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1 Introduction

Let Y (t) (t ∈ RN) be a real-valued, centered Gaussian random field with

Y (0) = 0. We assume that Y (t) (t ∈ RN) has stationary increments and

continuous covariance function R(t, s) = EY (t)Y (s) given by

(1.1) R(t, s) =
∫

RN
(ei<t,λ> − 1)(e−i<s,λ> − 1)∆(dλ) ,

where < x, y > is the ordinary scalar product in RN and ∆(dλ) is a nonneg-

ative symmetric measure on RN\{0} satisfying

(1.2)
∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞ .

Then there exists a centered complex-valued Gaussian random measure W (dλ)

such that

(1.3) Y (t) =
∫

RN
(ei<t,λ> − 1)W (dλ)

and for any Borel sets A, B ⊆ RN

E
(
W (A)W (B)

)
= ∆(A ∩B) and W (−A) = W (A) .

It follows from (1.3) that

(1.4) E[(Y (t + h)− Y (t))2] = 2
∫

RN
(1− cos < h, λ >) ∆(dλ) .

We assume that there exist constants δ0 > 0, 0 < c1 ≤ c2 < ∞ and a

non-decreasing, continuous function σ : [0, δ0) → [0,∞) which is regularly

varying at the origin with index α (0 < α < 1) such that for any t ∈ RN and

h ∈ RN with |h| ≤ δ0

(1.5) E[(Y (t + h)− Y (t))2] ≤ c1σ
2(|h|) .

and for all t ∈ RN and any 0 < r ≤ min{|t|, δ0}

(1.6) V ar(Y (t)|Y (s) : r ≤ |s− t| ≤ δ0) ≥ c2σ
2(r) .

If (1.5) and (1.6) hold, we shall say that Y (t) (t ∈ RN) is strongly locally σ-

nondeterministic. We refer to Monrad and Pitt[14], Berman [4] [5] and Cuzick

and Du Peez [6] for more information on (strongly) locally nondeterminism.

1



We associate with Y (t) (t ∈ RN) a Gaussian random field X(t) (t ∈ RN)

in Rd by

(1.7) X(t) = (X1(t), · · · , Xd(t)) ,

where X1, · · · , Xd are independent copies of Y . The most important example

of such Gaussian random fields is the fractional Brownian motion of index α

(see Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

dimX([0, 1]N) = min(d,
N

α
) .

The objective of this paper is to consider the exact Hausdorff measure of

the image set X([0, 1]N). The main result is the following theorem, which

generalizes a theorem of Talagrand [22].

Theorem 1.1 If N < αd, then with probability 1

(1.8) 0 < φ-m(X([0, 1]N)) < ∞ ,

where

φ(s) = ψ(s)N log log
1

s
,

ψ is the inverse function of σ and where φ-m(X([0, 1]N)) is the φ-Hausdorff

measure of X([0, 1]N).

If N > αd, then by a result of Pitt [17], X([0, 1]N) a. s. has interior

points and hence has positive d-dimensional Lebesgue measure. In the case

of N = αd, the problem of finding φ-m(X([0, 1]N)) is still open even in the

fractional Brownian motion case.

The paper is organized as follows. In Section 2 we recall the definition

and some basic facts of Hausdorff measure, Gaussian processes and regularly

varying functions. In Section 3 we prove the upper bound and in Section 4,

we prove the lower bound for φ-m(X([0, 1]N)). We also give some examples

showing that the hypotheses in Theorem 1.1 are satisfied by a large class of

Gaussian random fields including fractional Brownian motion.
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Another important example of Gaussian random fields is the Brownian

sheet or N -parameter Wiener process W (t) (t ∈ RN
+ ), see Orey and Pruitt

[16]. Since W (t) (t ∈ RN
+ ) is not locally nondeterministic, Theorem 1.1 does

not apply. The problem of finding the exact Hausdorff measure of W ([0, 1]N)

was solved by Ehm [7].

We will use K to denote an unspecified positive constant which may be

different in each appearance.

2 Preliminaries

Let Φ be the class of functions φ : (0, δ) → (0, 1) which are right continuous,

monotone increasing with φ(0+) = 0 and such that there exists a finite

constant K > 0 for which

φ(2s)

φ(s)
≤ K, for 0 < s <

1

2
δ.

For φ ∈ Φ, the φ-Hausdorff measure of E ⊆ RN is defined by

φ-m(E) = lim
ε→0

inf

{∑

i

φ(2ri) : E ⊆ ∪∞i=1B(xi, ri), ri < ε

}
,

where B(x, r) denotes the open ball of radius r centered at x. It is known that

φ-m is a metric outer measure and every Borel set in RN is φ-m measurable.

The Hausdorff dimension of E is defined by

dimE = inf{α > 0 : sα-m(E) = 0}
= sup{α > 0 : sα-m(E) = ∞} .

We refer to [F] for more properties of Hausdorff measure and Hausdorff di-

mension.

The following lemma can be easily derived from the results in [18] (see

[23]), which gives a way to get a lower bound for φ-m(E). For any Borel

measure µ on RN and φ ∈ Φ, the upper φ-density of µ at x ∈ RN is defined

by

D
φ
µ(x) = lim sup

r→0

µ(B(x, r))

φ(2r)
.
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Lemma 2.1 For a given φ ∈ Φ there exists a positive constant K such that

for any Borel measure µ on RN and every Borel set E ⊆ RN , we have

φ-m(E) ≥ Kµ(E) inf
x∈E

{Dφ
µ(x)}−1 .

Now we summarize some basic facts about Gaussian processes. Let

Z(t) (t ∈ S) be a Gaussian process. We provide S with the following metric

d(s, t) = ‖Z(s)− Z(t)‖2 ,

where ‖Z‖2 = (E(Z2))
1
2 . We denote by Nd(S, ε) the smallest number of open

d-balls of radius ε needed to cover S and write D = sup{d(s, t) : s, t ∈ S}.
The following lemma is well known. It is a consequence of the Gaussian

isoperimetric inequality and Dudley’s entropy bound([11], see also [22]).

Lemma 2.2 There exists an absolute constant K > 0 such that for any

u > 0, we have

P
{

sup
s, t∈S

|Z(s)− Z(t)| ≥ K(u +
∫ D

0

√
log Nd(S, ε)dε)

}
≤ exp

(
− u2

D2

)
.

Lemma 2.3 Consider a function Ψ such that Nd(S, ε) ≤ Ψ(ε) for all ε > 0.

Assume that for some constant C > 0 and all ε > 0 we have

Ψ(ε)/C ≤ Ψ(
ε

2
) ≤ CΨ(ε) .

Then

P{ sup
s, t∈S

|Z(s)− Z(t)| ≤ u} ≥ exp
(
−KΨ(u)

)
,

where K > 0 is a constant depending only on C.

This is proved in [21]. It gives an estimate for the lower bound of the

small ball probability of Gaussian processes. Similar problems have also been

considered by Monrad and Rootzén [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions.

Let σ(s) be a regularly varying function with index α (0 < α < 1). Then σ

can be written as

σ(s) = sαL(s) ,
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where L(s) : [0, δ0) → [0,∞) is slowly varying at the origin in the sense of

Karamata and hence can be represented by

(2.1) L(s) = exp
(
η(s) +

∫ A

s

ε(t)

t
dt

)
,

where η(s) : [0, δ0] → R, ε(s) : (0, A] → R are bounded measurable functions

and

lim
s→0

η(s) = c , |c| < ∞; lim
s→0

ε(s) = 0 .

In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5

can be deduced from Theorem 2.6 and 2.7 in Seneta [19] directly.

Lemma 2.4 Let L(s) be a slowly varying function at the origin and let U =

U(s) : [0,∞) → [0,∞) satisfying

lim
s→0

U(s) = ∞ and lim
s→0

sU(s) = 0 .

Then for any ε > 0, as s small enough we have

U(s)−εL(s) ≤ L(sU(s)) ≤ U(s)εL(s)

and

U(s)−εL(s) ≤ L(sU(s)−1) ≤ U(s)εL(s) .

Lemma 2.5 Let σ be a regularly varying function at the origin with index

α > 0. Then there is a constant K > 0 such that for r > 0 small enough, we

have

(2.2)
∫ ∞

1
σ(re−u2

) du ≤ Kσ(r) ,

(2.3)
∫ 1

0
σ(rs) ds ≤ Kσ(r) ,

(2.4)
∫ 1

0
σ(rs)sN−1 ds ≤ Kσ(r) ,

Let σ : [0, δ0) → [0,∞) be non-decreasing and let ψ be the inverse function

of σ, that is

ψ(s) = inf{t ≥ 0 : σ(t) ≥ s} .

then ψ(s) = s1/αf(s), where f(s) is also a slowly varying function and

(2.5) σ(ψ(s)) ∼ s and ψ(σ(s)) ∼ s as s → 0 .
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3 Upper bound for φ-m(X([0, 1]N))

Let Y (t) (t ∈ RN) be a real-valued, centered Gaussian random field with

stationary increments and a continuous covariance function R(t, s) given by

(1.1). We assume that Y (0) = 0 and (1.5) holds. Let X(t) (t ∈ RN) be the

(N, d) Gaussian random field defined by (1.7).

We start with the following lemma.

Lemma 3.1 Let Y (t) (t ∈ RN) be a Gaussian process with Y (0) = 0 satis-

fying (1.5). Then

(i) For any r > 0 small enough and u ≥ Kσ(r), we have

(3.1) P
{

sup
|t|≤r

|Y (t)| ≥ u
}
≤ exp

(
− u2

K σ2(r)

)
.

(ii) Let

ωY (h) = sup
t, t+s∈[0,1]N , |s|≤h

|Y (t + s)− Y (t)|

be the uniform modulus of continuity of Y (t) on [0, 1]N . Then

(3.2) lim sup
h→0

ωY (h)

σ(h)
√

2c1 log 1
h

≤ 1 , a. s.

Proof. Let r < δ0 and S = {t : |t| ≤ r}. Since d(s, t) ≤ c1σ(|t− s|), we have

Nd(S, ε) ≤ K
(

r

ψ(ε)

)N

and

D = sup{d(s, t); s, t ∈ S} ≤ Kσ(r) .

By simple calculations
∫ D

0

√
log Nd(S, ε) dε ≤ K

∫ Kσ(r)

0

√
log(Kr)/ψ(ε) dε

≤ K
∫ Kr

0

√
log(Kr)/t dσ(t)

≤ K
(
σ(r) +

∫ K

0

1

u
√

log K/u
σ(ur)du

)

≤ K
(
σ(r) +

∫ ∞

K
σ(re−u2

)du
)

≤ Kσ(r) ,
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where the last inequality follows from (2.2). If u ≥ Kσ(r), then by Lemma

2.2 we have

P

{
sup
|t|≤r

|Y (t)| ≥ 2K u

}

≤ P
{

sup
|t|≤r

|Y (t)| ≥ K(u +
∫ D

0

√
log Nd(S, ε) dε)

}

≤ exp
(
− u2

Kσ2(r)

)
.

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2

directly in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spec-

tral representation (1.3). Given 0 < a < b < ∞, we consider the process

Y (a, b, t) =
∫

a≤|t|≤b
(ei<t,λ> − 1)W (dλ) .

Then for any 0 < a < b < a′ < b′ < ∞, the processes Y (a, b, t) and Y (a′, b′, t)

are independent. The next lemma expresses how well Y (a, b, t) approximates

Y (t).

Lemma 3.2 Let Y (t) (t ∈ RN) be defined by (1.3). If (1.5) holds, then there

exists a constant B > 0 such that for any B < a < b we have

(3.3) ‖Y (a, b, t)− Y (t)‖2 ≤ K
[
|t|2a2σ2(a−1) + σ2(b−1)

] 1
2 .

Proof. First we claim that for any u > 0 and any h ∈ RN with |h| = 1/u

we have

(3.4)
∫

|λ|<u
< h, λ >2 ∆(dλ) ≤ K

∫

RN
(1− cos < h, λ >)∆(dλ)

(3.5)
∫

|λ|≥u
∆(dλ) ≤ K(

u

2
)N

∫

[−1/u,1/u]N
dv

∫

RN
(1− cos < v, λ >)∆(dλ) .

For N = 1, (3.4) and (3.5) are the truncation inequalities in [12] p209. For

N > 1 a similar proof yields (3.4) and (3.5).

Now for any a > δ−1
0 and any t ∈ RN\{0}, by (1.4) ,(1.5) and (3.4) we

have

(3.6)
∫

|λ|<a
(1− cos < t, λ >)∆(dλ) ≤

∫

|λ|<a
< t, λ >2 ∆(dλ)
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= |t|2a2
∫

|λ|<a
< t/(a|t|), λ >2 ∆(dλ) ≤ K|t|2a2σ2(a−1) .

For b > 0 large enough, by (3.5), (1.4), (1.5) and (2.4) we have

(3.7)
∫

|λ|≥b
∆(dλ) ≤ K(

b

2
)N

∫

[−1/b,1/b]N
σ2(|v|)dv

≤ KbN
∫ √

Nb−1

0
σ2(ρ)ρN−1dρ ≤ Kσ2(b−1) .

Combining (3.6) and (3.7), we see that there exists a constant B > 0 such

that B < a < b implies

E
[
(Y (a, b, t)− Y (t))2

]
= 2

∫

{|λ|<a}∪{|λ|>b}
(1− cos < t, λ >) ∆(dλ)

≤ 2
∫

|λ|<a
(1− cos < t, λ >) ∆(dλ) + 2

∫

|λ|>b
∆(dλ)

≤ K
[
|t|2a2σ2(a−1) + σ2(b−1)

]
.

This proves (3.3).

Lemma 3.3 There exists a constant B > 0 such that for any B < a < b

and 0 < r < B−1 the following holds: let A = r2a2σ2(a−1) + σ2(b−1) such

that ψ(
√

A) ≤ 1
2
r, then for any

u ≥ K

(
A log

Kr

ψ(
√

A)

) 1
2

we have

(3.8) P
{

sup
|t|≤r

|Y (t)− Y (a, b, t)| ≥ u
}
≤ exp

(
− u2

KA

)
.

Proof. Let S = {t : |t| ≤ r} and Z(t) = Y (t)− Y (a, b, t). Then

d(s, t) = ‖Z(t)− Z(s)‖2 ≤ c1σ(|t− s|) .

Hence

Nd(S, ε) ≤ K
(

r

ψ(ε)

)N

.
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By Lemma 3.2 we have D ≤ K
√

A. As in the proof of Lemma 3.1,

∫ D

0

√
log Nd(S, ε) dε ≤ K

∫ K
√

A

0

√
log(Kr)/ψ(ε) dε

≤ K
∫ Kψ(

√
A)/r

0

√
log K/t dσ(rt)

≤ K
[√

log K/t σ(rt)|Kψ(
√

A)/r
0 +

∫ Kψ(
√

A)/r

0

1

t
√

log K/t
σ(rt)dt

]

≤ K
√

A log Kr/ψ(
√

A) + K
∫ ∞
√

log Kr/ψ(
√

A)
σ(Kre−u2

)du

≤ K
√

A log Kr/ψ(
√

A) ,

at least for r > 0 small enough, where the last step follows from (2.2). Hence

(3.8) follows immediately from Lemma 2.2.

Let X1(a, b, t), · · · , Xd(a, b, t) be independent copies of Y (a, b, t) and let

X(a, b, t) = (X1(a, b, t), · · · , Xd(a, b, t)) (t ∈ RN) .

Then we have the following corollary of Lemma 3.3.

Corollary 3.1 Consider B < a < b and 0 < r < B−1. Let

A = r2a2σ2(a−1) + σ2(b−1)

with ψ(
√

A) ≤ 1
2
r. Then for any

u ≥ K
(
A log

Kr

ψ(
√

A)

) 1
2

we have

(3.9) P
{

sup
|t|≤r

|X(t)−X(a, b, t)| ≥ u
}
≤ exp

(
− u2

KA

)
.

Lemma 3.4 Given 0 < r < δ0 and ε < σ(r). Then for any 0 < a < b we

have

(3.10) P
{

sup
|t|≤r

|X(a, b, t)| ≤ ε
}
≥ exp

(
− rN

Kψ(ε)N

)
.
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Proof. It is sufficient to prove (3.10) for Y (a, b, t). Let S = {t : |t| ≤ r}
and define a distance d on S by

d(s, t) = ‖Y (a, b, t)− Y (a, b, s)‖2 .

Then d(s, t) ≤ c1σ(|t− s|) and

Nd(S, ε) ≤ K
(

r

ψ(ε)

)N

.

By Lemma 2.3 we have

P
{

sup
|t|≤r

|Y (a, b, t)| ≤ ε
}
≥ exp

(
− rN

Kψ(ε)N

)
.

This proves lemma 3.4.

Proposition 3.1 There exists a constant δ1 > 0 such that for any 0 < r0 ≤
δ1, we have

(3.11) P
{
∃r ∈ [r2

0, r0] such that sup
|t|≤r

|X(t)| ≤ Kσ(r(log log
1

r
)−

1
N )

}

≥ 1− exp
(
−(log

1

r0

)
1
2

)
.

Proof. We follow the line of Talagrand [22]. Let U = U(r0) ≥ 1, where

U(r) satisfying

(3.12) U(r) →∞ as r → 0

and for any ε > 0

(3.13) rεU(r) → 0 as r → 0 ,

will be chosen later. For k ≥ 0, let rk = r0U
−2k. Let k0 be the largest integer

such that

k0 ≤
log 1

r0

2 log U
,

then for any 0 ≤ k ≤ k0 we have r2
0 ≤ rk ≤ r0. In order to prove (3.11), it

suffices to show that

(3.14) P
{
∃k ≤ k0 such that sup

|t|≤rk

|X(t)| ≤ Kσ(rk(log log
1

rk

)−
1
N )

}
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≥ 1− exp
(
−(log

1

r0

)
1
2

)
.

Let ak = r−1
0 U2k−1 and we define for k = 0, 1, · · ·

Xk(t) = X(ak, ak+1, t) ,

then X0, X1, · · · are independent. By Lemma 3.4 we can take a constant K1

such that for r0 > 0 small enough

(3.15) P
{

sup
|t|≤rk

|Xk(t)| ≤ K1σ(rk(log log
1

rk

)−
1
N )

}

≥ exp(−1

4
log log

1

rk

)

=
1

(log 1
rk

)
1
4

.

Thus, by independence we have

(3.16) P
{
∃k ≤ k0, sup

|t|≤rk

|Xk(t)| ≤ K1σ(rk(log log
1

rk

)−1/N)
}

≥ 1−
(
1− 1

(2 log 1/r0)1/4

)k0

≥ 1− exp
(
− k0

(2 log 1/r0)1/4

)
.

Let

Ak = r2
ka

2
kσ

2(a−1
k ) + σ2(a−1

k+1)

= U−2+2αr2α
k L2(rkU) + U−2αr2α

k L2(rk/U) .

Let β = 2 min{1−α, α} and fix an ε < 1
2
β. Then by Lemma 2.4, we see that

as r0 small enough

U−β−εσ2(rk) ≤ Ak ≤ U−β+εσ2(rk) .

Notice that for r0 small enough we have

ψ(
√

Ak) ≥ ψ(U−(β+ε)/2σ(rk))

= (U−β/2σ(rk))
1/αf(U−β/2σ(rk))

= U−β/(2α)rkL(rk)
1/αf(U−β/2σ(rk))

≥ KU−(β+ε)/(2α)rk ,
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the last inequality follows from (2.5). It follows from Corollary 3.1 that for

u ≥ Kσ(rk)U
−β−ε

2 (log U)1/2 ,

we have

(3.17) P
{

sup
|t|≤rk

|X(t)−Xk(t)| ≥ u
}
≤ exp

(
− u2Uβ−ε

Kσ2(rk)

)
.

Hence, if we take

U = (log 1/r0)
1

β−ε ,

then as r0 small enough

σ(rk)U
−β−ε

2 (log U)1/2 ≤ σ(rk(log log
1

r0

)−
1
N ) .

Hence by taking

u =
K1

2
σ(rk(log log

1

r0

)−
1
N )

in (3.17), we obtain

(3.18)

P
{

sup
|t|≤rk

|X(t)−Xk(t)| ≥ K1

2
σ(rk(log log

1

r0

)−
1
N )

}
≤ exp

(
− u2Uβ−ε

Kσ2(rk)

)
.

Combining (3.16) and (3.18) we have

(3.19) P
{
∃k ≤ k0 such that sup

|t|≤rk

|X(t)| ≤ 2K1σ(rk(log log
1

rk

)−1/N)
}

≥ 1− exp
(
− k0

2(log 1/r0)1/4

)
− k0 exp

(
− Uβ−ε

K(log log 1/r0)(2α)/N+ε

)
.

We recall that
log 1

r0

4 log U
≤ k0 ≤ log

1

r0

.

and hence for r0 small enough, (3.11) follows from (3.19).

Now we are in a position to prove the upper bound for φ-m(X([0, 1]N)).

Theorem 3.1 Let φ(s) = ψ(s)N log log 1
s
. Then with probability 1

φ-m(X([0, 1]N)) < ∞ .
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Proof. For k ≥ 1, consider the set

Rk =
{
t ∈ [0, 1]N : ∃r ∈ [2−2k, 2−k] such that

sup
|s−t|≤r

|X(s)−X(t)| ≤ Kσ(r(log log
1

r
)−1/N)

}
.

By Proposition 3.1 we have

P{t ∈ Rk} ≥ 1− exp(−
√

k/2) .

Denote the Lebesgue measure in RN by LN . It follows from Fubini’s theorem

that P (Ω0) = 1, where

Ω0 = {ω : LN(Rk) ≥ 1− exp(−
√

k/4) infinitely often}.

To see this, let Ωk = {ω : LN(Rk) ≥ 1− exp(−
√

k/4) }. Then

Ω0 = lim sup
k→∞

Ωk.

We also define Ak = {(t, ω) : t ∈ Rk(ω)} and Yk(ω) = LN({t : (t, ω) ∈ Ak}).
Then

E(Yk) = P ⊗ LN(Ak) ≥ 1− exp(−
√

k/2).

For simplicity, write ak = 1−exp(−
√

k/4 ). It follows from Fubini’s theorem

that

P{Ωk} = P{Yk ≥ ak}
= 1− P{Yk < ak}
= 1− P{1− Yk > 1− ak}
≥ 1− E(1− Yk)

1− ak

= 1− 1

1− ak

+
E(Yk)

1− ak

≥ 1− 1

1− ak

+
1− e−

√
k/2

1− ak

= 1− e−
√

k/2

1− ak

≥ 1− exp
(
−
√

k(
1√
2
− 1

2
)
)
.
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Therefore we have

P (lim sup
k→∞

Ωk) ≥ lim
kto∞

P{Ωk} = 1.

On the other hand, by Lemma 3.1 ii), there exists an event Ω1 such that

P (Ω1) = 1 and for all ω ∈ Ω1, there exists n1 = n1(ω) large enough such

that for all n ≥ n1 and any dyadic cube C of order n in RN , we have

(3.20) sup
s,t∈C

|X(t)−X(s)| ≤ Kσ(2−n)
√

n .

Now fix an ω ∈ Ω0∩Ω1, we show that φ-m(X([0, 1]N)) < ∞. Consider k ≥ 1

such that

LN(Rk) ≥ 1− exp(−
√

k/4) .

For any x ∈ Rk we can find n with k ≤ n ≤ 2k + k0 (where k0 depends on N

only) such that

(3.21) sup
s,t∈Cn(x)

|X(t)−X(s)| ≤ Kσ(2−n(log log 2n)−1/N) ,

where Cn(x) is the unique dyadic cube of order n containing x. Thus we

have

Rk ⊆ V = ∪2k+k0
n=k Vn

and each Vn is a union of dyadic cubes Cn of order n for which (3.21) holds.

Clearly X(Cn) can be covered by a ball of radius

ρn = Kσ(2−n(log log 2n)−1/N) .

Since φ(2ρn) ≤ K2−nN = KLN(Cn), we have

(3.22)
∑
n

∑

C∈Vn

φ(2ρn) ≤ ∑
n

∑

C∈Vn

KLN(Cn)

= KLN(V ) < ∞ .

On the other hand, [0, 1]N\V is contained in a union of dyadic cubes of order

q = 2k + k0, none of which meets Rk. There can be at most

2NqLN([0, 1]N\V ) ≤ K2Nqexp(−
√

k/4)

14



such cubes. For each of these cubes, X(C) is contained in a ball of radius

ρ = Kσ(2−q)
√

q. Thus for any ε > 0

(3.23)
∑

φ(2ρ) ≤ K2Nqexp(−
√

k/4)2−NqqN/(2α)+ε ≤ 1

for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows

from (3.22) and (3.23).

4 Lower bound for φ-m(X([0, 1]N))

Let Y (t) (t ∈ RN) be a real-valued, centered Gaussian random field with

stationary increments and a continuous covariance function R(t, s) given by

(1.1). We assume that Y (0) = 0 and (1.6) holds. Let X(t) (t ∈ RN) be the

(N, d) Gaussian random field defined by (1.7). In this section, we prove that

if N < αd,, then

φ-m(X([0, 1]N)) > 0 a. s.

For simplicity we assume δ0 = 1 and let I = [0, 1]N ∩ B(0, 1) ( otherwise

we consider a smaller cube). For any 0 < r < 1 and y ∈ Rd. let

Ty(r) =
∫

I
1B(y,r)(X(t))dt

be the sojourn time of X(t) (t ∈ I) in the open ball B(y, r). If y = 0, we

write T (r) for T0(r).

Proposition 4.1 There exist δ2 > 0 and b > 0 such that for any 0 < r < δ2

(4.1) E
(
exp(bψ(r)−NT (r))

)
≤ K < ∞ .

Proof. We first prove that there exists a constant 0 < K < ∞ such that

for any n ≥ 1

(4.2) E(T (r))n ≤ Knn!ψ(r)Nn .

For n = 1, by (2.4) and (2.5) we have

(4.3) ET (r) =
∫

I
P{X(t) ∈ B(0, r)}dt

15



≤
∫

I
min{1, K(

r

σ(|t|))
d} dt

≤ K
∫ 1

0
min{1, Krd

σ(ρ)d
} ρN−1dρ

≤ K
∫ Kψ(r)

0
ρN−1dρ + K

∫ 1

Kψ(r)

rdρN−1

σ(ρ)d
dρ

≤ Kψ(r)N + Krdψ(r)N−αd
∫ ∞

1

1

t1+αd−NL(ψ(r)t)d
dt

≤ Kψ(r)N + Krdψ(r)N−αd/L(ψ(r))d

≤ Kψ(r)N .

For n ≥ 2

(4.4) E(T (r)n) =
∫

In
P{|X(t1)| < r, · · · , |X(tn)| < r}dt1 · · · dtn .

Consider t1, · · · , tn ∈ I satisfying

tj 6= 0 for j = 1, · · · , n, tj 6= tk for j 6= k .

Let η = min{|tn|, |tn − ti|, i = 1, · · · , n− 1}. Then by (1.6) we have

(4.5) V ar(X(tn)|X(t1), · · · , X(tn−1)) ≥ c2σ
2(η) .

Since conditional distributions in Gaussian processes are still Gaussian, it

follows from (4.5) that

(4.6) P{|X(tn)| < r|X(t1) = x1, · · · , X(tn−1) = xn−1}

≤ K
∫

|u|<r

1

σ(η)d
exp

(
− |u|2

Kσ2(η)

)
du .

Similar to (4.3), we have

(4.7)
∫

I
dtn

∫

|u|<r

1

σ(η)d
exp

(
− |u|2

Kσ2(η)

)
du

≤
∫

I
min{1, K(

r

σ(η)
)d}dtn

≤ K
∫

I

n−1∑

i=0

min{1, K(
r

σ(|tn − ti|))
d} dtn (t0 = 0)

≤ Kn
∫ 1

0
min{1, Krd

σ(ρ)d
}ρN−1 dρ

≤ Knψ(r)N .
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By (4.4), (4.6) and (4.7), we obtain

E(T (r))n ≤ K
∫

In−1
P{|X1(t1)| < r, · · · , |X(tn−1)| < r}dt1 · · · dtn−1

·
∫

I
dtn

∫

|u|<r

1

σ(η)d
exp

(
− |u|2

Kσ2(η)

)
du

≤ Knψ(r)NE(T (r))n−1 .

Hence, the inequality (4.2) follows from (4.3) and induction. Let 0 < b <

1/K, then by (4.2) we have

Eexp(bψ(r)−NT (r)) =
∞∑

n=0

(Kb)n < ∞ .

This proves (4.1).

Proposition 4.2 With probability 1

(4.8) lim sup
r→0

T (r)

φ(r)
≤ 1

b
,

where φ(r) = ψ(r)N log log 1/r.

Proof. For any ε > 0, it follows from (4.1) that

(4.9) P{T (r) ≥ (1/b + ε)ψ(r)N log log 1/r} ≤ K

(log 1/r)1+bε
.

Take rn = exp(−n/ log n), then by (4.9) we have

P{T (rn) ≥ (1/b + ε)ψ(rn)N log log 1/rn} ≤ K

(n/ log n)1+bε
.

Hence by Borel-Cantelli lemma we have

(4.10) lim sup
n→∞

T (rn)

φ(rn)
≤ 1

b
+ ε .

It is easy to verify that

(4.11) lim
n→∞

φ(rn)

φ(rn+1)
= 1 .

Hence by (4.10) and (4.11) we have

lim sup
r→0

T (r)

φ(r)
≤ 1

b
+ ε .

Since ε > 0 is arbitrary, we obtain (4.8).

Since X(t) (t ∈ RN) has stationary increments, we derive the following

17



Corollary 4.1 Fix t0 ∈ I, then with probability 1

lim sup
r→0

TX(t0)(r)

φ(r)
≤ 1

b
.

Theorem 4.1 If N < αd, then with probability 1

(4.12) φ-m(X([0, 1]N)) > 0 ,

where φ(r) = ψ(r)N log log 1/r.

Proof. We define a random Borel measure µ on X(I) as follows. For any

Borel set B ⊆ Rd, let

µ(B) = LN{t ∈ I, X(t) ∈ B} .

Then µ(Rd) = µ(X(I)) = LN(I). By Corollary 4.1, for each fixed t0 ∈ I,

with probability 1

(4.13) lim sup
r→0

µ(B(X(t0), r))

φ(r)

≤ lim sup
r→0

TX(t0)(r)

φ(r)
≤ 1

b
.

Let E(ω) = {X(t0) : t0 ∈ I and (4.13) holds }. Then E(ω) ⊆ X(I). A

Fubini argument shows µ(E(ω)) = 1, a. s.. Hence by Lemma 2.1, we have

φ-m(E(ω)) ≥ Kb .

This proves (4.12).

Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately.

Example 4.1. Let Y (t) (t ∈ RN) be a real-valued fractional Brownian

motion of index α (0 < α < 1) (see [10], Chapter 18). Its covariance function

has the representation

R(s, t) =
1

2
(|s|2α + |t|2α − |t− s|2α)

= c(α)
∫

RN
(ei<t,λ> − 1)(e−i<s,λ> − 1)

dλ

|λ|N+2α
,

18



where c(α) is a normalizing constant. Then (1.5) is verified and by a result

of Pitt [17], (1.6) is also verified. In this case, Theorem 1.1 is proved by

Goldman [9] for α = 1/2 and by Talagrand [22] for 0 < α < 1.

Example 4.2. Let Z(t) (t ∈ RN) be a real-valued mean zero stationary

random field with covariance function

R(s, t) = exp(−c|s− t|2α) with c > 0 and 0 < α < 1 .

Then Y (t) = Z(t) − Z(0) verifies the conditions (1.5) and (1.6). We can

apply Theorem 1.1 to obtain the Hausdorff measure of X([0, 1]N), where

X(t) = (X1(t), · · · , Xd(t))

and X1, · · · , Xd are independent copies of Z. Other examples with absolutely

continuous spectral measure can be found in Berman [2] p289, and Berman

[4].

Example 4.3. Now we give an example with discrete spectral measure.

Let Xn (n ≥ 0) and Yn (n ≥ 0) be independent standard normal random

variables and an (n ≥ 0) real numbers such that
∑

n a2
n < ∞. Then for each

t, the random series

(4.14) Z(t) =
∞∑

n=0

an(Xn cos nt + Yn sin nt)

converges with probability 1 (see [10]), and Z(t) (t ∈ R) represents a sta-

tionary Gaussian process with mean 0 and covariance function

R(s, t) =
∞∑

n=0

a2
n cos n(t− s) .

By a result of Berman [4], there are many choices of an (n ≥ 0) such that

the process Y (t) = Z(t)−Z(0) satisfies the hypotheses of Theorem 1.1 with

σ2(s) = 2
∞∑

n=0

a2
n(1− cos ns) .

Let X(t) (t ∈ R) be the Gaussian process in Rd associated with Z(t) or

Y (t) (t ∈ R) by (1.7). If 1 < αd, then

0 < φ-m(X([0, 1])) < ∞ ,

where φ(s) = ψ(s) log log 1
s

and ψ is the inverse function of σ. A special case

of (4.14) is Example 3.5 in Monrad and Rootzén [15].
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