Hausdorff Measure of the Sample Paths of Gaussian Random Fields *

Yimin Xiao

June 26, 1995

Running head: Xiao, Hausdorff Measure of Certain Gaussian Fields AMS Classification numbers: Primary 60G15, 60G17.

KEY words: Hausdorff measure, Gaussian random fields, fractional Brownian motion, image .

[^0]
1 Introduction

Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be a real-valued, centered Gaussian random field with $Y(0)=0$. We assume that $Y(t)\left(t \in \mathbf{R}^{N}\right)$ has stationary increments and continuous covariance function $R(t, s)=E Y(t) Y(s)$ given by

$$
\begin{equation*}
R(t, s)=\int_{\mathbf{R}^{N}}\left(e^{i<t, \lambda>}-1\right)\left(e^{-i<s, \lambda>}-1\right) \Delta(d \lambda), \tag{1.1}
\end{equation*}
$$

where $\langle x, y\rangle$ is the ordinary scalar product in \mathbf{R}^{N} and $\Delta(d \lambda)$ is a nonnegative symmetric measure on $\mathbf{R}^{N} \backslash\{0\}$ satisfying

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} \frac{|\lambda|^{2}}{1+|\lambda|^{2}} \Delta(d \lambda)<\infty . \tag{1.2}
\end{equation*}
$$

Then there exists a centered complex-valued Gaussian random measure $W(d \lambda)$ such that

$$
\begin{equation*}
Y(t)=\int_{\mathbf{R}^{N}}\left(e^{i<t, \lambda>}-1\right) W(d \lambda) \tag{1.3}
\end{equation*}
$$

and for any Borel sets $A, B \subseteq \mathbf{R}^{N}$

$$
E(W(A) \overline{W(B)})=\Delta(A \cap B) \quad \text { and } \quad W(-A)=\overline{W(A)} .
$$

It follows from (1.3) that

$$
\begin{equation*}
E\left[(Y(t+h)-Y(t))^{2}\right]=2 \int_{\mathbf{R}^{N}}(1-\cos <h, \lambda>) \Delta(d \lambda) \tag{1.4}
\end{equation*}
$$

We assume that there exist constants $\delta_{0}>0,0<c_{1} \leq c_{2}<\infty$ and a non-decreasing, continuous function $\sigma:\left[0, \delta_{0}\right) \rightarrow[0, \infty)$ which is regularly varying at the origin with index $\alpha(0<\alpha<1)$ such that for any $t \in \mathbf{R}^{N}$ and $h \in \mathbf{R}^{N}$ with $|h| \leq \delta_{0}$

$$
\begin{equation*}
E\left[(Y(t+h)-Y(t))^{2}\right] \leq c_{1} \sigma^{2}(|h|) \tag{1.5}
\end{equation*}
$$

and for all $t \in \mathbf{R}^{N}$ and any $0<r \leq \min \left\{|t|, \delta_{0}\right\}$

$$
\begin{equation*}
\operatorname{Var}\left(Y(t)\left|Y(s): r \leq|s-t| \leq \delta_{0}\right) \geq c_{2} \sigma^{2}(r)\right. \tag{1.6}
\end{equation*}
$$

If (1.5) and (1.6) hold, we shall say that $Y(t)\left(t \in \mathbf{R}^{N}\right)$ is strongly locally σ nondeterministic. We refer to Monrad and Pitt[14], Berman [4] [5] and Cuzick and Du Peez [6] for more information on (strongly) locally nondeterminism.

We associate with $Y(t)\left(t \in \mathbf{R}^{N}\right)$ a Gaussian random field $X(t)\left(t \in \mathbf{R}^{N}\right)$ in \mathbf{R}^{d} by

$$
\begin{equation*}
X(t)=\left(X_{1}(t), \cdots, X_{d}(t)\right) \tag{1.7}
\end{equation*}
$$

where X_{1}, \cdots, X_{d} are independent copies of Y. The most important example of such Gaussian random fields is the fractional Brownian motion of index α (see Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

$$
\operatorname{dim} X\left([0,1]^{N}\right)=\min \left(d, \frac{N}{\alpha}\right) .
$$

The objective of this paper is to consider the exact Hausdorff measure of the image set $X\left([0,1]^{N}\right)$. The main result is the following theorem, which generalizes a theorem of Talagrand [22].

Theorem 1.1 If $N<\alpha d$, then with probability 1

$$
\begin{equation*}
0<\phi-m\left(X\left([0,1]^{N}\right)\right)<\infty \tag{1.8}
\end{equation*}
$$

where

$$
\phi(s)=\psi(s)^{N} \log \log \frac{1}{s}
$$

ψ is the inverse function of σ and where $\phi-m\left(X\left([0,1]^{N}\right)\right)$ is the ϕ-Hausdorff measure of $X\left([0,1]^{N}\right)$.

If $N>\alpha d$, then by a result of $\operatorname{Pitt}[17], X\left([0,1]^{N}\right)$ a. s. has interior points and hence has positive d-dimensional Lebesgue measure. In the case of $N=\alpha d$, the problem of finding $\phi-m\left(X\left([0,1]^{N}\right)\right)$ is still open even in the fractional Brownian motion case.

The paper is organized as follows. In Section 2 we recall the definition and some basic facts of Hausdorff measure, Gaussian processes and regularly varying functions. In Section 3 we prove the upper bound and in Section 4, we prove the lower bound for $\phi-m\left(X\left([0,1]^{N}\right)\right)$. We also give some examples showing that the hypotheses in Theorem 1.1 are satisfied by a large class of Gaussian random fields including fractional Brownian motion.

Another important example of Gaussian random fields is the Brownian sheet or N-parameter Wiener process $W(t)\left(t \in \mathbf{R}_{+}^{N}\right)$, see Orey and Pruitt [16]. Since $W(t)\left(t \in \mathbf{R}_{+}^{N}\right)$ is not locally nondeterministic, Theorem 1.1 does not apply. The problem of finding the exact Hausdorff measure of $W\left([0,1]^{N}\right)$ was solved by Ehm [7].

We will use K to denote an unspecified positive constant which may be different in each appearance.

2 Preliminaries

Let Φ be the class of functions $\phi:(0, \delta) \rightarrow(0,1)$ which are right continuous, monotone increasing with $\phi(0+)=0$ and such that there exists a finite constant $K>0$ for which

$$
\frac{\phi(2 s)}{\phi(s)} \leq K, \quad \text { for } 0<s<\frac{1}{2} \delta
$$

For $\phi \in \Phi$, the ϕ-Hausdorff measure of $E \subseteq \mathbf{R}^{N}$ is defined by

$$
\phi-m(E)=\lim _{\epsilon \rightarrow 0} \inf \left\{\sum_{i} \phi\left(2 r_{i}\right): E \subseteq \cup_{i=1}^{\infty} B\left(x_{i}, r_{i}\right), r_{i}<\epsilon\right\}
$$

where $B(x, r)$ denotes the open ball of radius r centered at x. It is known that $\phi-m$ is a metric outer measure and every Borel set in \mathbf{R}^{N} is $\phi-m$ measurable. The Hausdorff dimension of E is defined by

$$
\begin{aligned}
\operatorname{dim} E & =\inf \left\{\alpha>0: \quad s^{\alpha}-m(E)=0\right\} \\
& =\sup \left\{\alpha>0: s^{\alpha}-m(E)=\infty\right\}
\end{aligned}
$$

We refer to $[\mathrm{F}]$ for more properties of Hausdorff measure and Hausdorff dimension.

The following lemma can be easily derived from the results in [18] (see [23]), which gives a way to get a lower bound for $\phi-m(E)$. For any Borel measure μ on \mathbf{R}^{N} and $\phi \in \Phi$, the upper ϕ-density of μ at $x \in \mathbf{R}^{N}$ is defined by

$$
\bar{D}_{\mu}^{\phi}(x)=\underset{r \rightarrow 0}{\limsup } \frac{\mu(B(x, r))}{\phi(2 r)} .
$$

Lemma 2.1 For a given $\phi \in \Phi$ there exists a positive constant K such that for any Borel measure μ on \mathbf{R}^{N} and every Borel set $E \subseteq \mathbf{R}^{N}$, we have

$$
\phi-m(E) \geq K \mu(E) \inf _{x \in E}\left\{\bar{D}_{\mu}^{\phi}(x)\right\}^{-1} .
$$

Now we summarize some basic facts about Gaussian processes. Let $Z(t)(t \in S)$ be a Gaussian process. We provide S with the following metric

$$
d(s, t)=\|Z(s)-Z(t)\|_{2}
$$

where $\|Z\|_{2}=\left(E\left(Z^{2}\right)\right)^{\frac{1}{2}}$. We denote by $N_{d}(S, \epsilon)$ the smallest number of open d-balls of radius ϵ needed to cover S and write $D=\sup \{d(s, t): s, t \in S\}$.

The following lemma is well known. It is a consequence of the Gaussian isoperimetric inequality and Dudley's entropy bound([11], see also [22]).

Lemma 2.2 There exists an absolute constant $K>0$ such that for any $u>0$, we have

$$
P\left\{\sup _{s, t \in S}|Z(s)-Z(t)| \geq K\left(u+\int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d \epsilon\right)\right\} \leq \exp \left(-\frac{u^{2}}{D^{2}}\right)
$$

Lemma 2.3 Consider a function Ψ such that $N_{d}(S, \epsilon) \leq \Psi(\epsilon)$ for all $\epsilon>0$. Assume that for some constant $C>0$ and all $\epsilon>0$ we have

$$
\Psi(\epsilon) / C \leq \Psi\left(\frac{\epsilon}{2}\right) \leq C \Psi(\epsilon)
$$

Then

$$
P\left\{\sup _{s, t \in S}|Z(s)-Z(t)| \leq u\right\} \geq \exp (-K \Psi(u))
$$

where $K>0$ is a constant depending only on C.
This is proved in [21]. It gives an estimate for the lower bound of the small ball probability of Gaussian processes. Similar problems have also been considered by Monrad and Rootzén [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions. Let $\sigma(s)$ be a regularly varying function with index $\alpha(0<\alpha<1)$. Then σ can be written as

$$
\sigma(s)=s^{\alpha} L(s)
$$

where $L(s):\left[0, \delta_{0}\right) \rightarrow[0, \infty)$ is slowly varying at the origin in the sense of Karamata and hence can be represented by

$$
\begin{equation*}
L(s)=\exp \left(\eta(s)+\int_{s}^{A} \frac{\epsilon(t)}{t} d t\right) \tag{2.1}
\end{equation*}
$$

where $\eta(s):\left[0, \delta_{0}\right] \rightarrow \mathbf{R}, \epsilon(s):(0, A] \rightarrow \mathbf{R}$ are bounded measurable functions and

$$
\lim _{s \rightarrow 0} \eta(s)=c,|c|<\infty ; \quad \lim _{s \rightarrow 0} \epsilon(s)=0
$$

In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5 can be deduced from Theorem 2.6 and 2.7 in Seneta [19] directly.

Lemma 2.4 Let $L(s)$ be a slowly varying function at the origin and let $U=$ $U(s):[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\lim _{s \rightarrow 0} U(s)=\infty \quad \text { and } \quad \lim _{s \rightarrow 0} s U(s)=0
$$

Then for any $\epsilon>0$, as s small enough we have

$$
U(s)^{-\epsilon} L(s) \leq L(s U(s)) \leq U(s)^{\epsilon} L(s)
$$

and

$$
U(s)^{-\epsilon} L(s) \leq L\left(s U(s)^{-1}\right) \leq U(s)^{\epsilon} L(s)
$$

Lemma 2.5 Let σ be a regularly varying function at the origin with index $\alpha>0$. Then there is a constant $K>0$ such that for $r>0$ small enough, we have

$$
\begin{gather*}
\int_{1}^{\infty} \sigma\left(r e^{-u^{2}}\right) d u \leq K \sigma(r) \tag{2.2}\\
\int_{0}^{1} \sigma(r s) d s \leq K \sigma(r) \tag{2.3}\\
\int_{0}^{1} \sigma(r s) s^{N-1} d s \leq K \sigma(r), \tag{2.4}
\end{gather*}
$$

Let $\sigma:\left[0, \delta_{0}\right) \rightarrow[0, \infty)$ be non-decreasing and let ψ be the inverse function of σ, that is

$$
\psi(s)=\inf \{t \geq 0: \sigma(t) \geq s\}
$$

then $\psi(s)=s^{1 / \alpha} f(s)$, where $f(s)$ is also a slowly varying function and

$$
\begin{equation*}
\sigma(\psi(s)) \sim s \quad \text { and } \quad \psi(\sigma(s)) \sim s \quad \text { as } \quad s \rightarrow 0 \tag{2.5}
\end{equation*}
$$

3 Upper bound for $\phi-m\left(X\left([0,1]^{N}\right)\right)$

Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be a real-valued, centered Gaussian random field with stationary increments and a continuous covariance function $R(t, s)$ given by (1.1). We assume that $Y(0)=0$ and (1.5) holds. Let $X(t)\left(t \in \mathbf{R}^{N}\right)$ be the (N, d) Gaussian random field defined by (1.7).

We start with the following lemma.
Lemma 3.1 Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be a Gaussian process with $Y(0)=0$ satisfying (1.5). Then
(i) For any $r>0$ small enough and $u \geq K \sigma(r)$, we have

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r}|Y(t)| \geq u\right\} \leq \exp \left(-\frac{u^{2}}{K \sigma^{2}(r)}\right) \tag{3.1}
\end{equation*}
$$

(ii) Let

$$
\omega_{Y}(h)=\sup _{t, t+s \in[0,1]^{N},|s| \leq h}|Y(t+s)-Y(t)|
$$

be the uniform modulus of continuity of $Y(t)$ on $[0,1]^{N}$. Then

$$
\begin{equation*}
\limsup _{h \rightarrow 0} \frac{\omega_{Y}(h)}{\sigma(h) \sqrt{2 c_{1} \log \frac{1}{h}}} \leq 1, \quad \text { a.s. } \tag{3.2}
\end{equation*}
$$

Proof. Let $r<\delta_{0}$ and $S=\{t:|t| \leq r\}$. Since $d(s, t) \leq c_{1} \sigma(|t-s|)$, we have

$$
N_{d}(S, \epsilon) \leq K\left(\frac{r}{\psi(\epsilon)}\right)^{N}
$$

and

$$
D=\sup \{d(s, t) ; s, t \in S\} \leq K \sigma(r)
$$

By simple calculations

$$
\begin{aligned}
\int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d \epsilon & \leq K \int_{0}^{K \sigma(r)} \sqrt{\log (K r) / \psi(\epsilon)} d \epsilon \\
& \leq K \int_{0}^{K r} \sqrt{\log (K r) / t} d \sigma(t) \\
& \leq K\left(\sigma(r)+\int_{0}^{K} \frac{1}{u \sqrt{\log K / u}} \sigma(u r) d u\right) \\
& \leq K\left(\sigma(r)+\int_{K}^{\infty} \sigma\left(r e^{-u^{2}}\right) d u\right) \\
& \leq K \sigma(r)
\end{aligned}
$$

where the last inequality follows from (2.2). If $u \geq K \sigma(r)$, then by Lemma 2.2 we have

$$
\begin{aligned}
& P\left\{\sup _{|t| \leq r}|Y(t)| \geq 2 K u\right\} \\
\leq & P\left\{\sup _{|t| \leq r}|Y(t)| \geq K\left(u+\int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d \epsilon\right)\right\} \\
\leq & \exp \left(-\frac{u^{2}}{K \sigma^{2}(r)}\right)
\end{aligned}
$$

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2 directly in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spectral representation (1.3). Given $0<a<b<\infty$, we consider the process

$$
Y(a, b, t)=\int_{a \leq|t| \leq b}\left(e^{i<t, \lambda>}-1\right) W(d \lambda)
$$

Then for any $0<a<b<a^{\prime}<b^{\prime}<\infty$, the processes $Y(a, b, t)$ and $Y\left(a^{\prime}, b^{\prime}, t\right)$ are independent. The next lemma expresses how well $Y(a, b, t)$ approximates $Y(t)$.

Lemma 3.2 Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be defined by (1.3). If (1.5) holds, then there exists a constant $B>0$ such that for any $B<a<b$ we have

$$
\begin{equation*}
\|Y(a, b, t)-Y(t)\|_{2} \leq K\left[|t|^{2} a^{2} \sigma^{2}\left(a^{-1}\right)+\sigma^{2}\left(b^{-1}\right)\right]^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

Proof. First we claim that for any $u>0$ and any $h \in \mathbf{R}^{N}$ with $|h|=1 / u$ we have

$$
\begin{gather*}
\int_{|\lambda|<u}<h, \lambda>^{2} \Delta(d \lambda) \leq K \int_{\mathbf{R}^{N}}(1-\cos <h, \lambda>) \Delta(d \lambda) \tag{3.4}\\
\int_{|\lambda| \geq u} \Delta(d \lambda) \leq K\left(\frac{u}{2}\right)^{N} \int_{[-1 / u, 1 / u]^{N}} d v \int_{\mathbf{R}^{N}}(1-\cos <v, \lambda>) \Delta(d \lambda) . \tag{3.5}
\end{gather*}
$$

For $N=1$, (3.4) and (3.5) are the truncation inequalities in [12] p209. For $N>1$ a similar proof yields (3.4) and (3.5).

Now for any $a>\delta_{0}^{-1}$ and any $t \in \mathbf{R}^{N} \backslash\{0\}$, by (1.4),(1.5) and (3.4) we have

$$
\begin{equation*}
\int_{|\lambda|<a}(1-\cos <t, \lambda>) \Delta(d \lambda) \leq \int_{|\lambda|<a}<t, \lambda>^{2} \Delta(d \lambda) \tag{3.6}
\end{equation*}
$$

$$
=|t|^{2} a^{2} \int_{|\lambda|<a}<t /(a|t|), \lambda>^{2} \Delta(d \lambda) \leq K|t|^{2} a^{2} \sigma^{2}\left(a^{-1}\right) .
$$

For $b>0$ large enough, by (3.5), (1.4), (1.5) and (2.4) we have

$$
\begin{align*}
& \int_{|\lambda| \geq b} \Delta(d \lambda) \leq K\left(\frac{b}{2}\right)^{N} \int_{[-1 / b, 1 / b]^{N}} \sigma^{2}(|v|) d v \tag{3.7}\\
& \leq K b^{N} \int_{0}^{\sqrt{N} b^{-1}} \sigma^{2}(\rho) \rho^{N-1} d \rho \leq K \sigma^{2}\left(b^{-1}\right)
\end{align*}
$$

Combining (3.6) and (3.7), we see that there exists a constant $B>0$ such that $B<a<b$ implies

$$
\begin{aligned}
& E\left[(Y(a, b, t)-Y(t))^{2}\right]=2 \int_{\{|\lambda|<a\} \cup\{|\lambda|>b\}}(1-\cos <t, \lambda>) \Delta(d \lambda) \\
\leq & 2 \int_{|\lambda|<a}(1-\cos <t, \lambda>) \Delta(d \lambda)+2 \int_{|\lambda|>b} \Delta(d \lambda) \\
\leq & K\left[|t|^{2} a^{2} \sigma^{2}\left(a^{-1}\right)+\sigma^{2}\left(b^{-1}\right)\right] .
\end{aligned}
$$

This proves (3.3).
Lemma 3.3 There exists a constant $B>0$ such that for any $B<a<b$ and $0<r<B^{-1}$ the following holds: let $A=r^{2} a^{2} \sigma^{2}\left(a^{-1}\right)+\sigma^{2}\left(b^{-1}\right)$ such that $\psi(\sqrt{A}) \leq \frac{1}{2} r$, then for any

$$
u \geq K\left(A \log \frac{K r}{\psi(\sqrt{A})}\right)^{\frac{1}{2}}
$$

we have

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r}|Y(t)-Y(a, b, t)| \geq u\right\} \leq \exp \left(-\frac{u^{2}}{K A}\right) \tag{3.8}
\end{equation*}
$$

Proof. Let $S=\{t:|t| \leq r\}$ and $Z(t)=Y(t)-Y(a, b, t)$. Then

$$
d(s, t)=\|Z(t)-Z(s)\|_{2} \leq c_{1} \sigma(|t-s|) .
$$

Hence

$$
N_{d}(S, \epsilon) \leq K\left(\frac{r}{\psi(\epsilon)}\right)^{N}
$$

By Lemma 3.2 we have $D \leq K \sqrt{A}$. As in the proof of Lemma 3.1,

$$
\begin{aligned}
& \int_{0}^{D} \sqrt{\log N_{d}(S, \epsilon)} d \epsilon \leq K \int_{0}^{K \sqrt{A}} \sqrt{\log (K r) / \psi(\epsilon)} d \epsilon \\
& \leq K \int_{0}^{K \psi(\sqrt{A}) / r} \sqrt{\log K / t} d \sigma(r t) \\
& \leq K\left[\left.\sqrt{\log K / t} \sigma(r t)\right|_{0} ^{K \psi(\sqrt{A}) / r}+\int_{0}^{K \psi(\sqrt{A}) / r} \frac{1}{t \sqrt{\log K / t}} \sigma(r t) d t\right] \\
& \leq K \sqrt{A \log K r / \psi(\sqrt{A})}+K \int_{\sqrt{\log K r / \psi(\sqrt{A})}}^{\infty} \sigma\left(K r e^{-u^{2}}\right) d u \\
& \leq K \sqrt{A \log K r / \psi(\sqrt{A})}
\end{aligned}
$$

at least for $r>0$ small enough, where the last step follows from (2.2). Hence (3.8) follows immediately from Lemma 2.2.

Let $X_{1}(a, b, t), \cdots, X_{d}(a, b, t)$ be independent copies of $Y(a, b, t)$ and let

$$
X(a, b, t)=\left(X_{1}(a, b, t), \cdots, X_{d}(a, b, t)\right) \quad\left(t \in \mathbf{R}^{N}\right) .
$$

Then we have the following corollary of Lemma 3.3.
Corollary 3.1 Consider $B<a<b$ and $0<r<B^{-1}$. Let

$$
A=r^{2} a^{2} \sigma^{2}\left(a^{-1}\right)+\sigma^{2}\left(b^{-1}\right)
$$

with $\psi(\sqrt{A}) \leq \frac{1}{2} r$. Then for any

$$
u \geq K\left(A \log \frac{K r}{\psi(\sqrt{A})}\right)^{\frac{1}{2}}
$$

we have

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r}|X(t)-X(a, b, t)| \geq u\right\} \leq \exp \left(-\frac{u^{2}}{K A}\right) \tag{3.9}
\end{equation*}
$$

Lemma 3.4 Given $0<r<\delta_{0}$ and $\epsilon<\sigma(r)$. Then for any $0<a<b$ we have

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r}|X(a, b, t)| \leq \epsilon\right\} \geq \exp \left(-\frac{r^{N}}{K \psi(\epsilon)^{N}}\right) \tag{3.10}
\end{equation*}
$$

Proof. It is sufficient to prove (3.10) for $Y(a, b, t)$. Let $S=\{t:|t| \leq r\}$ and define a distance d on S by

$$
d(s, t)=\|Y(a, b, t)-Y(a, b, s)\|_{2} .
$$

Then $d(s, t) \leq c_{1} \sigma(|t-s|)$ and

$$
N_{d}(S, \epsilon) \leq K\left(\frac{r}{\psi(\epsilon)}\right)^{N} .
$$

By Lemma 2.3 we have

$$
P\left\{\sup _{|t| \leq r}|Y(a, b, t)| \leq \epsilon\right\} \geq \exp \left(-\frac{r^{N}}{K \psi(\epsilon)^{N}}\right) .
$$

This proves lemma 3.4.

Proposition 3.1 There exists a constant $\delta_{1}>0$ such that for any $0<r_{0} \leq$ δ_{1}, we have

$$
\begin{gather*}
P\left\{\exists r \in\left[r_{0}^{2}, r_{0}\right] \text { such that } \sup _{|t| \leq r}|X(t)| \leq K \sigma\left(r\left(\log \log \frac{1}{r}\right)^{-\frac{1}{N}}\right)\right\} \tag{3.11}\\
\geq 1-\exp \left(-\left(\log \frac{1}{r_{0}}\right)^{\frac{1}{2}}\right)
\end{gather*}
$$

Proof. We follow the line of Talagrand [22]. Let $U=U\left(r_{0}\right) \geq 1$, where $U(r)$ satisfying

$$
\begin{equation*}
U(r) \rightarrow \infty \quad \text { as } \quad r \rightarrow 0 \tag{3.12}
\end{equation*}
$$

and for any $\epsilon>0$

$$
\begin{equation*}
r^{\epsilon} U(r) \rightarrow 0 \quad \text { as } \quad r \rightarrow 0, \tag{3.13}
\end{equation*}
$$

will be chosen later. For $k \geq 0$, let $r_{k}=r_{0} U^{-2 k}$. Let k_{0} be the largest integer such that

$$
k_{0} \leq \frac{\log \frac{1}{r_{0}}}{2 \log U}
$$

then for any $0 \leq k \leq k_{0}$ we have $r_{0}^{2} \leq r_{k} \leq r_{0}$. In order to prove (3.11), it suffices to show that

$$
\begin{equation*}
P\left\{\exists k \leq k_{0} \text { such that } \sup _{|t| \leq r_{k}}|X(t)| \leq K \sigma\left(r_{k}\left(\log \log \frac{1}{r_{k}}\right)^{-\frac{1}{N}}\right)\right\} \tag{3.14}
\end{equation*}
$$

$$
\geq 1-\exp \left(-\left(\log \frac{1}{r_{0}}\right)^{\frac{1}{2}}\right) .
$$

Let $a_{k}=r_{0}^{-1} U^{2 k-1}$ and we define for $k=0,1, \cdots$

$$
X_{k}(t)=X\left(a_{k}, a_{k+1}, t\right)
$$

then X_{0}, X_{1}, \cdots are independent. By Lemma 3.4 we can take a constant K_{1} such that for $r_{0}>0$ small enough

$$
\begin{gather*}
P\left\{\sup _{|t| \leq r_{k}}\left|X_{k}(t)\right| \leq K_{1} \sigma\left(r_{k}\left(\log \log \frac{1}{r_{k}}\right)^{-\frac{1}{N}}\right)\right\} \tag{3.15}\\
\geq \exp \left(-\frac{1}{4} \log \log \frac{1}{r_{k}}\right) \\
=\frac{1}{\left(\log \frac{1}{r_{k}}\right)^{\frac{1}{4}}}
\end{gather*}
$$

Thus, by independence we have

$$
\begin{gather*}
P\left\{\exists k \leq k_{0}, \sup _{|t| \leq r_{k}}\left|X_{k}(t)\right| \leq K_{1} \sigma\left(r_{k}\left(\log \log \frac{1}{r_{k}}\right)^{-1 / N}\right)\right\} \tag{3.16}\\
\\
\geq 1-\left(1-\frac{1}{\left(2 \log 1 / r_{0}\right)^{1 / 4}}\right)^{k_{0}} \\
\quad \geq 1-\exp \left(-\frac{k_{0}}{\left(2 \log 1 / r_{0}\right)^{1 / 4}}\right)
\end{gather*}
$$

Let

$$
\begin{aligned}
A_{k} & =r_{k}^{2} a_{k}^{2} \sigma^{2}\left(a_{k}^{-1}\right)+\sigma^{2}\left(a_{k+1}^{-1}\right) \\
& =U^{-2+2 \alpha} r_{k}^{2 \alpha} L^{2}\left(r_{k} U\right)+U^{-2 \alpha} r_{k}^{2 \alpha} L^{2}\left(r_{k} / U\right)
\end{aligned}
$$

Let $\beta=2 \min \{1-\alpha, \alpha\}$ and fix an $\epsilon<\frac{1}{2} \beta$. Then by Lemma 2.4, we see that as r_{0} small enough

$$
U^{-\beta-\epsilon} \sigma^{2}\left(r_{k}\right) \leq A_{k} \leq U^{-\beta+\epsilon} \sigma^{2}\left(r_{k}\right)
$$

Notice that for r_{0} small enough we have

$$
\begin{aligned}
\psi\left(\sqrt{A_{k}}\right) & \geq \psi\left(U^{-(\beta+\epsilon) / 2} \sigma\left(r_{k}\right)\right) \\
& =\left(U^{-\beta / 2} \sigma\left(r_{k}\right)\right)^{1 / \alpha} f\left(U^{-\beta / 2} \sigma\left(r_{k}\right)\right) \\
& =U^{-\beta /(2 \alpha)} r_{k} L\left(r_{k}\right)^{1 / \alpha} f\left(U^{-\beta / 2} \sigma\left(r_{k}\right)\right) \\
& \geq K U^{-(\beta+\epsilon) /(2 \alpha)} r_{k}
\end{aligned}
$$

the last inequality follows from (2.5). It follows from Corollary 3.1 that for

$$
u \geq K \sigma\left(r_{k}\right) U^{-\frac{\beta-\epsilon}{2}}(\log U)^{1 / 2}
$$

we have

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r_{k}}\left|X(t)-X_{k}(t)\right| \geq u\right\} \leq \exp \left(-\frac{u^{2} U^{\beta-\epsilon}}{K \sigma^{2}\left(r_{k}\right)}\right) \tag{3.17}
\end{equation*}
$$

Hence, if we take

$$
U=\left(\log 1 / r_{0}\right)^{\frac{1}{\beta-\epsilon}},
$$

then as r_{0} small enough

$$
\sigma\left(r_{k}\right) U^{-\frac{\beta-\epsilon}{2}}(\log U)^{1 / 2} \leq \sigma\left(r_{k}\left(\log \log \frac{1}{r_{0}}\right)^{-\frac{1}{N}}\right)
$$

Hence by taking

$$
u=\frac{K_{1}}{2} \sigma\left(r_{k}\left(\log \log \frac{1}{r_{0}}\right)^{-\frac{1}{N}}\right)
$$

in (3.17), we obtain

$$
\begin{equation*}
P\left\{\sup _{|t| \leq r_{k}}\left|X(t)-X_{k}(t)\right| \geq \frac{K_{1}}{2} \sigma\left(r_{k}\left(\log \log \frac{1}{r_{0}}\right)^{-\frac{1}{N}}\right)\right\} \leq \exp \left(-\frac{u^{2} U^{\beta-\epsilon}}{K \sigma^{2}\left(r_{k}\right)}\right) . \tag{3.18}
\end{equation*}
$$

Combining (3.16) and (3.18) we have

$$
\begin{align*}
& \text { 9) } P\left\{\exists k \leq k_{0} \text { such that } \sup _{|t| \leq r_{k}}|X(t)| \leq 2 K_{1} \sigma\left(r_{k}\left(\log \log \frac{1}{r_{k}}\right)^{-1 / N}\right)\right\} \tag{3.19}\\
& \geq 1-\exp \left(-\frac{k_{0}}{2\left(\log 1 / r_{0}\right)^{1 / 4}}\right)-k_{0} \exp \left(-\frac{U^{\beta-\epsilon}}{K\left(\log \log 1 / r_{0}\right)^{(2 \alpha) / N+\epsilon}}\right)
\end{align*}
$$

We recall that

$$
\frac{\log \frac{1}{r_{0}}}{4 \log U} \leq k_{0} \leq \log \frac{1}{r_{0}}
$$

and hence for r_{0} small enough, (3.11) follows from (3.19).
Now we are in a position to prove the upper bound for $\phi-m\left(X\left([0,1]^{N}\right)\right)$.
Theorem 3.1 Let $\phi(s)=\psi(s)^{N} \log \log \frac{1}{s}$. Then with probability 1

$$
\phi-m\left(X\left([0,1]^{N}\right)\right)<\infty
$$

Proof. For $k \geq 1$, consider the set

$$
\begin{aligned}
& R_{k}=\left\{t \in[0,1]^{N}: \exists r \in\left[2^{-2 k}, 2^{-k}\right]\right. \text { such that } \\
&\left.\sup _{|s-t| \leq r}|X(s)-X(t)| \leq K \sigma\left(r\left(\log \log \frac{1}{r}\right)^{-1 / N}\right)\right\}
\end{aligned}
$$

By Proposition 3.1 we have

$$
P\left\{t \in R_{k}\right\} \geq 1-\exp (-\sqrt{k / 2})
$$

Denote the Lebesgue measure in \mathbf{R}^{N} by L_{N}. It follows from Fubini's theorem that $P\left(\Omega_{0}\right)=1$, where

$$
\Omega_{0}=\left\{\omega: L_{N}\left(R_{k}\right) \geq 1-\exp (-\sqrt{k / 4}) \text { infinitely often }\right\} .
$$

To see this, let $\Omega_{k}=\left\{\omega: L_{N}\left(R_{k}\right) \geq 1-\exp (-\sqrt{k / 4})\right\}$. Then

$$
\Omega_{0}=\limsup _{k \rightarrow \infty} \Omega_{k}
$$

We also define $A_{k}=\left\{(t, \omega): t \in R_{k}(\omega)\right\}$ and $Y_{k}(\omega)=L_{N}\left(\left\{t:(t, \omega) \in A_{k}\right\}\right)$. Then

$$
E\left(Y_{k}\right)=P \otimes L_{N}\left(A_{k}\right) \geq 1-\exp (-\sqrt{k / 2})
$$

For simplicity, write $a_{k}=1-\exp (-\sqrt{k / 4})$. It follows from Fubini's theorem that

$$
\begin{aligned}
P\left\{\Omega_{k}\right\} & =P\left\{Y_{k} \geq a_{k}\right\} \\
& =1-P\left\{Y_{k}<a_{k}\right\} \\
& =1-P\left\{1-Y_{k}>1-a_{k}\right\} \\
& \geq 1-\frac{E\left(1-Y_{k}\right)}{1-a_{k}} \\
& =1-\frac{1}{1-a_{k}}+\frac{E\left(Y_{k}\right)}{1-a_{k}} \\
& \geq 1-\frac{1}{1-a_{k}}+\frac{1-e^{-\sqrt{k / 2}}}{1-a_{k}} \\
& =1-\frac{e^{-\sqrt{k / 2}}}{1-a_{k}} \\
& \geq 1-\exp \left(-\sqrt{k}\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)\right)
\end{aligned}
$$

Therefore we have

$$
P\left(\limsup _{k \rightarrow \infty} \Omega_{k}\right) \geq \lim _{k t o \infty} P\left\{\Omega_{k}\right\}=1
$$

On the other hand, by Lemma 3.1 ii), there exists an event Ω_{1} such that $P\left(\Omega_{1}\right)=1$ and for all $\omega \in \Omega_{1}$, there exists $n_{1}=n_{1}(\omega)$ large enough such that for all $n \geq n_{1}$ and any dyadic cube C of order n in \mathbf{R}^{N}, we have

$$
\begin{equation*}
\sup _{s, t \in C}|X(t)-X(s)| \leq K \sigma\left(2^{-n}\right) \sqrt{n} \tag{3.20}
\end{equation*}
$$

Now fix an $\omega \in \Omega_{0} \cap \Omega_{1}$, we show that $\phi-m\left(X\left([0,1]^{N}\right)\right)<\infty$. Consider $k \geq 1$ such that

$$
L_{N}\left(R_{k}\right) \geq 1-\exp (-\sqrt{k / 4}) .
$$

For any $x \in R_{k}$ we can find n with $k \leq n \leq 2 k+k_{0}$ (where k_{0} depends on N only) such that

$$
\begin{equation*}
\sup _{s, t \in C_{n}(x)}|X(t)-X(s)| \leq K \sigma\left(2^{-n}\left(\log \log 2^{n}\right)^{-1 / N}\right), \tag{3.21}
\end{equation*}
$$

where $C_{n}(x)$ is the unique dyadic cube of order n containing x. Thus we have

$$
R_{k} \subseteq V=\cup_{n=k}^{2 k+k_{0}} V_{n}
$$

and each V_{n} is a union of dyadic cubes C_{n} of order n for which (3.21) holds. Clearly $X\left(C_{n}\right)$ can be covered by a ball of radius

$$
\rho_{n}=K \sigma\left(2^{-n}\left(\log \log 2^{n}\right)^{-1 / N}\right) .
$$

Since $\phi\left(2 \rho_{n}\right) \leq K 2^{-n N}=K L_{N}\left(C_{n}\right)$, we have

$$
\begin{gather*}
\sum_{n} \sum_{C \in V_{n}} \phi\left(2 \rho_{n}\right) \leq \sum_{n} \sum_{C \in V_{n}} K L_{N}\left(C_{n}\right) \tag{3.22}\\
=K L_{N}(V)<\infty .
\end{gather*}
$$

On the other hand, $[0,1]^{N} \backslash V$ is contained in a union of dyadic cubes of order $q=2 k+k_{0}$, none of which meets R_{k}. There can be at most

$$
2^{N q} L_{N}\left([0,1]^{N} \backslash V\right) \leq K 2^{N q} \exp (-\sqrt{k} / 4)
$$

such cubes. For each of these cubes, $X(C)$ is contained in a ball of radius $\rho=K \sigma\left(2^{-q}\right) \sqrt{q}$. Thus for any $\epsilon>0$

$$
\begin{equation*}
\sum \phi(2 \rho) \leq K 2^{N q} \exp (-\sqrt{k} / 4) 2^{-N q} q^{N /(2 \alpha)+\epsilon} \leq 1 \tag{3.23}
\end{equation*}
$$

for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows from (3.22) and (3.23).

4 Lower bound for $\phi-m\left(X\left([0,1]^{N}\right)\right)$

Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be a real-valued, centered Gaussian random field with stationary increments and a continuous covariance function $R(t, s)$ given by (1.1). We assume that $Y(0)=0$ and (1.6) holds. Let $X(t)\left(t \in \mathbf{R}^{N}\right)$ be the (N, d) Gaussian random field defined by (1.7). In this section, we prove that if $N<\alpha d$,, then

$$
\phi-m\left(X\left([0,1]^{N}\right)\right)>0 \quad \text { a.s. }
$$

For simplicity we assume $\delta_{0}=1$ and let $I=[0,1]^{N} \cap B(0,1)$ (otherwise we consider a smaller cube). For any $0<r<1$ and $y \in \mathbf{R}^{d}$. let

$$
T_{y}(r)=\int_{I} 1_{B(y, r)}(X(t)) d t
$$

be the sojourn time of $X(t)(t \in I)$ in the open ball $B(y, r)$. If $y=0$, we write $T(r)$ for $T_{0}(r)$.

Proposition 4.1 There exist $\delta_{2}>0$ and $b>0$ such that for any $0<r<\delta_{2}$

$$
\begin{equation*}
E\left(\exp \left(b \psi(r)^{-N} T(r)\right)\right) \leq K<\infty \tag{4.1}
\end{equation*}
$$

Proof. We first prove that there exists a constant $0<K<\infty$ such that for any $n \geq 1$

$$
\begin{equation*}
E(T(r))^{n} \leq K^{n} n!\psi(r)^{N n} \tag{4.2}
\end{equation*}
$$

For $n=1$, by (2.4) and (2.5) we have

$$
\begin{equation*}
E T(r)=\int_{I} P\{X(t) \in B(0, r)\} d t \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \int_{I} \min \left\{1, K\left(\frac{r}{\sigma(|t|)}\right)^{d}\right\} d t \\
& \leq K \int_{0}^{1} \min \left\{1, \frac{K r^{d}}{\sigma(\rho)^{d}}\right\} \rho^{N-1} d \rho \\
& \leq K \int_{0}^{K \psi(r)} \rho^{N-1} d \rho+K \int_{K \psi(r)}^{1} \frac{r^{d} \rho^{N-1}}{\sigma(\rho)^{d}} d \rho \\
& \leq K \psi(r)^{N}+K r^{d} \psi(r)^{N-\alpha d} \int_{1}^{\infty} \frac{1}{t^{1+\alpha d-N} L(\psi(r) t)^{d}} d t \\
& \leq K \psi(r)^{N}+K r^{d} \psi(r)^{N-\alpha d} / L(\psi(r))^{d} \\
& \leq K \psi(r)^{N} .
\end{aligned}
$$

For $n \geq 2$

$$
\begin{equation*}
E\left(T(r)^{n}\right)=\int_{I^{n}} P\left\{\left|X\left(t_{1}\right)\right|<r, \cdots,\left|X\left(t_{n}\right)\right|<r\right\} d t_{1} \cdots d t_{n} . \tag{4.4}
\end{equation*}
$$

Consider $t_{1}, \cdots, t_{n} \in I$ satisfying

$$
t_{j} \neq 0 \quad \text { for } \quad j=1, \cdots, n, \quad t_{j} \neq t_{k} \quad \text { for } \quad j \neq k .
$$

Let $\eta=\min \left\{\left|t_{n}\right|,\left|t_{n}-t_{i}\right|, i=1, \cdots, n-1\right\}$. Then by (1.6) we have

$$
\begin{equation*}
\operatorname{Var}\left(X\left(t_{n}\right) \mid X\left(t_{1}\right), \cdots, X\left(t_{n-1}\right)\right) \geq c_{2} \sigma^{2}(\eta) \tag{4.5}
\end{equation*}
$$

Since conditional distributions in Gaussian processes are still Gaussian, it follows from (4.5) that

$$
\begin{gather*}
P\left\{\left|X\left(t_{n}\right)\right|<r \mid X\left(t_{1}\right)=x_{1}, \cdots, X\left(t_{n-1}\right)=x_{n-1}\right\} \tag{4.6}\\
\leq K \int_{|u|<r} \frac{1}{\sigma(\eta)^{d}} \exp \left(-\frac{|u|^{2}}{K \sigma^{2}(\eta)}\right) d u .
\end{gather*}
$$

Similar to (4.3), we have

$$
\begin{align*}
& \int_{I} d t_{n} \int_{|u|<r} \frac{1}{\sigma(\eta)^{d}} \exp \left(-\frac{|u|^{2}}{K \sigma^{2}(\eta)}\right) d u \tag{4.7}\\
\leq & \int_{I} \min \left\{1, K\left(\frac{r}{\sigma(\eta)}\right)^{d}\right\} d t_{n} \\
\leq & K \int_{I} \sum_{i=0}^{n-1} \min \left\{1, K\left(\frac{r}{\sigma\left(\left|t_{n}-t_{i}\right|\right)^{2}}\right)^{d}\right\} d t_{n} \quad\left(t_{0}=0\right) \\
\leq & K n \int_{0}^{1} \min \left\{1, \frac{K r^{d}}{\sigma(\rho)^{d}}\right\} \rho^{N-1} d \rho \\
\leq & K n \psi(r)^{N} .
\end{align*}
$$

By (4.4), (4.6) and (4.7), we obtain

$$
\begin{aligned}
E(T(r))^{n} \leq & K \int_{I^{n-1}} P\left\{\left|X_{1}\left(t_{1}\right)\right|<r, \cdots,\left|X\left(t_{n-1}\right)\right|<r\right\} d t_{1} \cdots d t_{n-1} \\
& \cdot \int_{I} d t_{n} \int_{|u|<r} \frac{1}{\sigma(\eta)^{d}} \exp \left(-\frac{|u|^{2}}{K \sigma^{2}(\eta)}\right) d u \\
\leq & K n \psi(r)^{N} E(T(r))^{n-1}
\end{aligned}
$$

Hence, the inequality (4.2) follows from (4.3) and induction. Let $0<b<$ $1 / K$, then by (4.2) we have

$$
\operatorname{Eexp}\left(b \psi(r)^{-N} T(r)\right)=\sum_{n=0}^{\infty}(K b)^{n}<\infty .
$$

This proves (4.1).
Proposition 4.2 With probability 1

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \frac{T(r)}{\phi(r)} \leq \frac{1}{b} \tag{4.8}
\end{equation*}
$$

where $\phi(r)=\psi(r)^{N} \log \log 1 / r$.
Proof. For any $\epsilon>0$, it follows from (4.1) that

$$
\begin{equation*}
P\left\{T(r) \geq(1 / b+\epsilon) \psi(r)^{N} \log \log 1 / r\right\} \leq \frac{K}{(\log 1 / r)^{1+b \epsilon}} \tag{4.9}
\end{equation*}
$$

Take $r_{n}=\exp (-n / \log n)$, then by (4.9) we have

$$
P\left\{T\left(r_{n}\right) \geq(1 / b+\epsilon) \psi\left(r_{n}\right)^{N} \log \log 1 / r_{n}\right\} \leq \frac{K}{(n / \log n)^{1+b \epsilon}} .
$$

Hence by Borel-Cantelli lemma we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{T\left(r_{n}\right)}{\phi\left(r_{n}\right)} \leq \frac{1}{b}+\epsilon \tag{4.10}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi\left(r_{n}\right)}{\phi\left(r_{n+1}\right)}=1 \tag{4.11}
\end{equation*}
$$

Hence by (4.10) and (4.11) we have

$$
\limsup _{r \rightarrow 0} \frac{T(r)}{\phi(r)} \leq \frac{1}{b}+\epsilon
$$

Since $\epsilon>0$ is arbitrary, we obtain (4.8).
Since $X(t)\left(t \in \mathbf{R}^{N}\right)$ has stationary increments, we derive the following

Corollary 4.1 Fix $t_{0} \in I$, then with probability 1

$$
\limsup _{r \rightarrow 0} \frac{T_{X\left(t_{0}\right)}(r)}{\phi(r)} \leq \frac{1}{b} .
$$

Theorem 4.1 If $N<\alpha d$, then with probability 1

$$
\begin{equation*}
\phi-m\left(X\left([0,1]^{N}\right)\right)>0, \tag{4.12}
\end{equation*}
$$

where $\phi(r)=\psi(r)^{N} \log \log 1 / r$.

Proof. We define a random Borel measure μ on $X(I)$ as follows. For any Borel set $B \subseteq \mathbf{R}^{d}$, let

$$
\mu(B)=L_{N}\{t \in I, X(t) \in B\} .
$$

Then $\mu\left(\mathbf{R}^{d}\right)=\mu(X(I))=L_{N}(I)$. By Corollary 4.1, for each fixed $t_{0} \in I$, with probability 1

$$
\begin{align*}
& \limsup _{r \rightarrow 0} \frac{\mu\left(B\left(X\left(t_{0}\right), r\right)\right)}{\phi(r)} \tag{4.13}\\
& \leq \limsup _{r \rightarrow 0} \frac{T_{X\left(t_{0}\right)}(r)}{\phi(r)} \leq \frac{1}{b} .
\end{align*}
$$

Let $E(\omega)=\left\{X\left(t_{0}\right): t_{0} \in I\right.$ and (4.13) holds $\}$. Then $E(\omega) \subseteq X(I)$. A Fubini argument shows $\mu(E(\omega))=1$, a.s.. Hence by Lemma 2.1, we have

$$
\phi-m(E(\omega)) \geq K b .
$$

This proves (4.12).
Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately.
Example 4.1. Let $Y(t)\left(t \in \mathbf{R}^{N}\right)$ be a real-valued fractional Brownian motion of index $\alpha(0<\alpha<1)$ (see [10], Chapter 18). Its covariance function has the representation

$$
\begin{aligned}
R(s, t) & =\frac{1}{2}\left(|s|^{2 \alpha}+|t|^{2 \alpha}-|t-s|^{2 \alpha}\right) \\
& =c(\alpha) \int_{\mathbf{R}^{N}}\left(e^{i<t, \lambda>}-1\right)\left(e^{-i<s, \lambda>}-1\right) \frac{d \lambda}{|\lambda|^{N+2 \alpha}},
\end{aligned}
$$

where $c(\alpha)$ is a normalizing constant. Then (1.5) is verified and by a result of Pitt [17], (1.6) is also verified. In this case, Theorem 1.1 is proved by Goldman [9] for $\alpha=1 / 2$ and by Talagrand [22] for $0<\alpha<1$.

Example 4.2. Let $Z(t)\left(t \in \mathbf{R}^{N}\right)$ be a real-valued mean zero stationary random field with covariance function

$$
R(s, t)=\exp \left(-c|s-t|^{2 \alpha}\right) \quad \text { with } c>0 \text { and } 0<\alpha<1 .
$$

Then $Y(t)=Z(t)-Z(0)$ verifies the conditions (1.5) and (1.6). We can apply Theorem 1.1 to obtain the Hausdorff measure of $X\left([0,1]^{N}\right)$, where

$$
X(t)=\left(X_{1}(t), \cdots, X_{d}(t)\right)
$$

and X_{1}, \cdots, X_{d} are independent copies of Z. Other examples with absolutely continuous spectral measure can be found in Berman [2] p289, and Berman [4].

Example 4.3. Now we give an example with discrete spectral measure. Let $X_{n}(n \geq 0)$ and $Y_{n}(n \geq 0)$ be independent standard normal random variables and $a_{n}(n \geq 0)$ real numbers such that $\sum_{n} a_{n}^{2}<\infty$. Then for each t, the random series

$$
\begin{equation*}
Z(t)=\sum_{n=0}^{\infty} a_{n}\left(X_{n} \cos n t+Y_{n} \sin n t\right) \tag{4.14}
\end{equation*}
$$

converges with probability 1 (see [10]), and $Z(t)(t \in \mathbf{R})$ represents a stationary Gaussian process with mean 0 and covariance function

$$
R(s, t)=\sum_{n=0}^{\infty} a_{n}^{2} \cos n(t-s)
$$

By a result of Berman [4], there are many choices of $a_{n}(n \geq 0)$ such that the process $Y(t)=Z(t)-Z(0)$ satisfies the hypotheses of Theorem 1.1 with

$$
\sigma^{2}(s)=2 \sum_{n=0}^{\infty} a_{n}^{2}(1-\cos n s)
$$

Let $X(t)(t \in \mathbf{R})$ be the Gaussian process in \mathbf{R}^{d} associated with $Z(t)$ or $Y(t)(t \in \mathbf{R})$ by (1.7). If $1<\alpha d$, then

$$
0<\phi-m(X([0,1]))<\infty
$$

where $\phi(s)=\psi(s) \log \log \frac{1}{s}$ and ψ is the inverse function of σ. A special case of (4.14) is Example 3.5 in Monrad and Rootzén [15].

References

[1] R. J. Adler: The Geometry of Random Fields, Wiley, New York, 1981.
[2] S. M. Berman: Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277-299.
[3] S. M. Berman: Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973), 69-94.
[4] S. M. Berman: Gaussian processes with biconvex covariances, J. Multivar. Anal. 8 (1978), $30-44$.
[5] S. M. Berman: Spectral conditions for local nondeterminism, Stoch. Proc. Appl. 27 (1988), 73-84.
[6] J, Cuzick and J. Du Peez: Joint continuity of Gaussian local times, Ann. of Probab. 10 (1982), 810-817.
[7] W. Ehm: Sample function properties of multi-parameter stable processes, Z. Wahrsch. verw Gebiete 56 (1981), 195-228.
[8] K. J. Falconer: Fractal Geometry - Mathematical Foundations And Applications, Wiley \& Sons, 1990.
[9] A. Goldman: Mouvement Brownien à plusieurs paramètres: mesure de Hausdorff des trajectoires, Astésque 167, 1988.
[10] J-P, Kahane: Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985.
[11] M. Ledoux and M. Talagrand: Probabilities in Banach Spaces, SpringerVerlag, 1991.
[12] L, Loéve: Probability Theory I, Springer 1977.
[13] M. B. Marcus: Hölder conditions for Gaussian processes with stationary increments, Trans. Amer. Math. Soc. 134 (1968), 29-52.
[14] D. Monrad and L. D. Pitt: Local nondeterminism and Hausdorff dimension, Prog. in Probab. and Statist., Seminar on Stochastic Processes (1986), (E, Cinlar, K. L. Chung, R. K. Getoor, Editors) Birkhauser, 1987, pp163-189.
[15] D. Monrad and H. Rootzén: Small values of Gaussian processes and functional laws of the iterated logarithm, Prob. Th. Rel. Fields 101 (1995),173-192.
[16] S. Orey and W E. Pruitt: Sample functions of the N-parameter Wiener process, Ann. of Probab. 1 (1973), 138-163.
[17] L. D. Pitt: Local times for Gaussian vector fields, Indiana Univ. Math. J. 27 (1978), 309-330.
[18] C. A. Rogers and S. J. Taylor: Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1-31.
[19] E. Seneta: Regularly varying functions, Lecture Notes in Math. 508, Springer-Verlag, 1976.
[20] Qi-Man, Shao: A note on small ball probability of a Gaussian process with stationary increments, J. Theoret. Prob. 6 1993, 595-602.
[21] M. Talagrand: New Gaussian estimates for enlarged balls, Geometric and Functional Analysis 3 (1993), 502-520.
[22] M. Talagrand: Hausdorff measure of the trajectories of multiparameter fractional Brownian motion, Ann. of Probab. 23 (1995), 767-775.
[23] S. J. Taylor and C. Tricot: Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699.

Yimin Xiao
Department of Mathematics
Ohio State University

Columbus, Ohio 43210-1174
U. S. A.

[^0]: *appeared in Osaka J. Math. 33 (1996), 895-913.

