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For years people have sought ways to order multivariate statistical data. Statistical

depth functions are proving to be one of the most promising methods. They provide

a center-outward ordering of multivariate observations and allow one to define reason-

able analogues of univariate order statistics and rank statistics. The latter, in turn,

lead to generalizations of classical univariate L-statistics and R-statistics in the multi-

variate setting. Consequently, statistical depth functions play key roles in multivariate

nonparametric and robust statistical procedures (e. g. multivariate location estimation),

multivariate outlier detection, multivariate discriminant analysis and classification, test-

ing of multivariate symmetry, quality control and system reliability, etc.

In this dissertation, desirable properties that depth functions should possess are for-

mulated. A general definition of “statistical depth function” is introduced, which unifies

ad hoc definitions. Two existing well-known notions of depth function are examined and

it is found that one performs well but that the other lacks some favorable properties
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of “statistical depth functions” and consequently should not be treated in general as a

statistical depth function.

General structures for depth functions are also constructed and studied, and some new

attractive statistical depth functions are introduced. Applications of statistical depth

functions in multivariate nonparametric and robust statistical procedures are explored.

In particular, statistical depth function concepts are applied to introduce multivariate

quantile contours, multivariate location measures, and multivariate scatter measures, and

the resulting entities are investigated in detail.

Closely related to multivariate data ordering is the notion of multivariate symmetry.

In this dissertation, a new notion of symmetry, called “halfspace symmetry”, is intro-

duced. Characterizations of this notion of symmetry as well as of other existing notions

of symmetry, and interrelationships among these notions of symmetry, are developed.

It turns out that halfspace symmetry is a reasonable symmetry assumption on mul-

tivariate distributions for the discussion of nonparametric location inference and related

statistical procedures. This new notion of symmetry not only supports more general

approximations to actual distributions in modeling but also plays important roles in

discussion of statistical depth functions and multivariate location measures.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS v

ABSTRACT vi

1 INTRODUCTION 1

2 SYMMETRY OF MULTIVARIATE DISTRIBUTIONS 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Angular Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Halfspace Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 STATISTICAL DEPTH FUNCTIONS 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Statistical Depth Functions . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Some General Structures for Depth Functions . . . . . . . . . . . . . . . 33

3.3.1 Type-A depth functions . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Type-B depth functions . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Type C depth functions . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Type Ddepth functions . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



3.4 The Behavior of Sample Depth Functions . . . . . . . . . . . . . . . . . . 62

3.4.1 Uniform Consistency of the Sample Median Depth Functions . . . 62

3.4.2 The Behavior of the Sample Type D Depth Functions . . . . . . . 71

4 STATISTICAL DEPTH CONTOURS 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Statistical Depth Contours . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 The Behavior of Sample Depth Contours in General . . . . . . . . . . . . 85

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 DEPTH-BASED LOCATION MEASURES 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Properties for Multivariate Nonparametric Location Measures . . . . . . 96

5.2.1 Conditions of Bickel and Lehmann (1975) and Oja (1983) . . . . . 96

5.2.2 A further condition of interest . . . . . . . . . . . . . . . . . . . . 98

5.2.3 Relationships among the three conditions . . . . . . . . . . . . . . 99

5.3 Depth-Based Multivariate Nonparametric Location Measures . . . . . . . 102

5.4 Performance of multivariate nonparametric location measures . . . . . . 104

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 DEPTH-BASED SCATTER MEASURES 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Notions of “More Scattered” . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



6.3 Relationships Among Various Notions of “More Scattered” . . . . . . . . 118

6.4 Properties of Depth-Based Notion of “More Scattered” . . . . . . . . . . 123

6.5 Depth-Based Multivariate Nonparametric Scatter Measures . . . . . . . . 134

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

REFERENCES 137

x



Chapter 1

INTRODUCTION

No statisticians would doubt today that univariate order statistics have not only

theoretical interest but also practical significance. They have played key roles in many

areas such as nonparametric statistical procedures (e.g., robust location estimation),

outlier detection, discriminant analysis and classification, testing of symmetry, censored

sampling, quality control, etc. Univariate order statistics and rank statistics have been

extensively studied by many authors; see David (1981), Hettmansperger (1984), and

Arnold, Balakrishnan and Nagaraja (1993).

The extension to higher dimension of areas of application and methodological ad-

vantages, or general properties, of univariate order statistics, however, turns out to be

complicated because of the lack of any obvious and unambiguous means of fully or-

dering, or ranking multivariate observations. Despite this fact, statisticians have made

substantial efforts in defining various types of higher dimensional analogues of univari-

ate order concepts. For extensive treatment of the techniques for ordering multivariate

observations, see Barnett (1976) and Reiss (1989). Among existing methods of ordering

multivariate data, depth functions are proving to be one of the most promising.

The main idea of depth functions is to provide an ordering of all points from a “center”
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of a given multivariate distribution outward. Depth functions thus allow one to define

reasonable analogues of univariate order statistics and rank statistics, which, in turn, lead

to generalizations of classical univariate L-statistics and R-statistics in the multivariate

setting. Consequently, depth functions play key roles in multivariate extensions of the

statistical methods listed above.

Tukey (1974) put forward a “halfspace” depth function for points in Rd with respect

to given multivariate distributions. Liu (1988, 1990) introduced a “simplicial” depth

function in Rd. Recent studies of data depth and applications include Donoho and Gasko

(1992), Nolan (1992), Liu and Singh (1993), Massé and Theodorescu (1994), Rousseeuw

and Hubert (1996), Ruts ans Rousseeuw (1996), Rousseeuw and Struyf (1997), Yeh and

Singh (1997), Koshevoy and Mosler (1997), He and Wang (1997), Liu, Parelius and Singh

(1997).

Although ad hoc depth functions have attracted considerable attention in the litera-

ture, some basic issues about depth functions have not been addressed. For example, (i)

What desirable properties should depth functions have? (ii) Do existing depth functions

possess all of the properties? (iii) If not, can one build more attractive depth functions?

In this dissertation, desirable properties that depth functions should possess are for-

mulated. A general definition of “statistical depth function” is thus introduced, which

unifies ad hoc definitions. Some existing well-known depth functions are examined. It

is found, for example, that the halfspace depth function performs well but that the sim-

plicial depth function, on the other hand, lacks some favorable properties of “statistical
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depth functions” and consequently should not be treated in full generality as a statistical

depth function.

Some general structures for depth functions are also constructed and studied, and

some new attractive statistical depth functions are introduced. Applications of statis-

tical depth functions in multivariate nonparametric and robust statistical procedures

are explored. In particular, statistical depth function concepts are applied to introduce

multivariate quantile contours, multivariate location measures, and multivariate scatter

measures, and the resulting entities are investigated in detail.

The work here provides general foundations for center-outward ordering of multivari-

ate data based on depth functions and for development of analogues of univariate order

statistics and rank statistics in the multivariate setting.

Closely related to multivariate data ordering is the notion of multivariate symmetry.

Symmetry arises as major assumption on distributions in multivariate nonparametric

location inference. It is understood, however, that actual distributions are typically

not symmetric in any strict sense. Rather, symmetric distributions are used only as

approximations to actual distributions in modeling. From this point of view, the weaker

the assumption on symmetry, the more general the approximation that can be achieved.

Central symmetry, as the weakest among traditional notions of symmetry, is the most

typical assumption on distributions in multivariate nonparametric location inference. In

1990, Liu introduced a new notion of symmetry, called “angular symmetry”, which is

weaker than central symmetry. Since then, angular symmetry has received considerable
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attention; see Randles (1989), Liu (1990), Small (1990), Arcones, Chen and Giné (1994),

Chen (1995) and Liu, Parelius and Singh (1997). However, characterizations of angular

symmetry have not yet been studied formally.

Here, angular symmetry is examined and some useful characterizations are developed.

Further, a new and even weaker notion of symmetry, called “halfspace symmetry”, is

introduced and studied. It turns out that halfspace symmetry is a reasonable symmetry

assumption on multivariate distributions for the discussion of nonparametric location

inference and related statistical procedures. This new notion not only supports more

general approximations to actual distributions in modeling but also plays important

roles in discussion of statistical depth functions and multivariate location measures.

The remainder of this dissertation is organized as follows. Chapter 2 is devoted

to the discussion of multivariate symmetry. A new notion of symmetry, the halfspace

symmetry, is introduced. Characterizations of this notion as well as other existing notions

of symmetry, and interrelationships among these notions of symmetry, are developed.

Chapter 3 deals with statistical depth functions. Desirable properties of statistical

depth functions are presented, and a general definition of statistical depth function is

introduced. Two existing well-known notions of depth function, the halfspace depth

function and the simplicial depth function, are examined. It turns out that the halfspace

depth function performs well in general but that the simplicial depth function does not in

some cases. General structures for statistical depth functions are introduced and studied

in detail. The behavior of some sample depth functions is explored.
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Chapter 4 concerns multivariate depth contours or multivariate quantile contours.

Properties of depth contours, and the behavior of sample depth contours are thoroughly

studied. Results are obtained which improve and generalize previous results in the liter-

ature.

Chapter 5 treats depth-based multivariate nonparametric location measures. A desir-

able property for such measures, called the “center locating” condition, is introduced as

a new criterion. Depth-based multivariate medians, as multivariate nonparametric loca-

tion measures, are introduced. The performance of these and some other multivariate

nonparametric location measures is studied. It turns out that an existing well-known

measure fails to satisfy the “center locating” condition and, consequently, should be used

with caution in practice.

Chapter 6 discusses depth-based multivariate nonparametric scatter measures. Statis-

tical depth functions are employed to introduce a notion of “more scattered” for compar-

ison of one multivariate distribution with another. Relationships among this new notion

and other existing notions of “more scattered”, such as those of Bickel and Lehmann

(1976) in R, and of Eaton (1982) and Oja (1983) in Rd , are explored. It turns out that

this notion is a generalization of that of Bickel and Lehmann (1976) in R, and is more

general than those of Eaton (1982) and Oja (1983) in Rd under some typical conditions.

The properties of this depth-based notion are studied thoroughly. Finally, depth-based

multivariate nonparametric scatter measures are defined, and some examples are pre-

sented and studied.
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Chapter 2

SYMMETRY OF MULTIVARIATE DISTRIBUTIONS

2.1 Introduction

Symmetry of multivariate distributions plays so important a role in multivariate

statistical inference, and in our discussions in later chapters, that we devote this chapter

to its study.

Spherical symmetry, elliptical symmetry and central symmetry are the traditional

notions of symmetry for statistical distributions. For definitions of these, see Muirhead

(1982) and Eaton (1983). Spherical symmetry is the strongest notion among these three,

whereas central symmetry is the weakest. Various characterizations of these symmetries

have already been given in the literature. Other ad hoc notions of symmetry for statistical

distributions exist; see Fang, Kotz and Ng (1990) for detailed discussion.

Liu (1988) introduced a new notion of symmetry, called angular symmetry, which

is weaker than central symmetry. Since then it has received considerable attention;

see Randles (1989), Liu (1990), Small (1990), Arcones, Chen and Giné (1994), Chen

(1995) and Liu, Parelius and Singh (1997). However, formal characterizations of angular

symmetry have not yet been studied carefully.

In this chapter, angular symmetry is examined and characterizations are developed.
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Further, a new and even weaker notion of symmetry, called “halfspace symmetry”, is in-

troduced and studied. It turns out that halfspace symmetry is a reasonable assumption

on multivariate distributions for the discussion of nonparametric multivariate location

inference, including “multivariate medians”, and of other multivariate statistical proce-

dures. Since halfspace symmetry is the weakest among the above notions of symmetry,

it provides the broadest foundation for approximating actual distributions, which are

typically not symmetric in any strict sense, by “symmetric” ones.

2.2 Angular Symmetry

We begin with the notion of central symmetry of multivariate distributions.

Definition 2.2.1 A random vector X ∈ Rd is centrally symmetric about a point θ ∈ Rd

if X − θ and θ − X are identically distributed.

It is often convenient to denote “X has the same distribution as Y ” by the notation

“X
d
= Y ”. Note that

d
= is an equivalence relation.

We first give characterizations of central symmetry of multivariate distributions.

These will be used in later discussion of this section.

Theorem 2.2.1 The following statements are equivalent:

(1) X ∈ Rd is centrally symmetric about a point θ ∈ Rd;

(2) u′(X − θ)
d
= u′(θ − X), for any unit vector u in Rd;

(3) P (X − θ ∈ H) = P (X − θ ∈ −H), for any closed halfspace H ∈ Rd.
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PROOF: The equivalence of (2) and (3) is straightforward. The implication (1) ⇒ (2)

is immediate. Thus we need only show that (2) ⇒ (1). Consider, for t ∈ Rd, the

characteristic functions ψX−θ(t) and ψθ−X(t) of X − θ and θ−X. By (2) we deduce that

ψX−θ(t) = E[eit′(X−θ)] = E[eit′(θ−X)] = ψθ−X(t). (2.1)

Thus, X − θ
d
= θ − X. 2

Now we present the notion of angular symmetry of multivariate distributions, which

was introduced by Liu (1988, 1990).

Definition 2.2.2 A random vector X ∈ Rd is angularly symmetric about a point

θ ∈ Rd if and only if (X − θ)/‖X − θ‖ and (θ −X)/‖X − θ‖ are identically distributed,

where ‖ · ‖ stands for Euclidean norm.

Remarks 2.2.1 (1) It is easy to see that central symmetry implies angular symmetry,

because X
d
= Y implies f(X)

d
= f(Y ) for any measurable function f . Angular symmetry,

however, does not necessarily imply central symmetry.

(2) The point (or the center) of angular symmetry of a random vector X ∈ Rd, if it

exists, is unique unless the distribution in Rd has all its probability mass on a line and

its probability distribution on that line has more than one median. See Liu (1988, 1990)

for proof, which is straightforward. We will assume in subsequent discussion that the

point of angular symmetry (if any) of a multivariate distribution is unique unless stated

otherwise. 2
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Definition 2.2.3 A set of N vectors in Euclidean Rd is said to be in general position

if every d-element subset is linearly independent, and a set of N hyperplanes through

the origin is said to be in general position if the corresponding set of normal vectors is

in general position. The

2
d−1∑
i=0

(
N − 1

i

)
(2.2)

regions generated by N hyperplanes in general position through the origin are said to be

(proper, nondegenerate) convex cones with the origin as vertices.

We now present characterizations of angular symmetry of multivariate distributions.

Theorem 2.2.2 The following statements are equivalent:

(1) X ∈ Rd is angularly symmetric about a point θ ∈ Rd;

(2) P (X − θ ∈ C) = P (X − θ ∈ −C), for any circular cone C ∈ Rd with the origin as

vertex;

(3) P (X − θ ∈ C) = P (X − θ ∈ −C), for any convex cone C ∈ Rd with the origin as

vertex;

(4) P (X − θ ∈ H) = P (X − θ ∈ −H), for any closed halfspace H with the origin on the

boundary;

(5) P (u′(X − θ) ≥ 0) = P (u′(θ − X) ≥ 0), for any unit vector u ∈ Rd.

PROOF: Assume, without loss of generality, that θ = 0 and define Y = X
‖X‖ for X 6= 0

and Y = 0 for X = 0. Then, by definition, X is angularly symmetric about the origin iff

Y is centrally symmetric about the origin.
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(i) (1) ⇔ (2). As just noted, X is angularly symmetric about the origin iff Y is

centrally symmetric about the origin. By Theorem 2.2.1, Y is centrally symmetric iff

P (Y ∈ H) = P (Y ∈ −H) for any closed halfspace H in Rd. Since Y is distributed on

the unit hypersphere Sd−1 and 0 in Rd, P (Y ∈ H) = P (Y ∈ −H) iff

P (Y ∈ H ∩ Sd−1) = P (Y ∈ −H ∩ Sd−1),

for any closed halfspace H in Rd. But P (Y ∈ H ∩ Sd−1) = P (Y ∈ −H ∩ Sd−1) for any

closed halfspace H in Rd iff P (X ∈ C) = P (X ∈ −C) for any closed circular cone C

with the origin as vertex, since Y ∈ H ∩ Sd−1 for some closed halfspace H iff X ∈ C for

a corresponding closed circular cone C with the origin as the vertex. Hence (1) ⇔ (2).

(ii) (1) ⇔ (3). Again we use the equivalence that X is angularly symmetric about

the origin iff Y is centrally symmetric about the origin. Now Y is centrally symmetric

about the origin iff P (Y ∈ B) = P (Y ∈ −B), for any Borel set B in Rd. Since Y is

distributed on the unit hypersphere Sd−1 and 0, Y is centrally symmetric about the origin

iff P (Y ∈ B∩Sd−1) = P (Y ∈ −B∩Sd−1) for any Borel set B in Rd. Since X ∈ C for some

convex cone C with the origin as vertex iff Y ∈ B ∩Sd−1 for a corresponding1z Borel set

B in Rd, Y centrally symmetric about the origin implies that P (X ∈ C) = P (X ∈ −C)

for any closed convex cone C with the origin as vertex, proving that (1) ⇒ (3).

To prove (3) ⇒ (1), note that if P (X ∈ C) = P (X ∈ −C) for any closed convex cone

C with the origin as vertex, then

P (Y ∈ C ∩ Sd−1) = P (Y ∈ −C ∩ Sd−1).
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Since any ellipsoid can be approximated by convex hulls, and since P (An) ↑ P (A) if

An ↑ A, we have that if

P (Y ∈ C ∩ Sd−1) = P (Y ∈ −C ∩ Sd−1)

for any closed convex cone C with the origin as the vertex, then P (Y ∈ H ∩ Sd−1) =

P (Y ∈ −H ∩ Sd−1) for any closed halfspace H ∈ Rd, that is, Y is centrally symmetric

about the origin, by Theorem 2.2.1. Hence (3) ⇒ (1).

(iii) (1) ⇔ (4). Now, from the proof of (1) ⇔ (2), we have that X is angularly symmetric

about the origin iff

P (Y ∈ H ∩ Sd−1) = P (Y ∈ −H ∩ Sd−1),

for any closed halfspace H ∈ Rd. Since P (X ∈ H) = P (−X ∈ H) iff

P (Y ∈ H ∩ Sd−1) = P (Y ∈ −H ∩ Sd−1),

for any closed halfspace H with the origin on the boundary, (1) ⇒ (4).

To prove (4) ⇒ (1), take d = 2 for the sake of simplicity. First we show that if

P (X ∈ H) = P (X ∈ −H) for any closed halfspace H with the origin on the boundary,

then

P (X ∈ H1 ∩ H2) = P (X ∈ −H1 ∩ −H2), (2.3)

for any continuous or discrete random vector X ∈ Rd and any closed halfspaces H1 and

H2 with the origin on their boundaries.

(a) Suppose that X is continuous. In this case we have that

P (X ∈ H1 ∩ H2) + P (X ∈ (H1 ∩ −H2))

11



= P (X ∈ −H1 ∩ −H2) + P (X ∈ (H1 ∩ −H2))

for any closed halfspaces H1 and H2 with the origin on the boundaries. Thus (2.3) holds.

(b) Suppose that X is discrete. Assume (2.3) is violated. Then there exist closed

halfspaces H1 and H2 with the origin on their boundaries and ε > 0 such that

P (X ∈ H1 ∩ H2) > P (X ∈ −H1 ∩ −H2) + ε. (2.4)

Now it is not very difficult to see that there are closed halfspaces H3 and H4 through

the origin such that P (X ∈ H3) = P (X ∈ H4), and

P (X ∈ H3) ≥ P (X ∈ H1 ∩ H2) + P (X ∈ (H1 ∩ −H2)o) − ε

2
,

P (X ∈ H4) ≤ P (∈ −H1 ∩ −H2) + P (X ∈ (H1 ∩ −H2)o) +
ε

2
,

where Ao denotes the interior of set A ⊂ Rd. The above two inequalities imply that

P (X ∈ H1 ∩ H2) < P (X ∈ −H1 ∩ −H2) + ε, contradicting (2.4). Hence (2.3) holds.

Now by (2.3), we have that

P (Y ∈ (H1 ∩ H2) ∩ S1) = P (Y ∈ (−H1 ∩ −H2) ∩ S1),

for any closed halfspace H1 and H2 with the origin on the boundary. Thus P (Y ∈ C) =

P (Y ∈ −C), for any closed arc C on the unit circle. But the set of all closed arcs on the

unit circle forms a π-system (see Billingsley (1986) p. 34 for the definition of π-system)

and generates all Borel sets on the unit circle. By the unique extension theorem of π-

system (Theorem 3.3 of Billingsley (1986)), Y
d
= −Y on the unit circle. Hence X is

angularly symmetric about the origin, proving that (4) ⇒ (1).

12



(iv) (4) ⇔ (5). This is straightforward. 2

For any random variable Y ∈ R, define a median of its distribution to be a number

c such that

P (Y ≤ c) ≥ 1

2
, P (Y ≥ c) ≥ 1

2
.

Therefore, based on the Theorem 2.2.2, we obtain

Corollary 2.2.1 Suppose that the random vector X ∈ Rd is angularly symmetric about

a point θ ∈ Rd. Then

(1) P (X ∈ H + θ) = P (X ∈ −H + θ) ≥ 1
2

for any closed halfspace H with the origin on

the boundary, and furthermore, if X is continuous, then P (X ∈ H + θ) = 1
2
;

(2) Med(u′X) = u′θ for any unit vector u ∈ Rd.

PROOF: (1) By Theorem 2.2.2, we immediately have that P (X ∈ H + θ) = P (X ∈

−H + θ) for any closed halfspace H with the origin on the boundary. Since P (X ∈

H + θ) + P (X ∈ −H + θ) ≥ 1, it follows that P (X ∈ H + θ) = P (X ∈ −H + θ) ≥ 1
2

and

P (X ∈ H + θ) = 1
2

if X is continuous.

(2) By Theorem 2.2.2, we obtain that P (u′(X − θ) ≥ 0) = P (u′(θ − X) ≥ 0) for any

unit vector u ∈ Rd, which immediately implies that Med(u′X) = u′θ for any unit vector

u ∈ Rd.

The proof is complete. 2

Remark 2.2.1 The converse of (2) in Corollary 2.2.1 does not hold. That is, the

condition that Med(u′X) = u′θ for any unit vector u ∈ Rd does not necessarily imply

13



that X is angularly symmetric about θ.

Counterexamples: (1) Let P (X = 0) = 1
2
, P (X = −1) = 1

3
, and P (X = 1) = 1

6
.

Then Med(X) = 0. By Theorem 2.2.2, however, it is easy to see that X is not angularly

symmetric about 0.

(2) Let P (X = (0, 0)) = 2
5
, P (X = (1,±1)) = 1

5
and P (X = (−1,±1)) = 1

10
. Then,

it is not difficult to verify that Med(u′X) = u′(0, 0) for any u ∈ R2. However, by

Theorem 2.2.2, it is easy to see that X is not angularly symmetric about (0,0). 2

In the discrete case, we have a simple characterization of angular symmetry, which

could be very useful in practice for the purpose of checking whether a given multivariate

distribution is angularly symmetric.

Theorem 2.2.3 Suppose X ∈ Rd is discrete. Then the following statements are equiv-

alent:

(1) X ∈ Rd is angularly symmetric about a point θ ∈ Rd;

(2) P (X − θ ∈ L) = P (X − θ ∈ −L) for any ray L passing through the origin.

PROOF: (1) ⇒ (2). By Theorem 2.2.2, we have that P (X−θ ∈ C) = P (X−θ ∈ −C)

for any circular cone C with the origin as vertex. Consider the limit situation as the cone

shrinks to a ray; we thus obtain (2). Hence (1) ⇒ (2).

To show that (2) ⇒ (1), note that (2) implies that P (X − θ ∈ C) = P (X − θ ∈ −C)

for any circular cone C with the origin as vertex, since

P (X − θ ∈ C) =
∑

i

P (X ∈ li + θ)

14



and

P (X − θ ∈ −C) =
∑

i

P (X ∈ −li + θ)

for some rays {li} (at most countably many) passing through the origin. By (2) of

Theorem 2.2.2, we obtain that (2) ⇒ (1). 2

2.3 Halfspace Symmetry

Remark 2.2.1 indicates that a point θ, which is the median of the projected distribution

of an underlying distribution in any direction (i.e., Med(u′X) = u′θ for a random vector

X and any unit vector u in Rd), is not necessarily the point of angular symmetry of the

underlying distribution. On the other hand, it is clear that such a point θ is indeed a

point of symmetry relative to an extended notion of symmetry defined as follows.

Definition 2.3.1 A random vector X ∈ Rd is halfspace symmetric about a point θ ∈ Rd

if and only if P (X ∈ Hθ) ≥ 1
2

for any closed halfspace Hθ with θ on the boundary.

Remarks 2.3.1 (1) By Corollary 2.2.1, it is easy to see that angular symmetry implies

halfspace symmetry. However, the converse does not hold. See the counterexamples in

Remark 2.2.1 and also the following.

Counterexample Let P (X = (0.2, 0.1)) = 2
5
, P (X = (1,±1)) = 1

10
and P (X =

(−1,±1)) = 1
5
. Then it is easy to check that X is halfspace symmetric about the point

(0.2, 0.1) ∈ R2, but X is not angularly symmetric about any point in R2.

(2) There are multivariate distributions which are not halfspace symmetric about any
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point in Rd. For example, let P (X = (±1, 0)) = 1
3

and P (X = (0, 1)) = 1
3
. Then it is

easy to see that X is not halfspace symmetric about any point in R2. 2

The uniqueness result about the point of angular symmetry of multivariate distribu-

tions also holds true for halfspace symmetry.

Theorem 2.3.1 The point (or the center) of halfspace symmetry θ of the distribution

of a random vector X ∈ Rd, if it exists, is unique unless the distribution of X ∈ Rd has

all its probability mass on a line and its probability distribution on that line has more

than one median.

PROOF: Suppose that θ1 and θ2 are two points of symmetry of the halfspace symmetric

distribution of a random vector X. Let Hθ1 be an arbitrary closed halfspace with θ1 on

the boundary and containing θ2, and Hθ2 be the closed halfspace with θ2 on the boundary

and containing θ1 such that its boundary is parallel to the boundary of Hθ1 . Then, by

the definition of halfspace symmetry, P (X ∈ (Hθ1 ∩ Hθ2)
o) = 0. Thus P (X ∈ Rd) =

P (X ∈ Lθ1θ2), where Lθ1θ2 is the line in Rd passing through θ1 and θ2. Clearly, θ1 and

θ2 are two medians of the distribution of X on Lθ1θ2 . The proof is complete. 2

We will assume in the subsequent discussion that the point of halfspace symmetry of

multivariate distributions is unique (if any).

Denote a closed halfspace with θ on its boundary by Hθ, and its reflection about θ

by H̃θ. Similarly, denote a ray stemming from θ by Lθ, and its reflection about θ by L̃θ.

Now we present several characterizations of halfspace symmetry.
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Theorem 2.3.2 The following statements are equivalent:

(1) X ∈ Rd is halfspace symmetric about a point θ ∈ Rd;

(2) Med(u′X) = u′θ for any unit vector u ∈ Rd;

(3) P (u′(X − θ) ≥ 0) ≥ 1
2

for any unit vector u ∈ Rd;

(4) P (X ∈ (H1
θ ∩H2

θ )o)+P (X ∈ π1∩π2) ≥ P (X ∈ (H̃1
θ ∩H̃2

θ )o) for any closed halfspace

H i
θ ⊂ Rd with θ on its boundary πi (i = 1, 2);

(5) P (X ∈ (H1
θ ∩H2

θ )) + P (X ∈ π1 ∩ π2) ≥ P (X ∈ (H̃1
θ ∩ H̃2

θ )) for any closed halfspace

H i
θ ⊂ Rd with θ ∈ Rd on its boundary πi (i = 1, 2).

PROOF: (i) (1) ⇔ (3). X is halfspace symmetric about θ iff P (X ∈ H + θ) ≥ 1
2

for

any closed halfspace H ∈ Rd with the origin on its boundary. But X ∈ (H + θ) for

some closed halfspace H ∈ Rd with the origin on its boundary iff u′(X − θ) ≥ 0 for a

corresponding unit vector u ∈ Rd which is a normal vector of H. Thus X is halfspace

symmetric about θ iff P (u′(X − θ) ≥ 0) ≥ 1
2

for any unit vector u ∈ Rd. Thus (1) ⇔ (3).

(ii) (2) ⇔ (3). This is trivial.

(iii) (1) ⇔ (4). Suppose that X is halfspace symmetric about θ ∈ Rd. Let H i
θ be a

closed halfspace with θ on its boundary πi (i = 1, 2). It is not difficult to see that there

are closed halfspaces H3
θ and H4

θ such that

(H1
θ ∩ π2) ∪ (H̃2

θ ∩ π1) ⊂ H i
θ for (i = 3, 4),

and for any ε > 0

P (X ∈ H4
θ ) ≤ P (X ∈ (H1

θ ∩ H2
θ )o) + P (X ∈ H1

θ ∩ H̃2
θ ) +

ε

2
,
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P (X ∈ (H3
θ )o) ≥ P (X ∈ (H̃1

θ ∩ H̃2
θ )o) + P (X ∈ H1

θ ∩ H̃2
θ )

− P (X ∈ π1 ∩ π2) − ε

2
.

Since X is halfspace symmetric about θ ∈ Rd, we have

P (X ∈ (H3
θ )o) ≤ 1

2
≤ P (X ∈ H4

θ ).

Thus

P (X ∈ (H1
θ ∩ H2

θ )o) + P (X ∈ π1 ∩ π2) ≥ P (X ∈ (H̃1
θ ∩ H̃2

θ )o) − ε,

for any ε > 0. Since ε is arbitrary, (1) ⇒ (4) now follows.

To show (4) ⇒ (1), take H1
θ = H2

θ . Then

P (X ∈ (H1
θ )o) + P (X ∈ ∂(H1

θ )) ≥ P (X ∈ (H̃1
θ )o).

Thus, P (X ∈ H1
θ ) ≥ 1

2
for any closed halfspace H1

θ with θ ∈ Rd on its boundary, proving

that X is halfspace symmetric about θ.

(iv) (1) ⇔ (5). Similar to the proof of (1) ⇔ (4). 2

Remarks 2.3.2 (1) Statement (2) of Theorem 2.3.2 indicates that it is reasonable to

treat the point of halfspace symmetry as the “center” or the “multidimensional median”

of any halfspace symmetric multivariate distribution.

(2) Thus halfspace symmetry, as a broader relaxation of the normality assumption on

multivariate distributions than central symmetry and angular symmetry, is a reason-

able symmetry assumption on multivariate distributions in nonparametric multivariate

location inference and related statistical procedures.

18



(3) It is then desirable that any notion of multidimensional median resulting from a

notion of multidimensional symmetry should agree with the point of halfspace symmetry

when the underlying distributions are halfspace symmetric. 2

When d ≤ 2, Theorem 2.3.2 yields the following result, which could be useful in

practice.

Corollary 2.3.1 For d ≤ 2, X ∈ Rd is halfspace symmetric about a unique point

θ ∈ Rd if and only if

P (X ∈ H1
θ ∩ H2

θ ) + P (X = θ) ≥ P (X ∈ H̃1
θ ∩ H̃2

θ ),

for any closed halfspaces H1
θ and H2

θ in Rd with θ on their boundaries.

PROOF: This follows in straightforward fashion from (5) of Theorem 2.3.2, because

π1 ∩ π2 in Theorem 2.3.2 now equals θ. 2

When X is discrete, the following necessary conditions could be utilized to check

halfspace symmetry of the underlying distribution.

Theorem 2.3.3 Suppose that X ∈ Rd is discrete and halfspace symmetric about a

unique point θ ∈ Rd. Then

(1) P (X ∈ Ho
θ ) + P (X = θ) ≥ P

(
X ∈ (H̃θ)

o
)

for any closed halfspace Hθ ⊂ Rd with θ

on the boundary;

(2) P (X ∈ Lθ) + P (X = θ) ≥ P (X ∈ L̃θ) for any ray Lθ ⊂ Rd.

PROOF: The proof of the case d = 1 is trivial. Now we consider the case d ≥ 2.

(1) Let Hθ ⊂ Rd be a closed halfspace with θ ∈ Rd on its boundary (hyperplane π).

19



Since X is discrete, for any small ε > 0, it is not difficult to see that there is a closed

halfspace H1
θ ⊂ Rd with a boundary hyperplane π1 such that P (X ∈ π∩π1) = P (X = θ)

and

P (X ∈ H1
θ ) ≤ P (X ∈ Ho

θ ) + P (X = θ) + P (X ∈ (H1
θ ∩ π − {θ})) + ε,

and a closed halfspace H2
θ ⊂ Rd with a boundary hyperplane π2 such that π∩π2 = π∩π1

and

P (X ∈ (H2
θ )o) ≥ P (X ∈ (H̃θ)

o) + P (X ∈ (H1
θ ∩ π − {θ})) − ε.

Since X is halfspace symmetric about θ, P (X ∈ H1
θ ) ≥ 1

2
and P (X ∈ (H2

θ )o) ≤ 1
2
, thus

P (X ∈ Ho
θ ) + P (X = θ) ≥ P (X ∈ (H̃θ)

o) − 2ε.

Since the above inequality holds true for any sufficiently small ε, therefore

P (X ∈ Ho
θ ) + P (X = θ) ≥ P (X ∈ (H̃θ)

o),

for any closed halfspace Hθ ⊂ Rd with θ on the boundary.

(2) Let Lθ ⊂ Rd be a ray stemming from θ with L̃θ as its reflection about θ. Since

X is discrete, it is not difficult to see that there is a closed halfspace Hθ ⊂ Rd with a

boundary (hyperplane π) containing the ray Lθ such that

P (X ∈ π) = P (X ∈ Lθ).

For any ε > 0, it is not difficult to see that there is a closed halfspace H1
θ ⊂ Rd containing

Lθ and with θ on its boundary such that

P (X ∈ H1
θ ) ≤ P (X ∈ Lθ) + P (X ∈ Ho

θ ) + ε,

20



and a closed halfspace H2
θ ⊂ Rd containing L̃θ and with θ on its boundary such that

P (X ∈ (H2
θ )o) ≥ P (X ∈ L̃θ) − P (X = θ) + P (X ∈ Ho

θ ) − ε.

Since X is halfspace symmetric about θ, P (X ∈ H1
θ ) ≥ 1

2
and P (X ∈ (H2

θ )o) ≤ 1
2
, and

thus

P (X ∈ Lθ) + P (X = θ) ≥ P (X ∈ L̃θ) − 2ε.

Hence

P (X ∈ Lθ) + P (X = θ) ≥ P (X ∈ L̃θ),

for any ray Lθ ⊂ Rd stemming from θ. 2

Remarks 2.3.1 have shown that angular symmetry implies halfspace symmetry, and

that the converse does not hold. A natural question now is: Under what conditions

does halfspace symmetry imply angular symmetry? The answer is given in the following

result.

Theorem 2.3.4 Suppose a random vector X is halfspace symmetric about a point

θ ∈ Rd, and either

(1) X is continuous, or

(2) X is discrete and P (X = θ) = 0.

Then X is angularly symmetric about θ.

PROOF: (1) By Definition 2.3.1 and the continuity of X, we have that

P (X ∈ H + θ) = P (X ∈ −H + θ) =
1

2
,
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for any closed halfspace H with the origin on the boundary. Angular symmetry of X

now follows from Theorem 2.2.2.

(2) Suppose that X is not angularly symmetric about the point θ ∈ Rd. By The-

orem 2.2.3, there is a line L through θ with rays L+
θ and L−

θ on either side of θ,

such that P (X ∈ L+
θ ) 6= P (X ∈ L−

θ ). Assume, without loss of generality, that

P (X ∈ L+
θ ) > P (X ∈ L−

θ ) + ε for some ε > 0. Since X is discrete, it is clear that

there is a closed halfspace Hθ containing L such that P (X ∈ ∂(Hθ)) = P (X ∈ L). Also,

there exists H+
θ ⊂ Rd, a closed halfspace which just includes L+

θ and excludes L−
θ , such

that P (X ∈ ∂(H+
θ )) = 0 and

P (X ∈ H+
θ ) > P (X ∈ (Hθ)

o) + P (X ∈ L+
θ ) − ε

2
.

Similarly, there exists H−
θ ⊂ Rd, a closed halfspace which just includes L−

θ and excludes

L+
θ , such that P (X ∈ ∂(H−

θ )) = 0 and

P (X ∈ H−
θ ) < P (X ∈ (Hθ)

o) + P (X ∈ L−
θ ) +

ε

2
.

By Definition 2.3.1 and the properties of H+
θ and H−

θ ,

P (X ∈ H+
θ ) = P (X ∈ H−

θ ) =
1

2
.

Hence

P (X ∈ (Hθ)
o) + P (X ∈ L+

θ ) − ε

2
<

1

2

< P (X ∈ (Hθ)
o) + P (X ∈ L−

θ ) +
ε

2
,
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which contradicts the assumption about P (X ∈ L+
θ ) and P (X ∈ L−

θ ). Thus P (X ∈

L+
θ ) = P (X ∈ L−

θ ) for any line L through θ with rays L+
θ and L−

θ on either side of θ.

Angular symmetry of X about θ now follows from Theorem 2.2.3. 2

Remark 2.3.1 Halfspace symmetry and angular symmetry thus coincide under some

typical conditions. What, then, is the point of introducing the new notion, halfspace

symmetry? The relevance of halfspace symmetry is based on the following points:

(1) Actual distributions are invariably discrete.

(2) In the discrete case, the center θ typically can be anticipated to carry some probability

mass.

(3) Actual distributions typically are not symmetric in any sense. Halfspace symmetry,

as the weakest among existing notions of symmetry, provides a more general foundation

for approximating actual distributions by symmetric ones.

(4) Halfspace symmetry is useful in the performance evaluation of depth functionals and

multivariate location measures, which will be introduced and discussed in later chapters.

2

2.4 Summary

In this chapter, a new notion of multivariate symmetry, halfspace symmetry, has been

introduced. Characterizations of it as well as other existing notions of multivariate sym-

metry, and interrelationships among these notions have been studied. Halfspace symme-

try not only supports more general approximations to actual distributions in modeling,
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but also plays important roles in discussions of later chapters.
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Chapter 3

STATISTICAL DEPTH FUNCTIONS

3.1 Introduction

By assigning to each point x ∈ Rd a value based on a suitable unimodal function

constructed with respect to a given underlying dataset, one can obtain a center-outward

ordering of all points in Rd. The value assigned to x by this “depth function” is called the

“depth” of x with respect to the underlying dataset. Such a depth function allows one

to define reasonable analogues of univariate order statistics and rank statistics, which

then may lead to generalizations of classical univariate L-statistics and R-statistics in

the multivariate setting. (See Serfling (1980) for discussion of classical L-statistics and

R-statistics.) Consequently, depth functions can play key roles in multivariate nonpara-

metric robust statistical procedures, multivariate outlier detection, testing of symmetry

for multivariate distributions, etc. .

Tukey (1974, 1977) introduced the first notion of statistical depth of a point in a

multivariate dataset, as follows. In a one-dimensional dataset X = {X1, X2, . . . , Xn},

the depth of a point x is the minimum number of data points lying on either side of x.

For a d-dimensional dataset, the depth of a point x ∈ Rd is the smallest depth of x in
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any one-dimensional projection of the dataset. That is,

HDn(x; Pn) = inf
‖u‖=1

n∑
i=1

I{uT Xi ≤ uT x}

= inf
H
{Pn(H) | H is a closed halfspace

with x on the boundary}, (3.1)

where “ I ” is an indicator function, u is any unit vector in Rd, Pn is the empirical

measure of the underlying probability measure P , defined as Pn(H) ≡ 1
n

∑n
i=1 I{Xi ∈ H}

and “HD” stands for “halfspace depth”.

The population version of the halfspace depth (HD), with respect to a underlying

probability measure P on Rd, can be defined as follows:

HD(x; P ) = inf
H
{P (H) | H is a closed halfspace

with x on the boundary}, x ∈ Rd. (3.2)

Liu (1988, 1990) introduced a “simplicial” depth (SD) function on Rd with respect

to a underlying probability measure P . Namely,

SD(x; P ) = P (x ∈ S[X1, . . . , Xd+1]) (3.3)

where X1, . . . , Xd+1 is a random sample from P and S[X1, . . . , Xd+1] is the d-dimensional

simplex with vertices X1, . . . , Xd+1. The sample version of SD(x; P ) is defined as follows.

SDn(x; P ) =
1(
n

d + 1

) ∑
1≤i1<...<id+1≤n

I(x ∈ S[Xi1 , . . . , Xid+1
]) (3.4)
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where X1, . . . , Xn is a random sample from P . Note that, for each fixed x, SDn(x; P ) is

a U-statistic.

In this chapter, properties which a depth function should possess are first explored

and then a general definition of statistical depth function is presented, which unifies

various ad hoc definitions of data depth. Surprisingly, the simplicial depth of Liu (1988,

1990, 1993), which has received considerable study and attention in recent years, fails

to satisfy some basic properties desired of statistical depth functions. A special type of

depth function, called E-depth function, is introduced and examples are given. Depth

“contours” and multivariate “quantile contours” are also defined and their properties and

applications discussed.

3.2 Statistical Depth Functions

Before giving a general definition of statistical depth function, we first examine several

properties that are desirable for depth functions. In the following we consider depth

functions on Rd defined with respect to distributions that may be continuous or discrete.

• (P1) Affine Invariance The depth of a point x ∈ Rd should not depend on the

underlying coordinate system and the scales of the underlying measurements.

• (P2) Maximality at Center For a distribution having a uniquely defined “center”

(e.g., the point of symmetry with respect to some notion of symmetry, as discussed

in Chapter 2), the depth function should attain maximum value at this center.
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• (P3) Monotonicity Relative to the Deepest Point As a point x ∈ Rd moves

away from the deepest point (the point at which the depth function attains max-

imum value, for a symmetric distribution, the center should be the deepest point)

along with any fixed ray through the center, the depth function should decrease

monotonically and approach zero as ‖x‖ approaches infinity.

Besides the above three properties, we will also confine attention to depth functions

that are nonnegative and bounded. Any functions possessing these properties may be

regarded as a measure of depth of points with respect to the underlying distribution.

Definition 3.2.1 Let P be a distribution function on Rd. Let the mapping D(· ; P ) :

Rd → R1 be bounded, nonnegative and satisfy (P1), (P2) and (P3). That is,

(1) D(x; P ) = D(Ax + b; PAX+b).

Further, if P has a center θ,

(2) D(θ; P ) = supx∈Rd D(x; P ).

Further, if (2) holds for any θ, then

(3) D(x; P ) ≤ D(θ + α(x − θ); P ), and D(x; P ) → 0 as ‖x‖ → ∞.

Here A is any d×d nonsingular matrix, x and b are any vectors in Rd, α ∈ [0, 1], X has

distribution P , and PAX+b is the distribution function of AX + b. Then D(· ; P ) is said

to be a statistical depth function with respect to P, i.e., D(·; P ) measures the depth of x

with pespect to P , x ∈ Rd.

Remark 3.2.1 A sample version of D(x; P ), denoted by Dn(x) ≡ D(x; P̂n), may be

defined by replacing P by the empirical measure P̂n.
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Let us now investigate whether Tukey’s halfspace depth function HD(x; P) and Liu’s

simplicial depth function SD(x; P) are really statistical depth functions according to the

above definition.

Theorem 3.2.1 The halfspace depth function HD(x; P) is a statistical depth function

in the sense of Definition 3.2.1.

PROOF: Clearly, HD(x; P) is bounded and nonnegative. We only need to check (P1),

(P2) and (P3).

(1). Affine Invariance. For any d × d nonsingular matrix A, vector b, and closed

halfspace H,

X ∈ H ⇐⇒ AX + b ∈ AH + b,

x ∈ ∂ H ⇐⇒ Ax + b ∈ ∂ (AH + b),

where ∂H denotes the boundary of H.

Thus

HD(x; PX) = inf
H
{P (X ∈ H) | H is a closed halfspace, x ∈ ∂H}

= inf
H
{P (AX + b ∈ AH + b) | AH + b is a closed halfspace,

Ax + b ∈ ∂(AH + b)}

= HD(Ax + b; PAX+b).

(2). Maximality at Center.

(i) Suppose that P is HS -symmetric about a unique point θ ∈ Rd. Then by the definition
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of HS -symmetry, we have that

P (Hθ) ≥
1

2

for any closed halfspace H with θ ∈ ∂ H (such an H is always denoted by Hθ), and thus

HD(θ; P ) ≥ 1

2
.

Now suppose that there is a point x0 ∈ Rd, x0 6= θ, such that

HD(x0; P ) >
1

2
.

Then

P (Hx0) >
1

2

for any closed halfspace H with x0 ∈ ∂H. Hence, according to the definition of HS -

symmetry, P is also HS -symmetric about x0, which contradicts the assumption that P

is HS -symmetric about a unique point θ ∈ Rd. Therefore, we have

HD(θ; P ) = sup
x∈Rd

HD(x; P ).

(ii) Suppose that P is not HS -symmetric about any point. Then we simply define the

center of the distribution to be the point where D(x; P ) attains maximum value.

(3). Monotonicity Relative to the Deepest Point.

(i) Suppose θ is the deepest point with respect to the underlying distribution, that is,

HD(θ; P ) = supx∈Rd HD(x; P ). suppose 0 < α < 1. We are going to show that

HD(αx; P ) ≤ HD(θ + α(x − θ); P ), ∀α ∈ (0, 1).
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To compare HD(x; P ) and HD(θ+α(x−θ); P ) we need only to consider the infimum over

all closed halfspaces which do not contain θ, since HD(θ; P ) = supx∈Rd HD(x; P ). For

any Hθ+α(x−θ) (closed halfspace with (θ +α(x− θ)) ∈ ∂H), by the separating hyperplane

theorem there exists a closed halfspace Hx such that

Hx ⊂ Hθ+α(x−θ).

Thus we have that

HD(x; P ) ≤ HD(θ + α(x − θ); P ), ∀α ∈ (0, 1).

(ii) It is obvious that

P (‖X‖ ≥ ‖x‖) → 0 as ‖x‖ → ∞,

and that for each x there exists a closed halfspace Hx such that

Hx ⊂ {‖X‖ ≥ ‖x‖}

Thus

HD(x; P ) → 0 as ‖x‖ → ∞.

We are done. 2

Remark 3.2.2 For continuous angularly symmetric distributions, the simplicial depth

function SD(· ; P ) is a statistical depth function in the sense of Definition 3.2.1. This is

proved by Liu (1990). For discrete distributions, however, SD(x; P ) does not always pos-

sess the monotonicity property and also can fail to satisfy maximality at center property

with respect to HS -symmetric distributions.
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Counterexamples.

1. Take d = 1. Let P (X = 0) = 1
5
, P (X = ±1) = 1

5
, P (X = ±2) = 1

5
. Then clearly X

is centrally symmetric about 0, and

SD(
1

2
; P ) = P (

1

2
∈ X1X2)

= 2P (X1 ≤
1

2
≤ X2)

= 2P (X1 ≤
1

2
)P (X2 ≥

1

2
)

= 2 · 3

5
· 2

5

=
12

25
,

where X1, X2 is a random sample from X. Similarly we have that

SD(1; P ) = P (1 ∈ X1X2)

= 2P (X1 ≤ 1)P (X2 ≥ 1)

= 2 · 4

5
· 2

5

=
16

25
.

Since SD(1; P ) > SD(1
2
; P ), the monotonicity property fails to hold.

2. Let d = 2. Let P (X = (±1, 0)) = 1
6
, P (X = (±2, 0)) = 1

6
, P (X = (0,±1)) = 1

6
.

Then it is not difficult to see that X is centrally symmetric about (0, 0), and

SD((1, 0); P ) − SD((
1

2
, 0); P ) = 3! · 2 · 1

6
· 1

6
· 1

6

=
1

18

> 0,
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which also violates the monotonicity property.

3. Let d = 2. Let P (X = θ(0, 0)) = 19
40

, P (X = A(−1, 1)) = 3
40

, P (X = B(−1,−1)) =

1
40

, P (X = C(1, 0)) = 1
40

. Let B θ intersect AC at D, x be a point inside the triangle 4A

θD, and P (X = x) = 16
40

. Then it is not difficult to verify based on the results established

in Chapter 2 that X is HS -symmetric about θ, thus θ is the center of the distribution.

However, we have

SD(x; P ) − SD(θ; P ) =
3!

403
(2 × 16 × 1 × 3 − (3 × 1 × 19 + 1 × 1 × 19))

=
3!

403
(86 − 76)

> 0,

that is, the maximality at center property fails to hold. 2

3.3 Some General Structures for Depth Functions

Four types of general structures that could be used to construct statistical depth functions

with respect to any given distributions on Rd will be described here.

3.3.1 Type-A depth functions

Let X1, . . . , Xr be independent observations on a distribution F . Let h(x; X1, . . . , Xr)

be any bounded and nonnegative functions which measures the relative position of x

with respect to the random sample X1, . . . , Xr. Then by taking the expectation of

h(x; X1, . . . , Xr) , one can measure the depth of x with respect to the center or the

33



deepest point of the underlying distribution. The resulting depth functions will be called

type-A depth functions. Thus, the type-A depth functions may be represented as

D(x; F ) ≡ E [ h(x; X1, . . . , Xr) ], (3.5)

where h(x; X1, . . . , Xr) is a function as described above.

Theorem 3.3.1 Suppose θ in Rd is the point of symmetry of distribution F with respect

to some notion of symmetry, as discussed in Chapter 2. Then the type-A depth functions

D(x; F ) defined in (3.5) possess the maximality at center property if

(1) h(x + b; x1 + b, . . . , xr + b) = h(x; x1, . . . , xr),

(2) h(−x;−x1, . . . ,−xr) = h(x; x1, . . . , xr),

(3) h(x; x1, . . . , xr) is concave in its argument x,

(4) there is a point y in Rd such that

y∈(arg sup
x∈Rd

E[h(x; X1 − θ, . . . , Xr − θ)]) ∩ (arg sup
x∈Rd

E[h(x; θ − X1, . . . , θ − Xr)]),

where x, b and x1, . . . , xr are arbitrary vectors in Rd, X1, . . . , Xr is a random sample

from F.

PROOF: By (1) and (2) we have

E [ h(x; X1 − θ, . . . , Xr − θ) ] = E [ h(θ + x; X1, . . . , Xr) ],

E [ h(x; θ − X1, . . . , θ − Xr) ] = E [ h(θ − x; X1, . . . , Xr) ].

Let y be the point in (4). Then

y ∈ (arg sup
x∈Rd

E [ h(θ + x; X1, . . . , Xr) ]) ∩ (arg sup
x∈Rd

E [ h(θ − x; X1, . . . , Xr) ]).
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The concavity of h(x; x1, . . . , xr) now shows that

h(θ; X1, . . . , Xr) ≥
1

2
h(θ + y; X1, . . . , Xr) +

1

2
h(θ − y; X1, . . . , Xr).

Thus

E[h(θ; X1, . . . , Xr)] ≥ 1

2
E[h(θ + y; X1, . . . , Xr)] +

1

2
E[h(θ − y; X1, . . . , Xr)]

= sup
x∈Rd

E[h(θ + x; X1, . . . , Xr)]

= sup
x∈Rd

E[h(x; X1, . . . , Xr)].

Hence

D(θ; F ) = sup
x∈Rd

D(x; F ).

We are done. 2

Note that when given distributions are centrally symmetric about a point θ in Rd,

there is always a point y ∈ Rd such that

y∈(arg sup
x∈Rd

E[h(x; X1 − θ, . . . , Xr − θ)]) ∩ (arg sup
x∈Rd

E[h(x; θ − X1, . . . , θ − Xr)]).

As long as h(x; x1, . . . , xr) is concave in its argument x, we also have

Theorem 3.3.2 If h(x; x1, . . . , xr) is concave in its argument x, then the type-A depth

functions D(x; F ) defined in (3.5) monotonically decrease as x moves outward along with

the ray starting at the deepest point of F.

PROOF: Let θ be the deepest point in Rd with respect to the underlying distribution

F , that is,

D(θ; F ) = sup
x∈Rd

D(x; F ).
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Let x 6= θ be an arbitrary point in Rd, λ ∈ (0, 1) and x0 ≡ θ + λ(x − θ), then

D(x; F ) ≤ D(θ; F ).

The concavity of h(x; x1, . . . , xr) now shows that

h(x0; X1, . . . , Xr) ≥ λh(x; X1, . . . , Xr) + (1 − λ)h(θ; X1, . . . , Xr).

Thus

E [ h(x0; X1, . . . , Xr) ] ≥ min{E [ h(x; X1, . . . , Xr) ], E [ h(θ; X1, . . . , Xr) ]}

= E [ h(x; X1, . . . , Xr) ],

hence

D(x0; F ) ≥ D(x; F ).

We are done. 2

Example 3.3.1 Liu’s simplicial depth function SD(x; P) is a typical example of type-A

depth functions. Since

SD(x; P ) = P (x ∈ S[X1, . . . , Xd+1])

= E [ I [ x ∈ S[X1, . . . , Xd+1] ]

≡ E [ h(x; X1, . . . , Xr) ],

where r = d + 1 and h(x; x1, . . . , xr) = I [ x ∈ S[x1, . . . , xd+1]]. It is not difficult to

see that h(x; x1, . . . , xr) here is not a concave function in its first argument. Acturally,

SD(x; P ) does not always satisfy the monotonicity and maximality properties for discrete

distributions, as shown in Section 3.2.
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Example 3.3.2 Majority depth MJD(x; P) (Singh (1991), Liu and Singh (1993),

Liu et al. (1997)). For a given random sample X1, . . . , Xd from P on Rd, a unique

hyperplane containing these points is obtained and consequently two closed halfspaces

with this hyperplane as common boundary are obtained. Denote the one which carries

probability mass greater than or equal to 1
2

by Hm
X1,...,Xd

. Then the majority depth

function MJD(x; P) is defined as follows:

MJD(x; P) = P (x ∈ Hm
X1,...,Xd

). (3.6)

Clearly, the majority depth function MJD(x; P) is a type-A depth function with r = d

and h(x; x1, . . . , xr) ≡ I [ x ∈ Hm
x1,...,xr

].

Liu and Singh (1993) remarked that the majority depth function MJD(x; P) is affine

invariant and decreases monotonically as x moves away from the center θ of any angularly

symmetric distributions along any fixed ray originating from the center θ.

The following result is new in two aspects: a) it generalizes the remark in Liu and

Singh (1993) about the majority depth function MJD(x; P) to any HS -symmetric dis-

tributions. b) it shows that the majority depth function MJD(x; P) does not approach

zero as ‖x‖ approachs infinity for some distributions.

Theorem 3.3.3 The majority depth function MJD(x; P) defined in (3.6)

(1) attains maximum value at the center of any HS-symmetric distributions and decreases

monotonically as x moves away from the center along any fixed ray originating from the

center ;

(2) fails to approach zero as ‖x‖ approachs infinity for some distributions.
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PROOF:

(1) a) Let θ be the center of a HS -symmetric distribution F and x be an arbitrary point

in Rd. Then by the definition of HS -symmetry, for any random sample X1, . . . , Xd from

F we have

x ∈ Hm
X1,...,Xd

=⇒ θ ∈ Hm
X1,...,Xd

.

Thus

MJD(θ; P ) = sup
x∈Rd

MJD(x; P ).

b) Let λ ∈ (0, 1) and x0 ≡ λθ + (1 − λ)x. Then

MJD(x0; P ) − MJD(x; P ) = P (x0 ∈ Hm
X1,...,Xd

) − P (x ∈ Hm
X1,...,Xd

)

= P (x0 ∈ Hm
X1,...,Xd

and x∈Hm
X1,...,Xd

)

≥ 0.

(2) We now give a conuterexample which shows that MJD(x; P) does not approach zero

as ‖x‖ approachs infinity. Let d = 2, P (X = (±1, 0)) = 1
3
, P (X = (0, 1)) = 1

3
. Then it

is easy to see that

lim
‖x‖→∞

MJD(x; P ) =
2

3
.

In fact, in the univariate case, one can show that

MJD(x; P ) → 1

2
as x → ∞.

We are done. 2

38



Remark 3.3.1 For the type-A depth functions defined in (3.5), the corresponding

sample versions are U-statistics.

3.3.2 Type-B depth functions

Let X1, . . . , Xr be a random sample from F on Rd. Let h(x; X1, . . . , Xr) be a unbounded

and nonegative function which measures the dispersion of the point cloud {x,X1, . . . , Xr}.

Then by taking the expectation of h(x; X1, . . . , Xr), one can measure the relative distance

between x and the center or the deepest point of the underlying distribution. Thus, a

corresponding bounded depth function can be constructed as follows:

D(x; F ) ≡ (1 + E [ h(x; X1, . . . , Xr) ])−1 , (3.7)

where h(x; X1, . . . , Xr) is a function as described above. This type of depth functions

will be called type-B depth functions.

Remark 3.3.2 We could have defined type-B depth functions as

D(x; F ) ≡ E [ (1 + h(x; X1, . . . , Xr))
−1 ], (3.8)

which then fit into the type-A category. But for the sake of tractability we list them

independently here as a new type of depth functions.

Remark 3.3.3 As a measure of the dispersion of the point cloud {x; x1, . . . , xr},

h(x; x1, . . . , xr) does not always possess affine invariance property, although in many

cases it does possess rigid-body invariance property, that is,

h(Ax + b; Ax1 + b, . . . , Axr + b) = h(x; x1, . . . , xr), (3.9)
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for any d×d orthogonal matrix A and any vector b ∈ Rd. Type-B depth functions possess

the maximality at center and the monotonicity relative to the deepest point properties

for suitable h(x; x1, . . . , xr)
′s.

Theorem 3.3.4 Suppose θ in Rd is the point of symmetry of distribution F with respect

to some notion of symmetry, as discussed in Chapter 2. The type-B depth functions

D(x; F ) defined in (3.7) possess the maximality at center property if

(1) h(x + b; x1 + b, . . . , xr + b) = h(x; x1, . . . , xr),

(2) h(−x;−x1, . . . ,−xr) = h(x; x1, . . . , xr),

(3) h(x; x1, . . . , xr) is convex in its argument x,

(4) there is a point y ∈ Rd such that

y∈(arg inf
x∈Rd

E[h(x; X1 − θ, . . . , Xr − θ)]) ∩ (arg inf
x∈Rd

E[h(x; θ − X1, . . . , θ − Xr)])

where x, b and x1, . . . , xr are arbitrary vectors in Rd, X1, . . . , Xr is a random sample

from F.

PROOF: Similer to that for Theorem 3.3.1. 2

Theorem 3.3.5 If h(x; x1, . . . , xr) is convex in its argument x, then the type-B depth

functions D(x; F ) defined in (3.7) monotonically decrease as x moves outward along with

the ray starting at the deepest point of F.

PROOF: Similer to that for Theorem 3.3.2. 2
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Example 3.3.3 Simplicial volume depth SVD(x; F). Using the volume of the

simplex with vertices x,X1, . . . , Xd as a measure of the dispersion of the point cloud

{x,X1, . . . , Xd}, one can construct a depth function as follows:

SVD(x; F ) = (1 + E [ ∆α(x,X1, . . . , Xd) ])−1 , (3.10)

where X1, . . . , Xd is a random sample from F , ∆(x,X1, . . . , Xd) is the volume of the

simplex with vertices x,X1, . . . , Xd, and α ∈ (0,∞). It is obvious that SVD(x; F) is a

type-B depth function. Unfortunately, SVD(x; F) usually is not affine invariant since

∆α(Ax + b, Ax1 + b, . . . , Axd + b) = | det(A) |α∆α(x, x1, . . . , xd)

= | det(A) |α∆α(x, x1, . . . , xd),

where b is any vector in Rd and det(A) is the determinant of nonsingular matrix A ,

which is not always equal to 1. This problem, however, can be fixed by a modification

of (3.10) as follows:

SVD(x; F ) ≡

1 + E [

∆(x,X1, . . . , Xd)√
det(Σ)

α

]

−1

, (3.11)

where Σ is the covariance matrix of F . It is not difficult to verify now that SVD(x; F)

is affine invariant. The simplicial volume depth functions also possess the maximality at

center and monotonicity relative to the deepest point properties.

Corollary 3.3.1 The simplicial volume depth SVD(x; F) defined in (3.11) for α ≥ 1

possesses the monotonicity relative to the deepest point property.
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PROOF: (i) By Theorem 3.3.5 we need only to check the convexity of ∆α(x, x1, . . . , xd)

for α ∈ [1,∞) in its argument x. Let x, y be two points in Rd, x0 ≡ λx + (1 − λ)y and

λ ∈ (0, 1). Then

∆(x0; x1, . . . , xd) =

∣∣∣∣∣∣∣∣∣∣
1

d !
det

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x01 x11 · · · xd1
...

...
. . .

...
x0d x1d · · · xdd

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1

d !
det

∣∣∣∣∣∣∣∣∣∣
λ + (1 − λ) 1 · · · 1
λx1 + (1 − λ)y1 x11 · · · xd1
...

...
. . .

...
λxd + (1 − λ)yd x1d · · · xdd

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≤ λ∆(x; x1, . . . , xd) + (1 − λ)∆(y; x1, . . . , xd),

where x0 = (x01, . . . , x0d)
′, x = (x1, . . . , xd)

′, y = (y1, . . . , yd)
′ and xi = (xi1, . . . , xid)

′ for

1 ≤ i ≤ d. Now the convexity of the function xα for 0 < x < ∞ shows that

∆α(x0; x1, . . . , xd) ≤ λ∆α(x; x1, . . . , xd) + (1 − λ)∆α(y; x1, . . . , xd).

(ii) It is obvious that

∆α(x; x1, . . . , xd) → ∞ as ‖x‖ → ∞.

Thus

SVD(x; F ) → 0 as ‖x‖ → ∞.

We are done. 2

Since ∆α(x, x1, . . . , xd) is convex and rigid-body invariant, according to Theorem 3.3.4

we obtain
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Corollary 3.3.2 The simplicial volume depth SVD(x; F) defined in (3.11) for α > 1

possesses the maximality at center property for centrally symmetric distribution F on Rd.

Now by the affine invariance, Corollary 3.3.1 and Corollary 3.3.2 we obtain

Theorem 3.3.6 The simplicial volume depth function SVD(x; F) defined in (3.11)

for α > 1 is a statistical depth function in the sense of Definition 3.2.1 for centrally

symmetric distributions.

Remark 3.3.4 Oja (1983) introduced a location measure for centrally symmetric dis-

tributions by the use of simplicial volume as follows. The location measure is a function

µα: P → Rd, 0 < α < ∞ such that

E [ ∆α(µα(P ); X1, . . . , Xd) ] = inf
µ∈Rd

E [ ∆α(µ; X1, . . . , Xd) ].

However, he did not develop it into a depth function, nor consider the affine invariance

version (3.11).

Example 3.3.4 Lp depth LpD(x; F) (p > 0). The Lp norm of (X−x) is a measure of

the distance between x and X. By taking expectation of this distance, one can measure

the distance between x and the center or the deepest point of the distribution of X. Thus

a depth measure can be constructed as follows:

LpD(x; F ) ≡ (1 + E [ ‖x − X‖p ])−1 , (3.12)
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where ‖ · ‖p is the usual Lp norm. Clearly LpD(x; F) is a type-B depth function with

h(x; x1) ≡ ‖x−x1‖p. LpD(x; F) generally does not possess the affine invariance property

since

E [ ‖Ax + b − (AX + b)‖p ] = E [ ‖A(x − X‖p ],

which is not always equal to E [ ‖(x − X‖p ] for any nonsingular matrix A. However,

LpD(x; F) possesses maximality at center and monotonicity relative to the deepest point

properties for p ≥ 1.

Corollary 3.3.3 The LpD(x; F) defined in (3.12) for p ≥ 1 possesses the monotonicity

relative to the deepest point property.

PROOF: (i) By Theorem 3.3.5 we need only to check the convexity of h(x; x1) = ‖x−x1‖p

in argument x. But this follows in straightforward fashion from Minkowski’s inequality.

(ii) It is obvious that

LpD(x; F ) → 0 as ‖x‖ → ∞.

We are done. 2

Since h(x; x1) is location invariant and even, that is, h(x + b, x1 + b) = h(x, x1) for

any vector b ∈ Rd and h(−x,−x1) = h(x, x1), by the convexity just established and

Theorem 3.3.4 we obtain

Corollary 3.3.4 The LpD(x; F) defined in (3.12) for p ≥ 1 possesses the maximality

at center property for centrally symmetric distribution F on Rd.
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Although LpD(x; F) (p > 0) generally is not affine invariant, it is easy to see that

L2D(x; F) is rigid-body invariant. Furthermore, a modification of L2 norm can lead to a

afffine invariant L2D(x; F). For a positive definite d × d matrix M , define a norm ‖ · ‖M

as

‖x‖M ≡
√

x′Mx, ∀x ∈ Rd, (3.13)

then the L2(x; F) defined in (3.12) can be modified as

L2D(x; F ) ≡ (1 + E [ ‖x − X‖Σ−1 ])−1 , (3.14)

where Σ is the covariance matrix of F . Now it is not difficult to verify that the L2D(x;

F) defined in (3.14) is affine invariant.

Theorem 3.3.7 The L2D(x; F) defined in (3.14) is a statistical depth function in the

sense of Definition 3.2.1 for any distribution F angularly symmetric about a unique point

θ ∈ Rd.

PROOF: Since L2D(x; F) defined in (3.14) is affine invariant, we need only check (P2)

and (P3).

(i) We first show that ‖ · ‖M is convex for any positive definite d × d matrix M . Since

M is positive definite, there is a nonsingular matrix S such that M = S ′S. Let x, y be

two points in Rd and λ ∈ (0, 1). Then

‖λx + (1 − λ)y‖2
M = (λx + (1 − λ)y)′M(λx + (1 − λ)y)

= λ2x′Mx + 2λ(1 − λ)x′My + (1 − λ)2y′My

= λ2x′Mx + 2λ(1 − λ)(Sx)′(Sy) + (1 − λ)2y′My.
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The Schwarz inequality implies that

‖λx + (1 − λ)y‖2
M ≤ λ2x′Mx + 2λ(1 − λ)‖Sx‖‖Sy‖ + (1 − λ)2y′My

= λ2‖x‖2
M + 2λ(1 − λ)‖x‖M‖y‖M + (1 − λ)2‖y‖2

M

= (λ‖x‖M + (1 − λ)‖y‖M)2.

Thus

‖λx + (1 − λ)y‖M ≤ λ‖x‖M + (1 − λ)‖y‖M .

(ii) Now we show that there is a point y ∈ Rd satisfying the condition in (4) of

Theorem 3.3.4. Equivalent, we need to show that

θ ∈ arg inf
x∈Rd

E [ ‖x − X‖Σ−1 ], (3.15)

where Σ is the covariance matrix of F .

(1) We first show that

E [
θ − X

‖X − θ‖Σ−1

] = 0.

Since F is angularly symmetric about θ, then based on the results established in Chapter

2 we have

P (X ∈ Hθ) = P (X ∈ −Hθ),

for any closed halfspace Hθ with θ on the boundary. Since Σ−1 is positive definite, then

there is a nonsigular matrix R such that Σ−1 = R′R. Thus

P (RX ∈ RHθ) = P (RX ∈ −RHθ),
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for any closed halfspace Hθ with θ on the boundary. By nonsingularity and the results

established in Chapter 2 we conclude that RX is angularly symmetric about Rθ. Hence

R (X − θ)

‖R (X − θ)‖
d
=

R (θ − X)

‖R (θ − X)‖
,

which is equivalent to

R (X − θ)

‖(X − θ)‖Σ−1

d
=

R (θ − X)

‖(θ − X)‖Σ−1

.

Thus

E [
R (X − θ)

‖(X − θ)‖Σ−1

] = E [
R (θ − X)

‖(θ − X)‖Σ−1

].

This implies that

E [
θ − X

‖(θ − X)‖Σ−1

] = 0.

(2) Now we are going to show that (3.15) holds true. Consider the derivative of E [ ‖µ−

X‖Σ−1 ] with respect to µ ∈ Rd, by vector differentiation formula we have

d (E [ ‖µ − X‖Σ−1 ])

dµ
=

d (
∫
Rd ‖µ − x|Σ−1 dF (x))

dµ

=
∫
Rd

d (‖µ − x‖Σ−1)

dµ
dF (x)

=
∫
Rd

Σ−1(µ − x)

‖µ − x‖Σ−1

dF (x)

= E [
Σ−1(µ − X)

‖µ − X‖Σ−1

]

= Σ−1E [
µ − X

‖µ − X‖Σ−1

].

Now by convexity and (1) we conclude that

θ ∈ arg inf
x∈Rd

E [ ‖x − X‖Σ−1 ].

The result then follows from Theorem 3.3.4 and Theorem 3.3.5. 2
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3.3.3 Type C depth functions

Let O(x; F ) be a measure of the outlyingness of the point x in Rd with respect to the

center or the deepest point of the distribution F of X. Usually O(x; F ) is unbounded,

but a corresponding bounded depth function can be constructed as follows:

D(x; F ) ≡ (1 + O(x; F ))−1 . (3.16)

Such depth functions will be called Type C depth functions.

Remark 3.3.5 Type B and Type C depth functions are similar in form except that

in Type B depth functions the outlyingness of a point with respect to the center or the

deepest point of a distribution is obtained by directly taking the expectation of some

function h(x; X1, . . . , Xr). It is convenient to have these two types separately, although

one could merge them into a single type and treat them uniformly. 2

For Type C depth functions, the following two results are analogues of Theorems 3.3.4

and 3.3.5 and are proved similarly. It is often convenient to write O(x; X) for O(x; FX).

Theorem 3.3.8 Suppose θ in Rd is the point of symmetry of distribution F with respect

to some notion of symmetry, as discussed in Chapter 2. The Type C depth functions

D(x; F ) defined in (3.16) possess the “maximality at center” property if

(1) O(x + b; X + b) = O(x; X + b),

(2) O(−x;−X) = O(x; X),

(3) O(x; X) is convex in its argument x,
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(4) there is a point y ∈ Rd such that

y∈(arg inf
x∈Rd

O(x; X − θ) ∩ (arg inf
x∈Rd

O(x; θ − X))

where x, b are arbitrary vectors in Rd. 2

Theorem 3.3.9 If O(x; F ) is convex in the argument x, then the Type C depth func-

tions D(x; F ) defined in (3.16) decrease monotonically as x moves outward along any ray

starting at a deepest point of F. 2

Example 3.3.5 Projection depth PD(x; F ). A depth measure based on the out-

lyingness of a point with respect to the center or the deepest point of an underlying

distribution can be defined as follows. Define the outlyingness of a point x to be the

worst case outlyingness of x with respect to the one-dimensional median in any one-

dimensional projection, that is,

O(x; F ) ≡ sup
‖u‖=1

| u′x − Med(u′X) |
Mad(u′X)

, (3.17)

where Med denotes the univariate median as defined in Chapter 2, Mad denotes the

univariate median absolute deviation defined for Y ∈ R as

Mad(Y ) = Med(|Y − Med(Y )|,

and ‖ · ‖ is the Euclidean norm. Then a corresponding depth measure, which will be

called projection depth, is defined as

PD(x; F ) ≡ (1 + O(x; F ))−1 , (3.18)
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where F is the distribution of X. Clearly, this depth function is a Type C depth function.

2

Remark 3.3.6 For a given one-dimensional dataset X = {X1, . . . , Xn}, On(x) ≡

(x−Med1≤i≤n{Xi})/ Mad1≤i≤n{Xi} has long been used as a robust outlyingness measure

of a point x ∈ R with respect to the center (the median) of the dataset. See Mosteller

and Tukey (1977), pp. 205-208. Here

Med1≤i≤n{Xi} =
1

2

(
X(bn+1

2
c) + X(bn+2

2
c)

)
,

Mad1≤i≤n{Xi} = Med1≤i≤n{|Xi − Med1≤j≤n{Xj}|},

and X(1) < . . . < X(n) are the ordered X1, . . . , Xn. Donoho and Gasko (1992) generalized

the one-dimensional outlyingness measure to arbitrary dimension d. The sample version

of the projection depth function PD(x; F ) is given by

PDn(x) = (1 + On(x))−1 , (3.19)

for a random sample X = {X1, . . . , Xn} from F in Rd. Liu (1992) considered the sample

version of projection depth, but did not provide any treatment of it. 2

Theorem 3.3.10 The projection depth function PD(x; F ) defined in (3.18) is a statis-

tical depth function in the sense of Definition 3.2.1.

PROOF:

(1) Affine Invariance. For any nonsingular d × d matrix A, any vector b ∈ Rd, and
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O(x; X) defined in (3.17), we have

O(Ax + b ; AX + b) = sup
‖u‖=1

| u′(Ax + b) − Med(u′(AX + b)) |
Mad(u′(AX + b))

= sup
‖u‖=1

| (u′A)x − Med((u′A)X) |
Mad((u′A)X)

= sup
‖u‖=1

| v′x − Med(v′X) |
Mad(v′X)

,

where v = A′u/‖A′u‖. Since A is nonsingular, then

O(Ax + b ; AX + b) = sup
‖u‖=1

| u′x − Med(u′X) |
Mad(u′X)

,

that is,

PD(Ax + b; FAX+b) = PD(x; FX).

(2) Maximality at Center.

(i) Suppose that F is not HS -symmetric about any point. Then we simply define the

center of the distribution to be the point θ where D(x; F ) attains maximum value, and

thus

PD(θ; F ) = sup
x∈Rd

PD(x; F ).

(ii) Suppose that F is HS -symmetric about a unique point θ ∈ Rd. Then by Theo-

rem 2.2.2 established in Chapter 2, we have

Med(u′X) = u′θ,

for any unit vector u ∈ Rd. Thus

PD(θ; F ) = sup
x∈Rd

PD(x; F ).
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(3) Monotonicity Relative to Deepest Point.

We show that O(x; X) is convex in its first argument. Let θ and x be two arbitrary

points in Rd, 0 < α < 1, and put x0 ≡ (1 − α)θ + αx. Then we have

|u′x0−Med(u′X) | = |U ′((1 − α)θ + αx) − Med(u′X) |

= |(1− α)(u′θ −Med(u′X)) + α(u′x−Med(u′X)) |

≤ (1− α) |(u′θ −Med(u′X)) |+α |(u′x −Med(u′X)) |,

and hence

O(x0 ; X) = sup
‖u‖=1

| u′x0 − Med(u′X) |
Mad(u′X)

≤ sup
‖u‖=1

(1 − α) | (u′θ − Med(u′X)) | +α | (u′x − Med(u′X)) |
Mad(u′X)

≤ (1 − α)O(θ; F ) + αO(x; F ).

Now by Theorem 3.3.9 we conclude that PD(x; F) decreases monotonically as x moves

outward along any fixed ray originating from the deepest point of the distribution F.

(4) Vanishing at Infinity.

It is obvious that

PD(x; F) → 0, as ‖x‖ → ∞.

This completes the proof. 2

Example 3.3.6 Mahalanobis depth MHD(x; F ). Mahalanobis (1936) introduced

a distance between two points x and y in Rd with respect to a positive definite d × d
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matrix M as:

d2
M(x, y) = (x − y)′M(x − y).

Based on this Mahalanobis distance, one can define Mahalanobis depth as follows:

MHD(x; F ) =
(
1 + (x − µ(F ))′Σ−1(x − µ(F ))

)−1
, (3.20)

where F is the distribution of X on Rd, µ(F ) is a location measure, and Σ is the covariance

matrix of F . Obviously, the Mahalanobis depth function MHD(x; F ) is a Type C depth

function, taking

O(x; F ) ≡ (x − µ(F ))′Σ−1(x − µ(F )) (3.21)

in (3.16). O(x; F ) and O(x; X) are used interchangeably. 2

Theorem 3.3.11 The Mahalanobis depth function MHD(x; F ) defined in (3.20) is a

statistical depth function in the sense of Definition 3.2.1 for any symmetric distribution

F if µ(F ) in (3.20) is affine equivariant and agrees with the point of symmetry of F.

PROOF: Assume, w.l.o.g., that the probability mass of F is not concentrated on any

subspace of Rd with dimension less than d.

(1) Affine Invariance. For any nonsingular d × d matrix A, any vector b ∈ Rd and

O(x; X) defined in (3.21), by affine equivariance of µ(·) we have

O(Ax + b ; AX + b) = (Ax + b − µ(AX + b))′Σ−1
AX+b(Ax + b − µ(AX + b))

= (x − µ(X))′A′(A′)−1Σ−1A−1A(x − µ(X))

= (x − µ(X))′Σ−1(x − µ(X))

= O(x; X).
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Thus MHD(x; F ) is affine invariant.

(2) Maximality at Center. This follows directly from the fact that µ(F ) agrees with the

point of symmetry of F .

(3) Monotonicity Relative to Deepest Point.

By Theorem 3.3.9 we need only check the convexity of O(x; X) in its first argument x.

Let x, y be two points in Rd, α ∈ (0, 1), M ≡ Σ−1, β ≡ α(1−α) and x0 ≡ αx+(1−α)y.

Then

O(x0; X) = d2
M(x0, µ(X))

= d2
M(α(x − µ(X)) + (1 − α)(y − µ(X)), 0)

=α2d2
M(x, µ(X))+(1−α)2d2

M(y, µ(X))+2β(x−µ(X))′Σ−1(y−µ(X))

= αd2
M(x, µ(X)) + (1 − α)d2

M(y, µ(X)) − β(x − y)′Σ−1(x − y)

≤ αd2
M(x, µ(X)) + (1 − α)d2

M(y, µ(X)).

Thus O(x; X) defined in (3.21) is convex.

(4) Vanishing at Infinity. It is obvious that

MHD(x; F ) → 0, as ‖x‖ → ∞.

This completes the proof. 2

Remark 3.3.7 Liu (1992, 1993) introduced the Mahalanobis depth as

MhD(x; F ) =
(
1 + (x − µ)′Σ−1(x − µ)

)−1
,
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where µ and Σ are the mean and covariance matrix of F . Unfortunately, MhD(· ; F ) is not

“robust” because the population mean has been used in the construction of MhD(· ; F )

as the relative center of F . Also MhD(x; F ) can fail to achieve maximum value at the

point of symmetry of angularly symmetric distributions, although, as remarked by Liu

(1992), it does satisfy (P2) and (P3) for centrally symmetric distributions. 2

3.3.4 Type Ddepth functions

Based on the “tailedness” of a point with respect to a given distribution, one can measure

the relative depth of the point with respect to the center or the deepest point of the

distribution. Let C be a class of closed subsets of Rd and P be a probability measure on

Rd. Define a depth measure as follows:

D(x; P, C) ≡ inf
C

{ P (C) | x ∈ C ∈ C }, (3.22)

which will be called Type D depth function.

A sample version of the Type D depth function, denoted by Dn(x; Pn, C) and Dn(x)

for short, will be defined as

Dn(x; Pn, C) ≡ inf
C

{ Pn(C) | x ∈ C ∈ C }, (3.23)

for a random sample X1, . . . , Xn from P , where Pn is the empirical probability measure

corresponding to P , defined as Pn(C) ≡ 1
n

∑n
i=1 I(Xi ∈ C).

We will confine our attention to the class of closed and convex Borel sets C satisfying

the following conditions:
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(C1) if C ∈ C, then Cc ∈ C,

(C2) if C ∈ C, x ∈ Co, then there exists a C1 ∈ C such that x ∈ ∂C1, C1 ⊂ Co,

(C3) if C ∈ C, then AC + b ∈ C for any orthogonal d × d matrix A and vector b ∈ Rd,

where Cc, Co and C denotes the complement, the interior and the closure of C rescep-

tively.

Example 3.3.7 Clearly, the class of all closed halfspaces H on Rd is one of examples

which satisfy (C1), (C2) and (C3). The halfspace depth function HD(x; P ) defined in

(3.2) is a typical example of Type D depth functions.

Theorem 3.3.12 Let C be a class of closed and convex Borel sets satisfying (C1), (C2)

and (C3) and P be a probability measure on Rd. Then

(1) D(x; P, C) is upper-semicontinuous,

(2) Dα ≡ {x ∈ Rd | D(x; P, C) ≥ α} are compact, convex and nested (i.e., Dα1 ⊂ Dα2 if

α1 > α2) for α ∈ [ 0, 1].

PROOF:

(1) We first show that

{x ∈ Rd | D(x; P, C) ≥ α} = ∩{C | P (C) > 1 − α,C ∈ C} (3.24)

a) if x ∈ {x ∈ Rd | D(x; P, C) ≥ α} and there exists a C ∈ C such that

P (C) > 1 − α, x 6 ∈C.

Then

x ∈ Cc, P (Cc) < α.
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By (C1) and (C2), there is a C1 ∈ C such that

x ∈ ∂C1, C1 ⊂ Cc,

thus

P (C1) < α,

hence D(x; P, C) < α, which is a contradiction to the assumption that x ∈ {x ∈ Rd |

D(x; P, C) ≥ α}. Thus

{x ∈ Rd | D(x; P, C) ≥ α} ⊂ ∩{C | P (C) > 1 − α,C ∈ C}.

b) if x ∈ ∩{C | P (C) > 1 − α,C ∈ C}, and there is a C ∈ C such that

x ∈ C, P (C) < α.

Then by (C3), there exists a C1 ∈ C such that

x ∈ Co
1 , P (C1) < α,

thus

x 6 ∈ Cc
1, P ( Cc

1 ) > 1 − α,

which contradicts the assumption that x ∈ ∩{C | P (C) > 1 − α,C ∈ C}. Thus

{x ∈ Rd | D(x; P, C) ≥ α} ⊃ ∩{C | P (C) > 1 − α,C ∈ C}.

Now by a) and b) we conclude that Dα is closed and thus D(x; P, C) is upper-

semicontinuous.
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(2) The nestedness of Dα is trival. The boundedness of Dα follows from the fact that

D(x; P, C) → 0 as ‖x‖ → ∞. (3.25)

The compactness of Dα now follows from the boundedness and the closeness of Dα. The

convexity follows from (3.24) and the fact that the intersection of convex sets is convex.

We are done. 2

Remark 3.3.8 a) The above theorem still holds true if (C2) is replaced by

(C2’) P (∂C) = 0, ∀ C ∈ C.

b) Dα is called αth depth contour. Discussion on depth contours will be given later.

Definition 3.3.1 Let C be a class of closed convex sets satisfying (C1), (C2) and (C3)

and P be a probability measure on Rd. Denote Cy the member of C with y on the boundary.

P is called α- C-symmetric about a point θ ∈ Rd if

P (Cθ) ≥ α, ∀ Cθ ∈ C

and there is no point x ∈ Rd and β > α such that

P (Cx) ≥ β, ∀ Cx ∈ C.

Remark 3.3.9 a) It is easy to see that HS -symmetry is one of examples of α- C-

symmetry with α = 1/2 and C = H.

b) Clearly, not every distribution is HS -symmetric. However, there always exists an α
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for any distribution F such that F is α- C-symmetric about some point θ ∈ Rd, although

θ may not be unique.

Theorem 3.3.13 Type D depth functions defined in (3.22) are statistical depth func-

tions in the sense of Definition 3.2.1.

PROOF:

(1). Affine Invariance. For any nonsingular d × d matrix A, any vector b ∈ Rd we

have

X ∈ C ⇐⇒ AX + b ∈ AC + b.

Thus

D(x; PX , C) = inf
C
{P (X ∈ C) | x ∈ C ∈ C}

= inf
C
{P (AX + b ∈ AC + b) | Ax + b ∈ AC + b ∈ AC + b}

= D(Ax + b; PAX+b, AC + b),

that is, D(x; P, C) is affine invariant.

(2). Maximality at Center. Based on Remark 3.3.9, there always exists an α such that

P is α- C- symmetric about a point θ ∈ Rd. Now by (3.22) and Definition 3.3.1 we have

that

D(θ; P, C) = sup
x∈Rd

D(x; P, C) = α,

that is, D(x; P, C) attains maxmium value at the center (the point of symmetry of α - C-

symmetry) of any distribution.
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(3). Monotonicity Relative to the Deepest Point.

(i) Let θ be the deepest point of P , that is,

D(θ; P, C) = sup
x∈Rd

D(x; P, C).

Let x 6= θ be a point in Rd, λ ∈ (0, 1), x0 ≡ λθ + (1 − λ)x and β ≡ D(x; P, C). Then by

(2) of Theorem 3.3.12 we have

x ∈ Dβ, θ ∈ Dβ.

The convexity of Dβ now shows that

x0 ∈ Dβ,

that is,

D(x0; P, C) ≥ D(x; P, C).

Thus D(x; P, C) monotonically decreases as x moves outward along with any fixed ray

originating from the deepest point of any distribution.

(ii) It is obvious that

D(x; P, C) → 0 as ‖x‖ → ∞.

We are done. 2

When C = H, we obtain following result, which is a generalization of Theorem 3.2.1.

Corollary 3.3.5 The halfspace depth function HD(x; P) defined in (3.2) is a statistical

depth function in the sense of Definition 3.2.1 for any distributions which are α -H-

symmetric on Rd.
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Remark 3.3.10 It is not difficult to show from the proof of the above two Theorems

that the sample depth funciton Dn(x; Pn, C) of the Type D depth function D(x; P, C)

possess the following properties:

(i) upper-semicontinuity;

(ii) affine invariance;

(iii) monotonicity relative to the deepest point;

(iv) uniformly decreasing to zero as ‖x| → ∞.

The above list of four types of depth functions is by no means exhaustive, other

general structures for depth functions may exist.

Liu et al. (1997) gives seven examples of depth functions. Among them, six have been

defined in both population case and sample case. All these six depth functions have been

included as special examples of our four types of depth functions except the likelihood

depth function LD(x; F). The likelihood depth function LD(x; F), however, satisfies

neither the affine invariance property (P1) nor the maximality at center property (P2)

or the monotonicity relative to the deepest point property (P3).

Koshevoy and Mosler (1997) introduced a new depth concept, called zonoid data

depth, based on their zonoid trimming. The zonoid data depth function has nice prop-

erties, but may fail to satisfy maximality at center property for angularly symmetric or

HS -symmetric distributions, because zonoid data depth function attains maximum value

always at expectation point E(X) for any random variable X on Rd. Zonoid data depth

is not a “robust” concept of data depth, since a single corrupted data point will move
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“the center point of zonoid data depth” to infinity.

3.4 The Behavior of Sample Depth Functions

As “reasonable” estimators of population depth functions for each fixed x, the sample

versions of depth functions are desired to be consistent. Donoho and Gasko (1992) proved

that the sample version of the halfspace depth function, denoted by HDn(x), uniformly

converges to the halfspace depth function HD(x; P ) with probability 1, that is,

sup
x∈Rd

| HDn(x) − HD(x; P) |→ 0 a.s. as n → ∞.

Liu (1990) established the almost sure uniform convergence of the sample simplicial depth

function SDn(x; P ) to the simplicial depth function SD(x; P) for any absolutely continu-

ous distribution F on Rd with bounded density f . Liu and Singh (1993) remarked that

the uniform consistency of the sample versions of the majority depth function MJD(x;

P) and the Mahalanobis depth function MhD(x; P ) holds under proper conditions.

We are going to investigate the almost sure uniform convergence property of the

sample versions of the median depth function MD(x; F) and the Type Ddepth functions.

3.4.1 Uniform Consistency of the Sample Median Depth Functions

The following results shall be used in establishing the almost sure uniform convergence

of the sample median depth functions.

Lemma 3.4.1 Let X1, . . . , Xn be a random sample from X ∈ Rd and Med(u′X),
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Mad(u′X), Med1≤i≤n{u′Xi} and Mad1≤i≤n{u′Xi} be defined as in Section 3. Then

(1) sup
‖u‖=1

Mad(u′X) ≤ 2 sup
‖u‖=1

Med(|u′X|) < +∞,

(2) sup
‖u‖=1

Mad1≤i≤n{u′Xi} ≤ 2 sup
‖u‖=1

Med1≤i≤n{|u′Xi|} < +∞ a.s. as n ≥ N ,

for some N.

PROOF:

(1) This follows immediately from the triangle and the Schwarz inequalities.

(2) Let M be a number such that

P (‖X‖ > M) <
1

4
.

The definition of sample median implies that,

P ( Med1≤i≤n{‖Xi‖} > M) ≤
(

n
bn+1

2
c

)
(P (‖X1‖) > M)b

n+1
2

c .

Applying Sterling’s formula, we obtain

P ( Med1≤i≤n{‖Xi‖} > M) ≤ 2nnne−n
√

2πne−r(n)

nne−n(πn)e−2r(n
2
)

(P (‖X1‖) > M)
n
2

=
2e2r(n

2
)−r(n)

√
2πn

(√
4P (‖X1‖) > M)

)n

≤ 2
(√

4P (‖X1‖) > M)
)n

,

where 1 − 1
12n+1

< 12n r(n) < 1. Thus

∞∑
n=1

P ( Med1≤i≤n{‖Xi‖} > M) ≤ 2
∞∑

n=1

(√
4P (‖X1‖) > M)

)n

< ∞.
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Now the Borel-Cantelli lemma reveals that there is a N such that

Med1≤i≤n{‖Xi‖} ≤ M a.s. for n ≥ N .

The Schwarz inequality yields

sup
‖u‖=1

Med1≤i≤n{|u′Xi|} ≤ Med1≤i≤n{‖Xi‖} ≤ M a.s. for n ≥ N .

Hence

sup
‖u‖=1

Mad1≤i≤n{u′Xi} ≤ sup
‖u‖=1

Med1≤i≤n(|u′Xi| + Med1≤i≤n{u′Xi})

≤ 2 sup
‖u‖=1

Med1≤i≤n{|u′Xi|}

≤ 2M < ∞ a.s. for n ≥ N .

we are done. 2

Lemma 3.4.2 Let X1, . . . , Xn be a sample from F and MD(x; F) and MDn(x; F̂n) be

deifned as in Section 3. Then

(1) MD(x; F) −→0 as ‖x‖ → ∞,

(2) MDn(x; F̂n)
a.s.−→ 0 as ‖x‖ → ∞ for sufficiently large n.

PROOF:

(1) This follows directly from the monotonicity property of MD(x; F ). Refer to the proof

of Theorem ??.

(2) For any x ∈ Rd, let v = x
‖x‖ , then

sup
‖u‖=1

| u′x − Med1≤i≤n{u′Xi} |
Mad1≤i≤n{u′Xi}

≥ sup
‖u‖=1

| |u′x| − Med1≤i≤n{|u′Xi|} |
Mad1≤i≤n{u′Xi}
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≥ | |v′x| − Med1≤i≤n{|v′Xi|} |
Mad1≤i≤n{v′Xi}

=
| ‖x‖ − Med1≤i≤n{|v′Xi|} |

Mad1≤i≤n{v′Xi}
.

Now by Lemma 3.4.1, for sufficiently large n and ‖x‖, we have

sup
‖u‖=1

| u′x − Med1≤i≤n{u′Xi} |
Mad1≤i≤n{u′Xi}

≥
‖x‖ − sup‖u‖=1 Med1≤i≤n{|u′Xi|}

sup‖u‖=1 Mad1≤i≤n{v′Xi}
a.s.−→ ∞ as ‖x‖ → ∞.

Hence

MDn(x; F̂n)
a.s.−→ 0 as ‖x‖ → ∞,

for sufficiently large n.

We are done. 2

Lemma 3.4.3 Let X1, . . . , Xn be a sample from F and Med(u′X), Mad(u′X),

Med1≤i≤n{u′Xi} and Mad1≤i≤n{u′Xi} be deifned as in Section 3.

(1) If Med(u′X) is unique (i.e. ∀ε > 0, P (u′X ≤ Med(u′X) − ε) < 1
2
) for any unit

vector u ∈ Rd, then

Med1≤i≤n{u′Xi}
a.s.−→ Med(u′X) as n → ∞.

(2) If in addition to the assumption of (1), Mad(u′X) is unique (i.e. ∀ε > 0, P (|u′X−

Med(u′X)| ≤ Mad(u′X) − ε) < 1
2

and P (|u′X − Med(u′X)| ≤ Mad(u′X) + ε) > 1
2
) for

any unit vector u ∈ Rd, then

Mad1≤i≤n{u′Xi}
a.s.−→ Mad(u′X) as n → ∞.
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(3) If for any ε > 0, δε ≡ sup‖u‖=1 P (u′X ≤ Med(u′X) − ε) < 1
2
, then

sup
‖u‖=1

| Med1≤i≤n{u′Xi} − Med(u′X) | a.s.−→ 0 as n → ∞.

(4) If for any ε > 0, in addition to the assumption of (3), δε ≡ sup‖u‖=1 P (|u′X −

Med(u′X)| ≤ Mad(u′X)− ε) < 1
2
, and δ′ε ≡ inf‖u‖=1 P (|u′X −Med(u′X)| ≤ Mad(u′X) +

ε) > 1
2
, then

sup
‖u‖=1

| Mad1≤i≤n{u′Xi} − Mad(u′X) | a.s.−→ 0 as n → ∞.

PROOF:

(1) This follows directly from Theorem 2.3.1 of Serfling (1980).

(2) Denote “Med”, “Mad”, “Med1≤i≤n” and “Mad1≤i≤n” by “l”, “s”, “ln” and “sn”,

respectively. By the triangle inequality,

sn{u′Xi} = ln{| u′Xi − ln{u′Xj} |}

≤ ln{| u′Xi − l (u′X) |}+ | l (u′X) − ln{u′Xi} | .

Likewise,

ln{| u′Xi − l (u′X) |} ≤ ln{| u′Xi − ln{u′Xj} |}+ | l (u′X) − ln{u′Xi} | .

Thus

| sn{u′Xi} − ln{| u′Xi − l (u′X) |} | ≤ | l (u′X) − ln{u′Xi} | .
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Hence, by the result established in (1), we have

lim
n→∞

Mad1≤i≤n{u′Xi} a.s.
= lim

n→∞
Med1≤i≤n{| u′Xi − Med(u′X) |}

a.s.
= Mad(u′X).

(3) For any ε > 0, let Iu ≡ P (|ln{u′Xi} − l(u′X)| > ε), then

Iu = P (ln{u′Xi} > l(u′X) + ε) + P (ln{u′Xi} < l(u′X) − ε).

Now applying a similar approach of Theorem 2.3.2 of Serfling (1980), we have

P (ln{u′Xi}>l(u′X)+ ε) ≤ P

(
n∑

i=1

I(u′Xi > l(u′X) + ε) ≥ n

2

)

= P

(
n∑

i=1

(Vi − EVi) ≥ n
(

1

2
− P (u′X > l(u′X) + ε)

))

= P

(
n∑

i=1

(Vi − EVi) ≥ n
(
P (u′X ≤ l(u′X) + ε)− 1

2

))
,

where Vi = I(u′X > l(u′X) + ε), and

P (ln{u′Xi}<l(u′X)− ε) ≤ P

(
n∑

i=1

I(u′Xi < l(u′X) − ε) ≥ n

2

)

= P

(
n∑

i=1

(Wi − EWi) ≥ n
(

1

2
−P (u′X < l(u′X)− ε)

))
,

where Wi = I(u′X < l(u′X) − ε). Let δ′ε ≡ inf‖u‖=1 P (u′X ≤ l(u′X) + ε) and δu
ε ≡

min
{
P (u′X ≤ l(u′X) + ε) − 1

2
, 1

2
− P (u′X < l(u′X) − ε)

}
. Now utilizing the result of

Hoeffding (1963) (see Lemma 2.3.2 of Serfling (1980)), we obtain

P (|ln{u′X} − l(u′X)| > ε) ≤ 2e−2n(δu
ε )2
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Write

δε = sup
‖u‖=1

(1 − P (u′X > l(u′X) − ε))

= 1 − inf
‖u‖=1

P (u′X > l(u′X) − ε)

= 1 − inf
‖u‖=1

P (−u′X > l(−u′X) − ε)

= 1 − inf
‖u‖=1

P (u′X < l(u′X) + ε),

then

δ′ε ≥ inf
‖u‖=1

P (u′X < l(u′X) + ε)

= 1 − δε >
1

2
.

Hence

δu
ε ≥ min

{
δ′ε −

1

2
,
1

2
− δε

}
≡ δ > 0.

Since for any ε > 0, there always exists a unit vector u ∈ Rd such that

P

(
sup
‖v‖=1

|ln{v′Xi} − l(v′X)| > ε

)
≤ P (|ln{u′X} − l(u′X)| > ε).

We have

P

(
sup
‖v‖=1

|ln{v′Xi} − l(v′X)| > ε

)
≤ 2e−2nδ2

.

The Borel-Cantelli lemma now implies that

sup
‖u‖=1

| Med1≤i≤n{u′Xi} − Med(u′X) | a.s.−→ 0 as n → ∞.
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(4) By the proof of (2), we obtain

| sn{u′Xi} − ln{| u′Xi − l (u′X) |} | ≤ | l (u′X) − ln{u′Xi} | .

Thus, by (3)

sup
‖u‖=1

| sn{u′Xi} − ln{| u′Xi − l (u′X) |} | ≤ sup
‖u‖=1

| l (u′X) − ln{u′Xi} |

a.s.−→ 0 as n → ∞.

Utilizing the same argument of (3), we also have

sup
‖u‖=1

| ln{|u′Xi − l(u′X)|} − s(u′X) | a.s.−→ 0 as n → ∞.

By the triangle inequility, we have

sup
‖u‖=1

| sn{u′Xi} − s(u′X) | ≤ sup
‖u‖=1

|sn{u′Xi} − ln{|u′Xi − l(u′X)|}|

+ sup
‖u‖=1

|ln{|u′Xi − l(u′X)|} − s(u′X)|.

Hence, we have

sup
‖u‖=1

| Mad1≤i≤n{u′Xi} − Mad(u′X) | a.s.→ 0 as n → ∞.

We are done. 2

Theorem 3.4.1 Let X1, . . . , Xn be a sample from F and MD(x; F) and MDn(x; F̂n) be

deifned as in Section 3. Suppose in addition to the assumptions of (4) of Lemma 3.4.3,

inf‖u‖=1 Mad(u′X) > 0. Then

sup
x∈Rd

∣∣∣MD(x; F ) − MDn(x; F̂n)
∣∣∣ a.s.−→ 0 as ‖n‖ → ∞.
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PROOF: By Lemma 3.4.2 we need only to show that

sup
‖x‖≤M

∣∣∣MD(x; F ) − MDn(x; F̂n)
∣∣∣ a.s.−→ 0 as n → ∞,

for a given M .

We have ∣∣∣∣∣ sup
‖u‖=1

∣∣∣∣∣ |u′x − ln{u′Xi}|
sn{u′Xi}

∣∣∣∣∣ − sup
‖u‖=1

∣∣∣∣∣ |u′x − l(u′X)|
s(u′X)

∣∣∣∣∣
∣∣∣∣∣

≤ sup
‖u‖=1

∣∣∣∣∣ |u′x − ln{u′Xi}|
sn{u′Xi}

− |u′x − l(u′X)|
s(u′X)

∣∣∣∣∣
≤ sup

‖u‖=1

∣∣∣∣∣u′x − ln{u′Xi}
sn{u′Xi}

− u′x − l(u′X)

s(u′X)

∣∣∣∣∣
≤ sup

‖u‖=1

∣∣∣∣∣ u′x

sn{u′Xi}
− u′x

s(u′X)

∣∣∣∣∣ + sup
‖u‖=1

∣∣∣∣∣ l(u′X)

s(u′X)
− ln{u′Xi}

sn{u′Xn}

∣∣∣∣∣ .
Denote the first and the second terms in the right hand side of the last inequality by I

and II respectively, then when ‖x‖ ≤ M

I = sup
‖u‖=1

|u′x (s(u′X) − sn{u′Xi})|
sn{u′Xi}s(u′X)

≤ M∆n
s

inf‖u‖=1 sn{u′Xi} inf‖u‖=1 s(u′X)
,

where ∆n
s = sup‖u‖=1 |s(u′X) − sn{u′Xi}|, and

II = sup
‖u‖=1

|(l(u′X) − ln{u′Xi})sn{u′Xi} + ln{u′Xi}(sn{u′Xi} − s(u′X))|
sn{u′Xi}s(u′X)

≤
∆n

l sup‖u‖=1 sn{u′Xi} + sup‖u‖=1 |ln{u′Xi}|∆n
s

inf‖u‖=1 sn{u′Xi} inf‖u‖=1 s(u′X)
,

where ∆n
l = sup‖u‖=1 |l(u′X) − ln{u′Xi}|. Since inf‖u‖=1 s(u′X) > 0, by Lemma 3.4.1

and Lemma 3.4.3, for any ε > 0 there is a K such that

sup
‖x‖≤M

∣∣∣∣∣ sup
‖u‖=1

∣∣∣∣∣ |u′x − ln{u′Xi}|
sn{u′Xi}

∣∣∣∣∣ − sup
‖u‖=1

∣∣∣∣∣ |u′x − l(u′X)|
s(u′X)

∣∣∣∣∣
∣∣∣∣∣ ≤ I + II
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≤ Kε,

for sufficiently large n. The definition of MD(x; F) and MDn(x; F̂n) now implies that

sup
‖x‖≤M

∣∣∣MD(x; F ) − MDn(x; F̂n)
∣∣∣

≤ sup
‖x‖≤M

∣∣∣∣∣ sup
‖u‖=1

∣∣∣∣∣ |u′x − ln{u′Xi}|
sn{u′Xi}

∣∣∣∣∣ − sup
‖u‖=1

∣∣∣∣∣ |u′x − l(u′X)|
s(u′X)

∣∣∣∣∣
∣∣∣∣∣

a.s.−→ 0 as n → ∞,

for any given M .

We are done. 2

3.4.2 The Behavior of the Sample Type D Depth Functions

The following result, due to Vapnik and Chervonenkis (1971) and Steele (1978), will be

used in the proof of the almost sure uniform convergence of the sample Type Ddepth

functions.

Lemma 3.4.4 Let S be any class of measurable subsets of Rd, P be a probability

measure on Rd and X1, . . . , Xn be a random sample from P . Then

sup
A∈S

|Pn(A) − P (A)| a.s.−→ 0 as n → ∞

if and only if

1

n
E[log ∆S(X1, . . . , Xn)]−→0 as n → ∞,

where Pn is the empirical measure of P defined by Pn(A) ≡ 1
n

∑n
i=1 I(Xi ∈ A) and

∆S(W ) ≡ card({W ∩ A | A ∈ S}) for any finite subset W of Rd.
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Remark 3.4.1 Vapnik and Chervonenkis (1971) acturally only proved that Pn(A)

converges uniformly to Pn(A) in probability. Steele (1978) proved that the uniform

convergence of Pn(A) to P (A) holds true with probability 1.

Theorem 3.4.2 Let C be a class of closed and convex Borel sets on Rd, P be a proba-

bility measure on Rd and D(x; P, C) and Dn(x; Pn, C) be defined as in (3.22) and (3.23).

Then

sup
x∈Rd

|Dn(x; Pn, C) − D(x; P, C)| a.s.−→ 0 as n → ∞.

PROOF: The class of convex Borel sets on Rd form a Vapnik-Chervonenkis class (see

Vapnik and Chervonenkis (1971) and Steele (1978) ). Now by the Lemma 3.4.4, it is not

difficult to see that

sup
x∈Rd

|Dn(x; Pn, C) − D(x; P, C)| = sup
x∈Rd

∣∣∣∣ inf
Cx∈C

Pn(Cx) − inf
Cx∈C

P (Cx)
∣∣∣∣

≤ sup
C∈C

|Pn(C) − P (C)|

a.s.−→ 0 as n → ∞,

where Cx is the set C with x on its boundary.

We are done. 2

We C = H, we obtain the result of Donoho and Gasko (1992), the almost sure

uniform convergence of the sample halfspace depth function HDn(x; Pn) to the population

halfspace depth function HD(x; P ).

Corollary 3.4.1 The sample halfspace depth function HDn(x; Pn) converges uniformly
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to the population halfspace depth function HD(x; P ) with probability 1, that is

sup
x∈Rd

|HDn(x; Pn) − HD(x; P )| a.s.−→ 0 as n → ∞.
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Chapter 4

STATISTICAL DEPTH CONTOURS

4.1 Introduction

Statistical depth functions discussed in Chapter 3 can be immediately utilized to

construct “depth contours” or “multivariate quantile contours”. Depth contours can

provide a good geometric view of the structure of an underlying multivariate distribution

and can reveal the shape of multivariate datasets. They are analogous to univariate “αth

quantile trimmed regions”, the intervals [q1−α, qα], for 1
2
≤ α < 1, where qp = inf{x :

F (x) ≥ p} for 0 < p < 1 and a distribution function F on R. Depth contours permit

one to generalize the univariate L-statistics and R-statistics in the multivariate setting.

(See Serfling (1980) for discussion of classical L-statistics and R-statistics.) They also

are useful in multivariate robust statistical procedures in connection with generalized

multivariate medians and data ordering.

The properties of halfspace depth contours have been studied by many authors, includ-

ing Eddy (1985), Nolan (1992), Donoho and Gasko (1992) and Masse and Theodorescu

(1994). Under some assumptions on depth functions and sample depth functions, He and

Wang (1997) provided a convergence result on depth contours of some depth functions

for elliptical distributions.
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In this chapter, a general definition of depth contour is introduced and properties of

depth contours of various depth functions are then explored. Finally, some convergence

results are established for depth contours of general depth functions.

4.2 Statistical Depth Contours

We mentioned in Section 3.3.4 the depth contour concept for Type D depth functions.

Now we give a general definition of depth contours.

Definition 4.2.1 Let D(x) be any depth function for a given distribution and Dn(x)

a sample depth function corresponding to D(x). Define

Dα ≡ {x ∈ Rd | D(x) ≥ α} and Dα
n ≡ {x ∈ Rd | Dn(x) ≥ α}, (4.1)

where n is the sample size and α > 0. Then Dα and Dα
n are called the αth depth contour

and sample αth depth contour, respectively. If D(x) is a statistical depth function, then

Dα and Dα
n are called the αth statistical depth contour and sample αth statistical depth

contour, respectively.

Remarks 4.2.1 (1) Strictly speaking, it is more suitable to call ∂Dα and ∂Dα
n the αth

depth contour and sample αth depth contour and Dα and Dα
n the αth depth trimmed

region and sample αth depth trimmed region. When there is no confusion, we will still

use the above terminology.

(2) It is not difficult to see that Dα and Dα
n are the analogues of the univariate αth

quantile trimmed region and the univariate sample αth quantile trimmed region in the
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multivariate setting. So, Dα and Dα
n are also called the multivariate αth quantile contour

and the multivariate sample αth quantile contour.

(3) By the nonnegativity of depth functions, Dα and Dα
n will be given by the whole

space Rd if α = 0. Thus we will assume α > 0 unless stated otherwise. 2

Definition 4.2.2 A set E in a topological space X is said to be connected if E is not

the union of two nonempty sets A and B such that

A ∩ B = φ = A ∩ B,

where S is the closure of a set S.

Theorem 4.2.1 (i) The depth contours and the sample depth contours are nested:

Dα1 ⊂ Dα2 and Dα1
n ⊂ Dα2

n if α1 ≥ α2;

(ii) the depth contours and the sample depth contours are affine equivariant if the depth

function and the sample depth function are affine invariant;

(iii) statistical depth contours are connected.

PROOF: (i) This follows directly from the definitions of Dα and Dα
n .

(ii) This follows immediately from the affine invariance property of the depth functions.

(iii) The “monotonicity relative to deepest point” property of statistical depth functions

implies that there are no “holes” in Dα, and thus it is connected. The proof is complete.

2

The following corollary is a generalization of Proposition 2.5 in Masse and Theodor-

escu (1994).
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Corollary 4.2.1 The halfspace depth contours are affine equivariant.

Remark 4.2.1 Connectedness is clearly a desired property for depth contours. As

we have already seen in Remark 3.2.2, however, the simplicial depth function SD(x; P )

may fail to satisfy the “monotonicity relative to deepest point” property for discrete

distributions. Therefore the depth contours induced by the simplicial depth function

SD(x; P ) are not in general connected. 2

In Theorem 3.3.4 we have shown that the depth contours of Type D depth functions

are compact. This result holds true for the most of the other depth functions discussed

in Section 3.3.

Theorem 4.2.2 The depth contours are compact for the simplicial depth, the simplicial

volume depth SVDα(x; F ) (α ≥ 1) , the Lp depth (p ≥ 1), the projection depth, and the

Mahalanobis depth defined in Section 3.3.

PROOF: a) The continuity of the simplicial volume depth, the Lp depth (p ≥ 1), the

projection depth, and the Mahalanobis depth implies the closedness of the depth contours

of these depth functions. The property that these depth functions monotonically decrease

to 0 as ‖x‖ → ∞ implies the boundedness of their depth contours. The compactness

then follows immediately.

b) Theorem 1 of Liu (1990) implies the boundedness of the depth contour of the simplicial

depth function. For absolutely continuous distributions on Rd, the closedness of the

simplicial depth contours follows from Theorem 2 of Liu (1990). To prove the closedness
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of the simplicial depth contours for discrete distributions, let xn be a sequence in Rd

which converges to x, assume that xn ∈ Dα and D(x) < α. Then there is at least one

simplex S[y1, . . . , yd+1] such that xn ∈ S[y1, . . . , yd+1] for sufficiently large n and x 6∈

S[y1, . . . , yd+1]. But this event occurs with probability 0, since xn → x as n → ∞. Thus

the closedness of the depth contour holds true for the discrete case. The compactness

now follows. The proof is complete. 2

Remark 4.2.2 Compactness is another desired property for depth contours. Applying

an argument similar to that used in b) of Theorem 4.2.2, one can prove that the depth

contours of the majority depth function MJD(x; P ) are closed. But, as shown in Theo-

rem 3.3.3, the majority depth function MJD(x; P ) fails to decrease monotonically to 0

as as ‖x‖ → ∞ . Hence the depth contours of the majority depth are not compact. 2

Now let us examine some properties of sample depth contours. We select, as an

example, the sample Type D depth contours and discuss their properties. For the Type

D depth function D(x; P, C), the sample αth depth contour is

Dα
n ≡ {x ∈ Rd | Dn(x; C) ≥ α}. (4.2)

We have

Theorem 4.2.3 Let C be a class of closed and connected Borel sets satisfying (C1),

(C2)and (C3) in Section 3.3.4, and let P be a probability measure on Rd. Then the

sample depth contours of Type D depth functions are connected and compact.
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PROOF: Following the proof of Theorem 3.3.12, we can establish

Dα
n = {x ∈ Rd | Dn(x; C) ≥ α} = ∩{C | Pn(C) > 1 − α,C ∈ C} (4.3)

The closedness and connectedness of Dα
n follow. It is not difficult to see that

Dn(x; C) → 0 as ‖x‖ → ∞.

The compactness of Dα
n now follows immediately. 2

When C = H, we obtain the following result, which slightly extends Lemma 2.2 in

Donoho and Gasko (1992).

Corollary 4.2.2 The sample depth contours of the halfspace depth function HD(x; P )

are connected, convex, compact and nested.

Remark 4.2.3 The depth contours Dα and the sample depth contours Dα
n of the

halfspace depth function HD(x; P ) are called the “α-trimmed regions” and the “empirical

α-trimmed regions” in Nolan (1992). 2

Depth contours possess exactly the same shape as that of constant density contours for

special distributions such as elliptical distributions. We first give a definition of elliptical

distribution (see Muirhead (1982), p. 34).

Definition 4.2.3 A real vector X ∈ Rd is said to have an elliptical distribution with

parameters µ and Σ, denoted by X ∼ E(µ, Σ), if its density function is of the form

f(x) = c |Σ|−
1
2 g

(
(x − µ)′Σ−1(x − µ)

)

for some function g, where Σ > 0 is positive definite.
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Liu and Singh (1993) proved for elliptically distributed random vectors that the

boundaries of the depth contours of strictly decreasing and affine invariant depth func-

tions are the surfaces of ellipsoids.

Lemma 4.2.1 (Liu and Singh 1993) Suppose that X ∈ Rd is elliptically distributed,

X ∼ E(µ, Σ), and that D(x) is affine invariant and strictly decreasing on any ray

originating from the center µ. Then the contours {x : D(x) = c} are of the form

(x − µ)′Σ−1(x − µ) = dc for some dc in R.

The following result is a generalization of Lemma 4.2.1.

Lemma 4.2.2 Suppose that X ∈ Rd is elliptically distributed, X ∼ E(µ, Σ), and that

D(x) is affine invariant and attains maximum value at µ. Then

(i) Dα is of the form Dα = {x ∈ Rd | (x − µ)′Σ−1(x − µ) ≤ r2
α} for some rα, and

D(x) = f((x − µ)′Σ−1(x − µ)) for some nonincreasing function f .

(ii) D(x) is strictly decreasing on any ray originating from the center if and only if

{x ∈ Rd|D(x) = α} = {x ∈ Rd | (x − µ)′Σ−1(x − µ) = r2
α}.

PROOF: (i) Utilizing an argument similar to that for Lemma 3.1 of Liu and Singh

(1993), one can obtain the first part of (i). Since the points on the boundary of Dα

possess the same depth, it follows that

D(x) = f((x − µ)′Σ−1(x − µ)).

The monotonicity of f follows from the fact that D(λµ + (1 − λ)x) ≥ D(x), since

(λµ + (1 − λ)x) ∈ Dα0 , where α0 = D(x).

80



(ii) Sufficiency follows directly from Lemma 4.2.1. We need to show that D(x) is strictly

decreasing if

{x ∈ Rd|D(x) = α} = {x ∈ Rd | (x − µ)′Σ−1(x − µ) = r2
α}.

Let y 6= µ be a point in Rd, and y0 = λµ + (1 − λ)y for some λ ∈ (0, 1). Then y ∈ ∂Dαy

and y0 is in the interior of Dαy for some αy such that

(y − µ)′Σ−1(y − µ) = r2
αy

.

Hence D(y0) > D(y). The proof is complete. 2

Remark 4.2.4 The maximality at µ condition on D(x) in Lemma 4.2.2 could be

replaced by a convexity condition on Dα, which is also sufficient to prove the necessity

part of (ii) in the Lemma. 2

Theorem 4.2.4 Suppose X ∈ Rd is elliptically distributed, X ∼ E(µ, Σ). Then the

depth contours of the simplicial depth, the majority depth, the simplicial volume depth

SVDα (α ≥ 1), the Lp depth (p ≥ 1), the projection depth, the Mahalanobis depth, and

the Type D depth defined in Section 3.3 are ellipsoids. The boundaries of these depth

contours are the surfaces of the ellipsoids.

PROOF: By Lemma 4.2.2 and the affine invariance of these depth functions, we need

only check the strictly decreasing property of these depth functions under the elliptical

distribution assumption.

a) An argument similar to that of Theorem 3 of Liu (1990) gives the strict monotonicity
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property of the simplicial depth function.

b) The strict decreasing property of the majority depth function follows from the fact

that

P (λµ + (1 − λ)x ∈ Hm
X1,...,Xd

) − P (x 6∈ Hm
X1,...,Xd

) =

P (λµ + (1 − λ)x ∈ Hm
X1,...,Xd

, x 6∈ Hm
X1,...,Xd

) > 0,

for any λ ∈ (0, 1) and x 6= µ in Rd.

c) For the simplicial volume depth function SVDα(x; F ) (α ≥ 1), following the proof of

Corollary 3.3.1, we have

∆(x0; x1, . . . , xd) ≤ λ∆(µ; x1, . . . , xd) + (1 − λ)∆(x; x1, . . . , xd),

for any λ ∈ (0, 1), x0 = λµ + (1 − λ)x, x 6= µ and x, x1, . . . , xd in Rd. And

P (∆(x0; X1, . . . , Xd) < λ∆(µ; X1, . . . , Xd) + (1 − λ)∆(x; X1, . . . , Xd)) > 0,

for a random sample X1, . . . , Xd from X. The convexity of the function xα for 0 < x < ∞

and the maximality of SVDα(x; F ) at µ now imply that

∆α(x0; x1, . . . , xd) ≤ ∆α(x; x1, . . . , xd),

and

P (∆α(x0; X1, . . . , Xd) < ∆α(x; X1, . . . , Xd)) > 0.

Hence, SVDα(x; F ) <SVDα(x0; F ). The strict decreasing property of the simplicial vol-

ume depth function thus follows.
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d) For the Lp depth function Lp(x; F ) (p ≥ 1), Minkowski’s inequality implies that

‖λµ + (1 − λ)x − x1‖ ≤ λ‖µ − x1‖ + (1 − λ)‖x − x1‖

and

P (‖λµ + (1 − λ)x − X‖ < λ‖µ − X‖ + (1 − λ)‖x − X‖) > 0,

for any λ ∈ (0, 1), x 6= µ and x, x1 in Rd. Hence

Lp(λµ + (1 − λ)x; F ) > Lp(x; F ).

The strict monotonicity property of the Lp depth function thus follows.

e) The strict decreasing property of the projection depth function follows immediately

from the fact that Med(u′X) = u′µ for any unit vector u in Rd.

f) Following the proof of (3) of Theorem 3.3.11, we have

O(x0; X) < λO(µ; X) + (1 − λ)O(x; X),

for any λ ∈ (0, 1), x 6= µ in Rd and x0 = λµ + (1 − λ)x. Hence MHD(x0; F ) > MHD(x;

F). The strict decreasing property of the Mahalanobis depth function thus follows.

g) Let λ ∈ (0, 1), x 6= µ in Rd and x0 = λµ + (1 − λ)x. To consider the depth of point

x0 and x, we need only take the infimum of P (C) over all C ∈ C which do not contain

the center µ. Now for any such Cx0 , by the condition (C2) in Section 3.3.4 there exists

a Cx such that Cx ⊂ Cx0 and P (Cx) < P (Cx0). Hence, D(x; P, C) > D(x0; P, C). The

strict monotonicity property of Type D depth functions thus follows. This completes the

proof. 2
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Theorem 4.2.5 Suppose that X ∈ Rd is elliptically distributed, X ∼ E(µ, Σ), and

that D(x) is affine invariant. Then D(x) strictly decreases as x moves away from the

center µ along any ray if and only if

D(x) = f
(
(x − µ)′Σ−1(x − µ)

)
,

for some strictly decreasing continuous function f.

PROOF: The necessity is trival. We need only prove the sufficiency.

a) By Lemma 4.2.2, there is a function f such that

D(x) = f
(
(x − µ)′Σ−1(x − µ)

)
.

b) To show that f is strictly decreasing, let q2 > q1 > 0. Then there is an x ∈ Rd, an

α ∈ (0, 1) and an x0 = αµ + (1 − α)x such that

q1 = (x0 − µ)′Σ−1(x0 − µ) and q2 = (x − µ)′Σ−1(x − µ).

Now f(q1) = D(x0) > D(x) = f(q2), proving that f is strictly decreasing.

c) To show that f is continuous, we note, by Lemma 4.2.2, that D(x) is upper and lower

semicontiuous. Since (x − µ)′Σ−1(x − µ) is also continuous, the continuity of f follows

from Lemma 4.2.3. This completes the proof. 2

Lemma 4.2.3 Let X, Y and be topological spaces, g: X→Y be continuous, and h = f◦g:

X→Y be continuous. Then f: Y→Y is continuous.

PROOF: If V is open in Y and f(x0) ∈ V for some point x0 ∈ Y , then there exist open

sets W and U in X such that y0 ∈ W ∩ U , g(y0) = x0 and g(W ) ∪ h(U) ⊂ V . It follows

that f(g(U ∪ W )) = h(U ∪ W ) ⊂ V and x0 ∈ g(U ∩ W ), proving the continuity of f. 2
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The following lemma, which has some alternative assumptions, can also be used to

prove the continuity of f in Theorem 4.2.5.

Lemma 4.2.4 Suppose that g: Rd → R is continuous.

(i) Let f: R → R be nonincreasing.

(1) If f ◦ g is upper semicontinuous, then f is left continuous;

(2) if f ◦ g is lower semicontinuous, then f is right continuous.

(ii) Let f: R → R be nondecreasing.

(1) If f ◦ g is upper semicontinuous, then f is right continuous;

(2) if f ◦ g is lower semicontinuous, then f is left continuous.

PROOF: We only prove (1) of (i); the proof for the other statements is similar.

Let xn ↑ x. The continuity of g implies that there is a sequence yn and a point y in

Rd such that yn → y and g(yn) = xn, g(y) = x. The continuity of g, the nonincreasing

property of f , and the upper semicontinuous property of f ◦ g imply that

f(x−) ≤ f(xn) = f(g(yn)) < f(g(y)) + ε = f(x) + ε ≤ f(x−) + ε.

Hence f(x−) = f(x). 2

4.3 The Behavior of Sample Depth Contours in General

We first establish, in a very general setting, an almost sure result about sample depth

contours.
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Theorem 4.3.1 Let D(x) be any nonnegative depth function and Dn(x) a correspond-

ing sample depth function. Let Dα(x) and Dα
n(x) be defined as in Definition 4.2.1. As-

sume that

(C1) D(x) → 0, as ‖x‖ → ∞,

(C2) supx∈S |Dn(x) − D(x)| a.s.−→ 0, for any bounded set S ⊂ Rd.

Then, for any ε > 0, δ < ε, α ≥ 0, and αn → α,

Dα+ε ⊂ Dαn+δ
n ⊂ Dαn

n ⊂ Dαn−δ
n ⊂ Dα−ε a.s.

for sufficiently large n, and uniformly if αn → α uniformly as n → ∞.

PROOF: (I) Clearly, Dαn+δ
n ⊂ Dαn

n ⊂ Dαn−δ
n .

(II) To show that Dαn−δ
n ⊂ Dα−ε, assume that α − ε > 0 (the inclusion relation holds

trivally when α− ε ≤ 0, since then Dα−ε = Rd). Since αn → α, there is an N1 such that

when n ≥ N1

|αn − α| <
ε − δ

2
.

Since by (C1), D(λx) uniformly approaches 0 as λ increases to ∞, there exists a bounded

region S ⊂ Rd such that Dα−ε ⊂ Dα−2ε = S. By (C2), there is an N2(≥ N1) such that

when n ≥ N2

(∗) sup
x∈S

|Dn(x) − D(x)| ≤ ε − δ

2
a.s..

Let x ∈ Dαn−δ
n ∩ (Dα−2ε − Dα−ε). Then when n ≥ N2

Dn(x) − D(x) > αn − δ − (α − ε) ≥ α − ε − δ

2
− δ − (α − ε) ≥ ε − δ

2
,
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contradicting (∗). Thus either Dαn−δ
n ⊂ Dα−ε or Dαn−δ

n ∩ Dα−2ε = Φ. But the latter is

impossible, for if it is true and we let x ∈ Dαn−δ
n , then when n ≥ N2

Dn(x) − D(x) > αn − δ − (α − 2ε) ≥ α − ε − δ

2
− δ − (α − 2ε) ≥ 3(ε − δ)

2
,

for any n, violating (C2). Hence Dαn−δ
n ⊂ Dα−ε.

(III) Applying a similar argument as for (II), one can show that

Dα+ε ⊂ Dαn+δ
n .

The proof is complete. 2

Corollary 4.3.1 Suppose, in addition to the assumptions of Theorem 4.3.1, that

P ({x ∈ Rd|D(x) = α}) = 0. Then

Dαn
n

a.s.−→ Dα as n → ∞.

The convergence is unform in α if αn → α uniformly as n → ∞.

PROOF: It is easy to see that

{x ∈ Rd|D(x) > α} =
∪

ε∈Q+

Dα+ε ⊂
∩

ε∈Q+

Dα−ε = {x ∈ Rd|D(x) ≥ α},

where Q+ is the set of positive rational numbers. By Theorem 4.3.1, we can show that

∪
ε∈Q+

Dα+ε ⊂ lim inf
n→∞

Dαn
n ⊂ lim sup

n→∞
Dαn

n ⊂
∩

ε∈Q+

Dα−ε a.s.

P ({x ∈ Rd|D(x) = α}) = 0 then implies that

lim
n→∞

Dαn
n

a.s.
= Dα.
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The proof is complete. 2

Applying the general result about depth contours stated in Theorem 4.3.1 to elliptical

distributions and affine invariant depth functions, we obtain

Corollary 4.3.2 Suppose D(x) is nonnegative and affine invariant. Suppose also that

(0) X ∼ E(µ, Σ),

(1) D(x) → 0 as ‖x‖ → ∞,

(2) supx∈S |Dn(x) − D(x)| a.s.−→ 0 as n → ∞, for any bounded set S ⊂ Rd,

(3) Dα
n is convex and closed.

Then

(4) the identity {x ∈ Rd|D(x) = α} = {x ∈ Rd|e(x) = r2
α}, for some rα ∈ R and

e(x) = (x − µ)′Σ−1(x − µ), holds if and only if for any α ∈ (0, 1) and ε > 0, there exists

δ > 0 such that for sufficiently large n

(∗) Dh(q(α−ε)) ⊂ Dβn(α)+δ
n ⊂ Dβn(α)−δ

n ⊂ Dh(q(α+ε)) a.s. ,

and uniformly in α ∈ [0, α0] for α0 < 1, where h(x), q(α) and βn are defined by P ({x ∈

Rd | e(x) ≤ q(α)}) = α, Pn({x ∈ Rd | Dn(x) ≥ βn(α)}) = bαnc, and D(x) = h(e(x)).

PROOF: (I) Sufficiency. Convexity of Dα
n and (2) imply the convexity of Dα. Re-

mark 4.2.4 and Lemma 4.2.2 now show that D(x) is strictly decreasing as x moves away

from the µ along any fixed ray. Theorem 4.2.5 then shows that h(x) is strictly decreasing

and continuous. By Lemma 3 of He and Wang (1997), limn→∞ βn(α) = h(q(α)) uni-

formly in α. The continuity and monotonicity of q(α) and h(x) imply that h(q(α+ ε)) =
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h(q(α))− f1(ε) and h(q(α− ε)) = h(q(α)) + f2(ε) for some continuous and positive func-

tions f1(ε) and f2(ε). Sufficiency now follows from Theorem 4.3.1.

(II) Necessity. By Remark 4.2.4 and Lemma 4.2.2, we need only show that h(x) is strictly

decreasing as x moves away from µ along any fixed ray. The nonincreasing property of

h(x) follows from (∗). Assume that e(x) = q(α + ε), e(x0) = q(α− ε), D(y) = βn(α) and

(∗∗) Dh(q(α− ε
2
)) ⊂ Dβn(α)+δ

n ⊂ Dβn(α)−δ
n ⊂h(q(α+ ε

2
)),

for sufficiently large n. By (2) and (∗∗), we have h(q(α − ε) = D(x0) ≥ Dn(x0) − δ
2
≥

Dn(y) + δ − δ
2
≥ Dn(x) + 2δ − δ

2
≥ D(x) − δ

2
+ 2δ − δ

2
= D(x) + δ = h(q(α + ε) + δ, for

sufficiently large n. By the continuity and monotonicity of q(α), we conclude that h(x)

is strictly decreasing. Necessity thus follows. 2

Remarks 4.3.1

a) He and Wang (1997) proved the following. Assume, for nonnegative and affine

invariant D(x), that

(0) X ∼ E(µ, Σ),

(1) D(x) → 0 as ‖x‖ → ∞,

(2) limn→∞ supx∈S |Dn(x) − D(x)| = 0 a.s. for any compact set S ⊂ Rd,

(3) Dα
n is convex and closed,

(4) {x ∈ Rd|D(x) = α} = {x ∈ Rd|e(x) = r2
α} for some rα ∈ R and e(x) = (x −

µ)′Σ−1(x − µ), and

(5) Dn(x) attains maximum value at µ.
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Then

(6) D(x) is a strictly monotone function of e(x) (which implies that for any c > 0,

P ({x : D(x) = c} = 0) holds

if and only if for any α ∈ (0, 1) and ε > 0, there exists δ > 0 such that as n → ∞,

(∗∗∗) Dh(q(α−ε)) ⊂ Dβn+δ
n ⊂ Dβn−δ

n ⊂ Dh(q(α+ε)) a.s. .

and uniformly in α ∈ [0, α0], α0 < 1, where h(x), q(α) and βn are defined as P ({x ∈

Rd | e(x) ≤ q(α)}) = α, Pn({x ∈ Rd | Dn(x) ≥ βn(α)}) = bαnc and D(x) = h(e(x)).

Although conditions (1) and (5) are not explicitly stated in He and Wang (1997),

they implicitly used them in their proof, so we have listed them here.

b) Corollary 4.3.2 is an improvement and extension of the main result of He and Wang

(1997), since it establishes (∗∗∗) only under the assumptions (0)–(4). Also, condition (2)

of Corollary 4.3.2 is weaker than condition (2) of He and Wang (1997).

c) On the other hand, condition (6) of He and Wang (1997) seems to be redundant,

since convexity of Dα
n and condition (2) imply the convexity of Dα, which, combined

with condition (4), Remark 4.2.4 and Lemma 4.2.2, implies condition (6). 2

We now turn to the almost sure convergence of sample depth contours of some specific

depth functions. We select, as examples, the simplicial depth, the projection depth, and

the general Type D depth, and investigate their contour convergence.

Theorem 4.3.2 Suppose X ∈ Rd is elliptically distributed, X ∼ E(µ, Σ). Then for
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the simplicial depth, the projection depth, and the general Type D depth, we have

lim
n→∞

Dαn
n

a.s.
= Dα,

for any sequence αn with αn → α as n → ∞ and random sample X1, . . . , Xn from X,

where Dα is an ellipsoid of the same shape as that of the constant density contours of

the parent distribution. Futher, the convergence is uniform in α if αn → α uniformly as

n → ∞.

PROOF: By results in Chapter 3, the depth functions SD(x; P ), PD(x; F ) and D(x; P, C)

satisfy (C1) of Theorem 4.3.1, and the almost sure uniform convergence of sample depth

functions to population depth functions also holds for the sample projection depth func-

tion PDn(x) and the sample Type D depth function Dn(x; C). The almost sure uniform

convergence of the sample simplicial depth function also holds (see, e.g., Corollary 6.8 of

Arcones and Gine (1993)). Now, by Theorem 4.2.4, the condition in Corollary 4.3.1 is

also satisfied for all three of these depth functions, and the Dα’s are ellipsoids. Thus the

proof is complete. 2

Remark 4.3.1 It is not difficult to see that the contours in Theorem 4.3.2 satisfy

lim
n→∞

ρ(Dαn
n , Dα)

a.s.
= 0,

and uniformly in α if αn → α uniformly as n → ∞, where ρ represents the Hausdorff

distance between two sets, that is,

ρ(A,B) = inf{ε |ε > 0, A ⊂ Bε, B ⊂ Aε},
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where Aε = {x |d(x,A) < ε} and d(x,A) = inf{d(x, y) |y ∈ A}. 2

When C = H in the Type D depth functions, we obtain the following almost sure

convergence result for sample halfspace depth contours, which is a slight extension of

Donoho and Gasko (1992), Lemma 2.5.

Corollary 4.3.3 Suppose X ∈ Rd is elliptically distributed, X ∼ E(µ, Σ). Then the

sample depth contours D
bαnc

n of the halfspace depth converge almost surely and uniformly

in α ∈ [0, 1
2
], as n → ∞, to Dα, an ellipsoid of the same shape as that of the parent

distribution.

For the multivariate normal distribution, a special case of elliptical distribution, we

have

Corollary 4.3.4 Suppose X ∈ Rd is normally distributed, X ∼ N(µ, Σ). Then for the

halfspace depth,

(1) D
bαnc

n
a.s.−→ Dα =

{
x ∈ Rd | (x − µ)′Σ−1(x − µ) ≤

(
Φ−1(1 − α)

)2
}

,

and uniformly in α ∈ [0, 1
2
], where Φ−1(p) denotes the pth quantile of the standard normal

distribution. Also

(2) P
(
D

bαnc
n

)
a.s.−→ 1 − β,

and uniformly in α ∈ [0, 1
2
], where β is determined by (Φ−1(1 − α))

2
= χ2

d(β), and χ2
d(p)

denotes the pth quantile of the chi-square distribution with d degree of freedom.
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PROOF: (1) Suppose Y ∈ Rd is normally distributed and Y ∼ N(0, I). Then, by affine

invariance of the halfspace depth, it is not difficult to see that the depth contour Dα

under Y is a sphere with radius Φ−1(1− α). Let X = Σ
1
2 Y + µ. Then X ∼ N(µ, Σ) and

the affine invariance implies that

Dα = {x ∈ Rd | (x − µ)′Σ−1(x − µ) ≤
(
Φ−1(1 − α)

)2
},

which, combined with Corollary 4.3.3, gives (1).

(2) Since

P
(
lim inf
n→∞

D
bαnc

n

)
≤ lim inf

n→∞
P

(
D

bαnc
n

)
≤ lim sup

n→∞
P

(
D

bαnc
n

)
≤ P

(
lim sup

n→∞
D

bαnc
n

)
,

it follows that

lim
n→∞

P
(
D

bαnc
n

)
a.s.
= P

(
lim

n→∞
D

bαnc
n

)
a.s.
= P

(
(X − µ)′Σ−1(X − µ) ≤

(
Φ−1(1 − α)

)2
)

.

Now since X ∼ N(µ, Σ), we have (X − µ)′Σ−1(X − µ) ∼ χ2
d, and thus (2) follows. 2

Applying Corollary 4.3.4 for X ∼ N(0, I), and Corollary 4.3.1, we obtain Theorem 1

of Yeh and Singh (1997).

Corollary 4.3.5 Suppose F is absolutely continuous in Rd and E‖X‖2 < ∞, then

∂C ⊆ lim inf
n→∞

(W ∗
n,1−α) ⊆ lim sup

n→∞
(W ∗

n,1−α) ⊆ C,

for C = {x ∈ Rd | ‖x‖ ≤ γ1−α} and some γ1−α such that P (N(0, I) > γ1−α) = α. Here

W ∗
n,1−α is a 100(1 − α)% bootstrap confidence region obtained by first deleting 100α%
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exterior bootstrap points Z∗
n based on halfspace depth and then forming the convex hull of

the remaining points,

Z∗
n = n

1
2 S

− 1
2

θ̂n
(θ̂∗n − θ̂n),

θ̂n = θ̂n(X1, . . . , Xn) is a consistent estimator of a d-dimensional parameter of interest,

Sθ̂n
is a consistent estimator of the dispersion matrix of θ̂n, and the asterisk is used to

denote the statistic computed under the bootstrap sample.

4.4 Summary

In this chapter, a general definition of depth contour has been introduced and properties

of depth contours of various depth functions explored. Convergence results have been

established for sample depth contours in a very general setting and developed for some

specific cases. Some results obtained here improve and generalize recent results in the

literature.
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Chapter 5

DEPTH-BASED LOCATION MEASURES

5.1 Introduction

It has long been known that in one dimension the median, regarded as the center of

a given distribution, is one of the most favorable robust location measures for the distri-

bution. One would naturally suppose the same to be true in higher dimensions, making

the higher dimensional median a natural location measure for multivariate distributions.

Questions we consider here are: (1) What are desirable properties that multivariate

location measures should satisfy? (2) How to generalize the concept of the univariate

median into higher dimensional settings? (3) Do the generalized medians satisfy desirable

properties for multivariate location measures?

In Section 2 of this chapter, desirable properties for multivariate nonparametric lo-

cation measures are examined. A new property for multivariate nonparametric location

measures, called “center locating” condition, is introduced. Relationships among condi-

tions for location measures are explored. It turns out that the “center locating” condi-

tion is a favorable requirement for multivariate nonparametric location measures. The

“stochastic order preserving” condition required in Bickel and Lehmann (1975) and Oja

(1983) for location measures does not guarantee that the measures are able to identify

the locations of underlying distributions.

In Section 3, statistical depth functions, which are inherently bound up with the
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notion of center of a multivariate distribution, are applied to introduce corresponding

notions of multivariate median.

Section 4 is devoted to the performance analysis of some multivariate nonparametric

location measures with respect to the “center locating” condition. Various multivariate

medians derived from depth functions, as the candidates for multivariate nonparametric

location measures, are studied. It is found, for example, that for halfspace symmetric

distributions the Liu simplicial median fails to satisfy the “center locating” condition

and, consequently, should be used with caution as a multivariate location measure. On

the other hand, the halfspace median, the L1 median, the L̃2 median and the projection

median are found to be good choices as multivariate nonparametric location measures,

for halfspace symmetric distributions.

5.2 Properties for Multivariate Nonparametric Location Measures

5.2.1 Conditions of Bickel and Lehmann (1975) and Oja (1983)

Bickel and Lehmann (1975) introduced a definition of location measure on R, and Oja

(1983) extended the definition to higher dimensions.

Let P be a class of probability distributions in Rd and ψ : P → Rd be a functional

on P . It is convenient to write ψ(X) for ψ(F ) when F ∈ P is the distribution function

of the random vector X ∈ Rd. For a functional ψ : P → Rd to be a multivariate

nonparametric location measure, Bickel and Lehmann (1975) and Oja (1983) require the
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following two conditions:

(C1) ψ is affine equivariant, that is, ψ(AX + b) = Aψ(X)+ b, for any d×d nonsingular

matrix A and vector b ∈ Rd,

(C2) ∀P,Q ∈ P , if P
st
≤ Q, then ψ(P ) ≤ ψ(Q),

where P
st
≤ Q denotes that P is stochastically smaller than Q, i.e., that

∫
f dP ≤

∫
f dQ

for any real bounded coordinatewise increasing f on Rd, and x = (x1, . . . , xd)
′ ≤ y =

(y1, . . . , yd)
′ denotes that xi ≤ yi for i = 1, 2, . . . , d.

Remarks 5.2.1 (1) Condition (C1) is a typical requirement on location measures. It

requires that the location measure ψ should not depend on the underlying coordinate

system, nor on the scales of the underlying measurements. Note that (C1) really means

that ψ(FAX+b) = Aψ(FX) + b for any d × d nonsingular matrix A and vector b ∈ Rd,

where FX denotes the distribution of a random vector X ∈ Rd. On the other hand,

condition (C2) requires that the location measure ψ should take on larger values for

random vectors which typically are “larger”. (C2) is often called a “stochastic order

preserving” condition.

(2) It is worth noting that satisfaction of (C1) and (C2) does not guarantee that the

location measure ψ indentfies the location of a given distribution. For example, under the

definitions of Bickel and Lehmann (1975) and Oja (1983), the mean functional E[X] on

P is always a location measure; see Theorem 5.2.1. The mean functional, however, may

not always be a good location measure for some distributions like angularly symmetric
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distributions as shown in Examples 5.2.1, and especially may be poor for asymmetric

distributions. Also, it has long been recognized that the mean functional is not robust.

2

According to the definitions of Bickel and Lehmann (1975) and Oja (1983), we have

Theorem 5.2.1 The mean functional on P satisfies (C1) and (C2) and thus is always

a location measure in the sense of Bickel and Lehmann (1975) and Oja (1983).

PROOF: Assume ψ(FX) = E[X] for any random vector X with its distribution FX

in P . Then clearly ψ satisfies (C1). Now suppose F,G ∈ P and F
st
≤ G. Then by

a result of Strassen (1965), there are two Rd-valued random vectors X and Y on the

same probability space, with respective distributions F and G, such that X
a.s.
≤ Y . Thus

ψ(F ) = E[X]
a.s.
≤ E[Y ] = ψ(G), that is, (C2) holds. The proof is complete. 2

5.2.2 A further condition of interest

As a location measure, ψ should be able to identify the location of an underlying dis-

tribution when it is defined as the center of a distribution which is symmetric under a

given notion of symmetry. Specifically, we introduce the “center locating” codition

(C3) ψ(P ) = θ, for any P ∈ P which is symmetric about a unique point θ ∈ Rd under

a given notion of symmetry.
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5.2.3 Relationships among the three conditions

We devote this section to the discussion of the relationships among the conditions (C1),

(C2) and (C3). In general, the three conditions are independent.

Example 5.2.1 (C1) and (C2) but not (C3).

Define ψ(F ) = [E(X)] for any random vector X with distribution F ∈ P . Let F0 ∈ P

be angularly symmetric about a unique point θ ∈ Rd, X0 be a random vector in Rd with

distribution F0, and E(X0) 6= θ. Then it is not difficult to see that ψ satisfies (C1). By

Lemma 5.2.1 ψ also satisfies (C2). But according to the assumption that E[X0] 6= θ, ψ

does not satisfy (C3) for F0. 2

Example 5.2.2 (C1) and (C3) but not (C2).

Define ψ to be the Tukey/Donoho halfspace median (Section 5.3). Consider the set P

of halfspace symmetric distributions in Rd. Then by Theorem 3.2.1, we see that ψ(F )

satisfies (C1) and (C3) for any F ∈ P . However, ψ(F ) may not satisfy (C2) for F ∈ P

as shown in the following example. Let

x1 = (2, 2), x′
1 = (−4,−4), x2 = (2, 3), x′

2 = (−2,−5),

y1 = (6, 3), y′
1 = (−2,−1), y2 = (3, 6), y′

2 = (−2,−1),

θ1 = (1, 1), θ2 = (0, 0),

P (X = x1) = P (X = x′
1) = P (Y = y1) = P (Y = y′

1) =
1

5
,

P (X = x2) = P (X = x′
2) = P (Y = y2) = P (Y = y′

2) =
3

10
,

X(ωi) = xi, X(ω′
i) = x′

i, Y (ωi) = yi, Y (ω′
i) = y′

i, for i = 1, 2.
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Then it is not difficult to show that X and Y are angularly symmetric about the unique

points θ1 and θ2 respectively, and that X
a.s.
≤ Y . However, θ1 6≤ θ2, and thus (C3) is not

satisfied. 2

Example 5.2.3 (C2) and (C3) but not (C1).

Define ψ(F ) = mint∈Rd E[‖X − t‖2]. Consider the set P of centrally symmetric distri-

butions. Then it is easy to see that ψ(F ) does not satisfy (C1) for some F ∈ P since

ψ is only rigid-body equivariant. However, a result of Strassen (1965) and the following

result shows that ψ does satisfy (C2) and (C3). 2

Theorem 5.2.2 Suppose that F ∈ P is angularly symmetric about a unique point θ ∈

Rd. Then ψ(F ) = mint∈Rd E[‖X − t‖2] agrees with θ.

PROOF: Consider E[‖X − t‖2] as a function of t ∈ Rd. By vector differentiation

d(E[‖X − t‖2])

dt
=

d(
∫
(‖x − t‖2) dFX(x))

dt

=
∫ d(‖x − t‖2)

dt
dFX(x)

=
∫ x − t

‖x − t‖2

dFX(x).

Thus

(∗) d(E[‖X − t‖2])

dt
= E

[
X − t

‖X − t‖2

]

Since X is angularly symmetric about θ, that is

X − θ

‖X − θ‖2

d
=

θ − X

‖θ − X‖2

,
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we have

E

[
X − θ

‖X − θ‖2

]
= E

[
θ − X

‖X − θ‖2

]
= 0

Now the convexity of ‖ · ‖p for p ≥ 1 (follows directly from Minkowski’s inequality) and

(∗) imply that ψ(F ) = θ. 2

The examples above show that in general conditions (C1), (C2) and (C3) are mutu-

ally independent. For centrally symmetric distributions, however, there do exist some

dependent relationships among conditions (C1), (C2) and (C3). The first lemma below

follows in a straightforward fashion from a result of Strassen (1965).

Lemma 5.2.1 Suppose a functional ψ : P → Rd satisfies ψ(FX) = E[X] for any

F ∈ P. Then (C2) is satisfied.

Lemma 5.2.2 Suppose T : P → Rd is an odd and translation equivariant functional,

that is, T (FX+b) = T (FX)+b and T (F−X) = −T (FX) for any vector b ∈ Rd, and suppose

that FX is centrally symmetric about a point θ in Rd. Then T (FX) = θ (= E[X]).

PROOF: Since X − θ
d
= θ − X,

T (FX−θ) = T (Fθ−X) and E[X] = θ.

By the translation equivariance of T we have

T (FX) − θ = T (F−X) + θ.

Then T (F−X) = −T (FX) implies that

T (FX) = θ = E[X].
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The proof is complete. 2

Theorem 5.2.3 Suppose that P is a set of centrally symmetric multivariate distri-

butions on Rd and ψ is a functional on P satisfying (C1). Then ψ satisfies (C2) and

(C3).

PROOF: This follows immediately from Lemma 5.2.2 and Lemma 5.2.1. 2

Remark 5.2.1 Theorem 5.2.3 implies that condition (C2) in the definitions of loca-

tion measure of Bickel and Lehmann (1975) and Oja (1983) is redundant for centrally

symmetric multivariate distributions. On the other hand, under a weaker notion of sym-

metry, satisfaction of (C2) does not guarantee that (C3) is also satisfied, as shown in

Example 5.2.1. This fact again reflects the relevance of condition (C3). 2

5.3 Depth-Based Multivariate Nonparametric Location Measures

Statistical depth functions introduced in Chapter 3 are inherently bound up with notions

of center of multivariate distributions. They could be applied immediately to introduce

notions of multivariate median. Indeed, multivariate medians induced by these depth

functions are good candidates for location measures of multivariate distributions.

Definition 5.3.1 Suppose that D(·, ·) : Rd × P → R1 is a depth functional. Then

the point which maximizes D(·, F ) on Rd for a given F ∈ P is called the multivariate

median of F (induced by D(·, ·)).
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Remark 5.3.1 The halfspace median, the simplicial median, the Oja median and the

L1 median are among the foremost existing multivariate medians in the literature; see

Donoho and Gasko (1992), Liu (1990), Oja (1983) and Small(1990). These medians

may be derived respectively from the halfspace depth function (Tukey 1974, Donoho

and Gasko 1992), the simplicial depth function (Liu 1990), the simplicial volume depth

function (with α = 1) and the Lp depth function (with p = 2). The latter two depth

functions were defined in Chapter 3. (“Spatial median” is another term for the L1 median

in the literature.) 2

Remark 5.3.2 If there is a set S of multiple points which maximize D(·, F ) on Rd for

some F ∈ P , then any sensible rule may be employed to obtain a multivariate median.

For example,
∫
S x dx/

∫
S dx may be defined as a multivariate median of F . Most medians

induced by depth functionals in the sense of Definition 5.3.1 are not unique, the L1 median

being an exception. The uniqueness of the L1 median has been studied by Kemperman

(1987) and Milasevic and Ducharme (1987). It turns out that the L1 median is unique if

the probability mass is not carried by any straight line in Rd. It is not difficult to show

that the same result holds for the median induced by the L̃2 depth defined in Chapter 3.

2

Definition 5.3.2 The medians induced by the simplicial volume depth, the Lp depth,

the projection depth, and the Type D depth will be called the simplicial volume median,

the Lp median, the projection median, and the Type D median, respectively.
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Theorem 5.3.1 Multivariate medians induced by statistical depth functions satisfy

condition (C1). For centrally symmetric multivariate distributions, these medians also

satisfy conditions (C2) and (C3).

PROOF: (1) Since for any F ∈ P , all the corresponding depth functions D(·, F ) which

induce these medians are affine invariant, thus

y ∈ arg max
x∈Rd

D(x, FX) ⇐⇒ Ay + b ∈ arg max
x∈Rd

D(x, FAX+b),

for any d × d matrix A and vector b ∈ Rd. Hence all the medians induced by statistical

depth functions are affine equivariant.

(2) By Theorem 5.2.3, all the medians satisfy conditions (C2) and (C3). 2

5.4 Performance of multivariate nonparametric location measures

Employing Theorems 3.3.10 and 3.3.13 we immediately have

Theorem 5.4.1 For halfspace symmetric multivariate distributions, the projection

median and the Type D median satisfy the “center locating” condition (C3).

Taking C = H in the definition of Type D median, the above theorem yields the

following result.

Corollary 5.4.1 For halfspace symmetric multivariate distributions, the halfspace me-

dian satisfies the “center locating” condition (C3).
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Now we focus our attention on the simplicial median and the L̃2 median. We will also

examine the “center locating” condition for the L1 median (the spatial median), which is

only rigid-body equivariant, but is a popular multivariate median in the literature. We

start with the case of a class of angularly symmetric distributions.

Theorem 5.4.2 For distributions absolutely continuous and angularly symmetric about

a unique point in Rd, the simplicial median satisfies the “center locating” condition (C3).

PROOF: (modeled after the proof of Theorem 3 of Liu (1990)). Suppose X ∈ Rd is

continuous and angularly symmetric about a unique point in θ ∈ Rd. For any x ∈ Rd,

x 6= θ, we have that

D(θ) − D(x) = P (θ ∈ S[X1, . . . , Xd+1]) − P (x ∈ S[X1, . . . , Xd+1])

where D(·) denotes the simplicial depth function with respect to X, X1 . . . , Xd+1 is a

sample from X, S[X1, . . . , Xd+1] is the simplex consisting of vertices X1 . . . , Xd+1. Let

→
θx be the vector in Rd starting at θ ending at x, then

D(θ) − D(x)

= P ( ~θx leaves but not enters S[X1, . . . , Xd+1])

−P ( ~θx enters but not leaves S[X1, . . . , Xd+1])

= P ( ~θx leaves S[X1, . . . , Xd+1]) − P ( ~θx enters S[X1, . . . , Xd+1])

= (d + 1)
∫

~θx∩HP (x1,...,xd)6=Φ
P (Xd+1 ∈ Hθ(x1, . . . , xd) dF (x1) . . . dF (xd)

−(d + 1)
∫

~θx∩HP (x1,...,xd)6=Φ
P (Xd+1 ∈ Hx(x1, . . . , xd) dF (x1) . . . dF (xd)
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where HP (x1, . . . , xd) is the hyperplane determined by x1, . . . , xd and Hy(x1, . . . , xd) is

the halfspace containing y and with x1, . . . , xd on the boundary. Angular symmetry about

θ of X now implies that

Hθ(x1, . . . , xd) ≥
1

2
≥ Hx(x1, . . . , xd).

Thus D(θ) ≥ D(x), completing the proof. 2

Theorem 5.4.3 For distributions discrete and angularly symmetric about a unique

point in Rd, the simplicial median satisfies the “center locating” condition (C3).

PROOF: Assume that X ∈ Rd is discrete and angularly symmetric about a unique point

θ ∈ Rd. We need to show that for any x ∈ Rd

(∗) P (x ∈ S[X1, . . . , Xd+1]) ≤ P (θ ∈ S[X1, . . . , Xd+1]).

For simplicity of description, we only consider d = 2 here. However, the following

proof is readily generalized to the case d > 2.

To prove (∗), it is clear that we need only consider the simplices which contain x but

not θ, or contain θ but not x. The definition of the simplicial median and Theorem 2.3.3

yield that there are only two cases which need be taken into account.

Case 1: The vertices of the triangles which contain x lie on two lines intersecting at θ.

Assume AB and CD intersect at θ, xpi
lies on θB, xp′i

lies on Aθ, xqi
lies on θD, and xq′i

lies on Cθ, i ∈ {1, 2, . . .}. It is often found convenient to use the probability mass pi on
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xpi
and the point xpi

interchangeably. Assume that

∑
pi = p,

∑
p′i = p′,

∑
qj = q,

∑
q′j = q′.

Then by Theorem 2.3.3

p = p′, q = q′.

Consider an arbitrary point pi, and assume that pix intersects θD at point ypi
and that

P (X ∈ (θ, ypi
)) = qi1, P (X ∈ [ypi

, D)) = qi2.

Then it is not difficult to show that

P (x ∈ ∆(X1, X2, X3) 6∈ θ)/3! =
∑

i

piqi1qi2 +
∑
j

qjpj1pj2,

where pj1 and pj2 are defined similarly to qi1 and qi2. On the other hand, it is also not

difficult to see that

P (θ ∈ ∆(X1, X2, X3) 6∈ x)/3! ≥
∑

i

piqi1q
′ +

∑
j

qjpj1p
′.

Thus

P (x ∈ ∆(X1, X2, X3)) ≤ P (θ ∈ ∆(X1, X2, X3)).

Case 2: The vertices of the triangles which contain x lie on three lines intersecting at θ.

Assume AB, CD and EF intersect at θ, xpi
lies on θB, xp′i

lies on Aθ, xqi
lies on θD,

xq′i
lies on Cθ, xri

lies on θF , and xr′i
lies on Eθ, i ∈ {1, 2, . . .}. Assume that

∑
pi = p

∑
p′i = p′,

∑
qj = q,
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∑
q′j = q′,

∑
rk = r,

∑
r′k = r′.

By Theorem 2.3.3 we have that

p = p′, q = q′, r = r′.

Consider an arbitrary point pi, connect pi and x, intersecting θD at ypi
, θF at zpi

. Assume

that

P (X ∈ (θ, ypi
)) = q1

pi
, P (X ∈ [ypi

, D) = q2
pi
,

P (X ∈ (θ, zpi
)) = r1

pi
, P (X ∈ [zpi

, F )) = r2
pi
.

Then it is not difficult to show that

P (x ∈ ∆(X1, X2, X3) 6∈ θ)/3!

≤
∑

piq
1
pi
r2
pi

+
∑

piq
2
pi
r1
pi

+
∑

p′iq
2
p′i
r1
p′i

+
∑

p′ir
2
p′i
q1
p′i

where r1
p′i

, r2
p′i

, q1
p′i

and q2
p′i

are defined similarly to qk
pi

and rk
pi

for k = 1, 2. It is also not

very difficult to prove that

P (θ ∈ ∆(X1, X2, X3) 6∈ x))/3!

≥
∑

p′i max
i

{q1
pi
}r′ +

∑
piq

′r1
pi

+
∑

pi

∑
p′i

∑
r′k +

∑
qj

∑
q′j

∑
r′k.

(Note that it is very important that we have avoided the repeated use of the triangles

containing θ which have been employed in the proof of Case 1.) Thus

P (θ ∈ ∆(X1, X2, X3) 6∈ x)/3!

≥
∑

pi max
i

{q1
pi
}r′ +

∑
piq

′r1
pi

+ (p2 + q2)r
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≥
∑

piq
1
pi
r2
pi

+
∑

piq
2
pi
r1
pi

+ 2pqr

≥
∑

piq
1
pi
r2
pi

+
∑

piq
2
pi
r1
pi

+
∑

p′iq
2
p′i
r1
p′i

+
∑

p′iq
1
p′i
r2
p′i
,

and thus

P (θ ∈ ∆(X1, X2, X3)) ≥ P (x ∈ ∆(X1, X2, X3)).

Now Case 1 and Case 2 combined imply that

θ = arg max
x∈Rd

P (x ∈ S[X1, . . . , Xd+1]).

The proof is complete. 2

For the L1 and L̃2 medians, by Theorems 3.3.7 and 5.2.2, we have

Theorem 5.4.4 For distributions angularly symmetric about a unique point in Rd, the

L1 and L̃2 medians satisfy the “center locating” condition (C3).

Next we examine the “center locating” condition (C3) for the simplicial median and

the L2 and L̃2 medians, in the case of halfspace symmetric distributions. By Theo-

rems 5.4.2 and 5.4.3 we have seen that the simplicial median is able to locate the center

of angularly symmetric distributions. However, for halfspace symmetric distributions,

Remark 3.2.2 in Chapter 3 reveals that

Theorem 5.4.5 For distributions halfspace symmetric about a unique point in Rd, the

simplicial median does not satisfy the “center locating” condition (C3) in general.

For the L1 and L̃2 medians, we have
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Theorem 5.4.6 For distributions halfspace symmetric about a unique point in Rd, the

L1 and L̃2 medians satisfy the “center locating” condition (C3).

PROOF: We will prove the above result only for the L1 median, the proof for the

L̃2 median being similar. For descriptive simplicity, we consider only the case d = 2.

However, the proof is immediately generalizable to the case d > 2. By Theorems 2.3.4

and 5.4.4, we need only consider the discrete case with nonzero probability mass on the

center.

Assume X is halfspace symmetric about a unique point θ in Rd with P (X = θ) =

pθ > 0. By Theorem 4.17 of Kemperman (1987) and rigid-body equivariance of the L1

median, we may assume, w.l.o.g., that θ is the origin and all probability mass is carried

by the unit circle.

We need to show that

E[‖X − θ‖] ≤ E[‖X − x|] ∀x ∈ Rd.

Assume, w.l.o.g., that x = (0, y), that x1, . . . , xn, . . . fall on the left open semi-circle

with xn 6= (−1, 0) for n = 1, 2, . . ., and that P (X = xi) = pi > 0, di = ‖x − xi‖ and

di ≤ dj for i ≤ j. Assume that xα = (−1, 0), xβ = (0, 1) and xγ = (0,−1), with

P (X = xα) = pα, P (X = xβ) = pβ and P (X = xγ) = pγ.

It is found convenient sometimes to denote a point and the mass at that point by

the same notation. Denote the point −xi by x′
i for i = 1, 2, . . .. Starting at xγ, travel

clockwise along the circle until hitting the first point, say xi, denote by arc(xβ, x′
i] the
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open-closed arc which is the symmetric part about the origin of the arc just covered, and

assume P (X ∈ arc(xβ, x′
i]) = p′i. Starting from xi now, travel clockwise along the circle

until hitting the next point, say xj, assume that P (X ∈ arc(x′
i, x

′
j]) = p′j. Continue in

this fashion and stop before hitting xα. Starting at xβ now, travel counterclockwise along

the circle performing similar steps as before, that is, labeling the probability mass on the

open-closed arcs which are the symmetric parts about the origin of the arcs covered, and

stopping before hitting xα. Denote by p′α the probability mass on the open-open arc on

the right semi-circle, which contains (1, 0) and is the symmetric part about the origin of

the open-open arc on the left semi-circle which contains xα and is never covered above.

Now it is not difficult to show that

E[‖X − x‖] − E[‖X − θ‖]

≥
(√

1 + y2 − 1
)

(pβ + pγ) + y(pα + pθ − p′α) +
∑
i=1

[(di − 1)pi + (d′
i − 1)p′i]

=
(√

1 + y2 − 1
)

(pβ + pγ)

+(d1 − 1)

(
pα + pθ − p′α +

∑
i=1

pi −
∑
i=1

p′i

)
+ (d1 + d′

1 − 2)p′1

+(y + 1 − d1)(pα + pθ − p′α) +
∑
i=2

[(di − d1)pi + (d′
i + d1 − 2)p′i)]

=
(√

1 + y2 − 1
)

(pβ + pγ)

+(d1 − 1)

(
pα + pθ − p′α +

∑
i=1

pi −
∑
i=1

p′i

)
+ (d1 + d′

1 − 2)p′1
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(d2 − d1)

(
pα + pθ − p′α +

∑
i=2

pi −
∑
i=2

p′i

)
+ (d2 + d′

2 − 2)p′2

+(y + 1 − d2)(pα + pθ − p′α) +
∑
i=3

[(di − d2)pi + (d′
i + d2 − 2)p′i)]

=
(√

1 + y2 − 1
)

(pβ + pγ)

+(d1 − 1)

(
pα + pθ − p′α +

∑
i=1

pi −
∑
i=1

p′i

)
+ (d1 + d′

1 − 2)p′1

(d2 − d1)

(
pα + pθ − p′α +

∑
i=2

pi −
∑
i=2

p′i

)
+ (d2 + d′

2 − 2)p′2

...

+(dn − dn−1)

(
pα + pθ − p′α +

∑
i=n

pi −
∑
i=n

p′i

)
+ (dn + d′

n − 2)p′n

+(y + 1 − dn)(pα + pθ − p′α) +
∑

i=n+1

[(di − dn)pi + (d′
i + dn − 2)p′i)]

=
(√

1 + y2 − 1
)

(pβ + pγ)

+(d1 − 1)

(
pα + pθ − p′α +

∑
i=1

pi −
∑
i=1

p′i

)
+ (d1 + d′

1 − 2)p′1

(d2 − d1)

(
pα + pθ − p′α +

∑
i=2

pi −
∑
i=2

p′i

)
+ (d2 + d′

2 − 2)p′2

...

+(dn − dn−1)

(
pα + pθ − p′α +

∑
i=n

pi −
∑
i=n

p′i

)
+ (dn + d′

n − 2)p′n

...
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By Theorem 2.3.2, we immediately have that

pα + pθ ≥ p′α,

pα + pθ +
n∑

i=m

pi ≥ p′α +
n∑

i=m

p′i ∀m ≤ n and m ≥ 1.

In conjunction with the fact that di + d′
i ≥ 2 ∀ i ≥ 1, we conclude that

E[‖X − x‖] − E[‖X − θ‖] ≥ 0 ∀x ∈ Rd.

The proof is complete. 2

We conclude this section with the following remark.

Remark 5.4.1 The projection median, the Type D median (including the halfspace

median), and the L̃2 median are good choices of multivariate nonparametric location

measures for halfspace symmetric multivariate distributions. The simplicial median, on

the other hand, is a good candidate for multivariate nonparametric location measure only

for angularly symmetric distributions. It may fail to identify the location (the point of

symmetry) of halfspace symmetric distributions. The sample simplicial median thus may

be inconsistent. In sum, the simplicial median should be used with great caution as a

multivariate nonparametric location measure in practice. 2

5.5 Summary

In this chapter, a desirable condition for multivariate nonparametric location measures,

called the “center locating” condition, has been introduced. Interrelationships among
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this condition and conditions of Bickel and Lehmann (1975) and Oja (1983) have been

explored. Depth-based multivariate medians, as multivariate nonparametric location

measures, have been introduced and their performance studied. It turns out that for

halfspace symmetric distributions the Liu simplicial median may fail to satisfy the “center

locating” condition and, consequently, should be used with great caution as a multivariate

nonparametric location measure in general. On the other hand, the halfspace median,

the L1 median, the L̂2 median and the projection median are good choices of multivariate

nonparametric location measures for halfspace symmetric multivariate distributions.
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Chapter 6

DEPTH-BASED SCATTER MEASURES

6.1 Introduction

Bickel and Lehmann (1976) introduced a notion of “more dispersed” to compare one

symmetric distribution with another in R. In Bickel and Lehmann (1979), they extended

to the case of arbitrary (i.e. not necessarily symmetric) distributions and introduced a

notion of “more spread out”. Eaton (1982) and Oja (1983) generalized the above concepts

to higher dimensions. Comparisons of dispersions/spreads of distributions not only have

theoretical interest but also have practical significance in applications such as medical

trials, quality control, and system reliability.

In this chapter, statistical depth functionals are employed to introduce a notion of

“more scattered” for comparison of one multivariate distribution with another in Rd.

Relationships among the notions of Bickel and Lehmann (1976), Eaton (1982), Oja (1983)

and ours are explored. It turns out that our notion is more general than those of Oja

(1983) and Eaton (1982) under some typical conditions, and is a generalization of that

of Bickel and Lehmann (1976) in R. The properties related to our depth-based notion

of “more scattered” are studied thoroughly. Finally, depth-based “scatter measures” are

defined and some examples of scatter measures are presented and studied.
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6.2 Notions of “More Scattered”

In this section, various existing notions of “more scattered” are given, and a new notion

of “more scattered” based on statistical depth functionals is introduced. Here we use

the term “more scattered” to represent various terms (such as “more dispersed”, “more

spread out”, “more concentrated”) used by different authors.

(D1) Let P be the distribution of a random variable X in R, symmetric about µ, and Q

be the distribution of a random variable Y in R, symmetric about ν. Then X is said to

be more scattered about µ than Y about ν, in the sense of Bickel and Lehmann (1976),

if

|X − µ|
st
≥ |Y − ν|,

where a random variable Z1 with distribution function G1(x) is said to be stochastically

smaller than another random variable Z2 with distribution function G2(x), denoted by

Z1

st
≤ Z2, if G1(x) ≥ G2(x) for every x in R.

The above concept of “more scattered” is essentially equivalent to the “peakedness”

ordering introduced by Birnbaum (1948).

(D2) Bickel and Lehmann (1979) extended the “more dispersed” concept to arbitrary

(i.e. not necessarily symmetric) distributions, and defined a distribution F to be more

scattered than a distribution G if

F−1(v) − F−1(u) ≥ G−1(v) − G−1(u), ∀ 0 < u < v < 1,

where F−1(α) = sup{x: F (x) ≤ α}.
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The essence of this definition was introduced by Brown and Tukey (1946). Note that

the above two notions of Bickel and Lehmann do not coincide for symmetric distributions.

(D3) Eaton (1982) extended the “more scattered” concept of Bickel and Lehmann (1976)

for R to arbitrary dimension: P is said to be more scattered about µ than Q about ν if

P (X ∈ C + µ) ≤ Q(Y ∈ C + ν)

for any convex set C in Rd with C = −C.

(D4) Oja (1983) generalized the notion of “more scattered” of Bickel and Lehmann

(1979) for R to arbitrary dimension as follows: Q is said to be more scattered than P if

P is the distribution of a random vector X and Q the distribution of a random vector

φ(X), for some function φ such that

∆(φ(x1), φ(x2), . . . , φ(xd+1)) ≥ ∆(x1, x2, . . . , xd+1)

for any x1, x2, . . . , xd+1 in Rd, where ∆ is the volume function of d-dimensional simplices.

We now introduce a notion of “more scattered” in Rd based on the statistical depth

functionals discussed in Chapter 3. Denote by F a class of multivariate distributions on

Rd.

Definition 6.2.1 Let D(·, ·) be a statistical depth functional on Rd×F . A distribution

P in F is said to be more scattered than distribution Q in F if

∆({x ∈ Rd |D(x; P ) ≥ α}) ≥ ∆({y ∈ Rd |D(y; Q) ≥ α})

for any α > 0, where ∆ is a volume function for statistical depth contours.
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Remark 6.2.1 For the sake of descriptive simplicity, in the latter discussion of this

chapter the statistical depth functional in the above definition will be the halfspace depth

functional. 2

6.3 Relationships Among Various Notions of “More Scattered”

Now we examine the relationships among the “more scattered” notions of Bickel and

Lehmann (1976), Eaton(1982), Oja(1983), and ours given in Section 6.2. We will use the

notation “P
sc
≥ Q” to denote “P is more scattered than Q” in a given sense.

First we present some characterizations of the “more scattered” notion of Bickel and

Lehmann (1976). Some of these results will be used in the latter part of this section.

Theorem 6.3.1 Let P be the probability measure corresponding to the distribution

F of a random variable X in R symmetric about µ and Q be the probability measure

corresponding to the distribution G of a random variable Y in R symmetric about ν.

Then the following statements are equivalent:

(1) X is more scattered about µ than Y about ν in the sense of (D1);

(2) P (|X − µ| ≤ a) ≤ Q(|Y − ν| ≤ a), ∀ a > 0;

(3) t (FX−µ(t) − GY −ν(t)) ≤ 0, ∀ t;

(4) (s − 1
2
)
(
F−1

X−µ(s) − G−1
Y −ν(s)

)
≥ 0, ∀ s,

where F−1(p) = inf{x : F (x) ≥ p}.

PROOF: (I) (1) ⇔ (2). This follows in a straightforward fashion from the concept of

“stochastically smaller” for comparison of random variables.
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(II) (1) ⇔ (3). we have established that (1) holds iff (2) holds. By the symmetry of

X − µ and Y − ν, (2) holds iff FX−µ(t) ≤ GY −ν(t) for t > 0 and FX−µ(t) ≥ GY −ν(t) for

t < 0, that is, iff (3), proving (1) ⇔ (3).

(III) (1) ⇔ (4). By the symmetry of X − µ and Y − ν, it is not difficult to see that

(4) ⇔ (3). Hence (1) ⇔ (4). 2

Remark 6.3.1 Clearly, by the above theorem, for symmetric distributions (D1) is

equivalent to (D3) in R. Thus definition (D3) of Eaton (1982) generalizes definition

(D1) of Bickel and Lehmann (1976). 2

Theorem 6.3.2 For symmetric distributions in R, Definition 6.2.1 is equivalent to

(D1) or (D3).

PROOF: (i) It is often convenient to use the distribution of a random variable and the

corresponding probability measure interchangeably. Suppose P is symmetric about µ, Q

is symmetric about ν, and P is “more scattered” than Q in the sense of Definition 6.2.1.

Then

∆({x ∈ R | D(x; P ) ≥ α}) = ∆([µ − pα, µ + pα])

≥ ∆([ν − qα, ν + qα])

= ∆({x ∈ R | D(x; Q) ≥ α}),

for any α > 0, where P ([pα, +∞)) = α = Q([qα, +∞)). Hence, we have

pα ≥ qα, ∀ α > 0.
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Therefore,

P ([µ − a, µ + a]) ≤ Q([ν − a, ν + a]), ∀ a > 0.

Thus, P is “more scattered” than Q in the sense of (D3). By Theorem 6.3.1, P is also

“more scattered” than Q in the sense of (D1).

(ii) Suppose that P is “more scattered” than Q in the sense of (D1) or (D3). By

Theorem 6.3.1,

P ([µ − a, µ + a]) ≤ Q([ν − a, ν + a]), ∀ a > 0.

Thus if P ([µ − pα, µ + pα]) = Q([ν − qα, ν + qα]) = 1 − 2α, for α > 0, then

pα ≥ qα, ∀ α > 0.

Hence

∆({x ∈ R | D(x; P ) ≥ α}) = ∆([µ − pα, µ + pα])

≥ ∆([ν − qα, ν + qα])

= ∆({x ∈ R | D(x; Q) ≥ α}),

for any α > 0. Therefore, P is “more scattered” than Q in the sense of Definition 6.2.1.

This completes the proof. 2

Remark 6.3.2 Theorem 6.3.2 implies that Definition 6.2.1 is indeed a generalization

of Bickel and Lehmann (1976). 2

Remark 6.3.3 In the following, let F and G be strictly increasing in R.

(1) Definition (D4) of Oja (1983) is equivalent to definition (D2) of Bickel and Lehmann
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(1979); see Theorem 1 of Bickel and Lehmann (1979) for the proof.

(2) Definition (D4) of Oja (1983) implies definition (D1) of Bickel and Lehmann (1976),

but the converse does not hold since the “more scattered” notions of Bickel and Lehmann

(1976) and (1979) are inconsistent. 2

Theorem 6.3.3 Suppose that P and Q are centrally symmetric about the origin in Rd.

Then Q
sc
≤ P in the sense of D3 implies Q

sc
≤ P in the sense of Definition 6.2.1.

PROOF: We are going to show that for any α > 0

(∗) Dα(Q) = {x ∈ Rd | D(x; Q) ≥ α} ⊂ Dα(P ) = {x ∈ Rd | D(x; P ) ≥ α}.

For any x ∈ Rd, suppose that D(x; Q) = α and D(x; P ) < α. Then, by symmetry

and the definition of halfspace depth, there exists a closed halfspace Hx with x on the

boundary and its reflection H−x about the origin such that P (Hx) < α and P (H−x) < α.

Hence by (D3)

Q(Rd − (Hx ∪ H−x)) ≥ P (Rd − (Hx ∪ H−x)) ≥ 1 − 2α,

which implies that Q(Hx) = Q(H−x) < α. This contradicts to the assumption that

D(x; Q) = α. Therefore, D(x; P ) ≥ α. Now we have that for any x belongs to Dα(Q),

x also belongs to Dα(P ). Thus (∗) holds, proving that Q
sc
≤ P in the sense of Defini-

tion 6.2.1. 2

Theorem 6.3.4 Suppose that P
sc
≤ Q in the sense of (D4), and φ in the (D4) is an

affine transformation. Then P
sc
≤ Q in the sense of Definition 6.2.1.
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PROOF: (1) R1 case. Let Dα(P ) = {y ∈ R1 | D(y; P ) ≥ α}. Then, by Theorem 3.3.12,

we have that Dα(P ) = [y1, y2] for some y1 and y2. By the affine invariance property of

statistical depth functionals,

Dα(Q) = {x ∈ R1 | D(x; Q) ≥ α}

= {x ∈ R1 | D(x; Q) ≥ α, x = φ(y), y ∈ Dα(P )}

= [φ(y1), φ(y2)].

Thus ∆(Dα(Q)) ≥ ∆(Dα(P )) by (D4), that is, P
sc
≤ Q in the sense of Definition 6.2.1.

(2) Rd (d > 1) case. By Theorem 3.3.12, we have that Dα(P ) = {y ∈ Rd | D(y; P ) ≥ α}

is a convex compact set in Rd. Thus Dα(P ) can be approximated by d-dimensional

simplices, that is,

Dα(P ) = ∪∞
i=1Si,

for some d-dimensional simplices Si’s. The affine invariance of statistical depth function-

als implies that

Dα(Q) = {x ∈ Rd | D(x; Q) ≥ α}

= {x = φ(y) ∈ Rd | D(y; P ) ≥ α}

= ∪∞
i=1φ(Si).

Now since ∆(φ(x1), . . . , φ(xd+1) ≥ ∆(x1, . . . , xd+1) for any x1, . . . , xd+1 ∈ Rd, thus

∆(Dα(Q)) ≥ ∆(Dα(P )),

proving that P
sc
≤ Q in the sense of Definition 6.2.1. The proof is complete. 2
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Remark 6.3.4 Theorem 6.3.3 and Theorem 6.3.4 imply that the “more scattered”

Definition 6.2.1 is weaker (more general) than those of Eaton (1982) and Oja (1983),

under typical conditions. 2

6.4 Properties of Depth-Based Notion of “More Scattered”

In this section, we investigate properties related to the notion of “more scattered” in the

sense of Definition 6.2.1. For the sake of simplicity, the halfspace depth functional will

again be used in subsequent discussion.

Theorem 6.4.1 Suppose that P and Q are two distributions in F . Then P
sc
≥ Q in

the sense of Definition 6.2.1 if P (H) ≥ Q(H) for any closed halfspace H in Rd with

P (H) ≤ 1
2
.

PROOF: We show that

(∗) Dα(Q) = {x ∈ Rd | D(x; Q) ≥ α} ⊂ Dα(P ) = {x ∈ Rd | D(x; P ) ≥ α},

for any α > 0. For any x ∈ Rd, suppose that D(x; Q) = β ≥ α, and D(x; P ) < α. Then

there exists a closed halfspace Hx with x on its boundary such that

α > P (Hx) ≥ D(x; P ),

by the definition of halfspace depth function. Hence β > Q(Hx), contradicting the

assumption that D(x; Q) = β. Thus, D(x; P ) ≥ β, that is, x ∈ Dα(Q) implies that

x ∈ Dα(P ). Therefore (∗) holds, completing the proof. 2
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Remark 6.4.1 If P and Q are symmetric about the origin in R, then the condition in

the above Theorem is also necessary. 2

Corollary 6.4.1 Let X be a random vector in Rd. Then

(1) X
sc
≥ aX in the sense of Definition 6.2.1 for any a ∈ (0, 1].

(2) X
sc
≥ b in the sense of Definition 6.2.1 for any vector b ∈ Rd.

PROOF: (1) For any closed halfspace H, we have that

P (aX ∈ H) = P (X ∈ 1

a
H) ≤ P (X ∈ H).

Theorem 6.4.1 now gives the desired result.

(2) For any closed halfspace H which does not contain b, we have that

P (X ∈ H) ≥ P (b ∈ H) = 0,

Thus by the proof of Theorem 6.4.1, we conclude that X
sc
≥ b in the sense of Defini-

tion 6.2.1. 2

Remark 6.4.2 Results in Corollary 6.4.1 are generalizations of corresponding results

in Bickel and Lehmann (1976) and (1979). 2

Applying Theorem 6.4.1, we obtain a result of Bickel and Lehmann (1976).

Corollary 6.4.2 Suppose that P and Q are symmetric about the origin in R, with

densities f and g respectively. Then P
sc
≥ Q in the sense of Definition 6.2.1 if f(x)/g(x)

is increasing for any x > 0.
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PROOF: Since ∀x > 0, f(x)/g(x) is increasing, by symmetry of P and Q, we have

P (H) = P ([x,∞)) ≥ Q([x,∞)) = Q(H),

for any closed halfspace H = [x,∞) for some x. Similar result holds for any closed

halfspace H = (−∞, y] with some y in R. The desired result now follows immediately

from Theorem 6.4.1. 2

Theorem 6.4.2 Suppose that F1

sc
≥ F2 in the sense of Definition 6.2.1, and Dα(F1) ⊃

Dα(F2) for any α > 0. Then Fθ

sc
≥ F2 in the sense of Definition 6.2.1 for any θ ∈ (0, 1)

if

Fθ(x) = (1 − θ)F1(x) + θF2(x)

for any x ∈ Rd and θ ∈ (0, 1).

PROOF: Let P1, P2, and Pθ be the probability measures corresponding to F1, F2, and

Fθ, respectively. We show that

(∗) Dα(Fθ) = {x ∈ Rd | D(x; Fθ) ≥ α} ⊃ Dα(F2) = {x ∈ Rd | D(x; F2) ≥ α},

for any α > 0. For any x ∈ Dα(F2), assume that D(x; F2) = β ≥ α. Then D(x; Fθ) ≥ α,

that is, x ∈ Dα(Fθ). Since, if not, suppose that D(x; Fθ) < α, then there exists a closed

halfspace Hx with x on its boundary such that α > Pθ(Hx). Since Dα(F1) ⊃ Dα(F2),

thus P1(Hx) ≥ α. Now since

Pθ(Hx) =
∫

Hx

dFθ(x)
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=
∫

Hx

d ((1 − θ)F1(x) + θF2(x))

= (1 − θ)P1(Hx) + θP2(Hx).

Thus

θP2(Hx) < α − (1 − θ)P1(Hx) < θα,

thus P2(Hx) < α, contradicting the assumption that D(x; F2) = β ≥ α. Hence x ∈

Dα(F2) implies x ∈ Dα(Fθ). Thus (∗) holds. The proof is complete. 2

Theorem 6.4.2 immediately yields an important result as follows. A standard mul-

tivariate normal distribution Nd(0, I) contaminated with another multivariate normal

distribution Nd(0, σ2I) with σ > 1 is more scattered than the uncontaminated standard

multivariate normal distribution Nd(0, I) in the sense of Definition 6.2.1.

In R, Theorem 6.3.2 and the above theorem give the following, which was established

in Bickel and Lehmann (1976).

Corollary 6.4.3 If F and G are symmetric about zero, and G is more scattered than

F , and if

Hθ(x) = θG(x) + (1 − θ)F (x),

then Hθ is more scattered than F for any 0 < θ < 1.

Theorem 6.4.3 Assume that

1o X1 and X2 are independent with distributions Fi (i = 1, 2),

Y1 and Y2 are independent with distributions Gi (i = 1, 2),

2o Fi and Gi are symmetric about the origin in R,
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3o F1 and G2 have unimodal densities (the corresponding densities f1(x) and

g2(x) are not increasing for x > 0),

4o Yi is more scattered than Xi for i = 1, 2.

Then Y1 + Y2 is more scattered than X1 + X2 in the sense of Definition 6.2.1.

PROOF: For any constant c > 0, since X1 and X2 are independent and symmetric, we

have

P (|X1 + X2| < c) = 2
∫ ∞

0
(F1(x + c) − F1(x − c)) dF2(x)

= 2 ((F1(x + c) − F1(x − c))F2(x)|∞0 )

−2
∫ ∞

0
F2(x)(f1(x + c) − f1(x − c))d x.

The unimodality of F1 implies that f1(x + c) − f1(x − c) ≤ 0 for any x > 0, and 4o and

Theorem 6.3.1 imply that F2(x) ≥ G2(x) for any x > 0. The symmetry of F2 and G2

about the origin implies that F2(0) = G2(0) = 1
2
. Thus

P (|X1 + X2| < c) = 2
∫ ∞

0
(F1(x + c) − F1(x − c)) dF2(x)

≥ 2
∫ ∞

0
(F1(x + c) − F1(x − c)) dG2(x)

= 2 ((F1(x + c) − F1(x − c))G2(x)|∞0 )

−2
(∫ ∞

c
G2(x − c)d, F1(x) −

∫ ∞

−c
G2(x + c)d, F1(x)

)

= 2
(
(
1

2
− F1(c)) −

∫ ∞

0
(G2(x − c) − G2(x + c))dF1(x)

)

+2
(∫ c

0
(G2(x − c) + G2(−x + c))dF1(x)

)
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= 2
(
(
1

2
− F1(c)) −

∫ ∞

0
(G2(x − c) − G2(x + c))dF1(x)

)

+2
(
(F1(c) −

1

2
)
)

= 2
∫ ∞

0
(G2(x + c) − G2(x − c))dF1(x).

Repeating the argument used above, we have that

P (|X1 + X2| < c) = 2
∫ ∞

0
(G2(x + c) − G2(x − c))dF1(x)

≥ 2
∫ ∞

0
(G2(x + c) − G2(x − c))dG1(x)

= P (|Y1 + Y2| < c).

The result follows immediately from Theorem 6.3.1 and Theorem 6.3.2. The proof is

complete. 2

Remarks 6.4.1 (1) Theorem 6.4.3 is a generalization of Theorem 1 of Bickel and

Lehmann (1976), where they required the independence of X1 and Y2. We have used

here a similar approach to the proof of Theorem 1 of Bickel and Lehmann (1976). Under

the independence assumption of X1 and Y2, however, the proof of the above result is

much simpler.

(2) Theorem 6.4.3 is also a generalization of the main result of Birnbaum (1948), where

the continuity of Y1 and X2 was required. 2

Theorem 6.4.4 Let X be a random vector with density f(x) such that

1o f(x) = f(−x) and
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2o {x|f(x) ≥ u} is convex for any u > 0.

Let Y be a random vector independently distributed and symmetric about the origin in

Rd. Then X + Y
sc
≥ X + aY in the sense of Definition 6.2.1 for any a ∈ [0, 1].

PROOF: Let G be the distribution of Y . We are going to show that

(∗) Dα(X + Y ) = {x ∈ Rd | D(x; X + Y ) ≥ α}

⊃ Dα(X + aY ) = {x ∈ Rd | D(x; X + aY ) ≥ α},

Suppose that x ∈ Dα(X+aY ) and D(x; X+aY ) = β ≥ α. We claim that x ∈ Dα(X+Y ),

that is, D(x; X +Y ) ≥ α. Since, if not, assume that D(x; X +Y ) < α. Then there exists

a closed halfspace Hx such that α > P (X + Y ∈ Hx). On the other hand, it is not

difficult to see that

P (X + Y ∈ Hx) =
∫
Rd

P (X ∈ Hx − t)dG(t)

=
∫
Rd/2

(P (X ∈ Hx + t) + P (X ∈ −Hx + t))dG(t),

where Rd/2 is the closed halfspace with the origin on its boundary which is hyperparallel

to the boundary of Hx, and Rd/2 contains Hx. By Theorem 1 of Anderson (1955) (also

see Mudholker (1966) and Anderson (1996)), we have that

P (X + Y ∈ Hx) =
∫
Rd/2

(P (X ∈ Hx + t) + P (X ∈ −Hx + t))dG(t)

≥
∫
Rd/2

(P (X ∈ Hx + at) + P (X ∈ −Hx + at))dG(t)

=
∫

Rd
P (X ∈ Hx − at)dG(t)

= P (X + aY ∈ Hx).
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Hence α > P (X + aY ∈ Hx), contradicting the assumption that D(x; X + aY ) = β ≥ α.

Thus x ∈ Dα(X + aY ) implies that x ∈ Dα(X + Y ), that is, (∗) holds. This completes

the proof. 2

Corollary 6.4.4 Let X and Y be the random vectors satisfying the conditions in Theo-

rem 6.4.4. Then X +Y
sc
≥ bX +aY in the sense of Definition 6.2.1 for any 0 ≤ a ≤ b ≤ 1

(b 6= 0).

PROOF: By Theorem 6.4.4, X + Y is more scattered than X + a
b
Y . Applying Corol-

lary 6.4.1, we have that X + a
b
Y is more scattered than bX + aY . Since

sc
≥ is a transitive

relation, thus X + Y
sc
≥ bX + aY in the sense of Definition 6.2.1 for any 0 ≤ a ≤ b ≤ 1

(b 6= 0). 2

Corollary 6.4.5 Let X ∼ Nd(u, Σ1) and Y ∼ Nd(v, Σ2) and Σ2 − Σ1 is positive

semidefinite. Then Y
sc
≥ X in the sense of Definition 6.2.1.

PROOF: Let Z ∼ Nd(0, Σ2 −Σ1) and be independent of X. Then Y − v
d
= (X −u)+Z.

Employing Theorem 6.4.4, we obtain that Y − v is more scattered than X − u. Affine

invariance of statistical depth functionals together with translation invariance of the

volume function ∆ now gives the desired result. 2

Corollary 6.4.5 immediately yields the following result.

Corollary 6.4.6 Let

1o {Xi} (i = 1, 2, . . . , n) be independent random vectors with Xi ∼ Nd(ui, Φi),

2o {Yi} (i = 1, 2, . . . , n) be independent random vectors with Yi ∼ Nd(vi, Ψi).
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If
∑n

i=1(BiΨiB
′
i − AiΦiA

′
i) ≥ 0 (positive semidefinite), then

∑n
i BiYi

sc
≥ ∑n

i AiXi in the

sense of Definition 6.2.1.

The following result is an extension of Corollary 6.4.5.

Theorem 6.4.5 Suppose that X and Y are elliptically distributed with X ∼

Ed(h; u, Σ1) and Y ∼ Ed(h; v, Σ2). Then Y
sc
≥ X in the sense of Definition 6.2.1 if

and only if Σ2 − Σ1 ≥ 0.

PROOF: Following the proof of Lemma 4.2.2 in Chapter 4, we can establish

Dα(X) = {x ∈ Rd |D(x; X) ≥ α}

= {x ∈ Rd | (x − u)′Σ−1
1 (x − u) ≥ r2

α}

and

Dα(Y ) = {y ∈ Rd |D(y; Y ) ≥ α}

= {y ∈ Rd | (y − u)′Σ−1
2 (y − u) ≥ r2

α}.

It is not difficult to see that Σ−1
1 −Σ−1

2 ≥ 0 if and only if ∆(Dα(Y )) ≥ ∆(Dα(X)). Since

Σ2 − Σ1 ≥ 0 if and only if Σ−1
1 − Σ−1

2 ≥ 0. Hence Y
sc
≥ X in the sense of Definition 6.2.1

if and only if Σ2 − Σ1 ≥ 0. 2

Remark 6.4.3 By Theorem 6.4.5, the conditions Σ2 − Σ1 in Corollary 6.4.5 and

∑n
i=1(BiΨiB

′
i − AiΦiA

′
i) ≥ 0 in Corollary 6.4.6 are also necessary for the correspond-

ing statements. 2
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A random vector X is said to have a spherically symmetric distribution if X
d
= TX

for any orthogonal matrices T (see Muirhead (1982), p. 32).

Theorem 6.4.6 Let Xi and Yi (i = 1, 2) be independent with spherically symmetric

distributions Fi and Gi. Suppose that

1o Yi

sc
≥ Xi in the sense of Definition 6.2.1 for i = 1, 2,

2o F1 and G2 have unimodal densities.

Then Y1 + Y2

sc
≥ X1 + X2 in the sense of Definition 6.2.1.

PROOF: For any x ∈ Dα(X1 + X2), α > 0, suppose that D(x; X1 + X2) = β ≥ α.

We claim that x ∈ Dα(Y1 + Y2), that is, D(x; Y1 + Y2) ≥ α. Since, if not, assume that

D(x; Y1 + Y2) < α, then there exists a closed halfspace Hx with x on its boundary such

that I ≡ P (Y1 + Y2 ∈ Hx) < α. On the other hand, applying an argument similar to

that for Theorem 6.4.4, and utilizing spherical symmetry, we have

I =
∫
Rd

P (Y2 ∈ Hx − t)dG1(t)

=
∫
Rd/2

(P (Y2 ∈ t + Hx) + P (Y2 ∈ t − Hx))dG1(t)

= d
∫
Rd

+

(P (Y2 ∈ t + Hx) + P (Y2 ∈ t − Hx))dG1(t)

= d
∫ ∞

0
· · ·

[∫ ∞

0
P (Y2; t, Hx)d

(
∂d−1G1(t)

∂t2 · · · ∂td

)]
d t2 · · · d td,

where Rd
+ is the first quadrant of Rd, t = (t1, . . . , td)

′, and P (Y2; t,Hx) = P (Y2 ∈ t +

Hx)+P (Y2 ∈ t−Hx). By Theorem 1 of Anderson (1955), P (Y2 ∈ t+Hx)+P (Y2 ∈ t−Hx)
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is a increasing function of t1. Since Y1 is more scattered than X1, then by Theorem 6.3.1

and spherical symmetry

∂d−1G1(t)

∂t2 · · · ∂td
≤ ∂d−1F1(t)

∂t2 · · · ∂td
,

for any t1 ≥ 0 (ti ≥ 0, i = 2, . . . , d). Integral by parts now yields

I = d
∫ ∞

0
· · ·

[∫ ∞

0
(P (Y2; t,Hx)d

(
∂d−1G1(t)

∂t2 · · · ∂td

)]
d t2 · · · d td,

≥ d
∫ ∞

0
· · ·

[∫ ∞

0
(P (Y2; t,Hx)d

(
∂d−1F1(t)

∂t2 · · · ∂td

)]
d t2 · · · d td,

= P (X1 + Y2 ∈ Hx).

Now utilizing a similar argument as above, we obtain

P (Y1 + Y2 ∈ Hx) = P (X1 + Y2 ∈ Hx)

≥ P (X1 + X2 ∈ Hx).

Hence α > P (X1 + X2 ∈ Hx), contradicting to the assumption that D(x; X1 + X2) ≥ α.

Therefore x ∈ Dα(X1 + X2) implies x ∈ Dα(Y1 + Y2), proving that Y1 + Y2

sc
≥ X1 + X2 in

the sense of Definition 6.2.1. The proof is complete. 2

Theorem 6.4.6 and Corollary 6.4.6 are established under the assumptions that the

underlying distributions are spherically distributed or multivariate normally distributed.

We conclude this section with an open question: Under what weaker assumption(s) on

distributions can we establish an analogue of Theorem 6.4.3 in the multivariate setting?
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6.5 Depth-Based Multivariate Nonparametric Scatter Measures

In this section, we introduce a definition of depth-based multivariate nonparametric scat-

ter measure and provide some examples.

Denote by F a class of distributions on Rd. Denote by R+ the nonnegative real

numbers in R.

Definition 6.5.1 A functional ϕ : F → R+ is said to be a multivariate nonparametric

measure of scatter in Rd if it satisfies

(i) ϕ(P ) ≥ ϕ(Q), for any P and Q in F such that P
sc
≥ Q in the sense of Definition 6.2.1;

(ii) ϕ(AX + b) = | det(A)|ϕ(X), for any d× d nonsingular matrix A and vector b in Rd.

Remarks 6.5.1 (1) Bickel and Lehmann (1976) and (1979) introduced dispersion

measures and spread measures in R respectively. Their definitions are similar to Defini-

tion 6.5.1 except the notion of “more scattered” above is in the sense of (D1) and (D2)

respectively. Oja (1983) using his “more scattered” notion extended the definition of

Bickel and Lehmann (1979) to higher dimensions.

(2) By Theorem 6.3.2, for symmetric distributions the above definition is equivalent to

that of Bickel and Lehmann (1976) in R.

(3) According to Theorem 6.3.4, if φ is an affine transformation in (D4), then a scatter

measure in Oja’s sense is also a scatter measure in the sense of Definition 6.5.1. 2
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Example 6.5.1 Define

ϕα(F ) = ∆(Dα(F )),

for any α > 0 and F ∈ F , where ∆ is a volume function and Dα(F ) = {x ∈

Rd |D(x; F ) ≥ α} is a depth contour for some statistical depth functional D(·, ·). Then

as shown in Theorem 6.5.1 below, ϕα is a multivariate nonparametric measure of scat-

ter. Note that in R, when α = 1
4
, ϕα(F ) gives the interquartile range of F , which was

suggested in Bickel and Lehmann (1979) as a scatter measure. 2

Theorem 6.5.1 ϕα defined in Example 6.5.1 is a multivariate nonparametric scatter

measure in the sense of Definition 6.5.1 for any fixed α > 0.

PROOF: By Definition 6.2.1, it is easy to see that for any fixed α ϕα satisfies condition

(i) in Definition 6.5.1. On the other hand, Theorem 2.20 of Rudin (1987) or Theorem

12.2 of Billingsley (1986) implies that ϕα satisfies condition (ii) in Definition 6.5.1. Hence

ϕα is a multivariate nonparametric scatter measure in the sense of Definition 6.5.1, for

any fixed α > 0. 2

6.6 Summary

In this chapter, statistical depth functions have been utilized to introduce a notion of

“more scattered” for comparison of one multivariate distribution with another in Rd.

Relationships among this new notion and the notions of Bickel and Lehmann (1976),
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Eaton (1982) and Oja (1983) have been explored. It turns out that this notion is a gen-

eralization of that of Bickel and Lehmann (1976) in R, and is more general than those

of Eaton (1982) and Oja (1983) in Rd under some typical conditions. The properties

related to this depth-based new notion have been studied, some depth-based multivari-

ate nonparametric scatter measures have been defined, and some examples have been

presented and studied.
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