4, we see that
as ro small enough

U_ﬁ_602(7’k) S Ak S U_ﬁ+602<7"k) .
Notice that for ry small enough we have

V(A = (U e (ry))
— (U (r) " FU ()
U =PI L)V f (U720 (1))

> KU~ 0+9/Qa),,

I
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the last inequality follows from (2.5). It follows from Corollary 3.1 that for
u > Ka(rk)U_%(log U2,
we have

(3.17) P{;g)k | X (t) — Xy(t)] > u} < eXp(—}%) _

Hence, if we take

U = (log 1/7’0)5'1—6 ,

then as ry small enough
_B=e 1/2 1 _ 1
o(ri) U™ 2 (logU)"* < o(ri(loglog T—O) N) .

Hence by taking

K 1
u=—to(r(loglog —) ")
2 To

in (3.17), we obtain
(3.18)

Kl 1 N UZU,B—e
P X)) —Xi(t)| > — loglog —)~ < —— .
{0 1X(0) = X000 > Fotmutoglon 1))} < exp( )

Combining (3.16) and (3.18) we have

1
(3.19) P{Elk < ko such that sup |X(¢)| < 2K 0(r(loglog )1/N)}
Tk

[t|<rs,

> 1 ( ko ) k < UP—« )
[ D Q(IQg 1/7“0)1/4 0 p K(log log 1/TO)(2a)/N+e
We recall that

1

%870 g < log ©
4logU — 0= gro'

and hence for o small enough, (3.11) follows from (3.19).

Now we are in a position to prove the upper bound for ¢-m(X ([0, 1]V)).
Theorem 3.1 Let ¢(s) = ¢p(s)" loglog t. Then with probability 1

¢-m(X([0,1]V)) < 0o
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Proof. For k > 1, consider the set
R, = {t c[0,1]Y : Ir € [272*,27%] such that

sup | X(s) — X(8)] < Ko(r(loglog i)l/N)} |

[s—t|<r

By Proposition 3.1 we have
P{t € Ry} > 1 —exp(—/k/2) .

Denote the Lebesgue measure in RY by Ly. It follows from Fubini’s theorem
that P(£2) = 1, where

Qo ={w: Ly(Rg) > 1 —exp(—y/k/4) infinitely often}.
To see this, let = {w : Ly(Ry) > 1 —exp(—y/k/4) }. Then

Qo = lim sup €.

k—o0
We also define Ay = {(t,w) : t € Ri(w)} and Yi(w) = Ly({t: (t,w) € Ax}).
Then
E(Yy) = P ® Ly(Ax) = 1 — exp(—/k/2).
For simplicity, write ar, = 1 —exp(—4/k/4 ). It follows from Fubini’s theorem
that

= 1—P{Yk<ak}
= 1—P{1—Yk>1—ak}
L _B1-Y
- 1—(11C

1 E(Y,
LB

1—ak 1—ak

1 1— e V2
> 1-
- 1—ak 1—ak
B NG
N 1—ak
> 1—exp(—\/E(L—l)>.
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Therefore we have

P(lim sup €,) > kl%m P{} = 1.

k—o0

On the other hand, by Lemma 3.1 ii), there exists an event €2; such that
P(€;) = 1 and for all w € €, there exists ny = n;(w) large enough such

that for all n > n; and any dyadic cube C of order n in RY, we have

(3.20) sup | X(t) — X(s)] < Ko(27")v/n .

s,teC

Now fix an w € Qg Ny, we show that ¢-m(X ([0, 1]V)) < oo. Consider k > 1
such that

Lu(Ri) > 1 — exp(—[K/4) |
For any x € Ry we can find n with £k < n < 2k + k¢ (where ky depends on N

only) such that

(3.21) sup | X(t) — X(s)] < Ko(27"(log log 2”)_1/N) ,

5,teCn(x)

where C),(x) is the unique dyadic cube of order n containing x. Thus we
have
R, CV = UZtkoy,

and each V,, is a union of dyadic cubes C,, of order n for which (3.21) holds.
Clearly X (C),) can be covered by a ball of radius

pn = Ko(27"(loglog 2")~'/V) .
Since ¢(2p,) < K27V = KLx(C,,), we have

(3.22) Yo > 62pn) <D0 Y KLn(Cy)

n Ccevy, n Cevy,

On the other hand, [0, 1]\ V is contained in a union of dyadic cubes of order

q = 2k + kg, none of which meets Rj. There can be at most
2V Ly ([0,1M\V) < K2V9exp(—Vk/4)
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such cubes. For each of these cubes, X(C) is contained in a ball of radius
p=Ko(279),/q. Thus for any € > 0

(3.23) 3" 6(20) < K2Vexp(—Vk/4)27NigNCte <

for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows
from (3.22) and (3.23).

4  Lower bound for ¢-m(X([0,1]Y))

Let Y(t) (t € RY) be a real-valued, centered Gaussian random field with
stationary increments and a continuous covariance function R(t, s) given by
(1.1). We assume that Y(0) = 0 and (1.6) holds. Let X (¢) (¢ € R") be the
(N, d) Gaussian random field defined by (1.7). In this section, we prove that
if N < ad,, then

o-m(X([0,1]Y) >0 a. s.

For simplicity we assume &y = 1 and let I = [0,1]Y N B(0,1) ( otherwise

we consider a smaller cube). For any 0 < 7 < 1 and y € R%. let

L) = [ Lngn(X ()t

be the sojourn time of X(¢) (¢t € I) in the open ball B(y,r). If y = 0, we
write T'(r) for To(r).

Proposition 4.1 There exist 63 > 0 and b > 0 such that for any 0 < r < d

(4.1) E(exp(bw(r)_NT(r))> <K <oo.

Proof. We first prove that there exists a constant 0 < K < oo such that
for any n > 1
(4.2) E(T(r))" < K™nl(r)N™

For n =1, by (2.4) and (2.5) we have
(4.3) ET(r) = /I P{X(t) € B(0,r)}dt

15



VAN
=
S~
=
g

K (r) 1 pdpN-l
K N ldp+ K Wid dp
0 Ky(r)  o(p)

1

()" + Kty ()™ /OO tlHod=N (1) (r)t)d dt

IA
=
<

1

< K 4+ Krt(r)N o L(y(r))!
< Ko(r)V.
For n > 2
(4.4) E(T(r)") = /1 P{X(t)| <7 -, | X(t0)] < r)dty - dt

Consider ty,---,t, € I satisfying

tj#0 for j=1,---,n, t;#t, for j#k.
Let n = min{|t,|, |t, — |, i =1, --- ,n —1}. Then by (1.6) we have
(4.5) Var(X ()| X (t1), -+, X(ta_1)) > c20?(n) .

Since conditional distributions in Gaussian processes are still Gaussian, it
follows from (4.5) that

(4.6) P{X ()] < 1| X () = 21, X (tno1) = Tp_1}

<K a<j7>d”p<‘ Kfz‘?n>>d“

Similar to (4.3), we have

1 Jul?
(4.7) /Idtn /|u|<r a(n)d%p<— KUQ(n))du
< /min{l, K(W)d}dtn
< K/ me{1 K _t‘))}dtn (to = 0)
1 rd
< Kn/o min{1, Ul({p)d}pN_l dp
< Knp(r)V
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By (4.4), (4.6) and (4.7), we obtain
E<T(T))n < K/ P{|X1<t1)‘ <7r-e, ’X(tn71>| < T}dtl ce dtn,1

/ /u|<r o(n ( KLUJEUQCZU

< Kny(r)VE(T(r))"" 1-

Hence, the inequality (4.2) follows from (4.3) and induction. Let 0 < b <
1/K, then by (4.2) we have

o0

Eexp(by(r) NT(r)) = > (Kb)" < o0

n=0
This proves (4.1).

Proposition 4.2 With probability 1

. T(r) 1
) P S b

where ¢(r) = (r)N loglog 1/r.

Proof. For any e > 0, it follows from (4.1) that

K
: > NMoglogl/r} < ———— .
49)  PIT() = (1/b+ o) loglog 1/} € oy
Take r,, = exp(—n/logn), then by (4.9) we have
K
N
P{T(ry) = (1/b+ €)(rn)" loglog1/r,} < W .

Hence by Borel-Cantelli lemma we have

T(r,) 1
4.10 lim sup < - —l— €
410) n—oo (1)

It is easy to verify that

()
4.11 lim =1.
(4.11) =00 G(rp41)
Hence by (4.10) and (4.11) we have
. T(r) 1
lim sup
r—0 O(r) ~ =3

Since € > 0 is arbitrary, we obtain (4.8).

+

Since X (¢) (¢t € R") has stationary increments, we derive the following

17



Corollary 4.1 Fiz ty € I, then with probability 1

T
lim sup ZX@ T/ (r)
r—0 r

<

S| =

Theorem 4.1 If N < ad, then with probability 1
(4.12) G-m(X(0,1%)) > 0 .
where ¢(r) = (r)N loglog 1/r.

Proof. We define a random Borel measure p on X (1) as follows. For any
Borel set B C R, let

uw(B)=Ly{tel, X(t)e B} .

Then pu(RY) = u(X (1)) = Ly(I). By Corollary 4.1, for each fixed ty € I,
with probability 1

p(B(X (o), 7))

4.13 lim su
(4.13) nsup o
. Txo)(r) 1
< limsup —2Y~ < — |
=Y e T

Let E(w) = {X(to) : to € I and (4.13) holds }. Then E(w) C X(I). A

Fubini argument shows p(E(w)) =1, a. s.. Hence by Lemma 2.1, we have
¢-m(E(w)) > Kb .

This proves (4.12).
Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately.
Example 4.1. Let Y(t) (t € RY) be a real-valued fractional Brownian
motion of index o (0 < v < 1) (see [10], Chapter 18). Its covariance function

has the representation

1
R(st) = (s + [t — [t = s*)

. : d\
_ i<t,A> —i<8,A>
= c(a) /RN(e 1)(e 1)|/\|N+2a ,

18



where ¢(«) is a normalizing constant. Then (1.5) is verified and by a result
of Pitt [17], (1.6) is also verified. In this case, Theorem 1.1 is proved by
Goldman [9] for a = 1/2 and by Talagrand [22] for 0 < o < 1.

Example 4.2. Let Z(t) (t € RY) be a real-valued mean zero stationary

random field with covariance function
R(s,t) = exp(—c|s — t|**) withe¢>0 and 0 <a<1.

Then Y (t) = Z(t) — Z(0) verifies the conditions (1.5) and (1.6). We can
apply Theorem 1.1 to obtain the Hausdorff measure of X ([0, 1]"), where

X (1) = (Xa2(1), - -+, Xa(t))

and Xy, -, Xy are independent copies of Z. Other examples with absolutely
continuous spectral measure can be found in Berman [2] p289, and Berman
[4].

Example 4.3. Now we give an example with discrete spectral measure.
Let X,, (n > 0) and Y,, (n > 0) be independent standard normal random
variables and a,, (n > 0) real numbers such that 3°,, a> < co. Then for each

t, the random series

(4.14) Z(t) = an(X, cosnt + Y, sinnt)

n=0
converges with probability 1 (see [10]), and Z(¢) (¢ € R) represents a sta-

tionary Gaussian process with mean 0 and covariance function

R(s,t) = i a2 cosn(t —s) .

n=0
By a result of Berman [4], there are many choices of a, (n > 0) such that
the process Y (t) = Z(t) — Z(0) satisfies the hypotheses of Theorem 1.1 with

0?(s) =2 a’(1l — cosns) .
n=0

Let X(t) (t € R) be the Gaussian process in R? associated with Z(¢) or
Y(t) (t € R) by (1.7). If 1 < ad, then
0 < ¢-m(X([0,1])) < o0,

where ¢(s) = 1(s)loglog 1 and ¢ is the inverse function of 0. A special case
of (4.14) is Example 3.5 in Monrad and Rootzén [15].
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