Hausdorff Measure of the Sample Paths of Gaussian Random Fields *

Yimin Xiao

June 26, 1995

Running head: Xiao, Hausdorff Measure of Certain Gaussian Fields AMS Classification numbers: Primary 60G15, 60G17.

KEY WORDS: Hausdorff measure, Gaussian random fields, fractional Brownian motion, image .

^{*}appeared in Osaka J. Math. 33 (1996), 895 - 913.

1 Introduction

Let Y(t) $(t \in \mathbf{R}^N)$ be a real-valued, centered Gaussian random field with Y(0) = 0. We assume that Y(t) $(t \in \mathbf{R}^N)$ has stationary increments and continuous covariance function R(t,s) = EY(t)Y(s) given by

(1.1)
$$R(t,s) = \int_{\mathbf{R}^N} (e^{i\langle t,\lambda\rangle} - 1)(e^{-i\langle s,\lambda\rangle} - 1)\Delta(d\lambda) ,$$

where $\langle x, y \rangle$ is the ordinary scalar product in \mathbf{R}^N and $\Delta(d\lambda)$ is a nonnegative symmetric measure on $\mathbf{R}^N \setminus \{0\}$ satisfying

(1.2)
$$\int_{\mathbf{R}^N} \frac{|\lambda|^2}{1+|\lambda|^2} \, \Delta(d\lambda) < \infty .$$

Then there exists a centered complex-valued Gaussian random measure $W(d\lambda)$ such that

(1.3)
$$Y(t) = \int_{\mathbf{R}^N} (e^{i\langle t, \lambda \rangle} - 1) W(d\lambda)$$

and for any Borel sets $A,\ B\subseteq \mathbf{R}^N$

$$E(W(A)\overline{W(B)}) = \Delta(A \cap B)$$
 and $W(-A) = \overline{W(A)}$.

It follows from (1.3) that

(1.4)
$$E[(Y(t+h) - Y(t))^{2}] = 2 \int_{\mathbf{R}^{N}} (1 - \cos \langle h, \lambda \rangle) \Delta(d\lambda) .$$

We assume that there exist constants $\delta_0 > 0$, $0 < c_1 \le c_2 < \infty$ and a non-decreasing, continuous function $\sigma : [0, \delta_0) \to [0, \infty)$ which is regularly varying at the origin with index α (0 < α < 1) such that for any $t \in \mathbf{R}^N$ and $h \in \mathbf{R}^N$ with $|h| < \delta_0$

(1.5)
$$E[(Y(t+h) - Y(t))^{2}] \le c_{1}\sigma^{2}(|h|).$$

and for all $t \in \mathbf{R}^N$ and any $0 < r \le \min\{|t|, \delta_0\}$

$$(1.6) Var(Y(t)|Y(s): r \le |s-t| \le \delta_0) \ge c_2 \sigma^2(r) .$$

If (1.5) and (1.6) hold, we shall say that Y(t) ($t \in \mathbf{R}^N$) is strongly locally σ -nondeterministic. We refer to Monrad and Pitt[14], Berman [4] [5] and Cuzick and Du Peez [6] for more information on (strongly) locally nondeterminism.

We associate with Y(t) $(t \in \mathbf{R}^N)$ a Gaussian random field X(t) $(t \in \mathbf{R}^N)$ in \mathbf{R}^d by

(1.7)
$$X(t) = (X_1(t), \dots, X_d(t)),$$

where X_1, \dots, X_d are independent copies of Y. The most important example of such Gaussian random fields is the fractional Brownian motion of index α (see Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

$$\dim X([0,1]^N) = \min(d, \frac{N}{\alpha}) .$$

The objective of this paper is to consider the exact Hausdorff measure of the image set $X([0,1]^N)$. The main result is the following theorem, which generalizes a theorem of Talagrand [22].

Theorem 1.1 If $N < \alpha d$, then with probability 1

(1.8)
$$0 < \phi \text{-}m(X([0,1]^N)) < \infty ,$$

where

$$\phi(s) = \psi(s)^N \log \log \frac{1}{s} ,$$

 ψ is the inverse function of σ and where ϕ -m($X([0,1]^N)$) is the ϕ -Hausdorff measure of $X([0,1]^N)$.

If $N > \alpha d$, then by a result of Pitt [17], $X([0,1]^N)$ a. s. has interior points and hence has positive d-dimensional Lebesgue measure. In the case of $N = \alpha d$, the problem of finding ϕ - $m(X([0,1]^N))$ is still open even in the fractional Brownian motion case.

The paper is organized as follows. In Section 2 we recall the definition and some basic facts of Hausdorff measure, Gaussian processes and regularly varying functions. In Section 3 we prove the upper bound and in Section 4, we prove the lower bound for ϕ - $m(X([0,1]^N))$. We also give some examples showing that the hypotheses in Theorem 1.1 are satisfied by a large class of Gaussian random fields including fractional Brownian motion.

Another important example of Gaussian random fields is the Brownian sheet or N-parameter Wiener process W(t) $(t \in \mathbf{R}_{+}^{N})$, see Orey and Pruitt [16]. Since W(t) $(t \in \mathbf{R}_{+}^{N})$ is not locally nondeterministic, Theorem 1.1 does not apply. The problem of finding the exact Hausdorff measure of $W([0,1]^{N})$ was solved by Ehm [7].

We will use K to denote an unspecified positive constant which may be different in each appearance.

2 Preliminaries

Let Φ be the class of functions $\phi:(0,\delta)\to(0,1)$ which are right continuous, monotone increasing with $\phi(0+)=0$ and such that there exists a finite constant K>0 for which

$$\frac{\phi(2s)}{\phi(s)} \le K, \quad \text{for } 0 < s < \frac{1}{2}\delta.$$

For $\phi \in \Phi$, the ϕ -Hausdorff measure of $E \subseteq \mathbf{R}^N$ is defined by

$$\phi$$
- $m(E) = \lim_{\epsilon \to 0} \inf \left\{ \sum_{i} \phi(2r_i) : E \subseteq \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i < \epsilon \right\} ,$

where B(x,r) denotes the open ball of radius r centered at x. It is known that ϕ -m is a metric outer measure and every Borel set in \mathbf{R}^N is ϕ -m measurable. The Hausdorff dimension of E is defined by

$$\dim E = \inf\{\alpha > 0 : s^{\alpha} - m(E) = 0\}$$
$$= \sup\{\alpha > 0 : s^{\alpha} - m(E) = \infty\}.$$

We refer to [F] for more properties of Hausdorff measure and Hausdorff dimension.

The following lemma can be easily derived from the results in [18] (see [23]), which gives a way to get a lower bound for ϕ -m(E). For any Borel measure μ on \mathbf{R}^N and $\phi \in \Phi$, the upper ϕ -density of μ at $x \in \mathbf{R}^N$ is defined by

$$\overline{D}_{\mu}^{\phi}(x) = \limsup_{r \to 0} \frac{\mu(B(x,r))}{\phi(2r)} .$$

Lemma 2.1 For a given $\phi \in \Phi$ there exists a positive constant K such that for any Borel measure μ on \mathbb{R}^N and every Borel set $E \subseteq \mathbb{R}^N$, we have

$$\phi$$
- $m(E) \ge K\mu(E) \inf_{x \in E} \{ \overline{D}_{\mu}^{\phi}(x) \}^{-1}$.

Now we summarize some basic facts about Gaussian processes. Let Z(t) $(t \in S)$ be a Gaussian process. We provide S with the following metric

$$d(s,t) = ||Z(s) - Z(t)||_2,$$

where $||Z||_2 = (E(Z^2))^{\frac{1}{2}}$. We denote by $N_d(S, \epsilon)$ the smallest number of open d-balls of radius ϵ needed to cover S and write $D = \sup\{d(s, t) : s, t \in S\}$.

The following lemma is well known. It is a consequence of the Gaussian isoperimetric inequality and Dudley's entropy bound([11], see also [22]).

Lemma 2.2 There exists an absolute constant K > 0 such that for any u > 0, we have

$$P\left\{\sup_{s,\ t\in S}|Z(s)-Z(t)|\geq K(u+\int_0^D\sqrt{\log N_d(S,\epsilon)}d\epsilon)\right\}\leq exp\left(-\frac{u^2}{D^2}\right).$$

Lemma 2.3 Consider a function Ψ such that $N_d(S, \epsilon) \leq \Psi(\epsilon)$ for all $\epsilon > 0$. Assume that for some constant C > 0 and all $\epsilon > 0$ we have

$$\Psi(\epsilon)/C \le \Psi(\frac{\epsilon}{2}) \le C\Psi(\epsilon)$$
.

Then

$$P\{\sup_{s, t \in S} |Z(s) - Z(t)| \le u\} \ge exp\left(-K\Psi(u)\right),\,$$

where K > 0 is a constant depending only on C.

This is proved in [21]. It gives an estimate for the lower bound of the small ball probability of Gaussian processes. Similar problems have also been considered by Monrad and Rootzén [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions. Let $\sigma(s)$ be a regularly varying function with index α (0 < α < 1). Then σ can be written as

$$\sigma(s) = s^{\alpha} L(s) ,$$

where $L(s): [0, \delta_0) \to [0, \infty)$ is slowly varying at the origin in the sense of Karamata and hence can be represented by

(2.1)
$$L(s) = exp\left(\eta(s) + \int_{s}^{A} \frac{\epsilon(t)}{t} dt\right),$$

where $\eta(s): [0, \delta_0] \to \mathbf{R}, \, \epsilon(s): (0, A] \to \mathbf{R}$ are bounded measurable functions and

$$\lim_{s \to 0} \eta(s) = c$$
, $|c| < \infty$; $\lim_{s \to 0} \epsilon(s) = 0$.

In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5 can be deduced from Theorem 2.6 and 2.7 in Seneta [19] directly.

Lemma 2.4 Let L(s) be a slowly varying function at the origin and let $U = U(s) : [0, \infty) \to [0, \infty)$ satisfying

$$\lim_{s \to 0} U(s) = \infty \quad and \quad \lim_{s \to 0} sU(s) = 0 \ .$$

Then for any $\epsilon > 0$, as s small enough we have

$$U(s)^{-\epsilon}L(s) \le L(sU(s)) \le U(s)^{\epsilon}L(s)$$

and

$$U(s)^{-\epsilon}L(s) \le L(sU(s)^{-1}) \le U(s)^{\epsilon}L(s)$$
.

Lemma 2.5 Let σ be a regularly varying function at the origin with index $\alpha > 0$. Then there is a constant K > 0 such that for r > 0 small enough, we have

(2.2)
$$\int_{1}^{\infty} \sigma(re^{-u^{2}}) du \leq K\sigma(r) ,$$

(2.3)
$$\int_0^1 \sigma(rs) \ ds \le K\sigma(r) \ ,$$

(2.4)
$$\int_0^1 \sigma(rs)s^{N-1} ds \le K\sigma(r) ,$$

Let $\sigma:[0,\delta_0)\to[0,\infty)$ be non-decreasing and let ψ be the inverse function of σ , that is

$$\psi(s) = \inf\{t \ge 0 : \sigma(t) \ge s\} .$$

then $\psi(s) = s^{1/\alpha} f(s)$, where f(s) is also a slowly varying function and

(2.5)
$$\sigma(\psi(s)) \sim s$$
 and $\psi(\sigma(s)) \sim s$ as $s \to 0$.

3 Upper bound for ϕ - $m(X([0,1]^N))$

Let Y(t) $(t \in \mathbf{R}^N)$ be a real-valued, centered Gaussian random field with stationary increments and a continuous covariance function R(t,s) given by (1.1). We assume that Y(0) = 0 and (1.5) holds. Let X(t) $(t \in \mathbf{R}^N)$ be the (N,d) Gaussian random field defined by (1.7).

We start with the following lemma.

Lemma 3.1 Let Y(t) $(t \in \mathbf{R}^N)$ be a Gaussian process with Y(0) = 0 satisfying (1.5). Then

(i) For any r > 0 small enough and $u \ge K\sigma(r)$, we have

(3.1)
$$P\left\{\sup_{|t| \le r} |Y(t)| \ge u\right\} \le exp\left(-\frac{u^2}{K \sigma^2(r)}\right).$$

(ii) Let

$$\omega_Y(h) = \sup_{t, t+s \in [0,1]^N, |s| \le h} |Y(t+s) - Y(t)|$$

be the uniform modulus of continuity of Y(t) on $[0,1]^N$. Then

(3.2)
$$\limsup_{h \to 0} \frac{\omega_Y(h)}{\sigma(h)\sqrt{2c_1 \log \frac{1}{h}}} \le 1 , \quad a. s.$$

Proof. Let $r < \delta_0$ and $S = \{t : |t| \le r\}$. Since $d(s,t) \le c_1 \sigma(|t-s|)$, we have

$$N_d(S, \epsilon) \le K\left(\frac{r}{\psi(\epsilon)}\right)^N$$

and

$$D = \sup\{d(s,t); s,\ t \in S\} \le K\sigma(r)\ .$$

By simple calculations

$$\int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d\epsilon \leq K \int_{0}^{K\sigma(r)} \sqrt{\log(Kr)/\psi(\epsilon)} d\epsilon
\leq K \int_{0}^{Kr} \sqrt{\log(Kr)/t} d\sigma(t)
\leq K \left(\sigma(r) + \int_{0}^{K} \frac{1}{u\sqrt{\log K/u}} \sigma(ur)du\right)
\leq K \left(\sigma(r) + \int_{K}^{\infty} \sigma(re^{-u^{2}})du\right)
\leq K\sigma(r) ,$$

where the last inequality follows from (2.2). If $u \geq K\sigma(r)$, then by Lemma 2.2 we have

$$P\left\{\sup_{|t| \le r} |Y(t)| \ge 2K \ u\right\}$$

$$\le P\left\{\sup_{|t| \le r} |Y(t)| \ge K(u + \int_0^D \sqrt{\log N_d(S, \epsilon)} \ d\epsilon)\right\}$$

$$\le exp\left(-\frac{u^2}{K\sigma^2(r)}\right).$$

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2 directly in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spectral representation (1.3). Given $0 < a < b < \infty$, we consider the process

$$Y(a,b,t) = \int_{a < |t| < b} (e^{i < t,\lambda >} - 1) W(d\lambda) .$$

Then for any $0 < a < b < a' < b' < \infty$, the processes Y(a,b,t) and Y(a',b',t) are independent. The next lemma expresses how well Y(a,b,t) approximates Y(t).

Lemma 3.2 Let Y(t) $(t \in \mathbf{R}^N)$ be defined by (1.3). If (1.5) holds, then there exists a constant B > 0 such that for any B < a < b we have

(3.3)
$$||Y(a,b,t) - Y(t)||_2 \le K \left[|t|^2 a^2 \sigma^2(a^{-1}) + \sigma^2(b^{-1}) \right]^{\frac{1}{2}}.$$

Proof. First we claim that for any u > 0 and any $h \in \mathbf{R}^N$ with |h| = 1/u we have

(3.4)
$$\int_{|\lambda| < u} \langle h, \lambda \rangle^2 \Delta(d\lambda) \le K \int_{\mathbf{R}^N} (1 - \cos \langle h, \lambda \rangle) \Delta(d\lambda)$$

$$(3.5) \quad \int_{|\lambda| \ge u} \Delta(d\lambda) \le K(\frac{u}{2})^N \int_{[-1/u, 1/u]^N} dv \int_{\mathbf{R}^N} (1 - \cos \langle v, \lambda \rangle) \Delta(d\lambda) .$$

For N = 1, (3.4) and (3.5) are the truncation inequalities in [12] p209. For N > 1 a similar proof yields (3.4) and (3.5).

Now for any $a > \delta_0^{-1}$ and any $t \in \mathbf{R}^N \setminus \{0\}$, by (1.4) ,(1.5) and (3.4) we have

(3.6)
$$\int_{|\lambda| < a} (1 - \cos \langle t, \lambda \rangle) \Delta(d\lambda) \le \int_{|\lambda| < a} \langle t, \lambda \rangle^2 \Delta(d\lambda)$$

$$= |t|^2 a^2 \int_{|\lambda| < a} < t/(a|t|), \lambda >^2 \Delta(d\lambda) \le K|t|^2 a^2 \sigma^2(a^{-1}) \ .$$

For b > 0 large enough, by (3.5), (1.4), (1.5) and (2.4) we have

(3.7)
$$\int_{|\lambda| \ge b} \Delta(d\lambda) \le K(\frac{b}{2})^N \int_{[-1/b, 1/b]^N} \sigma^2(|v|) dv$$

$$\le Kb^N \int_0^{\sqrt{N}b^{-1}} \sigma^2(\rho) \rho^{N-1} d\rho \le K\sigma^2(b^{-1}) .$$

Combining (3.6) and (3.7), we see that there exists a constant B > 0 such that B < a < b implies

$$\begin{split} E\left[(Y(a,b,t)-Y(t))^2\right] &= 2\int_{\{|\lambda| < a\} \cup \{|\lambda| > b\}} (1-\cos < t, \lambda >) \ \Delta(d\lambda) \\ &\leq \ 2\int_{|\lambda| < a} (1-\cos < t, \lambda >) \ \Delta(d\lambda) + 2\int_{|\lambda| > b} \ \Delta(d\lambda) \\ &\leq \ K\left[|t|^2 a^2 \sigma^2(a^{-1}) + \sigma^2(b^{-1})\right] \ . \end{split}$$

This proves (3.3).

Lemma 3.3 There exists a constant B > 0 such that for any B < a < b and $0 < r < B^{-1}$ the following holds: let $A = r^2 a^2 \sigma^2(a^{-1}) + \sigma^2(b^{-1})$ such that $\psi(\sqrt{A}) \leq \frac{1}{2}r$, then for any

$$u \ge K \left(A \log \frac{Kr}{\psi(\sqrt{A})} \right)^{\frac{1}{2}}$$

we have

(3.8)
$$P\left\{\sup_{|t| \le r} |Y(t) - Y(a, b, t)| \ge u\right\} \le exp\left(-\frac{u^2}{KA}\right).$$

Proof. Let $S = \{t: |t| \le r\}$ and Z(t) = Y(t) - Y(a, b, t). Then

$$d(s,t) = ||Z(t) - Z(s)||_2 \le c_1 \sigma(|t - s|).$$

Hence

$$N_d(S, \epsilon) \le K \left(\frac{r}{\psi(\epsilon)}\right)^N$$
.

By Lemma 3.2 we have $D \leq K\sqrt{A}$. As in the proof of Lemma 3.1,

$$\int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d\epsilon \leq K \int_{0}^{K\sqrt{A}} \sqrt{\log(Kr)/\psi(\epsilon)} d\epsilon
\leq K \int_{0}^{K\psi(\sqrt{A})/r} \sqrt{\log K/t} d\sigma(rt)
\leq K \left[\sqrt{\log K/t} \sigma(rt) \Big|_{0}^{K\psi(\sqrt{A})/r} + \int_{0}^{K\psi(\sqrt{A})/r} \frac{1}{t\sqrt{\log K/t}} \sigma(rt) dt \right]
\leq K \sqrt{A \log Kr/\psi(\sqrt{A})} + K \int_{\sqrt{\log Kr/\psi(\sqrt{A})}}^{\infty} \sigma(Kre^{-u^{2}}) du
\leq K \sqrt{A \log Kr/\psi(\sqrt{A})},$$

at least for r > 0 small enough, where the last step follows from (2.2). Hence (3.8) follows immediately from Lemma 2.2.

Let $X_1(a, b, t), \dots, X_d(a, b, t)$ be independent copies of Y(a, b, t) and let

$$X(a, b, t) = (X_1(a, b, t), \dots, X_d(a, b, t)) \quad (t \in \mathbf{R}^N)$$
.

Then we have the following corollary of Lemma 3.3.

Corollary 3.1 Consider B < a < b and $0 < r < B^{-1}$. Let

$$A = r^2 a^2 \sigma^2(a^{-1}) + \sigma^2(b^{-1})$$

with $\psi(\sqrt{A}) \leq \frac{1}{2}r$. Then for any

$$u \ge K \left(A \log \frac{Kr}{\psi(\sqrt{A})} \right)^{\frac{1}{2}}$$

we have

(3.9)
$$P\left\{\sup_{|t| \le r} |X(t) - X(a,b,t)| \ge u\right\} \le exp\left(-\frac{u^2}{KA}\right).$$

Lemma 3.4 Given $0 < r < \delta_0$ and $\epsilon < \sigma(r)$. Then for any 0 < a < b we have

(3.10)
$$P\left\{\sup_{|t| \le r} |X(a, b, t)| \le \epsilon\right\} \ge \exp\left(-\frac{r^N}{K\psi(\epsilon)^N}\right).$$

Proof. It is sufficient to prove (3.10) for Y(a,b,t). Let $S=\{t:|t|\leq r\}$ and define a distance d on S by

$$d(s,t) = ||Y(a,b,t) - Y(a,b,s)||_2.$$

Then $d(s,t) \leq c_1 \sigma(|t-s|)$ and

$$N_d(S, \epsilon) \le K \left(\frac{r}{\psi(\epsilon)}\right)^N$$
.

By Lemma 2.3 we have

$$P\left\{\sup_{|t| \le r} |Y(a, b, t)| \le \epsilon\right\} \ge exp\left(-\frac{r^N}{K\psi(\epsilon)^N}\right).$$

This proves lemma 3.4.

Proposition 3.1 There exists a constant $\delta_1 > 0$ such that for any $0 < r_0 \le \delta_1$, we have

(3.11)
$$P\left\{\exists r \in [r_0^2, \ r_0] \ \text{such that} \ \sup_{|t| \le r} |X(t)| \le K\sigma(r(\log\log\frac{1}{r})^{-\frac{1}{N}})\right\}$$
$$\ge 1 - exp\left(-(\log\frac{1}{r_0})^{\frac{1}{2}}\right).$$

Proof. We follow the line of Talagrand [22]. Let $U = U(r_0) \ge 1$, where U(r) satisfying

(3.12)
$$U(r) \to \infty \text{ as } r \to 0$$

and for any $\epsilon > 0$

(3.13)
$$r^{\epsilon}U(r) \to 0 \quad \text{as} \quad r \to 0 ,$$

will be chosen later. For $k \geq 0$, let $r_k = r_0 U^{-2k}$. Let k_0 be the largest integer such that

$$k_0 \le \frac{\log \frac{1}{r_0}}{2 \log U} \;,$$

then for any $0 \le k \le k_0$ we have $r_0^2 \le r_k \le r_0$. In order to prove (3.11), it suffices to show that

$$(3.14) P\Big\{\exists k \le k_0 \text{ such that } \sup_{|t| \le r_k} |X(t)| \le K\sigma(r_k(\log\log\frac{1}{r_k})^{-\frac{1}{N}})\Big\}$$

$$\geq 1 - exp\left(-(\log\frac{1}{r_0})^{\frac{1}{2}}\right).$$

Let $a_k = r_0^{-1} U^{2k-1}$ and we define for $k = 0, 1, \cdots$

$$X_k(t) = X(a_k, a_{k+1}, t) ,$$

then X_0, X_1, \cdots are independent. By Lemma 3.4 we can take a constant K_1 such that for $r_0 > 0$ small enough

$$(3.15) P\left\{\sup_{|t| \le r_k} |X_k(t)| \le K_1 \sigma(r_k(\log\log\frac{1}{r_k})^{-\frac{1}{N}})\right\}$$
$$\ge exp(-\frac{1}{4}\log\log\frac{1}{r_k})$$
$$= \frac{1}{(\log\frac{1}{r_k})^{\frac{1}{4}}}.$$

Thus, by independence we have

(3.16)
$$P\left\{\exists k \leq k_0, \sup_{|t| \leq r_k} |X_k(t)| \leq K_1 \sigma(r_k (\log \log \frac{1}{r_k})^{-1/N})\right\}$$
$$\geq 1 - \left(1 - \frac{1}{(2\log 1/r_0)^{1/4}}\right)^{k_0}$$
$$\geq 1 - exp\left(-\frac{k_0}{(2\log 1/r_0)^{1/4}}\right).$$

Let

$$\begin{array}{lcl} A_k & = & r_k^2 a_k^2 \sigma^2(a_k^{-1}) + \sigma^2(a_{k+1}^{-1}) \\ \\ & = & U^{-2+2\alpha} r_k^{2\alpha} L^2(r_k U) + U^{-2\alpha} r_k^{2\alpha} L^2(r_k / U) \; . \end{array}$$

Let $\beta = 2\min\{1 - \alpha, \alpha\}$ and fix an $\epsilon < \frac{1}{2}\beta$. Then by Lemma 2.4, we see that as r_0 small enough

$$U^{-\beta-\epsilon}\sigma^2(r_k) \le A_k \le U^{-\beta+\epsilon}\sigma^2(r_k)$$
.

Notice that for r_0 small enough we have

$$\psi(\sqrt{A_k}) \geq \psi(U^{-(\beta+\epsilon)/2}\sigma(r_k))$$

$$= (U^{-\beta/2}\sigma(r_k))^{1/\alpha}f(U^{-\beta/2}\sigma(r_k))$$

$$= U^{-\beta/(2\alpha)}r_kL(r_k)^{1/\alpha}f(U^{-\beta/2}\sigma(r_k))$$

$$\geq KU^{-(\beta+\epsilon)/(2\alpha)}r_k,$$

the last inequality follows from (2.5). It follows from Corollary 3.1 that for

$$u \ge K\sigma(r_k)U^{-\frac{\beta-\epsilon}{2}}(\log U)^{1/2}$$
,

we have

$$(3.17) P\left\{\sup_{|t| \le r_k} |X(t) - X_k(t)| \ge u\right\} \le \exp\left(-\frac{u^2 U^{\beta - \epsilon}}{K\sigma^2(r_k)}\right).$$

Hence, if we take

$$U = (\log 1/r_0)^{\frac{1}{\beta - \epsilon}} ,$$

then as r_0 small enough

$$\sigma(r_k)U^{-\frac{\beta-\epsilon}{2}}(\log U)^{1/2} \le \sigma(r_k(\log\log\frac{1}{r_0})^{-\frac{1}{N}}).$$

Hence by taking

$$u = \frac{K_1}{2} \sigma(r_k (\log \log \frac{1}{r_0})^{-\frac{1}{N}})$$

in (3.17), we obtain

(3.18)

$$P\left\{\sup_{|t| \le r_k} |X(t) - X_k(t)| \ge \frac{K_1}{2} \sigma\left(r_k(\log\log\frac{1}{r_0})^{-\frac{1}{N}}\right)\right\} \le \exp\left(-\frac{u^2 U^{\beta - \epsilon}}{K\sigma^2(r_k)}\right).$$

Combining (3.16) and (3.18) we have

$$(3.19) \quad P\left\{\exists k \le k_0 \text{ such that } \sup_{|t| \le r_k} |X(t)| \le 2K_1 \sigma(r_k(\log\log\frac{1}{r_k})^{-1/N})\right\}$$

$$\geq 1 - exp\left(-\frac{k_0}{2(\log 1/r_0)^{1/4}}\right) - k_0 \exp\left(-\frac{U^{\beta-\epsilon}}{K(\log\log 1/r_0)^{(2\alpha)/N+\epsilon}}\right)$$
.

We recall that

$$\frac{\log \frac{1}{r_0}}{4\log U} \le k_0 \le \log \frac{1}{r_0} \ .$$

and hence for r_0 small enough, (3.11) follows from (3.19).

Now we are in a position to prove the upper bound for ϕ - $m(X([0,1]^N))$.

Theorem 3.1 Let $\phi(s) = \psi(s)^N \log \log \frac{1}{s}$. Then with probability 1

$$\phi - m(X([0,1]^N)) < \infty .$$

Proof. For $k \geq 1$, consider the set

$$R_k = \left\{ t \in [0,1]^N : \exists r \in [2^{-2k}, 2^{-k}] \text{ such that } \sup_{|s-t| \le r} |X(s) - X(t)| \le K\sigma(r(\log\log\frac{1}{r})^{-1/N}) \right\}.$$

By Proposition 3.1 we have

$$P\{t \in R_k\} \ge 1 - \exp(-\sqrt{k/2}).$$

Denote the Lebesgue measure in \mathbf{R}^N by L_N . It follows from Fubini's theorem that $P(\Omega_0) = 1$, where

$$\Omega_0 = \{\omega : L_N(R_k) \ge 1 - \exp(-\sqrt{k/4}) \text{ infinitely often}\}.$$

To see this, let $\Omega_k = \{\omega : L_N(R_k) \ge 1 - \exp(-\sqrt{k/4}) \}$. Then

$$\Omega_0 = \limsup_{k \to \infty} \Omega_k.$$

We also define $A_k = \{(t, \omega) : t \in R_k(\omega)\}$ and $Y_k(\omega) = L_N(\{t : (t, \omega) \in A_k\})$. Then

$$E(Y_k) = P \otimes L_N(A_k) \ge 1 - \exp(-\sqrt{k/2}).$$

For simplicity, write $a_k = 1 - \exp(-\sqrt{k/4})$. It follows from Fubini's theorem that

$$P\{\Omega_k\} = P\{Y_k \ge a_k\}$$

$$= 1 - P\{Y_k < a_k\}$$

$$= 1 - P\{1 - Y_k > 1 - a_k\}$$

$$\ge 1 - \frac{E(1 - Y_k)}{1 - a_k}$$

$$= 1 - \frac{1}{1 - a_k} + \frac{E(Y_k)}{1 - a_k}$$

$$\ge 1 - \frac{1}{1 - a_k} + \frac{1 - e^{-\sqrt{k/2}}}{1 - a_k}$$

$$= 1 - \frac{e^{-\sqrt{k/2}}}{1 - a_k}$$

$$\ge 1 - \exp\left(-\sqrt{k}\left(\frac{1}{\sqrt{2}} - \frac{1}{2}\right)\right).$$

Therefore we have

$$P(\limsup_{k\to\infty}\Omega_k) \ge \lim_{k\to\infty} P\{\Omega_k\} = 1.$$

On the other hand, by Lemma 3.1 ii), there exists an event Ω_1 such that $P(\Omega_1) = 1$ and for all $\omega \in \Omega_1$, there exists $n_1 = n_1(\omega)$ large enough such that for all $n \geq n_1$ and any dyadic cube C of order n in \mathbb{R}^N , we have

(3.20)
$$\sup_{s,t \in C} |X(t) - X(s)| \le K\sigma(2^{-n})\sqrt{n} .$$

Now fix an $\omega \in \Omega_0 \cap \Omega_1$, we show that ϕ - $m(X([0,1]^N)) < \infty$. Consider $k \ge 1$ such that

$$L_N(R_k) \ge 1 - exp(-\sqrt{k/4}) .$$

For any $x \in R_k$ we can find n with $k \le n \le 2k + k_0$ (where k_0 depends on N only) such that

(3.21)
$$\sup_{s,t \in C_n(x)} |X(t) - X(s)| \le K\sigma(2^{-n}(\log\log 2^n)^{-1/N}),$$

where $C_n(x)$ is the unique dyadic cube of order n containing x. Thus we have

$$R_k \subseteq V = \bigcup_{n=k}^{2k+k_0} V_n$$

and each V_n is a union of dyadic cubes C_n of order n for which (3.21) holds. Clearly $X(C_n)$ can be covered by a ball of radius

$$\rho_n = K\sigma(2^{-n}(\log\log 2^n)^{-1/N})$$
.

Since $\phi(2\rho_n) \leq K2^{-nN} = KL_N(C_n)$, we have

(3.22)
$$\sum_{n} \sum_{C \in V_n} \phi(2\rho_n) \le \sum_{n} \sum_{C \in V_n} KL_N(C_n)$$
$$= KL_N(V) < \infty.$$

On the other hand, $[0,1]^N \setminus V$ is contained in a union of dyadic cubes of order $q = 2k + k_0$, none of which meets R_k . There can be at most

$$2^{Nq}L_N([0,1]^N \setminus V) \le K2^{Nq}exp(-\sqrt{k}/4)$$

such cubes. For each of these cubes, X(C) is contained in a ball of radius $\rho = K\sigma(2^{-q})\sqrt{q}$. Thus for any $\epsilon > 0$

(3.23)
$$\sum \phi(2\rho) \le K 2^{Nq} exp(-\sqrt{k}/4) 2^{-Nq} q^{N/(2\alpha) + \epsilon} \le 1$$

for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows from (3.22) and (3.23).

4 Lower bound for ϕ - $m(X([0,1]^N))$

Let Y(t) $(t \in \mathbf{R}^N)$ be a real-valued, centered Gaussian random field with stationary increments and a continuous covariance function R(t,s) given by (1.1). We assume that Y(0) = 0 and (1.6) holds. Let X(t) $(t \in \mathbf{R}^N)$ be the (N,d) Gaussian random field defined by (1.7). In this section, we prove that if $N < \alpha d$, then

$$\phi$$
- $m(X([0,1]^N)) > 0$ a. s.

For simplicity we assume $\delta_0 = 1$ and let $I = [0, 1]^N \cap B(0, 1)$ (otherwise we consider a smaller cube). For any 0 < r < 1 and $y \in \mathbf{R}^d$. let

$$T_y(r) = \int_I 1_{B(y,r)}(X(t))dt$$

be the sojourn time of X(t) $(t \in I)$ in the open ball B(y,r). If y = 0, we write T(r) for $T_0(r)$.

Proposition 4.1 There exist $\delta_2 > 0$ and b > 0 such that for any $0 < r < \delta_2$

(4.1)
$$E\left(exp(b\psi(r)^{-N}T(r))\right) \le K < \infty.$$

Proof. We first prove that there exists a constant $0 < K < \infty$ such that for any $n \ge 1$

$$(4.2) E(T(r))^n \le K^n n! \psi(r)^{Nn} .$$

For n = 1, by (2.4) and (2.5) we have

(4.3)
$$ET(r) = \int_{I} P\{X(t) \in B(0, r)\} dt$$

$$\leq \int_{I} \min\{1, K(\frac{r}{\sigma(|t|)})^{d}\} dt$$

$$\leq K \int_{0}^{1} \min\{1, \frac{Kr^{d}}{\sigma(\rho)^{d}}\} \rho^{N-1} d\rho$$

$$\leq K \int_{0}^{K\psi(r)} \rho^{N-1} d\rho + K \int_{K\psi(r)}^{1} \frac{r^{d}\rho^{N-1}}{\sigma(\rho)^{d}} d\rho$$

$$\leq K\psi(r)^{N} + Kr^{d}\psi(r)^{N-\alpha d} \int_{1}^{\infty} \frac{1}{t^{1+\alpha d-N}L(\psi(r)t)^{d}} dt$$

$$\leq K\psi(r)^{N} + Kr^{d}\psi(r)^{N-\alpha d}/L(\psi(r))^{d}$$

$$\leq K\psi(r)^{N}.$$

For $n \geq 2$

(4.4)
$$E(T(r)^n) = \int_{I^n} P\{|X(t_1)| < r, \cdots, |X(t_n)| < r\} dt_1 \cdots dt_n .$$

Consider $t_1, \dots, t_n \in I$ satisfying

$$t_i \neq 0$$
 for $j = 1, \dots, n$, $t_i \neq t_k$ for $j \neq k$.

Let $\eta = \min\{|t_n|, |t_n - t_i|, i = 1, \dots, n-1\}$. Then by (1.6) we have

(4.5)
$$Var(X(t_n)|X(t_1), \dots, X(t_{n-1})) \ge c_2 \sigma^2(\eta)$$
.

Since conditional distributions in Gaussian processes are still Gaussian, it follows from (4.5) that

(4.6)
$$P\{|X(t_n)| < r | X(t_1) = x_1, \cdots, X(t_{n-1}) = x_{n-1}\}$$

$$\leq K \int_{|u| < r} \frac{1}{\sigma(\eta)^d} exp\left(-\frac{|u|^2}{K\sigma^2(\eta)}\right) du.$$

Similar to (4.3), we have

By (4.4), (4.6) and (4.7), we obtain

$$E(T(r))^{n} \leq K \int_{I^{n-1}} P\{|X_{1}(t_{1})| < r, \cdots, |X(t_{n-1})| < r\} dt_{1} \cdots dt_{n-1}$$

$$\cdot \int_{I} dt_{n} \int_{|u| < r} \frac{1}{\sigma(\eta)^{d}} exp\left(-\frac{|u|^{2}}{K\sigma^{2}(\eta)}\right) du$$

$$\leq Kn\psi(r)^{N} E(T(r))^{n-1}.$$

Hence, the inequality (4.2) follows from (4.3) and induction. Let 0 < b < 1/K, then by (4.2) we have

$$Eexp(b\psi(r)^{-N}T(r)) = \sum_{n=0}^{\infty} (Kb)^n < \infty$$
.

This proves (4.1).

Proposition 4.2 With probability 1

$$\limsup_{r \to 0} \frac{T(r)}{\phi(r)} \le \frac{1}{b} ,$$

where $\phi(r) = \psi(r)^N \log \log 1/r$.

Proof. For any $\epsilon > 0$, it follows from (4.1) that

(4.9)
$$P\{T(r) \ge (1/b + \epsilon)\psi(r)^N \log \log 1/r\} \le \frac{K}{(\log 1/r)^{1+b\epsilon}}.$$

Take $r_n = exp(-n/\log n)$, then by (4.9) we have

$$P\{T(r_n) \ge (1/b + \epsilon)\psi(r_n)^N \log \log 1/r_n\} \le \frac{K}{(n/\log n)^{1+b\epsilon}}.$$

Hence by Borel-Cantelli lemma we have

(4.10)
$$\limsup_{n \to \infty} \frac{T(r_n)}{\phi(r_n)} \le \frac{1}{b} + \epsilon .$$

It is easy to verify that

$$\lim_{n \to \infty} \frac{\phi(r_n)}{\phi(r_{n+1})} = 1.$$

Hence by (4.10) and (4.11) we have

$$\limsup_{r \to 0} \frac{T(r)}{\phi(r)} \le \frac{1}{b} + \epsilon .$$

Since $\epsilon > 0$ is arbitrary, we obtain (4.8).

Since X(t) $(t \in \mathbf{R}^N)$ has stationary increments, we derive the following

Corollary 4.1 Fix $t_0 \in I$, then with probability 1

$$\limsup_{r \to 0} \frac{T_{X(t_0)}(r)}{\phi(r)} \le \frac{1}{b} .$$

Theorem 4.1 If $N < \alpha d$, then with probability 1

(4.12)
$$\phi - m(X([0,1]^N)) > 0 ,$$

where $\phi(r) = \psi(r)^N \log \log 1/r$.

Proof. We define a random Borel measure μ on X(I) as follows. For any Borel set $B \subseteq \mathbf{R}^d$, let

$$\mu(B) = L_N\{t \in I, \ X(t) \in B\} \ .$$

Then $\mu(\mathbf{R}^d) = \mu(X(I)) = L_N(I)$. By Corollary 4.1, for each fixed $t_0 \in I$, with probability 1

(4.13)
$$\limsup_{r \to 0} \frac{\mu(B(X(t_0), r))}{\phi(r)}$$

$$\leq \limsup_{r \to 0} \frac{T_{X(t_0)}(r)}{\phi(r)} \leq \frac{1}{b}$$
.

Let $E(\omega) = \{X(t_0) : t_0 \in I \text{ and } (4.13) \text{ holds } \}$. Then $E(\omega) \subseteq X(I)$. A Fubini argument shows $\mu(E(\omega)) = 1$, a. s.. Hence by Lemma 2.1, we have

$$\phi$$
- $m(E(\omega)) \ge Kb$.

This proves (4.12).

Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately. Example 4.1. Let Y(t) $(t \in \mathbf{R}^N)$ be a real-valued fractional Brownian motion of index α $(0 < \alpha < 1)$ (see [10], Chapter 18). Its covariance function has the representation

$$\begin{split} R(s,t) &= \frac{1}{2}(|s|^{2\alpha} + |t|^{2\alpha} - |t - s|^{2\alpha}) \\ &= c(\alpha) \int_{\mathbf{R}^N} (e^{i < t, \lambda >} - 1) (e^{-i < s, \lambda >} - 1) \frac{d\lambda}{|\lambda|^{N + 2\alpha}} \;, \end{split}$$

where $c(\alpha)$ is a normalizing constant. Then (1.5) is verified and by a result of Pitt [17], (1.6) is also verified. In this case, Theorem 1.1 is proved by Goldman [9] for $\alpha = 1/2$ and by Talagrand [22] for $0 < \alpha < 1$.

Example 4.2. Let Z(t) $(t \in \mathbf{R}^N)$ be a real-valued mean zero stationary random field with covariance function

$$R(s,t) = exp(-c|s-t|^{2\alpha})$$
 with $c > 0$ and $0 < \alpha < 1$.

Then Y(t) = Z(t) - Z(0) verifies the conditions (1.5) and (1.6). We can apply Theorem 1.1 to obtain the Hausdorff measure of $X([0,1]^N)$, where

$$X(t) = (X_1(t), \cdots, X_d(t))$$

and X_1, \dots, X_d are independent copies of Z. Other examples with absolutely continuous spectral measure can be found in Berman [2] p289, and Berman [4].

Example 4.3. Now we give an example with discrete spectral measure. Let X_n $(n \ge 0)$ and Y_n $(n \ge 0)$ be independent standard normal random variables and a_n $(n \ge 0)$ real numbers such that $\sum_n a_n^2 < \infty$. Then for each t, the random series

(4.14)
$$Z(t) = \sum_{n=0}^{\infty} a_n (X_n \cos nt + Y_n \sin nt)$$

converges with probability 1 (see [10]), and Z(t) ($t \in \mathbf{R}$) represents a stationary Gaussian process with mean 0 and covariance function

$$R(s,t) = \sum_{n=0}^{\infty} a_n^2 \cos n(t-s) .$$

By a result of Berman [4], there are many choices of a_n $(n \ge 0)$ such that the process Y(t) = Z(t) - Z(0) satisfies the hypotheses of Theorem 1.1 with

$$\sigma^2(s) = 2\sum_{n=0}^{\infty} a_n^2 (1 - \cos ns)$$
.

Let X(t) $(t \in \mathbf{R})$ be the Gaussian process in \mathbf{R}^d associated with Z(t) or Y(t) $(t \in \mathbf{R})$ by (1.7). If $1 < \alpha d$, then

$$0<\phi\text{-}m(X([0,1]))<\infty\ ,$$

where $\phi(s) = \psi(s) \log \log \frac{1}{s}$ and ψ is the inverse function of σ . A special case of (4.14) is Example 3.5 in Monrad and Rootzén [15].

References

- [1] R. J. Adler: The Geometry of Random Fields, Wiley, New York, 1981.
- [2] S. M. Berman: Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277 299.
- [3] S. M. Berman: Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973), 69 94.
- [4] S. M. Berman: Gaussian processes with biconvex covariances, J. Multivar. Anal. 8 (1978), 30 44.
- [5] S. M. Berman: Spectral conditions for local nondeterminism, Stoch. Proc. Appl. 27 (1988), 73 84.
- [6] J, Cuzick and J. Du Peez: Joint continuity of Gaussian local times, Ann. of Probab. 10 (1982), 810 - 817.
- [7] W. Ehm: Sample function properties of multi-parameter stable processes, Z. Wahrsch. verw Gebiete **56** (1981), 195 - 228.
- [8] K. J. Falconer: Fractal Geometry Mathematical Foundations And Applications, Wiley & Sons, 1990.
- [9] A. Goldman: Mouvement Brownien à plusieurs paramètres: mesure de Hausdorff des trajectoires, Astésque **167**, 1988.
- [10] J-P, Kahane: Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985.
- [11] M. Ledoux and M. Talagrand: Probabilities in Banach Spaces, Springer-Verlag, 1991.
- [12] L, Loéve: Probability Theory I, Springer 1977.
- [13] M. B. Marcus: Hölder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc. 134 (1968), 29 52.

- [14] D. Monrad and L. D. Pitt: Local nondeterminism and Hausdorff dimension, Prog. in Probab. and Statist., Seminar on Stochastic Processes (1986), (E, Cinlar, K. L. Chung, R. K. Getoor, Editors) Birkhauser, 1987, pp163 189.
- [15] D. Monrad and H. Rootzén: Small values of Gaussian processes and functional laws of the iterated logarithm, Prob. Th. Rel. Fields 101 (1995),173 - 192.
- [16] S. Orey and W. E. Pruitt: Sample functions of the N-parameter Wiener process, Ann. of Probab. 1 (1973), 138 163.
- [17] L. D. Pitt: Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), 309 330.
- [18] C. A. Rogers and S. J. Taylor: Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1 31.
- [19] E. Seneta: Regularly varying functions, Lecture Notes in Math. 508, Springer-Verlag, 1976.
- [20] Qi-Man, Shao: A note on small ball probability of a Gaussian process with stationary increments, J. Theoret. Prob. 6 1993, 595 602.
- [21] M. Talagrand: New Gaussian estimates for enlarged balls, Geometric and Functional Analysis 3 (1993), 502 520.
- [22] M. Talagrand: Hausdorff measure of the trajectories of multiparameter fractional Brownian motion, Ann. of Probab. 23 (1995), 767 775.
- [23] S. J. Taylor and C. Tricot: Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679 699.

Yimin Xiao Department of Mathematics Ohio State University Columbus, Ohio 43210 - 1174 U. S. A.