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Abstract

This dissertation is concerned with the problem of modeling a periodic hydrological time

series in general and river flows in particular. River flow series usually exhibit periodical

stationarity; that is, their mean and covariance functions are periodic with respect to time.

A class of models useful in such situations consists of periodic autoregressive moving aver-

age (PARMA) models, which are extensions of commonly used ARMA models that allow

parameters to depend on season. The innovations algorithm can be used to obtain esti-

mates of certain model parameters. Asymptotic distributions for the innovations estimates

and model parameters provide us with a general technique for identifying PARMA models

with the minimum number of parameters. A detailed simulation study is conducted to test

the effectiveness of the innovation estimation procedures and asymptotics as a method for

PARMA model identification. We use monthly river flow data for the Fraser River in British

Colombia and the Salt River in Arizona so as to illustrate the model identification procedure

and residual modeling procedure, and to prove the ability to generate realistic synthetic river

flows. In both cases, we are able to generate realistic synthetic river flows by developing a

mixture probability model for the residuals.

Fitting the PARMA model to weekly or daily data, however, requires estimation of

too many parameters which violates the principle of parsimony. In an effort to obtain a

parsimonious model representing these periodically stationary series, we develop the asymp-

totic distribution of the discrete Fourier transform of the innovation estimates and PARMA

model parameters, and then determine those statistically significant Fourier coefficients.

We demonstrate the effectiveness of these techniques using simulated data from different

PARMA models. An application of the techniques is demonstrated through the analysis of
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a weekly river flow series for the Fraser River.

Hydrologic droughts are characterized by their duration and severity. We use PARMA

models to model river flows and generate a large sequence of synthetic flows, and then

drought properties are derived from the simulated samples based on the theory of runs. The

applicability of these methods is demonstrated by using weekly river flow data for the Fraser

River.



iii

Dedication

To the memory of my father

To my mother, brothers and sisters



iv

Acknowledgements

Completing a research project and writing a dissertation is obviously not possible without

support of numerous people. First of all, I would like to express my gratitude to Prof. Mark

Meerschaert for giving me the chance to work on a river modeling project and for his valuable

consultation and support throughout the research work. I am also deeply grateful to Prof.

Meerschaert for his never ending patience, enthusiasm and encouragement in guiding the

preparation and production of this manuscript. Especially the extensive comments and the

many discussions and the interactions with him had a direct impact on the final form and

quality of the manuscript. He has got all the best qualities that any graduate student could

expect from his/her research supervisor. I am very lucky to have him as my advisor and

learned a lot from him. The support from the National Science Foundation grants GMS-

0139927 and GMS-0417869 are gratefully acknowledged.

The members of my PhD committee Prof. Paul Anderson, Prof. Sami Fadali, Prof.

Richard French and Prof. John Warwick have generously given their time and expertise

to make my work better. I thank them for their contribution, support, careful reading the

entire manuscript and providing valuable comments. In particular, I am grateful to Prof.

Anderson for coauthoring and reviewing the papers produced from the dissertation.

I am greatly indebted to Dr. Laurel Saito who facilitated things for me to get here at

the University of Nevada-Reno (UNR), supported me during my first year study, helped

me in finding the project of my interest. She is open, kind, cooperative, and very helpful.

Thank you for everything you have done for me. I wish also to thank Prof. Scott Tyler

for his advice, encouragement, his willingness to help students and for all administrative

support. I thank Sam Miller and Pamela Love for their help during the Ph.D. process. I

am a recipient of the 2003 Douglas Paul Rennie Memorial Graduate Scholarship and it is



v

gratefully acknowledged. I also thank the Graduate Student Association for partial financial

support during my travel to present my work to conferences. I must acknowledge as well

the professors, students, librarians and others at UNR who assisted and advised me during

my study period. In general, UNR is a wonderful atmosphere for intellectual growth and

accomplishment.

I am thankful to Mrs. Lenette Grant and other staff at University of Otago in New

Zealand for making a short period of research work in Duendin an enjoyable one. Many

other people have contributed to my success directly or indirectly by their advice, moral

and material support. In particular, I thank Dr. Shifferaw Taye, Dr-ing Girma Boled and

others colleagues in the Addis Ababa University, Prof. Ȧnund Killingtveit (from Norway)
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1

1 Introduction

Time series analysis and modelling is an important tool in hydrology and water resources.

It is used for building mathematical models to generate synthetic hydrologic records, to

determine the likelihood of extreme events, to forecast hydrologic events, to detect trends

and shifts in hydrologic records, and to fill in missing data and extend records. Synthetic

river flow series are useful for determining the dimensions of hydraulic works, for flood and

drought studies, for optimal operation of reservoir systems, for determining the risk of failure

of dependable capacities of hydroelectric systems, for planning capacity expansion of water

supply systems, and for many other purposes (Salas et. al, 1985; Salas, 1993). For example,

hydrologic drought properties (severity and duration as defined in Chapter 6) of various

return periods are needed to assess the degree to which a water supply system will be able

to cope with future droughts and, accordingly, to plan alternative water supply strategies.

They can be determined from the historical record alone by using non-parametric methods

but, because the number of drought events that can be drawn from the historical sample is

generally small, the “historical” drought properties have a large degree of uncertainty. Other

alternatives for finding drought properties include using stochastic models (such as PARMA

models) that can represent the underlying river flows, simulating long records of such river

flows, and then deriving droughts properties from the simulated samples based on the theory

of runs (see Chapter 6 for a detailed discussion).

The main purposes of this dissertation are to fit a PARMA model to represent a given

river flow data, estimate parameters, check for goodness of fit to the data, model the resid-

uals, and to use the fitted model for generating synthetic river flows and apply them to ex-

treme analysis such as droughts. The innovations algorithm can be used to obtain estimates

of the PARMA model parameters. Asymptotic distributions for the innovations estimates
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and model parameters (which are developed here) provide us with a general technique for

identifying PARMA models with the minimum number of parameters. A detailed simu-

lation study is conducted to test the effectiveness of the innovation estimation procedures

and PARMA model identification. We use monthly river flow data for the Fraser River

in British Colombia in order to illustrate the model identification procedure and residual

modeling procedure, and to prove the ability to generate realistic synthetic river flows. We

apply the same methods to monthly flow data for the Salt River in Arizona, which has heavy

tails. In both cases, we are able to generate realistic synthetic river flows by developing a

mixture probability model for the residuals. In an effort to obtain a parsimonious model

representing periodically stationary series, we develop the asymptotic distribution of the dis-

crete Fourier transform of the innovation estimates and other model parameters, and then

determine those statistically significant Fourier coefficients. We demonstrate the effective-

ness of these techniques using simulated data from different PARMA models. An application

of the techniques is demonstrated through the analysis of a weekly river flow series for the

Fraser River. Finally, we demonstrate the application of synthetically generated weekly river

flows using PARMA model for hydrologic drought analysis of the Fraser River.

1.1 Characteristics of Hydrological Time Series

The structure of hydrological time series consists of mainly one or more of these four basic

structural properties and components (Salas, 1993):

• Over year trends and other deterministic changes (such as shifts in the parameters). In

general, natural and human induced factors may produce gradual and instantaneous

trends and shift in hydrological time series. See, for example, Salas (1980,1993) for a

detailed discussion of trends and shifts in hydrological data and their removal.
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• Intermittency in the processes, mainly consisting of the hydrology of intermittent se-

quences of zero and non-zero values.

• Seasonal or periodic changes of days, weeks or months within the annual cycle. Period-

icity means that the statistical characteristic changes periodically within the year. For

example, in hydrologic data concerning river flows, we expect high runoff periods in the

spring and low flow periods in the summer. Thus the river flow correlations between

spring months may be different from the correlations between summer months.

• Stochasticity or random variations.

All the rivers used as case studies in this research are perennial rivers. None of them revealed

any significant trend or shift. Therefore, we consider only periodicity and stochasticity in

the modeling of the river flow series.

Although basic hydrologic processes evolve on a continuous time scale, most analysis and

modeling of such processes are made by defining them on a discrete time scale. In most

cases, a discrete time processes is derived by aggregating the continuous time process within

a given time interval while in other cases it is derived by sampling the continuous process at a

discrete point in time. For example, a weekly river flow series can be derived by aggregating

the continuous flow hydrograph on a weekly basis while a daily river flow series can be the

result of simply sampling the flows of a river once daily or by integrating the continuous

flow hydrograph on a daily basis. In any case, most time series of hydrological processes are

defined at hourly, daily, weekly, monthly, bimonthly, quarterly, and annual time intervals.

It must be emphasized at this point that the term period (also used interchangeably with

season) applies for any time resolution smaller than one year.
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The plot of a hydrological series gives a good indication of its main characteristics. For

example, the daily, monthly, annual flows of the Truckee River at Farad (gauge 10346000),

CA are given in Figure 1.1. The daily series (for this case, beginning October 1, 1912) shows

a typical behavior in which during some days of the year the flows are low and in other

days the flows are high. During the days of low flows the variability is small, on the other

hand, during high flows the variability is large. This characteristic behavior of daily flows

indicates that the daily means vary throughout the year. This is further substantiated if one

observes the plot of monthly flows (ten years of data beginning October, 1912). In general,

most hydrological time series exhibit periodic variations in mean, variance, covariance and

skewness. The periodicity in mean, as can be seen from Figure 1.1, may be easily observed

in the plot of the underlying hydrologic time series. However, the periodicity in higher order

moments is not so easy to observe and usually requires further mathematical analysis (see,

for example, Chapters 4 and 5 for a detailed discussion).

Autocorrelation analysis can also be used to identify cycles or periodic components of

hydrological time series. Figure 1.1 (bottom right) shows the autocorrelation of monthly

river flows for the Truckee River at Farad, CA. The non-decaying nature of the correlation

function can be observed, indicating a correlation between flows at 12 months’ lag. Spectral

analysis has also been used to detect cycles in hydrological data (Rosner and Yevejevich,

1966; Quimpo, 1967; Salas, 1993). In addition, periodicity in autocorrelation can be detected

using asymptotic theory (see, for example, Anderson and Vecchia, 1993; Anderson and

Meerschaert, 1997,1998).

Many river flow time series also exhibit occasional sharp spikes (also called heavy tail

characteristics; that is, some observations are several times greater than the average), and

as a result they are skewed. For example, Figure 1.2 shows a time series plot and histogram



5

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800

Day

F
lo

w
(c

fs
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

Month

F
lo

w
(c

fs
)

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80

Year

F
lo

w
(c

fs
)

Lag
A
u
t
o
c
o
r
r
e
la
t
io
n

1009080706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for Monthly Flows
(with 5% significance limits for the autocorrelations)

Figure 1.1: Daily (top left), monthly (top right), annual (bottom left) river flow series for

Truckee River at Farad, CA. Autocorrelation function for monthly data for the same river

(bottom right).

for the 72 years (October 1914 to September 1986) of average monthly flows for the Salt

River near Roosevelt, AZ. There are occasional sharp spikes in the time series plot of the

data (for example, 14 observations are greater than 6 × Average, where Average = 905.50

cfs ), which indicates the heavy tail characteristics of the data. Since the data set exhibits

heavy tails and skewness, it can be well described by a heavy tail distribution (for example, a

stable distribution1). The tail behavior of a non-normal stable distribution is asymptotically

equivalent to a Pareto distribution (see Chapter 4). A Pareto random variable X, is defined

by P (X > x) = Cx−α for some C > 0, α > 0. The parameter α is called the ”tail index”

and can be used as a measure of tail-heaviness. For data analysis applications, the actual

1See the definition in Chapter 4
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distribution is often unknown, so robust estimators (for instance, Hill’s estimator) are needed

to fit the tail parameter α of an unknown heavy tail distribution (see Chapter 4 for a detailed

discussion of tail index estimation). Table 1.1 summarizes the Hill’s estimators for the

average monthly flow data of Fraser, Salt, Truckee rivers. It must be noted that r is the

number of order statistics.

Table 1.1: Hill estimators for monthly river flow data.

α̂ Ĉ

r + 1 Truckee Salt Fraser Truckee Salt Fraser

5 2.548 4.825 10.600 3.163E+06 5.773E+16 6.198E+54

10 3.557 3.182 6.889 4.127E+10 1.371E+10 1.541E+34

15 3.408 2.925 8.355 9.828E+09 1.396E+09 1.753E+42

20 3.784 3.023 9.556 3.135E+11 3.318E+09 6.986E+48

25 4.097 2.698 9.090 3.326E+12 1.924E+08 1.938E+46

30 4.314 2.621 9.031 3.909E+13 9.870E+07 9.196E+45
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Figure 1.2: Time series plot (left) and histogram (right) of monthly river flows (cfs) for the

Salt River near Roosevelt, Arizona, from October 1914 to September 1986.
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In time series modeling, the tail parameter α also dictates the modeling approach for

data with a Pareto tail. If α > 4, then the time series has finite fourth moments, and the

classical approach based on normal asymptotics is appropriate. If 2 < α < 4, then the

time series has finite variance but infinite fourth moment and the asymptotics of the sample

autocorrelation functions (ACF) are governed by stable laws. Finally, if α < 2, the time series

has infinite second moments, and the asymptotics are governed by stable laws. Preliminary

tail estimations from Table 1.1 (for small r = 15) indicates that for the Fraser River α > 4,

so the time series has light tails and normal asymptotics apply whereas 2 < α < 4 for the

Salt and Truckee rivers, so that these time series have heavy tails with a finite variance but

infinite fourth moment, and stable asymptotics apply.

1.2 Modeling and Simulation of Hydrological Series

A number of approaches have been suggested for modeling hydrological time series defined

at time intervals less than a year (Salas, 1993; Hipel and McLeod, 1994). The common

procedure in modeling such periodic river flow series is first to standardize or filter the

series and then fit an appropriate stationary stochastic model to the reduced series (Salas,

et al., 1980; Thompstone et al.,1985; Vecchia, 1985; Salas, 1993; Chen, 2002). However,

standardizing or filtering most river flow series may not yield stationary residuals due to

periodic autocorrelations. In these cases, the resulting model is misspecified (Tiao and

Grupe, 1980). Periodic models can, therefore, be employed to remove the periodic correlation

structure. An important class of periodic models useful in such situations consists of periodic

autoregressive moving average (PARMA) models, which are extensions of commonly used

ARMA models that allow periodic parameters. The PARMA modeling procedure involves

iterative steps of model identification, parameter estimation, model diagnosis and fitting the



8

residuals (noise) with a probability distribution function (pdf). The opposite process to step-

by-step modeling is the use of models to generate (simulate) new samples or a long sample

of the process. One starts with the random noise and its pdf by generating its sample(s).

Then generate the corresponding data samples by using the fitted PARMA model.

1.3 Literature Review

Early studies by Hazen (1914) and Sudler (1927) showed the feasibility of using statistics and

probability theory in analyzing river flow sequences. Hurst (1951) in investigating the Nile

River for the Aswan Dam project, reported studies of long records of river flows and other

geophysical series, which years later tremendously impacted the theoretical and practical

aspect of time series analysis of hydrologic and geophysical phenomena. Barnes (1954)

extended the early empirical studies of Hazen and Sudler and introduced the idea of synthetic

generation of stream flow by using a table of random numbers. However, it was not until

the beginning of the 1960’s that the formal development of stochastic modeling started with

introduction and application of autoregressive models for annual and seasonal stream flows

(Thomas and Fiering, 1962; Yevejevich, 1963; Roesner and Yevejevich; 1966).

Since then, extensive research efforts have been made towards improving the earlier con-

cepts and models, providing physical justification of some models, introducing alternative

models, developing and applying improved estimation procedures as well as fitness tests

for such models, and studying their impact in water resources systems planning and man-

agement. The concept of periodically correlated processes was introduced by Gladys̆hev

(1961). He gave a formal definition of periodic stationarity for a general periodic process

and showed that a necessary and sufficient condition for such stationarity is the stationarity

of the so-called “lumped” vector process. The first application of periodic time series mod-
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els seems to have been by hydrologists Thomas and Fiering (1962). They used the lag-one

autoregressive (AR) model for modeling monthly stream flow. Since then there have been

many discussions and summaries about periodic time series models: Jones and Brelsford

(1967), Moss and Bryson (1974), Delleur et al. (1976), Pagano (1978), Troutman (1979),

Tiao and Grupe (1980), Tjostheim and Paulsen (1982), Noakes et al. (1985), Salas et al.

(1981,1982,1985), Thompstone et al. ( 1985b), Vecchia (1985a,1985b), Vecchia et al. (1983),

Li and Hui (1988), Vecchia and Ballerini (1991), Anderson and Vecchia (1993), Bentarzi et

al. (1993), Ula (1990,1993), Ula and Smadi (1997,2003), Adams and Goodwin (1995) and

Anderson and Meerschaert (1997,1998), Lund and Basawa (1999,2000), and Shao and Lund

(2004).

For example, Noakes et al. (1985) demonstrate the superiority of periodic autoregressive

models among several other competitors in forecasting thirty monthly river flow time series.

Troutman (1979) studies some properties of the periodic autoregressive models using a re-

lated multivariate autoregressive representation. Tiao and Grupe (1980) show how periodic

autoregressive moving average models may be misspecified as homogeneous models. Because

of the seasonal parameters, the estimation of periodic models is more difficult than that of

the homogeneous models. Pangano (1978) dealt with moment estimation of parameters in

periodic autoregressive (PAR) models. He showed that estimates of the seasonal parameters

obtained by using the seasonal Yule-Walker equations possess many desirable properties,

including maximum asymptotic efficiency under normality. Salas et al. (1982) suggest esti-

mating the parameters of PARMA models using the seasonal Yule-Walker equations. Vecchia

(1985b) proposed an algorithm for the maximum likelihood estimation for periodic ARMA

models. Li (1988) developed an algorithm for exact likelihood of periodic moving average

models. Anderson, Meerschaert and Vecchia (1999) developed the innovations algorithm for
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estimation of PARMA model parameters. Lund and Basawa (2000) examine the recursive

prediction and likelihood evaluation techniques for PARMA models, which are extensions of

Ansley (1979) for ARMA series. Shao and Lund (2004) study correlation and partial auto-

correlation properties PARMA time series models. Additional review of literature is given

at the beginning of the remaining chapters.

1.4 Objectives of the Research

Hydrologic river flows can exhibit both heavy tails and/or nonstationarity. Therefore, the

main goal of the research presented here is to fit a PARMA model to represent a given river

flow data, estimate parameters, check for goodness of fit to the data, and possibly to use the

fitted model for different purposes such as extreme analysis (flood and drought).

Specific objectives:

1. Anderson, Meerschaert and Vecchia (1999) developed a parameter estimation technique

(known as innovations algorithm) for PARMA models with finite fourth moment as well

as infinite fourth moment but finite variance. In addition, Anderson and Meerschaert

(2003) provided a method for model identification when the time series have finite

fourth moment. Therefore, in this part of the research, asymptotic distributions for

model parameters are developed. These results provide us with a general technique

for identifying PARMA models with minimum number of parameters. A detailed

simulation study is conducted to test the effectiveness of the innovation estimation

procedures and those asymptotics as method for PARMA model identification. We

use monthly river flow data for the Fraser River at Hope in British Colombia so as to

illustrate the model identification procedure and residual modeling procedure, and to

prove the ability to generate realistic synthetic river flows.



11

2. We describe the PARMA modeling procedure for time series with heavy tails. As an

application, we use monthly flow data for the Salt River near Roosevelt in Arizona so

as to illustrate the model identification procedure and residual modeling procedure,

and to prove the ability to generate realistic synthetic river flows in the heavy tail

case.

3. For analysis and design of water resources systems, it is sometimes required to gen-

erate river flow data with high resolution (that is, weekly or daily values). Fitting

the PARMA model to historical weekly or daily data, however, requires estimation of

too many parameters which violates the principle of parsimony (model with minimum

number of parameters). In an effort to obtain a parsimonious model representing these

periodically stationary series, we develop the asymptotic distribution of the discrete

Fourier transform of the innovation estimates and then determine those statistically

significant Fourier coefficients. We also extend these results to other periodic model pa-

rameters. We demonstrate the effectiveness of the technique using simulated data from

different PARMA models. An application of the technique is demonstrated through

the analysis of a weekly river flow series for the Fraser River.

4. Hydrologic drought properties (such as duration and severity) of various return periods,

for example, are needed to assess the degree to which a water supply system will be

able to cope with future droughts and, accordingly, to plan alternative water supply

strategies. They can be determined from the historical record alone by using non-

parametric methods but, because the number of drought events that can be drawn

from the historical sample is generally small, the “historical” drought properties have

a large degree of uncertainty. In such cases, drought properties can be derived by
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synthetically generating river flows at key points in the water supply system under

consideration. In this part of the research, PARMA models are used to model river

flows and to generate a large sequence of synthetic flows, and then drought properties

are derived from the simulated samples based on the theory of runs. The applicability

of these methods is demonstrated by using weekly river flow data for the Fraser River.

The remainder of the dissertation is organized as follows. Chapter 2 describes the general

properties of PARMA models and the innovations algorithm for parameter estimation of

PARMA models. Asymptotic distributions for the innovations estimates and model param-

eters are developed in Chapter 3, which also deals with PARMA model identification using

those asymptotic distributions, and demonstrates the PARMA modeling techniques with a

simulation study and with an example. Chapter 4 concerns modeling of river flows with

heavy tails. In an effort to obtain a parsimonious model for periodically stationary series,

asymptotic distributions of the discrete Fourier transform of the innovations estimates and

PARMA model parameters are developed in Chapter 5 and used to determine statistically

significant Fourier coefficients. In Chapter 5, we also included a simulation study and an

example to demonstrate the effectiveness of the technique. Applications of PARMA mod-

els to analysis of droughts are presented in Chapter 6. Finally, conclusions are drawn and

recommendations for further research are made in Chapter 7.



13

2 PARMA Models and Their Parameter Estimation

2.1 General

A time series is a set of observations {Xt}, each one being recorded at a specific time t. For

example, {Xt} can be river flow (daily, monthly, etc.) measurements at time t. In general,

a collection of a random variables, indexed by t is referred to as a stochastic process. The

observed values of a stochastic process are referred to as a realization of the stochastic process.

A mathematical model representing a stochastic process is called a stochastic model or time

series model. The model consists of a certain mathematical form or structure and a set

of parameters. Such models are built to “reproduce” or to “resemble” the main statistical

characteristics (mean, standard deviation, skewness, autocorrelation, range and run) of the

time series.

Several stochastic models have been used for modeling hydrological time series in gen-

eral and stream flow time series in particular (Salas et al., 1981). Unfortunately, the exact

mathematical model of a hydrological time series is never known. The exact model param-

eters are also never known, they must be estimated from limited data. Identification of the

models and estimation of their parameters from the available data are often referred to in

the literature as time series modeling or stochastic modeling of hydrologic time series. A

systematic approach to hydrologic time series modeling may be composed of six main phases

(Salas et al, 1981):

1. Identification of model composition. The modeler has to decide whether the model(s)

will be a univariate, a multivariate, or a combination of a univariate and a disaggrega-

tion, etc.

2. Identification of model type. Select a type of models among the various types available
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in literature.

3. Identification of the model form. Determine, for example, the orders p and q of a

PARMA model.

4. Estimation of model parameters. Use of proper parameter estimation method.

5. Testing the goodness of fit of the model. The model estimated in phase (4) needs to

be checked to see whether it complies with certain assumptions about the model and

to verify how well it represents the historic hydrologic time series.

6. Evaluation of uncertainties. It may be model uncertainty or parameter uncertainty.

The overall time series modeling is actually an iterative process with the feed back and

interaction between each of the above-referred stages.

The selection or identification of the type of hydrologic stochastic model generally de-

pends on (Salas et al, 1981):

• The modelers’ input such as judgment, experience, and personal preference;

• the physical basis of the process under study (physical or stochastic generating mech-

anisms of the data); and

• the statistical characteristics of a given time series.

Based on the conceptual physical representation of a natural watershed, river flow processes

are often modeled by the general class of ARMA processes (Salas et al, 1981). As discussed

in Chapter 1, observed river flow series are characterized by seasonal variations in both the

mean and covariance structure. Periodic ARMA models are, therefore, an appropriate class

of models to represent the river flow series.
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In this chapter and the following three chapters, we deal with the 3rd, 4th and 5th phases

of hydrologic time series modeling. Parameter estimation for PARMA models is more com-

plex than for normal ARMA models because of the higher number of parameters to be

estimated. Pagano (1978) has used seasonal Yule-Walker equations (see equation (2.6)) to

estimate the parameters of PAR models. Vecchia (1985) has used ML2 for parameter estima-

tion of PARMA models, but this only works well for lower order models. With higher-order

PARMA models it becomes difficult to obtain estimates using the ML algorithm. Adams and

Goodwin (1995) have employed pseudo-linear regression algorithms for parameter estimation

of PARMA models with finite fourth moment. Anderson, Meerschaert and Vecchia (1999)

developed the innovations algorithm for parameter estimation of an infinite moving average

representation of PARMA models, which is applicable for PARMA models with finite fourth

moment as well as infinite fourth moment but finite variance. The innovations algorithm

parameter estimation technique is the focus of this chapter.

2.2 Mathematical Formulation of PARMA Model

A stochastic process Xt is periodically stationary (in the wide sense) if µt = EXt and

γt(h) = Cov(Xt, Xt+h) = EXtXt+h for h = 0,±1,±2, . . . are all periodic functions of time t

with the same period ν ≥ 1. That is, for some integer ν, for i = 0, 1, ..., ν − 1, and for all

integers k and h, µi = µi+kν and γi (h) = γi+kν (h). If ν = 1 then the process is stationary3.

The periodic ARMA process {X̃t} with period ν (denoted by PARMAν (p, q)) has repre-

sentation

2Maximum likelihood(ML) estimation, also called the maximum likelihood method, is the procedure of

finding the value of one or more parameters for a given statistic which makes the known likelihood distribution

a maximum.
3See Definition A.2, Appendix A.
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Xt −
p∑

j=1

φt(j)Xt−j = εt −
q∑

j=1

θt(j)εt−j (2.1)

where Xt = X̃t − µt and {εt} is a sequence of random variables with mean zero and scale σt

such that {δt = σ−1
t εt} is independent and identically distributed (iid). The autoregressive

parameters φt(j), the moving average parameters θt(j), and the residual standard deviations

σt are all periodic functions of t with the same period ν ≥ 1. The residual standard deviations

parameters σt, assumed to be strictly positive. We also assume:

(i) Finite variance: Eε2
t < ∞ .

(ii) We will consider models where Eε4
t < ∞ (Finite Fourth Moment Case) and also

models in which Eε4
t = ∞ (Infinite Fourth Moment Case). In the latter case, we say that

the iid sequence
{
δt = σ−1

t εt

}
is RV (α) if P [|δt| > x] varies regularly4 with the index −α

and P [δt > x]/P [|δt| > x] → p for some p ∈ [0, 1]. In the case where the noise sequence

has infinite fourth moment, it is assumed that the sequence is RV (α) with α > 2. This

assumption implies that E|δt|ρ < ∞ if 0 < ρ ≤ α, in particular the variance of εt exists.

With this technical condition, Anderson and Meerschaert (1997) showed that the sample

autocovariance is a consistent estimator of the autocovariance, and asymptotically stable 5

with tail index α/2.

(iii) The model admits a causal representation

Xt =
∞∑

j=0

ψt(j)εt−j (2.2)

where ψt(0) = 1 and
∑∞

j=0 |ψt(j)| < ∞ for all t. The absolute summability of the ψ-weights

ensures that (2.2) converges almost surely for all t, and in the mean-square to the same

limit. The causality restriction imposes conditions on the seasonal autoregressive parame-

4See Definition 4.1, Section 4.3.
5See Chapter 4 for the definition.
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ters in (2.1). These conditions may be stated by expressing the PARMA model given by

(2.1) in terms of an equivalent multivariate stationary ARMA process (Tiao and Grupe,

1980; Vecchia, 1985a). For example, if p = 1, the causality condition for the autoregres-

sive parameters in (2.1) is given by |φ0(1)φ1(1)...φν−1(1)| < 1. It should be noted that

ψt(j) = ψt+kν(j) for all j.

(iv) The model also satisfies an invertibility condition

εt =
∞∑

j=0

πt(j)Xt−j (2.3)

where πt(0) = 1 and
∑∞

j=0 |πt(j)| < ∞ for all t. The invertibility condition places constraints

on the moving average parameters in the same way that (2.2) places constraints on the

autoregressive parameters. Again, πt(j) = πt+kν(j) for all j.

2.3 Parameter Estimation for PARMA Model

The innovations algorithm, developed for periodic time series models by Anderson, Meer-

schaert and Vecchia (1999), is used to obtain parameters estimates for PARMA models.

It can be used to estimate parameters for the PARMA models with finite fourth moments

(Eε4
t < ∞) as well as infinite fourth moment but finite variance (Eε4

t = ∞). When Eε2
t = ∞,

the autocovariance and autocorrelation functions are not defined.

Let X̂
(i)
i+k = PHk,i

Xi+k denote the one-step predictors, where Hk,i = sp{Xi, ..., Xi+k−1},

k ≥ 1, and PHk,i
is the orthogonal projection onto this space, which minimizes the mean

squared error

vk,i =
∥∥∥Xi+k − X̂

(i)
i+k

∥∥∥2

= E
(
Xi+k − X̂

(i)
i+k

)2

(2.4)

Then

X̂
(i)
i+k = φ

(i)
k,1Xi+k−1 + ... + φ

(i)
k,kXi, k ≥ 1, (2.5)
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where the vector of coefficients φ
(i)
k =

(
φ

(i)
k,1, ..., φ

(i)
k,k

)′
solves the prediction equations

Γk,iφ
(i)
k = γ

(i)
k (2.6)

with γ
(i)
k = (γi+k−1(1), γi+k−2(2), . . . , γi(k))′ and

Γk,i =
[
γi+k−�(� − m)

]
�,m=1,...,k

(2.7)

is the covariance matrix of (Xi+k−1, ..., Xi) for each i = 0, ..., ν − 1. Because the process is

nonstationary, the Durbin-Levinson algorithm (Brockwell and Davis, 1991) for computing

φ̂
(i)
k,j does not apply. However, the innovations algorithm still applies to a nonstationary

process. Writing

X̂
(i)
i+k =

k∑
j=1

θ
(i)
k,j

(
Xi+k−j − X̂

(i)
i+k−j

)
(2.8)

yields the one step predictors in terms of the innovations Xi+k−j − X̂
(i)
i+k−j. If σ2

i > 0 for

i = 0, ..., ν − 1, then for a causal PARMAν(p, q) process the covariance matrix Γk,i is non-

singular for every k ≥ 1 and each i (see Lund and Basawa, 2000). Anderson, Meerschaert,

and Vecchia (1999) showed that if EXt = 0 and Γk,i is non-singular for each k ≥ 1, then the

one-step predictors X̂i+k , k ≥ 0, and their mean-square errors vk,i , k ≥ 1, are given by

v0,i = γi(0)

θ
(i)
k,k−� = (v�,i)

−1
[
γi+�(k − �) −∑�−1

j=0 θ
(i)
�,�−jθ

(i)
k,k−jvj,i

]

vk,i = γi+k(0) −∑k−1
j=0

(
θ

(i)
k,k−j

)2

vj,i

(2.9)

where (2.9) is solved in the order v0,i, θ
(i)
1,1, v1,i, θ

(i)
2,2, θ

(i)
2,1, v2,i, θ

(i)
3,3, θ

(i)
3,2, θ

(i)
3,1, v3,i, .... The
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results in Anderson, Meerschaert and Vecchia (1999) show that

θ
(〈i−k〉)
k,j → ψi(j)

vk,〈i−k〉 → σ2
i

φ
(〈i−k〉)
k,j → −πi(j)

(2.10)

as k → ∞ for all i, j, where

〈j〉 =

⎧⎨
⎩

j − ν [j/ν] if j = 0, 1, ...

ν + j − ν [j/ν + 1] if j = −1,−2, ...

and [ · ] is the greatest integer function. For example, for monthly data Xt, 〈t〉 is the month

of the year= 0, 1, . . . , 11. Given Ny years of data, N = Nyν, define the sample mean

µ̂i = N−1
y

Ny−1∑
k=0

X̃kν+i (2.11)

the sample autocovariance

γ̂i(�) = (Ny − m)−1

Ny−1−m∑
j=0

Xjν+iXjν+i+� (2.12)

and the sample autocorrelation

ρ̂i(j) =
γ̂i(j)√

γ̂i(0)γ̂i+j−mν(0)
(2.13)

where Xt = X̃t − µ̂t, m = [(i + �)/ν] and [ · ] is the greatest integer function. If we replace

the autocovariances in the prediction equation (2.6) with their corresponding sample auto-

covariances, we obtain the estimator φ̂
(i)
k,j of φ

(i)
k,j. If we also replace the autocovariances in

(2.9) with corresponding sample autocovariances (2.12), we obtain the innovations estimates

ˆ
θ

(i)
k,l. The consistency of these estimators was also established in the following result due to

Anderson, Meerschaert and Vecchia (1999).
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Theorem 2.1 (Finite Fourth Moment Case) Suppose that {Xt} be the mean zero PARMA

process with period ν given by (2.1) and that Eε4
t < ∞. Assume that the spectral den-

sity matrix6, f(λ), of its equivalent vector ARMA process is such that mzz
′ ≤ z

′
f(λ)z ≤

Mzz
′
,−π ≤ λ ≤ π, for some m and M such that 0 < m ≤ M < ∞ and for all z in Rυ. If

k is chosen as a function of the sample size Ny so that k2/Ny → 0 as Ny → ∞ and k → ∞,

then

θ̂
(〈i−k〉)
k,j

P→ ψi(j)

ν̂k,〈i−k〉
P→ σ2

i

φ̂
(〈i−k〉)
k,j

P→ −πi(j)

(2.14)

for all i, j where “
P→ ” denotes convergence in probability7.

PROOF. See Anderson, Meerschaert and Vecchia (1999) for a proof.

This yields a practical method for estimating the model parameters, in the classical case

of finite fourth moments. The asymptotic results in Chapter 3 can then be used to determine

which of these model parameters are statistically significantly different from zero.

Define

aNy = inf{x : P (|δt| > x) < 1/Ny},

where

a−2
Ny

=

Ny−1∑
t=0

δ2
tν+i ⇒ S(i),

S(i) is α/2-stable law, and “ ⇒ ” denotes convergence in distribution 8.

6See Section A-3, Appendix A.
7See Definition A.10, Appendix A.
8See Definition A.11, Appendix A.
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Theorem 2.2 (Infinite Fourth Moment Case) Suppose that {Xt} be the mean zero PARMA

process with period ν given by (2.1) and {δt} is RV (α) with 2 < α ≤ 4. Assume that the

spectral density matrix, f(λ), of its equivalent vector ARMA process is such that mzz
′ ≤

z
′
f(λ)z ≤ Mzz

′
,−π ≤ λ ≤ π, for some m and M such that 0 < m ≤ M and for all z in

Rν. If k is chosen as a function of the sample size Ny so that k5/2a2
Ny

/Ny → 0 as Ny → ∞

and k → ∞, then

θ̂
(〈i−k〉)
k,j

P→ ψi(j)

ν̂k,〈i−k〉
P→ σ2

i

φ̂
(〈i−k〉)
k,j

P→ −πi(j)

(2.15)

for all j and every i = 0, 1, . . . , ν − 1, where “
P→ ” denotes convergence in probability.

PROOF. See Anderson, Meerschaert and Vecchia (1999) for a proof.

Theorem 2.2 yields a practical method for estimating the model parameters, in the case

of infinite fourth moments.
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3 PARMA Model Identification: Finite Fourth Mo-

ment Case

3.1 General

The PARMA modeling procedure usually involves three main steps: model identification,

parameter estimation and diagnostic checking. The goal of PARMA model identification is

to the identify the order of the PARMA model. Ula (2003) has used the cut-off property

of the periodic autocorrelation function for the identification of the orders of periodic MA

(PMA) models, which is an extension of Box-Jenkins (Box and Jenkins, 1976) identifica-

tion techniques for ordinary MA and AR models. Anderson and Vecchia (1993) computed

the asymptotic distributions of the moment estimates of the periodic autocovariance and

autocorrelation functions of a PARMA process and used them for detecting periodicity in

autocorrelations and model parameters. Also, they derived the asymptotic distribution of the

Fourier-transformed sample periodic autocorrelation function and applied those asymptotics

for identification of a parsimonious PARMA model.

Anderson and Meerschaert (2003) provided an asymptotic distribution for innovation

estimates of PARMA models in the case where the innovations have finite fourth moment.

These results are used for the identification of the order of PARMA models. However, such

techniques often do not adequately identify the order of the model when the model is mixed

in the sense that both the autoregressive (AR) and moving average (MA) components are

present. If the innovations algorithm is supplemented by modeler experience or the Akaike’s

information criterion9 (AIC), then an approximate order of the mixed PARMA model can be

obtained. This chapter, which is an extension of previous work by Anderson and Meerschaert,

9See Section A-5, Appendix A.
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has three objectives. The first is to develop asymptotic distributions for PARMA model

parameters for the finite fourth moment case. These asymptotic results provide us with a

general technique for computing asymptotic confidence regions for the model parameters

from the innovation algorithm estimates, and for identifying PARMA models with minimum

number of parameters. The second is to demonstrate the effectiveness of the innovation

estimation procedures and those asymptotics as a method for PARMA model identification

by using simulated data from different PARMA models for the finite fourth moment case.

Finally we use monthly river flow data for the Fraser River at Hope in British Colombia so

as to illustrate the model identification procedure and residual modeling procedure, and to

prove the ability to generate realistic synthetic river flows.

3.2 Asymptotic Distributions for Moving Average Processes

Any mean-centered finite variance periodic ARMA process (2.1) can be expressed in terms

of a periodic moving average

Xt =
∞∑

j=−∞
ψt(j)εt−j (3.1)

where δt = σ−1
t εt is a sequence of iid random variables with mean zero and variance one.

We also assume that the moving average parameters ψt(j) are periodic in t with the same

period ν, and that
∑∞

j=−∞ |ψt(j)| < ∞ for all t. Also, we consider a finite fourth moment

case: Eε4
t < ∞.

For any periodically stationary time series, we can construct an equivalent (stationary)

vector moving average process in the following way: Let Zt =
(
δtν , ..., δ(t+1)ν−1

)′
and Yt =
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(
Xtν , ..., X(t+1)ν−1

)′
, so that

Yt =
∞∑

j=−∞
ΨjZt−j (3.2)

where Ψj is the ν × ν matrix with ij entry σiψi (tν + i − j), and we number the rows and

columns 0, 1, ..., ν − 1 for ease of notation.

We define the sample autocovariance matrix by Γ̂(h) = N−1
y

∑Ny−1
t=0 (Yt − µ̂)(Yt+h − µ̂)′,

where µ̂ = N−1
y

∑Ny−1
t=0 Yt is the sample mean and the autocovariance matrix by Γ(h) =

E(Yt − µ)(Yt+h − µ)′, where µ = EYt. Note that the ij entry of Γ(h) is γi(hν + j − i) and

likewise for Γ̂(h). The autocorrelation matrix R(h) has ij entry equal to ρi(hν + j − i) and

likewise for the sample autocorrelation matrix R̂(h). The ij term of R(h) is also called the

cross correlation of the i and j components of the vector process at lag h. In this application

it represents the correlation between season i at year t and season j at year t + h.

Theorem 3.1 Let Xt = X̃t − µt, where {Xt} is the periodic moving average process (3.1)

and µt is a periodic mean function with period ν. Then, for σ2
t = Eε2

t < ∞, µ̂t is a consistent

estimator of µt and

N1/2
y {µ̂ − µ} ⇒ N (0, C) (3.3)

where N = Nyν, N (0, C) is a Gaussian random vector with mean zero and covariance

C = (
∑

j Ψj)(
∑

j Ψj)
′,

µ̂ = [µ̂0, µ̂1, · · · , µ̂ν−1]
T

µ = [µ0, µ1, · · · , µν−1]
T

(3.4)

PROOF. See Anderson and Meerschaert (1998).

This theorem can be used for constructing confidence regions for µ. We adapt the pro-

cedure of Brockwell and Davis (1991, p. 407) to obtain the simultaneous (1 − α)100%

confidence region for µt. By Theorem 3.1, we have N
1/2
y {µ̂i − µi} ⇒ N (0, υi), where υi is a
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variance

υi = 2πfi(0) =
∞∑

j=−∞
γi(j) (3.5)

and fi(ω) is the spectral density for the ith seasonal component. The lag window estimator

2πfi(0) =
∑
|h|≤r

(
1 − |h|

r

)
γ̂i(h) (3.6)

for υi is consistent when r = rn → ∞ in such a way that rn/n → 0. Then, with probability

1 − α,

|µ̂i − µi| ≤ Φ1−α/(2ν)

√
2πf̂i(0)/Ny (3.7)

is approximately true for large r and n. Here Φp is the p percentile of a standard normal

distribution.

For finite fourth moment case, Anderson and Vecchia (1993) compute the asymptotic

distributions of the moment estimates of the periodic autocovariance function γt(�) and of

the periodic autocorrelation function ρt(�), where ρt(�) = γt(�)/{γt(0)γt+�(0)}1/2. The joint

asymptotic distribution of the estimated periodic autocovariances are given in Theorem 3.2.

Theorem 3.2 Let Xt = X̃t − µt, where Xt is the periodic moving average process (3.1) and

µt is a periodic mean function with period ν. Then, for any nonnegative integers j and h

with j �= h,

N1/2

⎛
⎝ ˆγ(j) − γ(j)

γ̂(h) − γ(h)

⎞
⎠⇒ N

⎛
⎝0,

⎛
⎝Ojj Ojh

Ohj Ohh

⎞
⎠
⎞
⎠ (3.8)

where N = Nyν, N (µ,O) denotes the multivariate normal distribution with mean µ and

covariance matrix O,

γ̂(�) = [γ̂0(�), γ̂1(�), · · · , γ̂ν−1(�)]
T

γ(�) = [γ0(�), γ1(�), · · · , γν−1(�)]
T

(3.9)

and, for i, � = 0, 1, . . . , ν − 1,
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(Ojh)i� =
∞∑

n=−∞
{γi(nν + � − i)γi+j(nν + � − i − j + h)+

γi(nν + � − i + h)γi+j(nν + � − i − j)}

Ojh =
∞∑

n=−∞
{GnΠjGn+h−jΠ

n−j + Gn+hΠ
jGn−jΠ

n−j}

(3.10)

where

Gn = diag{γ0(n), γ1(n), . . . , γν−1(n)} (3.11)

and Π an orthogonal ν × ν cyclic permutation matrix

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
...

...
...

...

0 0 0 0 · · · 1

1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

Note that

Πjdiag{a0, a1, . . . , aν−1}Π−j = diag{aj, aj+1, . . . , aj+ν−1} (3.13)

where {at} is any sequence of constants satisfying at+kν = at for all t.

PROOF. See Anderson and Vecchia (1993).

Theorem 3.3 Under the assumption of Theorem 3.2,

N1/2
y

⎛
⎝ ˆρ(j) − ρ(j)

ρ̂(h) − ρ(h)

⎞
⎠⇒ N

⎛
⎝0,

⎛
⎝Wjj Wjh

Whj Whh

⎞
⎠
⎞
⎠ (3.14)

where N = Nyν, j and h are positive integers with j �= h,

ρ̂(�) = [ρ̂0(�), ρ̂1(�), · · · , ρ̂ν−1(�)]
T

ρ(�) = [ρ0(�), ρ1(�), · · · , ρν−1(�)]
T

(3.15)
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and, for i, � = 0, 1, . . . , ν − 1,

Wjh =
∞∑

n=−∞
{LnΠjLn+h−jΠ

n−j + Ln+hΠ
jLn−jΠ

n−j − Lj(I + Πj)LnLn+hΠ
n

−LnΠjLn−jΠ
n−j(I + Π−h)Lh + 1

2
Lj(I + Πj)L2

nΠn(I + Π−h)Lh}
(3.16)

where

Ln = diag{ρ0(n), ρ1(n), . . . , ρν−1(n)} (3.17)

and Π an orthogonal ν × ν cyclic permutation matrix.

PROOF. See Anderson and Vecchia (1993) for a proof.

For ν = 1, the expression for Wjh in (3.16) reduces to

Wjh =
∞∑

n=−∞
{ρ(n)ρ(n + h − j) + ρ(n + h)ρ(n − j) − 2ρ(j)ρ(n)ρ(n + h)

−2ρ(n)ρ(n − j)ρ(h) + 2ρ(j)ρ(h)ρ2(n)}
(3.18)

See also Theorem A.15, Appendix A.

Anderson and Meerschaert (2003) also provide the asymptotic distribution for the in-

novations estimates of the parameters in a periodically stationary series (2.2) with period

ν ≥ 1 under the classical assumption that the innovations have finite fourth moment.

Theorem 3.4 Suppose that a periodically stationary moving average (2.2) is causal, invert-

ible, Eε4
t < ∞ , and that for some 0 < g ≤ G < ∞ we have gz

′
z ≤ z

′
f(λ)z ≤ Gz

′
z, for

all −π ≤ λ ≤ π, and for all z in Rν, where f(λ) is the spectral density matrix of equivalent

vector moving average process (3.2). If k = k(Ny) → ∞ as Ny → ∞ with k3/Ny → 0 and

N1/2
y

∞∑
j=1

|π�(k + j)| → 0 for � = 0, 1, . . . , ν − 1 (3.19)

then for any fixed positive integer D

N1/2
y (θ̂

(〈i−k〉)
k,u − ψi(u) : u = 1, ..., D, i = 0, ..., ν − 1) ⇒ N (0, V ) (3.20)
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where

V = A diag
(
σ2

0D
(0), ..., σ2

ν−1D
(ν−1)

)
A′ (3.21)

A =
D−1∑
n=0

EnΠ[Dν−n(D+1)] (3.22)

D(i) = diag
(
σ−2

i−1, σ
−2
i−2, ..., σ

−2
i−D

)
(3.23)

En = diag{ 0, ..., 0︸ ︷︷ ︸
0

, ψ0(n), ..., ψ0(n)︸ ︷︷ ︸
D−n

, 0, ..., 0︸ ︷︷ ︸
n

, ψ1(n), ..., ψ1(n)︸ ︷︷ ︸
D−n

, ..., 0, ..., 0︸ ︷︷ ︸
n

, ψν−1(n), ..., ψν−1(n)︸ ︷︷ ︸
D−n

}
(3.24)

and Π an orthogonal Dν × Dν cyclic permutation matrix.

PROOF. See Anderson and Meerschaert (2003) for a proof.

Note that Π0 is Dν × Dν identity matrix and Π−� ≡ (Π
′
)�. Matrix multiplication yields

the following corollary.

Corollary 3.5 Regarding Theorem 3.4, in particular, we have that

N1/2
y (θ̂

(〈i−k〉)
k,u − ψi(u)) ⇒ N

(
0,

u−1∑
n=0

σ2
i−n

σ2
i−u

ψ2
i (n)

)
(3.25)

PROOF. See Anderson and Meerschaert (2003) for a proof.

Remark 3.6 Corollary 3.5 also holds the asymptotic result for second-order stationary pro-

cess where the period is just ν = 1. In this case σ2
i = σ2 so (3.25) becomes

N1/2
y

(
θ̂k,u − ψ(u)

)
⇒ N

(
0,

u−1∑
n=0

ψ2(n)

)
(3.26)

The α-level test statistic rejects the null hypothesis (Ho : ψi(u) = 0) in favor of the alternative

(Ha : ψi(u) �= 0) if |Z| > zα/2. The p–value of this test is

p = P (|Z| > |z|) where Z ∼ N (0, 1) (3.27)
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and

Z =
N

1/2
y θ̂

(〈i−k〉)
k,u

W
, W 2 =

u−1∑
n=0

v̂k,〈i−k−n〉
(
θ̂

(〈i−k〉)
k,n

)2

v̂k,〈i−k−u〉
(3.28)

The joint asymptotic distribution of the innovation estimates are given in Theorem 3.7.

Theorem 3.7 average process(2) and µt is a Let θ̂
(〈i−k〉)
k,� = ψ̂i(�), under the assumption of

Theorem 3.4, for any nonnegative integers j and h with j �= h,

N1/2
y

⎛
⎝ ψ̂(j) − ψ(j)

ψ̂(h) − ψ(h)

⎞
⎠⇒ N

⎛
⎝0,

⎛
⎝ Vjj Vjh

Vhj Vhh

⎞
⎠
⎞
⎠ (3.29)

where N (µ, V ) denotes the multivariate normal distribution with mean µ and covariance

matrix V ,

ψ̂(�) = [ψ̂0(�), ψ̂1(�), · · · , ψ̂ν−1(�)]
T

ψ(�) = [ψ0(�), ψ1(�), · · · , ψν−1(�)]
T

(3.30)

and for x = Min(h, j)

Vjh =
x−1∑
n=0

{
Fj−1−nΠ(ν−1)(j−1−n)Bn+1

(
Fh−1−nΠ(ν−1)(h−1−n)

)T
}

(3.31)

where

Fn = diag{ψ0(n), ψ1(n), . . . , ψν−1(n)}

Bn = diag{σ2
0σ

−2
0−n, σ2

1σ
−2
1−n, . . . , σ

2
ν−1σ

−2
ν−1−n}

(3.32)

and Π an orthogonal ν × ν cyclic permutation matrix.

PROOF. This is simply a rearrangement of rows and columns of the matrix V in (3.21).

Vector Difference Equation for the ψ-weights of the PARMA process

For a PARMAν(p, q) model given by (2.1), we develop a vector difference equation for the

ψ-weights of the PARMA process so that we can determine feasible values of p and q. For

fixed p and q ( p + q = m; assuming m statistically significant values of ψt(j)), to determine
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the parameters φt(�) and θt(�), (2.2) is substituted in to (2.1) to obtain

∞∑
j=0

ψt(j)εt−j −
p∑

�=1

φt(�)
∞∑

j=0

ψt−�(j)εt−�−j = εt −
q∑

�=1

θt(�)εt−� (3.33)

and then the coefficients on both sides are equated in order to calculate the φt(�) and θt(�).

ψt(0) = 1

ψt(1) − φt(1)ψt−1(0) = −θt(1)

ψt(2) − φt(1)ψt−1(1) − φt(2)ψt−2(0) = −θt(2)

ψt(3) − φt(1)ψt−1(2) − φt(2)ψt−2(1) − φt(3)ψt−3(0) = −θt(3)

... =
...

(3.34)

where we take φt(�) = 0 for � > p, and θt(�) = 0 for � > q. Hence the ψ-weights satisfy the

homogeneous difference equation given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψt(j) −
p∑

k=1

φt(k)ψt−k(j − k) = 0 j ≥ Max(p, q + 1)

ψt(j) −
j∑

k=1

φt(k)ψt−k(j − k) = −θt(j) 0 ≤ j ≤ Max(p, q + 1)

(3.35)

Defining

A� = diag{φ0(�), φ1(�), . . . , φν−1(�)}

ψ(j) = (ψ0(j), ψ1(j), . . . , ψν−1(j))
T

θ(j) = (θ0(j), θ1(j), . . . , θν−1(j))
T

ψjk(j − k) = (ψ−k(j − k), ψ−k+1(j − k), . . . , ψ−k+ν−1(j − k))T

(3.36)

then (3.35) becomes the vector difference equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(j) −
p∑

k=1

Akψjk(j − k) = 0 j ≥ Max(p, q + 1)

ψ(j) −
j∑

k=1

Akψjk(j − k) = −θ(j) 0 ≤ j ≤ Max(p, q + 1)

(3.37)

Note that ψt(0) = 1
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We can obtain a difference equation for ψj0(j − 0) = ψ(j) by introducing the orthogonal

ν × ν cyclic permutation matrix, and observing that ψjk(j − k) = Π−kψ(j − k). So, (3.37)

becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(j) −
p∑

k=1

AkΠ
−kψ(j − k) = 0 j ≥ Max(p, q + 1)

ψ(j) −
j∑

k=1

AkΠ
−kψ(j − k) = −θ(j) 0 ≤ j ≤ Max(p, q + 1)

(3.38)

The vector difference equation (3.38) can be helpful for the analysis of higher order PARMA

models using matrix algebra.

(a) Periodic Moving Average Processes

The vector difference equation for the PMAν(q) process given by (3.38) is⎧⎨
⎩

ψ(j) = −θ(j) 0 ≤ j ≤ q

ψ(j) = 0 j > q
(3.39)

We see that the innovation estimates of a periodic moving average process of order q has a

“cut-off” at lag q. Therefore, Corollary 3.5 can be directly applied to identify the order of

the PMA process.

N1/2
y ( − θ̂(j) + θ(j)) ⇒ N

(
0, Vjj

)
(3.40)

where Vjj is obtained from (3.31).

(b) Periodic Autoregressive Processes

The vector difference equation for the PARν(p) process given by (3.38) is

ψ(j) =

p∑
k=1

AkΠ
−kψ(j − k) j ≥ p (3.41)

For PARν(1), ψ(1) = A1Π
−1ψ(0) = φ where φ = {φ0, φ1, . . . , φν−1}T .

(c) PARMAν(1, 1) Process

For higher order PAR or PARMA models, it is difficult to obtain the explicit solution

for φ(�) and θ(�), and hence the model identification is a complicated problem. However, we

develop herein an asymptotic distribution for PARMAν(1, 1) model parameters.
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Consider a PARMAν(1, 1) model

Xt = φtXt−1 + εt − θtεt−1 (3.42)

where
{
σ−1

i εkν+i

}
form an iid sequences of normal random variables with mean zero and

standard deviation one. Then from (3.34) given the innovations coefficients, we can solve for

φt and θt using the following equations.

ψt(0) = 1 (3.43)

θt = φt − ψt(1) (3.44)

ψt(2) = φtψt−1(1) (3.45)

We now use Theorem 3.7 to derive the asymptotic distribution of the estimates of the

autoregressive as well as the moving average parameters (φt, θt).

Proposition 3.8 Suppose that Xn is AN (µ, c2
nΣ) where Σ is a symmetric non-negative

definite matrix and cn → 0 as n → ∞. If g(X) = (g1(X), . . . , gm(X))′ is a mapping from

R
k into R

m such that each gi(.) is continuously differentiable in a neighborhood of µ, and if

DΣD′ has all of its diagonal elements non-zero, where D is the m×k matrix [(∂gi/∂xj) (µ)],

then g(Xn) is AN (g(µ), c2
nDΣD′)

PROOF. See Proposition 6.4.3 of Brockwell and Davis (1991) for a proof.

Theorem 3.9 Under the assumption of Theorem 3.7, we have

N1/2
y

(
φ̂ − φ

)
⇒ N (0, Q) (3.46)

where

φ̂ = [φ̂0, φ̂1, · · · , φ̂ν−1]
T

φ = [φ0, φ1, · · · , φν−1]
T

(3.47)
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and the ν × ν matrix Q is defined by

Q =
2∑

k,�=1

H�V�kH
T
k (3.48)

where the matrix H is a ν × 2ν matrices of partial derivatives

H = (H1, H2) =

(
∂φ�

∂ψm(1)
,

∂φ�

∂ψm(2)

)
�,m = 0, 1, · · · , ν − 1

(3.49)

H can be expressed using ν × ν permutation matrix as

H = (−F2Π
−1F−2

1 , Π−1F−1
1 Π ) (3.50)

and for �, k = 1, 2 , V�k is given by

V11 = B1

V12 = B1Π
−(ν−1)F1 = B1ΠF1

V21 = F1Π
ν−1B1 = F1Π

−1B1

V22 = B2 + F1Π
ν−1B1Π

−(ν−1)F1 = B2 + F1Π
−1B1ΠF1

(3.51)

in which Bn and Fn are obtained from 3.32.

PROOF. Using Proposition 3.8, together with the relation φt = ψt(2)
ψt−1(1)

and Theorem 3.7 for

j = 1 and h = 2 we have that (3.46) holds with

Q = HV HT

where

Σ = V =

⎛
⎝V11 V12

V21 V22

⎞
⎠

g(µ) = φ where µ =

⎛
⎝ψ(1)

ψ(2)

⎞
⎠
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g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0(1)

...

ψν−1(1)

ψ0(2)

...

ψν−1(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

φ0

...

φν−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ψ0(2)
ψν−1(1)

...

ψν−1(2)
ψν−2(1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

g0

...

gν−1

⎞
⎟⎟⎟⎟⎠

and g(Xn) = φ̂ where Xn =

⎛
⎝ ψ̂(1)

ψ̂(2)

⎞
⎠

Then,

D = H =

⎛
⎜⎜⎜⎜⎝

∂φ0

∂ψ0(1)
. . . ∂φ0

∂ψν−1(1)
∂φ0

∂ψ0(2)
. . . ∂φ0

∂ψν−1(2)

...
...

...
...

∂φν−1

∂ψν−1(1)
. . . ∂φν−1

∂ψν−1(1)
∂φν−1

∂ψ0(2)
. . . ∂φν−1

∂ψν−1(2)

⎞
⎟⎟⎟⎟⎠

= (
[

∂φ�

∂ψm(1)

]
�,m=0,...,ν−1

[
∂φ�

∂ψm(2)

]
�,m=0,...,ν−1

)

= ( H1 H2 ) same as (3.49)

Therefore,

Q = HV HT

= ( H1 H2 )

⎛
⎝V11 V12

V21 V22

⎞
⎠
⎛
⎝HT

1

HT
2

⎞
⎠

= ( H1V11 + H2V21 H1V12 + H2V22 )

⎛
⎝HT

1

HT
2

⎞
⎠

= H1V11H
T
1 + H2V21H

T
1 + H1V12H

T
2 + H2V22H

T
2

=
∑2

k,�=1 H�V�kH
T
k same as (3.48)

where V�k is from (3.31).
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For φi = ψi(2)
ψi−1(1)

, we obtain

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −ψ0(2)

ψ2
ν−1(1)

−ψ1(2)

ψ2
0(1)

0 . . . 0 0

...
...

...
...

0 0 . . . ψν−1(2)

ψ2
ν−2(1)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −F1Π
−1F−2

1 same as (3.50)

and

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ψν−1(1)

0 . . . 0

0 1
ψ0(1)

. . . 0

...
...

...
...

0 0 . . . 1
ψν−2(1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Π−1F−1
1 Π same as (3.50)

From (3.32)

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
0

σ2
ν−1

0 . . . 0

0
σ2
1

σ2
0

. . . 0

...
...

...

0 0 . . .
σ2

ν−1

σ2
ν−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

F1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0(1) 0 . . . 0

0 ψ1(1) . . . 0

...
...

...

0 0 . . . ψν−1(1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
0

σ2
ν−2

0 . . . 0

0
σ2
1

σ2
ν−1

. . . 0

...
...

...

0 0 . . .
σ2

ν−1

σ2
ν−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using (3.31), we obtain (3.51) and then we can compute

V11 = B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
0

σ2
ν−1

0 . . . 0

0
σ2
1

σ2
0

. . . 0

...
...

...

0 0 . . .
σ2

ν−1

σ2
ν−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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V12 = B1ΠF1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ψ1(1)σ2

0

σ2
ν−1

0 . . . 0

0 0
ψ2(1)σ2

1

σ2
0

. . . 0

...
...

...
...

ψ0(1)σ2
ν−1

σ2
ν−2

0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

V21 = F1Π
−1B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . .
ψ0(1)σ2

ν−1

σ2
ν−2

ψ1(1)σ2
0

σ2
ν−1

0 0 . . . 0

0
ψ2(1)σ2

1

σ2
0

0 . . . 0

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

V22 = B2 + F1Π
−1B1ΠF1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ2
0(1)

σ2
ν−1

σ2
ν−2

+
σ2
0

σ2
ν−2

0 . . . 0

0 ψ2
1(1)

σ2
0

σ2
ν−1

+
σ2
1

σ2
ν−1

. . . 0

0 0 . . . 0

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Corollary 3.10 Regarding Theorem 3.9, in particular, we have that

N1/2
y

(
φ̂i − φi

)
⇒ N (

0, w2
φi

)
(3.52)

where

w2
φi = ψ−4

i−1(1)

{
ψ2

i (2)σ−2
i−2σ

2
i−1

(
1 − 2ψi(1)ψi−1(1)

ψi(2)

)
+ ψ2

i−1(1)σ−2
i−2

1∑
n=0

σ2
i−nψ

2
i (n)

}
(3.53)

PROOF. Using the formulas from the proof of Theorem 3.9, we obtain

H1V11H
T
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
ν−1

σ2
ν−2

ψ2
0(2)

ψ4
ν−1(1)

0 . . . 0

0
σ2
0

σ2
ν−1

ψ2
1(2)

ψ4
0(1)

. . . 0

0 0 . . . 0

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ith diagonal element is
σ2

i−1

σ2
i−2

ψ2
i (2)

ψ4
i−1(1)
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H1V12H
T
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ψ0(2)ψ0(1)

ψ3
ν−1(1)

σ2
ν−1

σ2
ν−2

0 . . . 0

0 −ψ1(2)ψ1(1)

ψ3
0(1)

σ2
0

σ2
ν−1

. . . 0

0 0 . . . 0

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ ith diagonal element is −ψi(2)ψi(1)

ψ3
i−1(1)

σ2
i−1

σ2
i−2

.

H2V21H
T
1 = H2V

T
12H

T
1 =

(
H1V12H

T
2

)T

so ith diagonal element of H2V21H
T
1 is the same that of H1V12H

T
2 , so ith diagonal element of

H1V12H
T
2 + H2V21H

T
1 is

−2ψi(2)ψi(1)σ2
i−1

ψ3
i−1(1)σ2

i−2
.

H2V22H
T
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ2
0(1)σ2

ν−1

ψ2
ν−1(1)σ2

ν−2
+

σ2
0

ψ2
ν−1(1)σ2

ν−2
0 . . . 0

0
ψ2

1(1)σ2
0

ψ2
0(1)σ2

ν−1
+

σ2
1

ψ2
0(1)σ2

ν−1
. . . 0

0 0 . . . 0

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ ith diagonal element is
ψ2

i (1)σ2
i−1

ψ2
i−1(1)σ2

i−2
+

σ2
i

ψ2
i−1(1)σ2

i−2
.

and hence the ith diagonal element of Q is

=
σ2

i−1ψ2
i (2)

σ2
i−2ψ4

i−1(1)
− 2ψi(2)ψi(1)

ψ3
i−1(1)

σ2
i−1

σ2
i−2

+
ψ2

i (1)σ2
i−1

ψ2
i−1(1)σ2

i−2
+

σ2
i

ψ2
i−1(1)σ2

i−2

= ψ−4
i−1(1)

{
σ2

i−1ψ2
i (2)

σ2
i−2

− 2ψi(2)ψi(1)ψi−1(1)σ2
i−1

σ2
i−2

+
ψ2

i (1)ψ2
i−1(1)σ2

i−1

σ2
i−2

+
ψ2

i−1(1)σ2
i

σ2
i−2

}
Corollary 3.10 is useful for finding approximate large-sample confidence interval for φi.

The (1 − α)100% confidence interval for φi is (φ̂i − zα/2N
−1/2
y wφi, φ̂i + zα/2N

−1/2
y wφi),where

Z ∼ N (0, 1). Note that non-overlapping confidence intervals give statistically significant

conclusions.

Theorem 3.11 Under the assumption of Theorem 3.7, we have

N1/2
y

(
θ̂ − θ

)
⇒ N (0, S) (3.54)
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where

θ̂ = [θ̂0, θ̂1, · · · , θ̂ν−1]
T

θ = [θ0, θ1, · · · , θν−1]
T

and the ν × ν matrix S is defined by

S =
2∑

k,�=1

M�V�kM
T
k (3.55)

where V�k is given in (3.51) and M is a ν × 2ν matrix of partial derivatives

M = (M1,M2) =

(
∂θ�

∂ψm(1)
,

∂θ�

∂ψm(2)

)
�,m = 0, 1, · · · , ν − 1

(3.56)

M can be expressed using ν × ν permutation matrix (22) as

M = (−I − F2Π
−1F−2

1 , Π−1F−1
1 Π ) . (3.57)

PROOF. Using proposition 3.8, the relation θt = ψt(2)
ψt−1(1)

− ψt(1), and Theorem 3.7 for j = 1

and h = 2, we have that (3.55) holds with

S = MV MT

where

g(µ) = θ where µ =

⎛
⎝ψ(1)

ψ(2)

⎞
⎠

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0(1)

...

ψν−1(1)

ψ0(2)

...

ψν−1(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

θ0

...

θν−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ψ0(2)
ψν−1(1)

− ψ0(1)

...

ψν−1(2)
ψν−2(1)

− ψν−1(1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

g0

...

gν−1

⎞
⎟⎟⎟⎟⎠

and g(Xn) = θ̂ where Xn =

⎛
⎝ ψ̂(1)

ψ̂(2)

⎞
⎠
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Following the same procedure as in the proof of Theorem 3.9, we obtain

M = (
[

∂θ�

∂ψm(1)

]
�,m=0,...,ν−1

[
∂θ�

∂ψm(2)

]
�,m=0,...,ν−1

)

= ( M1 M2 ) same as (3.56)

Therefore,

S = MV MT

= ( M1 M2 )

⎛
⎝V11 V12

V21 V22

⎞
⎠
⎛
⎝MT

1

MT
2

⎞
⎠

= ( M1V11 + M2V21 M1V12 + M2V22 )

⎛
⎝MT

1

MT
2

⎞
⎠

= M1V11M
T
1 + M2V21M

T
1 + M1V12M

T
2 + M2V22M

T
2

=
∑2

k,�=1 M�V�kM
T
k same as (3.55)

where V�k is from (3.31).

A comparison to the proof of Theorem 3.9 shows that M1 = −I + H1 and M2 = H2 and

then (3.57) follows.

Corollary 3.12 Regarding Theorem 3.11, in particular, we have that

N1/2
y

(
θ̂i − θi

)
⇒ N (0, w2

θi) (3.58)

where

w2
θi = ψ−4

i−1(1)

{
ψ2

i (2)σ−2
i−2σ

2
i−1

(
1 − 2ψi(1)ψi−1(1)

ψi(2)

)
+

2∑
j=1

ψ
4/j
i−1(1)σ−2

i−j

j−1∑
n=0

σ2
i−nψ2

i (n)

}

PROOF. A comparison to the proof of Theorem 3.9 shows that S = Q + S̄ where

S̄ = V11 − H1V1 − V11H
T
1 − H2V21 − V12H

T
2

and the ith diagonal element of S̄ is therefore
σ2

i

σ2
i−1

= ψ−4
i−1(1)

{
ψ4

i−1(1)σ2
i

σ2
i−1

}
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and hence the ith diagonal element of S is

= ψ−4
i−1(1)

{
σ2

i−1ψ2
i (2)

σ2
i−2

− 2ψi(2)ψi(1)ψi−1(1)σ2
i−1

σ2
i−2

+
ψ2

i (1)ψ2
i−1(1)σ2

i−1

σ2
i−2

+
ψ2

i−1(1)σ2
i

σ2
i−2

+
ψ4

i−1(1)σ2
i

σ2
i−1

}
.

Corollary 3.12 is useful for finding approximate large-sample confidence interval for θ. An

α-level confidence interval for θ is (θ̂i−zα/2N
−1/2
y wθi, θ̂i +zα/2N

−1/2
y wθi), where Z ∼ N (0, 1).

Note that non-overlapping confidence intervals give statistically significant conclusions.

3.3 Simulation Study

A detailed simulation study was conducted to investigate the practical utility of the in-

novations algorithm for model identification in the presence of seasonally correlated data.

Data for several different PARMAν(p, q) models with finite fourth moment were simulated.

For each model, individual realizations of Ny = 50, 100, 300, and 500 years of data were

simulated and the innovations algorithm was used to obtain parameter estimates for each

realization. In each case, estimates were obtained for k = 10, k = 15 and k = 20 iterations

of the innovations algorithm in order to examine the convergence, and p–values were com-

puted using (3.27) to identify those estimates that were statistically significant (p < 0.05).

A FORTRAN program was used to simulate the PARMA samples as well as to make all

the necessary calculations. Some general conclusions can be drawn from this study. We

found that 10 to 20 iterations of the innovations algorithm are usually sufficient to obtain

reasonable estimates of the model parameters. We also found that Ny = 50 years of monthly

or quarterly data give only rough estimates of the model parameters, while Ny = 100 years

generally is enough to give good estimates. For the data between 50 and 100 years, the

estimates are less accurate but generally adequate for practical applications.

In order to illustrate the general quality of those results, we present the results from two
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of the models. The first model is a Gaussian PARMA4(0, 1) model:

Xkν+i = εkν+i + θiεkν+i−1 (3.59)

where
{
δkν+i = σ−1

i εkν+i

}
is an iid sequence of normal random variables with mean zero and

standard deviation one. The periodic notation Xkν+i refers to the (mean zero) simulated

data for season i of year k. From the above model, a single realization with Ny = 500 years

of quarterly data (sample size of N = Nyν = 500 · 4 = 2000) was generated. Table 3.1 shows

the results after k = 15 iterations of the innovations algorithm.

Table 3.1: Moving average parameter estimates and p–values after k = 15 iterations of the

innovations algorithm applied to Ny = 500 years of simulated PARMA4(0, 1) data.

Lag � ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.265 .00 0.640 .00 0.918 .00 0.348 .00

2 −0.104 .24 -0.026 .70 -0.058 .50 -0.065 .03

3 −0.015 .52 0.132 .46 -0.066 .29 -0.090 .15

4 0.003 .95 0.063 .18 0.149 .36 -0.071 .12

5 0.010 .76 0.049 .61 0.056 .19 0.118 .31

6 −0.015 .87 -0.113 .10 0.037 .67 -0.003 .92

7 0.013 .57 -0.202 .26 -0.115 .07 -0.091 .15

8 −0.009 .84 0.042 .37 -0.131 .42 -0.054 .23

9 −0.033 .34 0.071 .47 0.053 .21 0.304 .01

: : : : : : : : :

The innovation estimates in Table 3.1 cut-off at lag 1 is significantly different from zero,

implying that a PARMA4(0, 1) model is adequate to fit the simulated data, which agrees
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with the model used to simulate the data. The parameter estimates for this model, obtained

from the relationship (3.39), are summarized in Table 3.2.

Table 3.2: Model parameters and estimates for simulated PARMA4(0, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

θ̂ 0.265 0.640 0.918 0.348

σ 0.90 1.90 0.50 1.20

σ̂ 0.854 1.753 0.458 1.182

The model selected above needs to be checked in order to verify whether it complies with

certain assumptions about the model, and to verify how well it represents the generated time

series. The model assumptions to be checked are usually the independence and normality

of residuals of the model. For PARMA4(0, 1), the standardized residuals can be calculated

using the following relationship:

δ̂t =
Xt +

∑∞
j=1(−1)j θ̂tθ̂t−1...θ̂t−j+1Xt−j√

σ̂2
t

(3.60)

Inspection of the time series plot of the residuals (see Figure 3.1) indicates no obvious

pattern or trend. A normal probability plot of the residuals (see Figure 3.2) also supports

the approximate normality of residuals.

The Anderson-Darling (AD) test rejects H0 (the data follows a normal distribution) if

the test statistic is greater than the critical value (or p < 0.05). Since the critical value 0.752

is greater than the test statistic 0.627 (and the p-value 0.102 is larger than the critical value

0.05), we conclude that there is no reason to reject the hypothesis of normality.
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Figure 3.1: Time series plot of the residuals
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Figure 3.2: Probability plot of the residuals

The plots of the sample autocorrelation functions (ACF)10 and partial autocorrelation

functions (PACF)11 for the residuals are shown in Figure 3.3. All values of ACF and PACF

fall inside or close to the 95% confidence bounds (±1.96/
√

N) indicating iid sequence.

In summary, these plots show that the residuals look like iid normal sequence with mean

zero and variance close to one, which agrees with the assumption made at the beginning of

this section (see also Figure C-1, Appendix C for Ny = 50, 100, 300 years).

10See Section A-1, Appendix A.
11See Section A-1, Appendix A.
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Figure 3.3: The sample ACF and PACF for the residuals, showing the 95% confidence bounds

±1.96/
√

N , indicating iid sequence.

The second model for which simulation result will be presented is a PARMA4(1, 1) model

Xkν+i = φiXkν+i−1 + εkν+i + θiεkν+i−1 (3.61)

where
{
δkν+i = σ−1

i εkν+i

}
is an iid sequence of normal random variables with mean zero and

standard deviation one. The periodic notation Xkν+i refers to the (mean zero) simulated

data for season i of year k. From the above model, a single realization with Ny = 500 years

of quarterly data (sample size of N = Nyν = 500 · 4 = 2000) was generated.

Table 3.3 shows the results after k = 15 iterations of the innovations algorithm. For

season 0 the first four lags are statistically significant, for season 1 and 3 the first three

lags are significant, while for season 2 only the first two are significant. Since parameter

estimates do not generally cut-off to (statistically) zero at a certain lag, it is advantageous to

seek a parsimonious mixed moving average/autoregressive model. The PARMAν(1, 1) model

is the simplest mixed model, and thus is preferred so long as diagnostic plots of the residual

autocorrelation (ACF) and/or partial autocorrelation (PACF) indicate no significant serial

dependence. The parameter estimates for this model, obtained using equations (3.44) and
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Table 3.3: Moving average parameter estimates and p–values after k = 15 iterations of the

innovations algorithm applied to Ny = 500 years of simulated PARMA4(1, 1) data.

Lag � ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.606 .00 1.231 .00 1.710 .00 0.617 .00

2 -0.620 .00 -0.360 .00 1.047 .00 0.387 .00

3 -0.329 .00 -0.250 .20 -0.346 .00 0.329 .00

4 -0.322 .00 -0.037 .48 -0.120 .69 -0.009 .87

5 0.041 .40 -0.055 .62 0.058 .47 0.087 .52

6 -0.004 .98 0.136 .08 0.128 .46 0.001 .98

7 0.017 .61 0.148 .45 0.187 .11 0.086 .27

8 -0.024 .74 0.042 .42 0.199 .50 -0.003 .95

9 -0.017 .72 -0.006 .96 0.049 .55 0.034 .80

: : : : : : : : :

(3.45), are summarized in Table 3.4. It must be noted that θt in (3.44) must be replaced

with −θt so as to be consistent with the representation in (2.1).

Residuals for this PARMA4(1, 1) model can be computed using the equation

δ̂t = σ̂−1
t

{
Xt −

(
φ̂t + θ̂t

)
Xt−1 +

∞∑
j=2

(−1)j
(
φ̂t−j+1 + θ̂t−j+1

)
θ̂tθ̂t−1...θ̂t−j+2Xt−j

}
(3.62)

which was obtained by solving (2.1) for the innovations and substituting the estimated model

parameters for their true values. The analysis of residuals also indicates that they are iid

normal sequence with mean zero and variance close to one, which agrees with the assumption

in (3.61). For more complex mixed PARMA models, Akaike’s information criterion (AIC)

could also be a useful guide for the selection process (see Vecchia, 1985b; Brockwell and
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Table 3.4: Model parameters and estimates (with 95% confidence interval) for simulated

PARMA4(1, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

θ̂ 0.400 ± 0.265 0.636 ± 0.264 0.859 ± 0.127 0.391 ± 0.204

φ -0.90 0.50 0.80 0.25

φ̂ −1.005 ± 0.259 0.595 ± 0.201 0.850 ± 0.125 0.226 ± 0.032

σ 0.90 1.90 0.50 1.20

σ̂ 0.832 1.771 0.482 1.215

Davis, 1991).

3.4 Application to Modeling of Natural River Flows

Next we model a monthly river flow time series from the Fraser River at Hope, British

Columbia. The Fraser River is the longest river in BC, travelling almost 1400 km and

sustained by a drainage area covering 220,000 km2. It rises in the Rocky Mts., at Yellowhead

Pass, near the British Columbia-Alta. line and flows northwest through the Rocky Mt.

Trench to Prince George, thence south and west to the Strait of Georgia at Vancouver. Its

main tributaries are the Nechako, Quesnel, Chilcotin, and Thompson rivers.

The data are obtained from daily discharge measurements, in cubic meter per second,

averaged over each of the respective months to obtain the monthly series. The series contains

72 years of data from October 1912 to September 1984. In the following analysis, ν =

0 corresponds to October and ν = 11 corresponds to September. A partial plot of the

original data, given Figure 3.4, shows the cyclic behavior of the monthly flows. The sample
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mean, standard deviation and autocorrelations at lag 1 and lag 2 are given in Table 3.5 (see

also Figure 3.11). The nonstationarity of the series is apparent since the mean, standard

deviation and correlation functions vary significantly from month to month. For example,

the confidence intervals for the means are non-overlapping, indicating statically significant

difference. Removing the periodicity in mean and variance will not yield a stationary series.

Therefore, a periodically stationary time series model is appropriate. After k = 20 iterations,

the innovations algorithm yields the innovations estimates and associated p-values found in

Table 3.6.
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Figure 3.4: Average monthly flows (cms) for the Fraser River at Hope, BC, indicate a

seasonal pattern.

Since the ψ̂i weights do not generally cut-off to (statistically) zero at a certain lag,

we choose a parsimonious mixed model that captures the periodic behavior as well as the

exponential decay evidenced in the autocorrelation function. We find that a PARMA12(1, 1)

model

Xkν+i − φiXkν+i−1 = εkν+i + θiεkν+i−1 (3.63)

is sufficient in adequately capturing the series autocorrelation structure. The Akaike’s in-

formation criterion (AIC) or physical basis of the river flow process could also be helpful
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Table 3.5: Sample mean, standard deviation and autocorrelation at lag 1 and 2 of average

monthly flow series for the Fraser River at Hope, BC.

Parameter

month µ̂ σ̂ ρ̂(1) ρ̂(2)

OCT 69763 ± 11542 19997 0.688 0.517

NOV 56000 ± 11497 17698 0.731 0.581

DEC 40352 ± 7987 12817 0.715 0.531

JAN 33135 ± 7420 9252 0.787 0.691

FEB 30861 ± 7271 8845 0.779 0.385

MAR 29709 ± 6492 8834 0.510 0.224

APR 59293 ± 5766 20268 0.302 -0.294

MAY 171907 ± 15616 40200 0.272 -0.047

JUN 248728 ± 22226 45120 0.568 0.496

JUL 199118 ± 20410 42543 0.779 0.462

AUG 127157 ± 14149 28070 0.718 0.320

SEP 86552 ± 11354 20052 0.635 0.454

in choosing the appropriate model (Vecchia, 1985b; Salas et al., 1981,1992; Brockwell and

Davis, 1991). The parameter estimates for this model, obtained using equations (3.44)

and (3.45), are summarized in Table 3.7. The confidence intervals are narrower and non-

overlapping, indicating strong statistical significance, which can also verified by small p-

values (not shown). Model residuals were estimated using equation (3.62). It must be noted

that θt in (3.44) must be replaced with −θt so as to be consistent with the representation

in (2.1). Although the model is periodically stationary, the standard residuals should be
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Table 3.6: Moving average parameter estimates ψ̂i(�) at season i and lag � = 1, 2, . . . , 6, and

p–values, after k = 20 iterations of the innovations algorithm applied to average monthly

flow series for the Fraser River at Hope, BC.

i ψ̂i(1) p ψ̂i(2) p ψ̂i(3) p ψ̂i(4) p ψ̂i(5) p ψ̂i(6) p . . .

0 0.885 .00 0.134 .28 0.105 .10 0.163 .01 0.006 .93 0.038 .78 . . .

1 0.625 .00 0.625 .00 0.085 .46 0.140 .02 0.077 .17 -0.004 .94 . . .

2 0.508 .00 0.350 .00 0.419 .00 0.032 .72 0.097 .03 0.019 .65 . . .

3 0.515 .00 0.287 .00 0.140 .07 0.239 .00 0.034 .60 0.030 .37 . . .

4 0.791 .00 0.165 .10 0.295 .00 0.112 .12 0.160 .03 0.045 .43 . . .

5 0.567 .00 0.757 .00 0.057 .61 0.250 .00 0.062 .40 0.139 .06 . . .

6 1.076 .01 0.711 .11 0.856 .01 0.415 .13 0.241 .17 0.112 .52 . . .

7 0.522 .03 0.684 .41 0.988 .28 1.095 .09 0.350 .51 0.198 .56 . . .

8 0.451 .00 -1.014 .00 -0.062 .66 -0.745 .50 0.128 .87 -0.635 .31 . . .

9 0.618 .00 -0.041 .77 -0.746 .01 -1.083 .26 -0.047 .97 0.514 .50 . . .

10 0.448 .00 0.409 .00 0.026 .78 -0.241 .20 -1.125 .08 0.799 .26 . . .

11 0.677 .00 0.159 .01 0.194 .00 0.050 .46 -0.190 .17 -0.402 .38 . . .

stationary, so the standard 1.96/
√

N 95% confidence limits still apply. Figure 3.6 shows

the ACF and PACF of the model residuals. Although a few values lie slightly outside of

the 95% confidence bands, there is no apparent pattern, providing some evidence that the

PARMA12(1, 1) model is adequate.

One reason for carefully modeling the river flow time series is to develop the ability to

generate synthetic river flows for further analysis. This requires a realistic distributional

model for the residuals that can be used to simulate the innovations. After exploring a num-
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Figure 3.5: Statistical summary of the residuals.
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Figure 3.6: ACF and PACF for model residuals, showing the bounds ±1.96/
√

N , indicate

no serial dependence.

ber of possible distributions, we found that a three-parameter lognormal fits the residuals

fairly well. A histogram of the residuals showing the best fitting lognormal density curve

(scale = 0.217, location = 1.656 and threshold = −5.363), as well as the corresponding prob-

ability plot, are shown in Figure 3.7. On the probability plot, points along the diagonal line

(model percentiles equal data percentiles) indicate a good fit. According to this lognormal

model, residuals follow the distribution of a random variable R = −5.363 + e(1.656+0.217Z)

where Z ∼ N (0, 1).

The histogram in Figure 3.7 (b) shows that the three parameter lognormal gives an
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Table 3.7: Parameter estimates ( with 95% confidence interval) for PARMA model (3.63) of

average monthly flow series for the Fraser River at Hope, BC.

month φ̂ θ̂ σ̂

OCT 0.198 ± 0.319 0.687 ± 0.392 11875.479

NOV 0.568 ± 0.251 0.056 ± 0.337 11598.254

DEC 0.560 ± 0.228 −0.052 ± 0.271 7311.452

JAN 0.565 ± 0.233 −0.050 ± 0.299 5940.845

FEB 0.321 ± 0.307 0.470 ± 0.347 4160.214

MAR 0.956 ± 0.240 −0.389 ± 0.351 4610.209

APR 1.254 ± 1.494 −0.178 ± 1.677 15232.867

MAY 0.636 ± 1.451 −0.114 ± 1.526 31114.514

JUN −1.942 ± 2.362 2.393 ± 2.374 32824.370

JUL −0.092 ± 0.621 0.710 ± 0.655 29712.190

AUG 0.662 ± 0.191 −0.213 ± 0.226 15511.187

SEP 0.355 ± 0.227 0.322 ± 0.289 12077.991

acceptable overall fit, but the probability plot in Figure 3.7 (a) reveals a lack of fit at both

tails. This is important for practical applications, since tail behavior of the residuals (or the

innovations) determines the extreme values of the times series, which govern both droughts

and floods. None of the standard probability plots we tried (normal, lognormal, Weibull,

gamma, etc.) gave an adequate fit at the tails. To check for a power law probability tail we

constructed a Mandelbrot plot of each tail (Figure 3.8) as described in Mandelbrot (1963) and

Anderson and Meerschaert (1998). Suppose that X1, . . . , Xn are iid Pareto with distribution

function F (x) = Cx−α. Then F (x) = P [X > x] = Cx−α and so ln F (x) = ln C − α ln x.
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Figure 3.7: Lognormal probability plot (a) and histogram (b) for model residuals, Fraser

river at Hope, BC.

Sorting the data in decreasing order so that X(1) ≥ X(2) ≥ · · · ≥ X(n) (order statistics) we

should have approximately that x = X(r) when F (x) = r/n. Then a plot of ln X(r) versus

ln(r/n) should be approximately linear with slope −α. In Figure 3.8, the downward curve

indicates that a simple power law model is not appropriate. However, the shape of the plots

is consistent with many examples of truncated Pareto distributions found in the geophysics

literature (see for example Aban, Meerschaert and Panorska, 2004; Burroughs and Tebbens,

2001a,2001b,2002). This distribution is appropriate when a power law model is affected by

an upper bound on the observations. In hydrology it is commonly believed that there is an

upper bound on precipitation and therefore river flows (see, for example, Maidment, 1993).

A truncated Pareto random variable X has distribution function

FX(x) = P (X ≤ x) =
1 − (γ/x)α

1 − (γ/β)α (3.64)

and density

fX(x) =
αγαx−α−1

1 − (γ/β)α (3.65)

with 0 < γ ≤ x ≤ β < ∞ and γ < β. Aban, Meerschaert and Panorska (2004) develop

maximum likelihood estimators (MLE) for the parameters of the truncated Pareto distribu-
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tion. When a truncated Pareto is fit to the tail of the data, the parameters are estimated by

obtaining the conditional maximum likelihood estimate based on the largest order statistics,

representing only the portion of the tail where the truncated Pareto model holds.

Theorem 3.13 When X(r) > X(r+1) , the conditional maximum likelihood estimator for the

parameters of the upper-truncated Pareto in (3.64) based on the r + 1 largest order statistics

is given by

β̂ = X(1) (3.66)

γ̂ = r1/α̂X(r+1)

[
n − (n − r)(X(r+1)/X(1))

α̂
]−1/α̂

(3.67)

and α̂ solves the equation

r

α̂
+

r
(
X(r+1)/X(1)

)α̂
ln(X(r+1)/X(1))

1 − (
X(r+1)/X(1)

)α̂
−

r∑
i=1

[
ln X(i) − ln X(r+1)

]
= 0 (3.68)

The truncated Pareto distribution given by (3.64) with 0 < γ < ∞ reduces to the Pareto

distribution in the limit β = ∞. An asymptotic q-level test (see Aban et al., 2004) is

used to distinguish whether a given data set is more appropriately modelled by a Pareto

or truncated Pareto distribution. The asymptotic level q test (0 < q < 1) rejects the null

hypothesis H0 : β = ∞ (Pareto) in favor of the alternative Ha: β < ∞ ( truncated Pareto)

if X(1) < xq where q = Exp
(−nCx−α

q

)
. This test rejects H0 if and only if

X(1) <

(
nC

−lnq

)1/α

(3.69)

and the p-value of this test is given by

p = Exp
(
−nCX−α

(1)

)
(3.70)

Hill’s estimator12 (4.12) gives α̂ = 2.450 and Ĉ = 0.282 for the upper tail (r = 39

residuals), and α̂ = 4.184 and Ĉ = 0.348 for the lower tail (r = 34 residuals). Using (3.70),

12See Section 4.4 for a detailed discussion.
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the p-values are 0.018 and 0.041, respectively. The small p-values as well as the visual

evidence of the probability plot in Figure 3.8 suggests that the Pareto model is not a good

fit for the tails of the estimated residuals. Therefore, we decided to fit a truncated Pareto to

roughly the upper 5% and the lower 5% of the residuals. Then we computed −1.697 = the

5th percentile and 2.122 = the 95th percentile of the three parameter lognormal distribution

we fit to the body of the residuals. Next we determined that r = 39 residuals exceed the

95th percentile, and r = 34 residuals fall below the 5th percentile. Then the MLE from

Theorem 3.13 was used to estimate the parameters (β̂ = 5.336, γ̂ = 0.072, α̂ = 0.722) of

the best fitting truncated Pareto distribution, and the theoretical distribution tail P (R > r)

was plotted over the 39 largest positive residuals in Figure 3.8(left). In Figure 3.8 (right),

we used the same method to fit a truncated Pareto (β̂ = 2.961, γ̂ = 0.291, α̂ = 1.560) to the

34 largest negative residuals, after a change of sign. Both of the plots in Figures 3.8 indicate

an adequate fit.
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Figure 3.8: Log-log plot of upper(left) and lower(right) residual tails and fitted Pareto and

truncated Pareto distributions, Fraser river at Hope, BC.

A mixture distribution with lognormal body and truncated Pareto tails was used to
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simulate the innovations. The mixture has cumulative distribution function (cdf)

P (δ ≤ r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F−(r) if r < −1.697

F0(r) if −1.697 ≤ r ≤ 2.122

F+(r) if r > 2.122

(3.71)

where F0 is the cdf of the lognormal, and F+, F− are truncated Pareto cdfs of the positive

and negative tails, respectively. The truncated Pareto distributions were slightly shifted (by

s = 0.172 on the positive tail and s = 0.174 on the negative tail) to make the mixture

cdf continuous. Now innovations could be simulated by the inverse cumulative distribution

function method δ = F−1(U) where U is a pseudorandom number uniformly distributed on

the unit interval (0, 1). However, this is impractical in the present case since the lognormal

cdf is not analytically invertible. Instead, we used the Box-Müller method13 to generate

standard normal random variates Z (see Gentle, 2003). Then lognormal random variates

were calculated using δ = −5.363 + exp (1.656 + 0.217Z). If R > 2.122, the 95th percentile

of the lognormal, we generated another uniform (0, 1) random variate U and substituted

δ = F−1
+ (0.95 + 0.05U). If R < −1.697, the 5th percentile of the lognormal, we substituted

δ = F−1
− (0.05U). This gives simulated innovations δ with the mixture distribution (3.71).

Figure 3.9 shows a probability plot for N = Nyν simulated innovations (for ν = 12

months and Ny = 100 years) from the mixture distribution (3.71). Comparison with Figure

3.7 (a) shows that the simulated innovations are statistically identical to the computed model

residuals in terms of distribution. Substituting the simulated innovations into the model

(3.63) generates Ny years of simulated river flow. It is advantageous to simulate several

extra years of river flows and throw out the initial years (100 years in this case), since we did

not simulate Xt for t < 0. This ensures that the simulated series is periodically stationary

13See Section A-4, Appendix A.
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Figure 3.9: Probability plot of simulated innovations using the mixed three parameter log-

normal and truncated Pareto distributions. Compare Figure 3.7 (a).

(see Figure 3.10). Figure 3.11 shows the main statistical characteristics (mean, standard

deviation and autocorrelations) of a typical synthetic river flow time series obtained by this

method, as well as the same statistical measures for the observed time series. It is apparent

that this procedure closely reproduces the main statistical characteristics, indicating that

the modeling procedure is trustworthy for generating synthetic river flows. Such synthetic

river flows are useful for design of hydraulic structures, for optimal operation of reservoir

systems, for calculating the risk of failure of water supply systems, etc.
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Figure 3.10: Plot of (a) observed and (b) simulated monthly river flows for the Fraser River

at Hope, BC, indicating similarity.
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(a)   Sample Means
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(b)   Sample Standard Deviations
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(c)   Sample Autocorrelations:LAG1
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(d)   Sample Autocorrelations: LAG2
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Figure 3.11: Comparison of mean, standard deviation, and autocorrelations for simulated

vs. observed monthly river flow data for the Fraser River at Hope, BC.
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4 Modeling River Flows with Heavy Tails

4.1 General

Many river flow time series exhibit occasional sharp spikes (heavy tail characteristics). A

model that captures these heavy tail characteristics is, therefore, important in adequately

describing the series. Typically, a time series with heavy tails is appropriately transformed

so that the normal asymptotics apply. The normal distribution is widely applicable because

of the central limit theorem, which states that the sum of a large number of independent,

identically distributed variables from a finite-variance distribution will tend to be normally

distributed. An alternative model (based on stable asymptotics) allows a more faithful

representation of the river flow without preliminary transformation. In this chapter, we fit

a periodic ARMA model to river flow data without moment assumptions (Anderson and

Meerschaert, 1997,1998), and model the innovations process using stable distributions or a

mixture of stable with appropriate tail distributions. Although there are other heavy tailed

alternatives to a normal law, stable distributions have been proposed herein mainly because

of the generalized central limit theorem, which states that stable laws are the only possible

limit distributions for properly normalized and centered sums of independent, identically

distributed random variables.

Heavy-tailed distributions (also known as power-law distributions) are important in appli-

cations to electrical engineering, finance, geology, hydrology, and physics. Books and articles

dealing with heavy tails in these fields include Mandelbrot (1963), Fama (1965), Feller (1971),

Rybin (1978), Davis and Resnick (1985a,b,1986), Brockwell and Devis (1991), Jansen and

de Vries (1991), Bhansali (1993), Janicki and Weron (1994a,b), Samorodnitsky and Taqqu

(1994), Nikias and Shao (1995), Mittnik and Rachev (1998), Kokoszka (1996), Kokoszka



59

and Taqqu (1994,1996), Lotetan and Philips (1994), Mikosch, Gadrich, Klüppenberg and

Adler (1995), Resnick and Stărică (1995), McCulloch (1997), Anderson and Meerschaert

(1997,1998). Various probability distributions are used in these fields, such as Stable, Type

II Extreme Value and the generalized Pareto.

In this chapter we will discuss the application of heavy tails models to river flow data.

As an application, we consider the average monthly flow of the Salt River near Roosevelt,

Arizona.

4.2 Definition of Heavy Tails

In the literature, different definitions of heavy tailed distributions exist (see, for example,

Werner and Upper, 2002). We say that a probability distribution function has heavy tails

if the tails of the distribution diminish (P (|X| > x) → 0) at an algebraic rate (like some

power of x) rather than at an exponential rate. In this case some of the moments of this

probability distribution will fail to exist. The kth moment of a probability distribution

function F (x) with density function f(x) is defined by µk =
∫

xkf(x)dx. The mean µ1 and

the variance σ2 are related to the first two moments by familiar equations µ = µ1 and the

variance σ2 = µ2 −µ2
1. Examples of probability distributions with heavy tails are stable (for

instance, Cauchy and Lévy distribution), Student’s t, and Pareto distributions.

In the Gaussian case, X ∼ N (0, 1), there is a well known formula to approximate the tail

probability: as x → ∞,

P (X > x) ∼ e−
x2

2

x
√

2π
(4.1)

(see Feller, 1971).
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If X, for example, is standard Cauchy, then

F (x) = P [X ≤ x] =
1

2
+

1

π
arctan(x) and f(x) =

dF (x)

dx
=

1

π(1 + x2)
(4.2)

Although the bell-shaped of the density of the Cauchy distribution appears to be similar

to that of normal law, the tails are heavier, see Table 4.1. While the density of the normal

law diminishes at an exponential rate, for the Cauchy we have f(x) ∼ π−1x−2 as |x| → ∞.

This causes the integral defining the kth moment to diverge when k ≥ 1, and hence the mean

and standard deviations of the Cauchy are undefined. Figure 4.1 shows a plot of Normal,

Cauchy and Lévy densities.

Table 4.1: Comparison of tail probabilities for standard normal, Cauchy and Lévy distribu-

tions.

c P (X > c)

Normal Cauchy Lévy

0 0.5000 0.5000 1.0000

1 0.1587 0.2500 0.6827

2 0.0228 0.1476 0.5205

3 0.001347 0.1024 0.4363

4 0.00003167 0.0780 0.3829

5 0.0000002866 0.0628 0.3453

4.3 Heavy Tailed Time Series Model

Suppose that {δt} are independent, identically distributed random variables with common

distribution function F (x) = P [δt ≤ x]. Regular variation is a technical condition that is

required for the generalized central limit theorem to apply.
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Figure 4.1: Plots of standardized normal, Cauchy and Lévy densities.

Definition 4.1 A Borel measurable function R : R
+ → R

+ said to be regularly varying at

infinity with index ρ ∈ R if

lim
x→∞

R(λx)

R(x)
= λρ for all λ > 0. (4.3)

R is slowly varying iff ρ = 0 in (4.3).

For example, the following are some regularly varying functions on R
+.

• Constant functions are slowly varying, and therefore regularly varying.

• If f ∼ g (meaning that f(x)/g(x) → 1 as x → ∞) and f is regularly varying, then g

is regularly varying with the same index.

• f(x) = axb is regularly varying with index b.

We say that the distribution F (x) belongs to the domain of attraction of some nonde-

generate random variable Y with distribution G(x) if there exist real constants an > 0 and

bn such that

a−1
n (δ1 + . . . + δn − nbn) ⇒ Y (4.4)
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where ⇒ indicates convergence in distribution. The generalize central limit theorem states

that (4.4) holds with Y normal if and only if the truncated second moment function

µ(x) =

∫
|u|≤x

u2dF (u) (4.5)

is slowly varying; (4.4) holds with Y nonnormal if and only if the tail function T (x) =

P [|δt| > x] = F (−x) + 1 − F (x) varies regularly with index −α for some 0 < α < 2 and the

tails satisfy the balancing condition

lim
x→∞

1 − F (x)

T (x)
= p and lim

x→∞
F (−x)

T (x)
= q (4.6)

for some 0 ≤ p, q ≤ 1 with p+ q = 1; see, for example, Feller (1971). The norming constants

can be chosen to satisfy nP [|δt| > anx] → C and are always of the form an = n1/α�n, where

�n is slowly varying. The domain of normal attraction, in which we assume that an = n1/α

is strictly smaller class of distributions. If α > 1, then the mean Eδt exists, and we can

take bn = Eδt. If α < 1, the mean fails to exist, the norming constant an → ∞ faster than

n → ∞, and we can let bn = 0. The Pareto distribution F (x) = 1−Cx−α (x ≥ C1/α) as well

as the type II extreme value distribution F (x) = exp(−Cx−α) (x ≥ 0) belong to the stable

domain of attraction when 0 < α < 2. Sums of iid random variables with these distributions

are approximately stable. Stable distributions are rich class of distributions that include the

Gaussian and Cauchy distributions in a family that allow skewness and heavy tails. The

class was characterized by Paul Lévy (1925) in his study of normalized sums of iid terms.

The general stable distribution is described by four parameters: an index of stability α ∈

(0, 2], a skewness parameter β, a scale parameter γ and a location parameter η (see Nolan,

1999). We will use γ for the scale parameter and η for the location parameter to avoid

confusion with the symbols σ and µ, which are used exclusively for the standard deviation
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and mean. The parametrization most often used now (see Samorodnitsky and Taqqu, 1994)

is the following : Y ∼ S1(α, β, γ, η) if the characteristic function of Y is given by

E{exp(itY )} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp{−γα|t|α(1 − iβ(signt)tanπα
2

) + iηt} α �= 1

exp{−γ|t|(1 + iβ
2

π
(signt)ln|t|) + iηt} α = 1

(4.7)

where 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, and η ∈ R. For a more detailed discussion of stable

distributions and their properties, the reader is referred to Nolan (1999). If we choose the

norming constant an in (4.4) to satisfy nP [|δt| > anx] → C, then the stable limit Y will

have a scale factor satisfying γα = CΓ(1 − α) cos(πα/2) when α �= 1 and γ = Cπ/2 when

α = 1 (Theorem 7.3.5 on p.265 of Meerschaert and Scheffler, 2001). The parameter C is

called the dispersion and is sometimes used as an alternative scale parameter for stable laws.

The parameters in the balance equations (4.6) are related to the skewness of the limit Y

by p = (1 + β)/2 and q = (1 − β)/2. If α > 1 and bn = Eδt or α < 1 and bn = 0, then

the location parameter of the limit Y in (4.4) is η = 0. If α ≤ 1, then EY does not exist,

but if α > 1, then EY = η, and, in particular, we obtain EY = 0 when we center to zero

expectation. If Yn are iid stable with the same distribution as Y , then
∑

knYn is also stable

with the same stable index and skewness parameters. The location parameter of
∑

knYn

is γ(
∑ |kn|α)1/α, and so, in particular, the scale parameter of kY is kγ. The dispersion of

∑
knYn is C

∑ |kn|α.

Suppose that the iid sequence {δt} represents the innovations process of a time series

(2.1). If δt has finite fourth moment, then normal asymptotics apply (see Chapter 3), but

if δt has an infinite fourth moment, the asymptotics are governed by stable laws. Infinite

fourth moments occur when the tail function T (x) = P [|δt| > x] varies regularly with index

−α for some 0 < α < 4. Then T (x) → 0 about as fast as x−α → 0 as x → ∞. See Anderson
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and Meerschaert (1998) for a review of literature in heavy tail modeling in hydrology.

Suppose that {δt} are iid and that their common distribution F (x) has a regularly varying

tails with index −α for some 2 < α < 4. Then σ2
t = Eε2

t < ∞, and the autocovariance and

autocorrelation of the infinite moving average (3.1) at season i and lag � are

γi(�) =
∑

j σtψt(j)σt+�ψt+�(j + �)

ρi(�) =
γi(�)√

γi(0)γi+�(0)
=

∑
j ψt(j)ψt+�(j + �)√∑
j ψt(j)2

∑
j ψt+�(j)2

(4.8)

Given a sample size of N = Nyν, the sample statistics are obtained using equations

(2.11), (2.12) and (2.13).

We will say that the iid sequence {δt} is RV (α) if P [|δt| > x] varies regularly with index

−α and P [δt > x]/P [|δt| > x] → p for some p ∈ [0, 1]. If δt is RV (α), then the equivalent

vector process Zt in (3.2) has iid components with regularly varying tails, and we will also

say Zt is RV (α). If α > 2, then Zt belongs to the domain of attraction of a multivariate

normal law whose components are iid univariate normal. Loretan and Philips (1994) find

that the price fluctuations of currency exchange rates and stock prices often follow an RV (α)

model with 2 < α < 4. In this case, Eδ2
t < ∞, but Eδ4

t = ∞. Since the innovation εt has

a finite variance, the sample autocorrelations for the stationary moving average model are

asymptotically normal; see for example, Brockwell and Davis (1991, Proposition 7.3.8). The

following results show that when 2 < α < 4, the sample autocorrelations of the periodic

moving average model are asymptotically stable.

Theorem 4.2 Suppose that Xt is periodic moving average (3.1) of an RV (α) sequence δt =

σ−1
t εt with mean zero, variance one, and 2 < α < 4 . Then σ2

t = Eε2
t < ∞, µ̂i, γ̂i(�), ρ̂i(�)
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are consistent estimators of µi, γi(�), ρi(�), respectively, and

N−1/2
y (µ̂ − µ) ⇒ N (0, C) (4.9)

where C =
(∑

j Ψj

)(∑
j Ψj

)′
; for some aNy → ∞ we have

Nya
−2
Ny

[γ̂i(�) − γi(�)] ⇒ Ci� =
ν−1∑
r=0

Cr(i, �)Sr

Nya
−2
Ny

[ρ̂i(�) − ρi(�)] ⇒ Di� =
ν−1∑
r=0

Dr(i, �)Sr

(4.10)

jointly in i = 0, ..., ν − 1 and � = 0, ..., h, where

Dr(i, �) =
ρi(�)

γi(�)
Cr(i, �) − ρi(�)

2γi(0)
Cr(i, 0) − ρi(�)

2γi+�(0)
Cr(i + �, 0) (4.11)

and Cr(i, �) =
∑

j σiψi(jν + i − r)σi+�ψi+�(jν + i + � − r). We can always choose aN

so that NyP [|δt| > aNy ] → C for some C > 0. Then S0, S1, . . . , Sν−1 are iid α/2 stable

with mean zero, skewness 1, and dispersion C, Ci� is α/2 with mean zero, skewness 1,

and dispersion C
∑

r |Cr(i, �)|α/2; and Di� is α/2 stable with mean zero, skewness 1, and

dispersion C
∑

r |Dr(i, �)|α/2.

PROOF. See Anderson and Meerschaert (1997,1998) for a proof.

4.4 Checking Heavy Tails in Time Series Data

When α ∈ (0, 2), we have stable distributions with f(x) ∼ Cqαx−α−1 as x → −∞ and

f(x) ∼ Cpαx−α−1 as x → +∞, where C > 0 and 0 ≤ p, q ≤ 1 with p+q = 1. Therefore, it is

reasonable to model a stable law as having Pareto tails. In this section we consider in detail

the problem of detecting heavy tails in time series data and estimating the tail parameter

α. We illustrate the problem with a data set representing monthly flows of the Salt River

near Roosevelt, Arizona.
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For data analysis applications, the actual distribution is often unknown, so robust esti-

mators are needed to fit the tail parameter α of an unknown heavy tail distribution. Many

robust estimators of the tail index have been proposed in the past several years. Hill (1975)

proposed a robust estimator based on the asymptotics of extreme values. Hill calculated

that

Ĥ = r−1

r∑
i=1

ln X(i) − ln X(r+1) (4.12)

is the conditional maximum likelihood estimator 1/α conditional on X(r+1) ≥ D, where

X(1) ≥ X(2) ≥ . . . are the order statistics of a random sample X1...Xn. We can approximate

α by α̂r = 1/Ĥr.

The Hill’s estimator for C is given by

Ĉ =
r + 1

n
X α̂r

(r+1) (4.13)

For data which are approximately Pareto in the tails, one should choose r small enough

so that only the Pareto-like tail is represented.

Resnick and Stărică (1995) show that Hill’s estimation procedure yields a consistent

estimator of the tail index α for stationary moving average models where the innovations have

regularly varying probability tails with index −α. Their result can be understood by noting

that since the largest observations in a heavy tail time series model tend to be widely spaced

in time, they resemble iid observations. Hill’s estimator can be applied to a wide variety

of distributions, such as the stable and type II extreme value distributions, whose tails are

approximately Pareto. Thus, for example, applying Hill estimator to the largest r = 15 order

statistics of the Salt River data, we obtain α̂ = 2.925 and C = 1.40 × 109 (see Table 1.1).

This indicate that the Salt River data have heavy tails with infinite fourth moment and finite
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variance. Figure 4.2a shows the plot of α̂r versus r. Hall (1982) shows that Hill’s estimator

is consistent and asymptotically normal with variance approximately σ2 = α2/r. For r = 15

and α̂ = 2.925, we obtain σ = 0.755, and the z test of H0 : α = 4 versus H0 : α < 4 or

H0 : α = 2 versus Ha : α > 2 has p-value 0.08 and 0.11, respectively, indicating that the null

hypothesis is rejected. Increasing r yields a smaller standard deviation, but Hall’s theorem

assumes that r/n → 0 as n → ∞, so that one should base Hill’s estimator on a vanishingly

small percentage of the data.

The simplest and most straightforward method of estimating the tail index is to plot the
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Figure 4.2: (a) Hill’s estimator, α̂ versus r, and (b) log-log plot for the upper tail of the

monthly flows for the Salt River near Roosevelt, AZ.
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right tail of the empirical cdf on a log-log scale (see, Figure 3.8, Section 3.4).

Figure 4.2 (b) uses a log-log plot to illustrate the heavy tail distribution of the Salt

river data. It shows the Salt River data along with the line that fits a Pareto model with

parameters α = 2.92 and C = 1.40 × 109 (from Hill’s estimator for r=20). The graph

indicates that the true α lies between 2.85 and 3.0. This method is very sensitive to the size

of the sample and the choice of the number of observations used in the regression.

Other tail estimators have also been proposed, see for example Dekkers et al. (1989), Kratz

and Resnick (1996) and Wei (1995), but Hill’s estimator continues to be the most popular

in practice. McCulloch (1997), Resnick (1997) and Fofack and Nolan (1999) observed that

Hill’s estimator performs poorly for stable data with 1.5 < α < 2. Though Hill’s estimator

is scale invariant, it is not shift invariant. Aban and Meerschaert (2001) modified Hill’s

estimator to make it shift invariant.

Meerschaert and Scheffler (1998) introduced another robust estimator (hereafter the MS

estimator) based on the asymptotics of the sample variance.

Suppose that {Xi} is a sequence of n iid random variables that are in the domain of at-

traction of some stable random variable with α < 2. The MS estimator, given in Meerschaert

and Scheffler (1998) is

β̂n =
γ + ln+

∑n
i=1(Xi − X̄n)2

2(γ + ln n)
(4.14)

where ln+(x) = max(ln(x), 0), X̄ is the sample mean and γ
.
= 0.5772. β̂n is the MS estimator

for 1/α. This quadratic estimator performs well in many cases where Hill’s estimator is

ineffective, such as stable distributions with tail index 1.5 < α < 2. The quadratic estimator

is shift invariant, but not scale invariant. In practical applications, one has to manually

scale the data before applying this estimator in order to get useful results. Bianchi and

Meerschaert (2004) applied two modifications of the quadratic estimator that makes it both
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shift and scale variant.

When 0 < α < 2, the above formula (4.14) yields a consistent estimator for 1/α for a

broad range of time series models, including periodic moving averages, whose innovations

have regularly varying tails with index α. If α > 2, then the estimator γ̂ → 1
2

in probability

as n → ∞. Since we believe that 2 < α < 4, we apply the estimator to the squared data,

which has tail index α/2. The MS estimator is unbiased when the data are Pareto-like with

C = 1. For Pareto this can be accomplished by dividing by C1/α, so we divide the raw data

by C1/α = 1338, obtained from Hill’s estimator with r = 15. Then we applied the above

estimator of α and doubled the result (since the index of the squared data is α/2) to get

2.623 as the MS estimate of α̂ for the raw Salt River data .

These tail estimations indicates that 2 < α < 4, so the probability distribution of X has

heavy tails, with a finite variance but infinite fourth moment.

4.5 Application to Modeling of Natural River Flows

In this section we illustrate the application of heavy tail time series methods by fitting a

periodic ARMA model to the Salt River flow data. Let X̃t denote the average flow rate in

cubic feet per second t months after October 1914 of the Salt River near Roosevelt, Arizona.

Preliminary estimates of the tail index in the previous section indicate that 2 < α < 4,

so the probability distribution of X̃t has heavy tails, with a finite variance but infinite fourth

moment. A partial plot of the original data is given in Figure 4.3, clearly shows the cyclic

behavior of the monthly flows. There are occasional sharp spikes in the time series plot of

the data (see Figure 4.3), which indicates the heavy tail characteristics of the data.

The sample mean, standard deviation and autocorrelations at lag 1 and lag 2 are given in

Table 4.2. The nonstationarity of the series is apparent since the mean, standard deviation
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Figure 4.3: Average monthly flows (cfs) for the Salt River near Roosevelt, AZ, indicate a

seasonal pattern and heavy tails.

and correlation functions vary widely from month to month. Removing the periodicity in

mean and variance will not yield a stationary series. Therefore, a periodically stationary

series model is appropriate.

In the following analysis, i = 0 corresponds to October and i = 11 corresponds to

September. Since 2 < α < 4, Theorem 2.2 is applicable here. After k = 15 iterations, the

innovations algorithm yields the innovations estimates found in Table 4.3. Following the

same procedure as in Section 3.4, we selected a PARMA12(1, 1) model to the Salt River flow

data.

The parameter estimates for this model, obtained using equations (3.44) and (3.45), are

summarized in Table 4.4. It must be noted that θt in (3.44) must be replaced with −θt so

as to be consistent with the representation in (2.1). Model residuals were estimated using

equation (3.62). Figure 4.4 shows the ACF and PACF of the model residuals. Although

a few values lie slightly outside of the 95% confidence bands, there is no apparent pattern,

providing some evidence that the PARMA12(1, 1) model is adequate.

One reason for carefully modeling the river flow time series is to develop the ability to

generate synthetic river flows for further analysis. This requires a realistic distributional
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Table 4.2: Sample mean, standard deviation and autocorrelation at lag 1 and 2 of average

monthly flow series for the Salt River near Roosevelt, AZ.

Parameter

month µ̂ σ̂ ρ̂(1) ρ̂(2)

OCT 464.43 796.38 0.315 0.173

NOV 373.96 361.90 0.740 0.230

DEC 802.15 1289.14 0.273 0.336

JAN 1012.64 2055.94 0.354 0.530

FEB 1372.51 1792.97 0.486 0.479

MAR 1910.04 1800.47 0.619 0.562

APR 2107.85 1697.76 0.897 0.871

MAY 1064.12 1059.41 0.939 0.280

JUN 371.80 303.08 0.298 -0.120

JUL 341.93 396.27 0.340 0.143

AUG 589.57 481.41 0.415 -0.015

SEP 449.97 332.06 0.140 0.207

model for the residuals that can be used to simulate the innovations. A number of possible

standard distributions (normal, lognormal, gamma, Weibull, etc.) were tried to model the

residuals. It seems that none of them gave an adequate fit both at the center and the tails.

For example, a summary (histogram) of the residuals as well as probability plot for a three

parameter lognormal distribution are shown in Figure 4.5. The plots clearly indicate that

normal and lognormal are not a good fit for the residuals.

The Hill’s estimators for the PARMA12(1, 1) Model Residuals are shown in Figure 4.6. Al-

though Hill’s estimator indicates 2 < α < 4, we investigate use of a stable distribution
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Table 4.3: Moving average parameter estimates ψ̂i(�) at season i and lag � = 1, 2, . . . , 10,

after k = 15 iterations of the innovations algorithm applied to average monthly flow series

for the Salt River near Roosevelt, AZ.

i ψ̂i(1) ψ̂i(2) ψ̂i(3) ψ̂i(4) ψ̂i(5) ψ̂i(6) ψ̂i(7) ψ̂i(8) ψ̂i(9) ψ̂i(10) . . .

0 0.410 -0.122 0.002 2.637 0.347 -0.131 0.007 0.014 0.051 0.103 . . .

1 0.168 0.182 0.019 0.544 0.072 -0.164 -0.032 0.088 0.016 0.000 . . .

2 3.064 0.221 0.507 0.178 1.103 1.631 -0.636 -0.070 0.285 0.021 . . .

3 0.368 1.060 -0.189 -0.489 -0.032 1.673 4.882 0.381 0.227 0.140 . . .

4 0.147 0.084 1.454 0.136 0.529 0.032 2.283 4.711 -0.924 0.309 . . .

5 0.459 0.440 0.379 1.898 0.283 -0.488 -0.170 0.801 3.354 -0.131 . . .

6 0.236 0.489 0.366 0.423 2.724 0.225 0.309 -0.088 0.142 4.074 . . .

7 0.542 0.111 0.322 0.162 0.211 1.580 0.444 -0.036 -0.225 0.210 . . .

8 0.265 0.123 0.032 0.097 0.060 0.075 0.457 0.085 -0.019 -0.023 . . .

9 1.056 -0.055 0.126 0.009 0.025 0.003 0.026 0.051 -0.006 -0.056 . . .

10 0.559 0.785 0.082 -0.064 -0.057 -0.031 -0.011 -0.033 -0.161 -0.045 . . .

11 0.256 0.184 0.096 0.049 -0.029 -0.031 -0.004 0.011 0.017 -0.158 . . .

(α < 2). It has been observed that Hill’s estimator can overestimate α for stable data (see,

for example, McCulloch, 1997).

There are several methods for estimating stable parameters, but we focus on the three

general methods (see, for example, Nolan, 1999): the maximum likelihood (ML) approach

maximizes the likelihood numerically, the quantile method (QM) tries to match certain data

quantiles with those of stable distributions, the characteristic function based methods fit the

empirical characteristic function.

The model residuals were then fitted with a stable distribution S1(α, β, γ, η) and the
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Table 4.4: Parameter estimates for PARMA12(1, 1) model of average monthly flow series for

the Salt River near Roosevelt, AZ.

month φ̂ θ̂ σ̂

OCT -0.476 0.886 696.20

NOV 0.443 -0.275 229.67

DEC 1.315 1.749 779.23

JAN 0.346 0.022 1781.03

FEB 0.227 -0.080 1263.85

MAR 3.000 -2.541 1291.93

APR 1.065 -0.829 1044.32

MAY 0.472 0.071 378.06

JUN 0.226 0.039 75.54

JUL -0.208 1.265 346.75

AUG 0.743 -0.184 409.58

SEP 0.329 -0.074 295.17

parameters were estimated using three methods: ML, QM and the characteristic function

based methods. The results are summarized in Table 4.5. The computer program STABLE

3.04 have been used for all the analysis (Nolan, 1999).

Since the estimates from the three methods are close for PARMA12(1, 1) model residuals,

the residuals can be considered as stably distributed (see Nolan, 1999) for diagnostics of

assessing stability). The next step is to do the smoothed density, q-q plot and the variance

stabilized p-p plot based on the ML estimates. Figure 4.7 shows the smoothed density, q-q

plot and the variance stabilized p-p plot for the model residuals. The q-q plots shows that

the extreme tails of the data are lighter than the stable model. The p-p plot shows that the
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Figure 4.4: (a) ACF and (b) PACF for PARMA12(1, 1) model residuals, showing the 95%

confidence bounds ±1.96/
√

N .

8642-0-2-4

Median

Mean

0.10.0-0.1-0.2-0.3

Anderson-Darling Normality Test

Variance 1.54022

Skewness 3.1665

Kurtosis 15.7785

N 864

Minimum -4.88579

A-Squared

1st Quartile -0.56103

Median -0.29440

3rd Quartile 0.16044

Maximum 8.49858

95% Confidence Interval for Mean

-0.08306

72.73

0.08268

95% Confidence Interval for Median

-0.32125 -0.26306

95% Confidence Interval for StDev

1.18517 1.30251

P-Value < 0.005

Mean -0.00019

StDev 1.24106

95% Confidence Intervals

Residuals - Threshold

P
e
r
c
e
n
t

1
5
.0

1
0
.0

9
.0

8
.0

7
.0

6
.0

5
.0

4
.0

3
.0

2
.0

1
.5

99.99

99

95

80

50

20

5

1

0.01

Loc

48.279

P-Value *

1.852

Scale 0.1660

Thresh -6.467

N 864

AD

3-Parameter Lognormal - 95% CI

Figure 4.5: PARMA12(1, 1) Model residuals of the Salt River near Roosevelt, AZ: Statistical

summary (left) and three parameter lognormal probability plot (right).

data look stable. The plots show a very close stable fit at the center (body), but not good at

the tails. This suggest for the use of a mixture of stable with appropriate tail distributions.

Hill’s estimators (4.12) and (4.13) give α̂ = 1.661 and Ĉ = 0.163 for the upper tail

(r = 36 residuals), and α̂ = 2.320 and Ĉ = 0.043 for the lower tail (r = 15 residuals). Using

(3.60), the p-values are 0.018 and 0.393, respectively. The small p-value as well as the visual

evidence of the probability plot in Figure 4.8 suggest that the Pareto model is not a good fit

for the upper tail of the estimated residuals. Therefore, we decided to fit a truncated Pareto

to the upper tail (x > 2.30) of the residuals. Since p > 0.05, Pareto is a good fit for the lower
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Figure 4.6: Hill’s estimator, α̂ versus r, of (a) upper tail and (b) lower tail for the

PARMA12(1, 1) model residuals.

Table 4.5: Parameter estimates for PARMA12(1, 1) model residuals.

Method α̂ β̂ γ̂ η̂

Quantile 1.1762 0.6319 0.3220 0.3388

Sample Characteristic 1.2061 0.6264 0.3306 0.2238

Maximum Likelihood 1.2081 0.6129 0.3260 0.2414

tail. However, we chose a truncated Pareto for the lower tails (x < −1.52) of the residuals

because river flows are always bounded from below (i.e. river flows are always greater than

zero). Note that this means Eε4
t < ∞ so that results from chapter 3 also apply here. Next

we determined that r = 36 residuals exceed 2.30 (which is the 96 percentile of the stable

distribution), and r = 15 residuals fall below -1.52 (which equals the 2.26 percentile of the

stable distribution). Then the MLE from Theorem 3.13 was used to estimate the parameters

(β̂ = 8.499, γ̂ = 0.003, α̂ = 0.345) of the best fitting truncated Pareto distribution, and the

theoretical distribution tail P (R > r) was plotted over the 36 largest positive residuals in

Figure 4.8 (left). In Figure 4.8 (right), we used the same method to fit a truncated Pareto

(β̂ = 4.886, γ̂ = 0.093, α̂ = 1.401) to the 15 largest negative residuals, after a change of sign.
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(a)   density plot
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Figure 4.7: Density, variance stabilized p-p plot and q-q plot for the PARMA12(1, 1) model

residuals.

Both of the plots in Figure 4.8 indicate an adequate fit.

A mixture distribution with stable body and truncated Pareto tails was used to simulate

the innovations. The mixture has cumulative distribution function (cdf)

P (δ ≤ r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F−(r) if r < −1.52

F0(r) if −1.52 ≤ r ≤ 2.30

F+(r) if r > 2.30

(4.15)

where F0 is the cdf of the stable, and F+, F− are truncated Pareto cdfs of the positive and

negative tails, respectively. The truncated Pareto distributions were slightly shifted (by

s = −0.057 on the positive tail and s = 0.271 on the negative tail) to make the mixture

cdf continuous. Now stable innovations are simulated from S1(1.2081,0.6129,0.3260,0.2414)
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Figure 4.8: Log-log plot of upper (left) and lower (right) residual tails and fitted Pareto and

truncated Pareto distributions, Salt River near Roosevelt, AZ.

by using STABLE 3.04 and innovations at the tails are obtained by using the inverse cu-

mulative distribution function method. First, stable random variates were calculated from

S1(1.2081,0.6129,0.3260,0.2414) using STABLE 3.04. If R > 2.30, the 96% quantile of stable,

we generated a uniform (0, 1) random variate U and substituted δ = F−1
+ (0.96 + 0.04U). If

R < −1.52, the 2.26 % quantile of the stable, we substituted δ = F−1
− (0.0226U). This gives

simulated innovations δ with the mixture distribution (4.15).
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Figure 4.9: Probability plot of simulated innovations using the mixed stable and truncated

Pareto distributions. Compare Figure 4.5 (right).

Figure 4.9 shows a probability plot for N = Nyν simulated innovations (for ν = 12

months and Ny = 100 years) from the mixture distribution (4.15). Comparison with Figure
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4.5 (a) shows that the simulated innovations are statistically identical to the computed

model residuals in terms of distribution. Substituting the simulated innovations into the

model (3.63) generates Ny years of simulated river flow. In rare cases, a simulated flow

comes out negative. When this occurs, we resample (draw a different random innovation)

for that period. It is advantageous to simulate several extra years of river flows and throw

out the initial years (100 years in this case), since we did not simulate Xt for t < 0. This

ensures that the simulated series is periodically stationary. Figure 4.10 gives a side-by-

side comparison of the observed and simulated river flow time series, illustrating that the

synthetic river flow appears statistically similar to the observed flow. Figure 4.11 shows the

main statistical characteristics (mean, standard deviation and autocorrelations) of a typical

synthetic river flow time series obtained by this method, as well as the same statistical

measures for the observed time series. It is apparent that this procedure closely reproduces

the main statistical characteristics, indicating that the modeling procedure is trustworthy for

generating synthetic river flows. Such synthetic river flows are useful for design of hydraulic

structures, for optimal operation of reservoir systems, for calculating the risk of failure of

water supply systems, etc.
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Figure 4.10: Plot of (a) observed and (b) simulated monthly river flows for the Salt River

near Roosevelt, AZ, indicating statistical similarity.
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Figure 4.11: Comparison of mean, standard deviation, and autocorrelations for simulated

vs. observed monthly river flow data for the Salt River near Roosevelt, AZ.
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5 Estimation of Periodic Parameters by Fourier Series

5.1 Overview

In most cases, PARMA models have been applied to monthly or quarter time series. However,

when the number of periods is large (for instance, in weekly or daily data), PARMA models

require an estimation of too many parameters, which violates the principle of statistical

parsimony (model with minimum number of parameters). In this chapter, model parsimony

is achieved by expressing the periodic model parameters in terms of their discrete Fourier

transforms.

In most of the water resources systems design and operation studies the periodic phe-

nomena have been represented by Fourier functions. Quimpo (1967) has applied Fourier

analysis to daily river flow sequences in order to detect significant harmonic components em-

bodied within the sequence considered. Since then Fourier analysis has become a standard

tool in any hydrologic study concerning periodicity. Salas et al. (1980) proposed a Fourier

series approach for reducing the number of parameters in PAR or PARMA models. Vecchia

(1985a) also adopted the same approach but used Akaike’s information criterion (AIC) for

the selection of significant harmonics. Experience in using Fourier analysis for estimating

periodic parameters of hydrologic time series shows that for small time interval series, such

as daily and weekly series, only the first few harmonics are necessary for a good Fourier

series fit in the periodic estimate of model parameters (Salas et al., 1980). This practical

criteria should be supplemented by more precise analysis and tests. For instance, Anderson

and Vecchia (1993) uses asymptotic properties of the discrete Fourier transform of the esti-

mated periodic autocovariance and autocorrelation function for selecting the harmonics in

the PARMA model parameters.
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In an effort to obtain a parsimonious model for periodically stationary series, we develop

the asymptotic distribution of the discrete Fourier transform of the innovations estimates

(ψ-weights of the periodic moving average processes) and then determine those statistically

significant Fourier coefficients. We also extend these results to other periodic model param-

eters. We demonstrate the effectiveness of the technique using simulated data from different

PARMA models. An application of the technique is demonstrated through the analysis of a

weekly river flow series for the Fraser River, British Columbia.

5.2 Selection of Significant Harmonics and Fourier Coefficients

The PARMAν(p, q) model (1) has (p+q+1)ν total parameters (see Lund and Basawa, 2000;

Salas et al., 1980). For example, for a monthly series (ν = 12) where p = q = 1, there are 36

parameters. When the period ν is large it is reasonable to assume that the model parameters

vary smoothly with respect to time and can therefore be explained by only a few of their

non-zero discrete Fourier coefficients.

Experience in using Fourier analysis for estimating periodic parameters of hydrologic

time series shows that for small time interval series, such daily and weekly series, only the

first few harmonics are necessary for a good Fourier series fit in the periodic estimate of

θt(j), θt(j) and σt (Salas et al., 1980). This practical criteria should be supplemented by

more precise analysis and tests.

More precise analysis for selecting the harmonics in Fourier series fit of a periodic estimate

is based on a theorem for detecting periodic variation in the model parameters in (2.1) and

(2.2). This theorem is derived by first obtaining the asymptotic distribution of the discrete

Fourier transform of the parameters from the innovations algorithm.
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Write the moving average parameters in (2.2) at lag j in the form

ψt(j) = c0(j) +
k∑

r=1

{
cr(j) cos

(
2πrt

ν

)
+ sr(j) sin

(
2πrt

ν

)}
(5.1)

where cr(j) and sr(j) are the Fourier coefficients, r is the harmonic and k is the total

number of harmonics which is equal to ν/2 or (ν − 1)/2 depending on whether ν is even or

odd, respectively.

Write the vector of Fourier coefficients at lag j in the form

f(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[
c0(j), c1(j), s1(j), . . . , c(ν−1)/2(j), s(ν−1)/2(j)

]T
(ν odd)

[
c0(j), c1(j), s1(j), . . . , s(ν/2−1)(j), c(ν/2)(j)

]T
(ν even)

(5.2)

where [ · ] denotes the greatest integer function. Similarly, define f̂j to be the vector of Fourier

coefficients for the innovations estimates ψ̂t(j), defined by replacing ψt(j) by ψ̂t(j), cr(j) by

ĉr(j), and sr(j) by ŝr(j) in (5.1) and (5.2). We wish to describe the asymptotic distributional

properties of these Fourier coefficients, to determine those that are statistically significantly

different from zero. These are the coefficients that will be included in our model.

In order to compute the asymptotic distribution of the Fourier coefficients, it is convenient

to work with the complex discrete Fourier transform (DFT) and its inverse

ψ∗
r(j) = ν−1/2

ν−1∑
t=0

exp

(−2iπrt

ν

)
ψt(j)

ψt(j) = ν−1/2

ν−1∑
r=0

exp

(
2iπrt

ν

)
ψ∗

r(j)

(5.3)

and similarly ψ̂∗
r(j) is the complex DFT of ψ̂m(j). The complex DFT can also be written in

matrix form. Recall from (3.30) the definition

ψ̂(�) = [ψ̂0(�), ψ̂1(�), · · · , ψ̂ν−1(�)]
T

ψ(�) = [ψ0(�), ψ1(�), · · · , ψν−1(�)]
T
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and similarly define

ψ̂∗(j) =
[
ψ̂∗

0(j), ψ̂
∗
1(j), . . . , ψ̂

∗
ν−1(j)

]T

ψ∗(j) =
[
ψ∗

0(j), ψ
∗
1(j), · · · , ψ∗

ν−1(�)
]T (5.4)

noting that these are all ν-dimensional vectors. Define a ν×ν matrix U with complex entries

U = ν−1/2
(
e

−i2πrt
ν

)
r,t=0,1,...,ν−1

(5.5)

so that ψ∗(j) = Uψ(j) and ψ̂∗(j) = Uψ̂(j). This matrix form is useful because it is easy

to invert. Obviously ψ∗(j) = Uψ(j) is equivalent to ψ(j) = U−1ψ∗(j) since the matrix U

is invertible. This is what guarantees that there exists a unique vector of complex DFT

coefficients ψ∗(j) corresponding to any vector ψ(j) of moving average parameters. But in

this case, the matrix U is also unitary (i.e, UŨT = I) which means that U−1 = ŨT , and the

latter is easy to compute. Then we also have ψ(j) = ŨT ψ∗(j) which is the matrix form of

the second relation in (5.3).

Next we convert from complex to real DFT, and it is advantageous to do this in a way

that also involves a unitary matrix. Define

ar(j) = 2−1/2{ψ∗
r(j) + ψ∗

ν−r(j)} (r = 1, 2, . . . , [(ν − 1)/2])

ar(j) = ψ∗
r(j) (r = 0 or ν/2)

br(j) = i2−1/2{ψ∗
r(j) − ψ∗

ν−r(j)} (r = 1, 2, . . . , [(ν − 1)/2])

(5.6)

and let

e(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[
a0(j), a1(j), b1(j), . . . , a(ν−1)/2(j), b(ν−1)/2(j)

]T
(ν odd)

[
a0(j), a1(j), b1(j), . . . , b(ν/2−1)(j), a(ν/2)(j)

]T
(ν even)

(5.7)

and likewise for the coefficients of ψ̂t(j). These relations (5.6) define another ν × ν matrix

P with complex entries such that

e(j) = PUψ(j) = Pψ∗(j), (5.8)
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and it is not hard to check that P is also unitary, so that ψ∗(j) = P−1e(j) = P̃ T e(j), the

latter form being most useful for computations. The DFT coefficients ar(j) and br(j) are not

the same as the coefficients cr(j) and sr(j) in (5.1) but they are closely related. Substitute

the first line of (5.3) into (5.6) and simplify to obtain

ar(j) = ν−1/2

ν−1∑
t=0

cos

(
2πrt

ν

)
ψt(j) (r = 0 or ν/2)

ar(j) =

√
2

ν

ν−1∑
t=0

cos

(
2πrt

ν

)
ψt(j) (r = 1, 2, . . . , [(ν − 1)/2])

br(j) =

√
2

ν

ν−1∑
tm=0

sin

(
2πrt

ν

)
ψt(j) (r = 1, 2, . . . , [(ν − 1)/2]).

(5.9)

Inverting the relations (5.6) or, equivalently, using the matrix equation ψ∗(j) = P̃ T e(j), we

obtain ψ∗
r(j) = ar(j) for r = 0 or ν/2 and

ψ∗
r(j) = 2−1/2 {ar(j) − ibr(j)} and ψ∗

ν−r(j) = ψ̃∗
r(j) = 2−1/2 {ar(j) + ibr(j)}

for r = 1, ..., k = [(ν − 1)/2]. Substitute these relations into the second expression in (5.3)

and simplify to obtain

ψt(j) = ν−1/2a0(j) +

√
2

ν

k∑
r=1

{
ar(j) cos

(
2πrt

ν

)
+ br(j) sin

(
2πrt

ν

)}

for ν odd and

ψt(j) = ν−1/2 (a0(j) + ak(j)) +

√
2

ν

k−1∑
r=1

{
ar(j) cos

(
2πrt

ν

)
+ br(j) sin

(
2πrt

ν

)}

for ν even, where k is the total number of harmonics which is equal to ν/2 or (ν − 1)/2

depending on whether ν is even or odd, respectively. Comparison with (5.1) reveals that

cr =

√
2

ν
ar (r = 1, 2, . . . , [(ν − 1)/2])

cr = ν−1/2ar (r = 0 or ν/2)

sr =

√
2

ν
br (r = 1, 2, . . . , [(ν − 1)/2]).

(5.10)
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Substituting into (5.9) yields

cr(j) = ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
ψm(j) (r = 0 or ν/2)

cr(j) = 2ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
ψm(j) (r = 1, 2, . . . , [(ν − 1)/2])

sr(j) = 2ν−1

ν−1∑
m=0

sin

(
2πrm

ν

)
ψm(j) (r = 1, 2, . . . , [(ν − 1)/2])

(5.11)

and likewise for the Fourier coefficients of ψ̂m(j). Define the ν × ν diagonal matrix

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diag(ν−1/2,
√

2/ν, . . . ,
√

2/ν) (ν odd)

diag(ν−1/2,
√

2/ν, . . . ,
√

2/ν, ν−1/2) (ν even)

(5.12)

so that in view of (5.10) we have f(j) = Le(j) and f̂(j) = Lê(j). Substituting into (5.8) we

obtain

f(j) = LPUψ(j) and f̂(j) = LPUψ̂(j). (5.13)

Theorem 5.1 For any positive integer j

N1/2
y

[
f̂(j) − f(j)

]
⇒ N (0, RV ) (5.14)

where

RV = LPUVjjŨ
T P̃ T LT . (5.15)

PROOF. From Theorem 3.7 we have

N1/2
y

[
ψ̂(j) − ψ(j)

]
⇒ N (0, Vjj) (5.16)

where V�k is from (3.31). Define B = LPU so that f(j) = Bψ(j) and f̂(j) = Bψ̂(j)

using (5.13). Apply Proposition 3.8 with Xn = ψ̂(j) and g(X) = BX, so that µ = ψ(j),

g(µ) = Bψ(j) = f(j), and D = [∂gi/∂xj] = B. Then N
1/2
y [Bψ̂(j)−Bψ(j)] ⇒ N (0, BVjjB

T )

or in other words N
1/2
y [f̂(j) − Bf(j)] ⇒ N (0, BVjjB

T ). Although P and U are complex

matrices, the product B = LPU is a real matrix, and therefore BT = B̃T = ŨT P̃ T LT . Then

(5.14) and (5.15) follow, which finishes the proof.
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Theorem 5.2 Let Xt = X̃t − µt, where Xt is the periodic moving average process (3.1)

and µt is a periodic mean function with period ν. Then, under the null hypothesis that the

mean-standardized process is stationary with ψt(h) = ψ(h) and σt = σ, the elements of (5.2)

are asymptotically independent with

N
1/2
y {ĉm(h) − µm(h)} ⇒ N (0, ν−1ηV (h)) (m = 0 or ν/2)

N
1/2
y {ĉm(h) − µm(h)} ⇒ N (0, 2ν−1ηV (h)) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝm(h) − µm(h)} ⇒ N (0, 2ν−1ηV (h)) (m = 1, 2, . . . , [(ν − 1)/2])

(5.17)

for all h ≥ 1, where

µm(h) =

⎧⎨
⎩

ψ(h) (m = 0)

0 (m > 0)
(5.18)

ηV (h) =
h−1∑
n=0

ψ2(n). (5.19)

PROOF. Under the null hypothesis, ψt(h) = ψ(h) and σt = σ, is constant in t for each h

and hence the Fn and Bn matrices in (3.32) become, respectively, a scalar multiple of the

identity matrix: Fn = ψ(n)I, and an identity matrix: Bn = I. Then, from (3.31),

Vhh =
h−1∑
n=0

ψ(n)IΠ(ν−1)(h−1−n)I{ψ(n)IΠ(ν−1)(h−1−n)}T =
h−1∑
n=0

ψ2(n)I = ηV (h)I

is also a scalar multiple of the identity matrix. Hence, since scalar multiples of the iden-

tity matrix commute in multiplication with any other matrix, we have from (5.15) that

PUVhhŨ
T P̃ T = VhhPUŨT P̃ T = Vhh

since P and U are unitary matrices (i.e, P̃ T P = I and UŨT = I). Then in Theorem 5.1

we have

N1/2
y

[
f̂(h) − f(h)

]
⇒ N (0, RV ) (5.20)
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where RV = LPUVhhŨ
T P̃ T LT = VhhLLT , so that

RV =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηV (h) diag(ν−1, 2ν−1, . . . , 2ν−1, 2ν−1) (ν odd)

ηV (h) diag(ν−1, 2ν−1, . . . , 2ν−1, ν−1) (ν even).

Under the null hypothesis, f(h) = [ψ(h), 0, . . . , 0]T and then the theorem follows by consid-

ering the individual elements of the vector convergence (5.20).

Under the hypothesis that cm(h) and sm(h) are zero for all m ≥ 1 and h �= 0, Theorem

5.2 tells us that, for example, if ν is odd then {ĉ1(j), ŝ1(h), . . . , ĉ(ν−1)/2(h), ŝ(ν−1)/2(h)} form

ν − 1 independent and normally distributed random variables with mean zero and standard

error (2ν−1η̂V (h)/Ny)
1/2. The Bonferroni14 α-level test statistic rejects the null hypothesis

that cm(h) and sm(h) are zero for all m ≥ 1 if |Zc| > zα′/2 and |Zs| > zα′/2, respectively, and

Zc =
ĉm(h)

(λη̂V (h)/Ny)1/2
, Zs =

ŝm(h)

(λη̂V (h)/Ny)1/2
(5.21)

where

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν−1 (m = ν/2)

2ν−1 (m = 1, 2, . . . , [(ν − 1)/2])

η̂V (h) =
h−1∑
n=0

ψ̂2(n)

and Z ∼ N(0, 1), α′ = α/(ν − 1) . When α = 5% and ν = 12, α′ = 0.05/11 = 0.0045,

zα′/2 = z0.0023 = 2.84, and the null hypothesis is rejected when any |Zc,s| > 2.84, indicating

that the corresponding Fourier coefficients is statistically significantly different from zero.

14See Section A-6, Appendix A.
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5.3 Estimation of Fourier Coefficients of Model Parameters

For large ν, it is anticipated that PARMA model parameters φt(�), θt(�) and σt, will vary

smoothly with respect to t, and can therefore be explained by a few of their non-zero Fourier

coefficients. For a PARMAν(p, q) model, the Fourier series representation of the φt(�), θt(�)

and σt, can be obtained by

θt(�) = ca0(�) +
k∑

r=1

{
car(�)cos

(
2πrt

ν

)
+ sar(�)sin

(
2πrt

ν

)}

φt(�) = cb0(�) +
k∑

r=1

{
cbr(�)cos

(
2πrt

ν

)
+ sbr(�)sin

(
2πrt

ν

)}

σt = cd0 +
k∑

r=1

{
cdrcos

(
2πrt

ν

)
+ sdrsin

(
2πrt

ν

)}
(5.22)

car,br,dr and sar,br,dr are the Fourier coefficients, r is the harmonic and k is the total number

of harmonics (as in (5.1)). For instance, for monthly series where ν = 12, we have k = 6; for

weekly series with ν = 52, k = 26 and for daily series with ν = 365, k = 182. In practice, a

small number of harmonic k∗ < k is used.

For general Fourier analysis of PARMAν(p, q) model, it is desirable to represent (3.38) in

terms of the Fourier coefficients of the model parameters and the Fourier transform of ψt(j)

(see Appendix B for a detailed discussion). However, we develop asymptotic distributions of

the discrete Fourier coefficients of PARMAν(1, 1) model parameters by using the relationship

in (3.44) and (3.45).

Consider again the PARMAν(1, 1) model given in (3.42). To simplify notation, we will

express the model parameters, along with their Fourier coefficients, in terms of vector no-

tation. Let θ = [θ0, θ1, · · · , θν−1]
T , φ = [φ0, φ1, · · · , φν−1]

T and σ = [σ0, σ1, · · · , σν−1]
T be

the vector of PARMAν(1, 1) model parameters. These model parameters may be defined in

terms of their complex finite Fourier coefficients θ∗t , φ∗
t and σ∗ as follows
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θ∗(�) = Uθ(�) and θ(�) = ŨT θ∗(�)

φ∗(�) = Uφ(�) and φ(�) = ŨT φ∗(�)

σ∗ = Uσ and σ = ŨT σ∗

(5.23)

where “ ∼ ” denotes the complex conjugate, U is the ν × ν Fourier transform matrix defined

in (5.5) and

θ∗ =
[
θ∗0, θ

∗
1, · · · , θ∗ν−1

]T
φ∗ =

[
φ∗

0, φ
∗
1, · · · , φ∗

ν−1

]T
σ∗ =

[
σ∗

0, σ
∗
1, · · · , σ∗

ν−1

]T
As in Theorem 5.1 let the vector form for transformed θ and φ be given by

fθ = LPθ∗ = LPUθ

fφ = LPφ∗ = LPUφ

(5.24)

where

fθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[
ca0, ca1, sa1, . . . , ca(ν−1)/2, sa(ν−1)/2

]T
(ν odd)

[
ca0, ca1, sa1, . . . , sa(ν/2−1), ca(ν/2)

]T
(ν even)

(5.25)

fφ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[
cb0, cb1, sb1, . . . , cb(ν−1)/2, sb(ν−1)/2

]T
(ν odd)

[
cb0, cb1, sb1, . . . , sb(ν/2−1), cb(ν/2)

]T
(ν even)

(5.26)

car = ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
θm (r = 0 or ν/2)

car = 2ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
θm (r = 1, 2, . . . , [(ν − 1)/2])

sar = 2ν−1

ν−1∑
m=0

sin

(
2πrm

ν

)
θm (r = 1, 2, . . . , [(ν − 1)/2])

(5.27)
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cbr = ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
φm (r = 0 or ν/2)

cbr = 2ν−1

ν−1∑
m=0

cos

(
2πrm

ν

)
φm (r = 1, 2, . . . , [(ν − 1)/2])

sbr = 2ν−1

ν−1∑
m=0

sin

(
2πrm

ν

)
φm (r = 1, 2, . . . , [(ν − 1)/2])

(5.28)

and likewise for the Fourier coefficients of θ̂m and φ̂m. Note that [·] denotes the greatest

integer function. We wish to describe the asymptotic distributional properties of the elements

of (5.25) and (5.26) .

Theorem 5.3 Regarding the Fourier transformed φ and θ, we have

N1/2
[
f̂θ − fθ

]
⇒ N (0, RS)

N1/2
[
f̂φ − fφ

]
⇒ N (0, RQ)

(5.29)

fθ = LPθ∗ = LPUθ

RS = LPUSŨT P̃ T LT

fφ = LPφ∗ = LPUφ

RQ = LPUQŨT P̃ T LT

(5.30)

where “ ∼ ” denotes the complex conjugate, Q is given by (3.48) and S is given by (3.56).

PROOF. Same procedure as in proof of Theorem 5.1 by applying Proposition 3.8 along with

Theorem 3.9 and Theorem 3.11.

Theorem 5.4 Let Xt = X̃t − µt, where Xt is the PARMAν(1, 1) process (3.42) and µt is a

periodic mean function with period ν. Then, under null hypothesis that the mean-standardized

process is stationary with φt = φ, θt = θ and σt = σ, the elements of f̂φ, defined by (5.26)

with cbr replaced by ĉbr and sbr replaced by ŝbr, are asymptotically independent with
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N
1/2
y {ĉbm − µbm} ⇒ N (0, ν−1ηQ) (m = 0 or ν/2)

N
1/2
y {ĉbm − µbm} ⇒ N (0, 2ν−1ηQ) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝbm − µbm} ⇒ N (0, 2ν−1ηQ) (m = 1, 2, . . . , [(ν − 1)/2])

(5.31)

where

µbm =

⎧⎨
⎩

φ (m = 0)

0 (m > 0)
(5.32)

ηQ = ψ−4(1)

{
ψ2(2)

(
1 − 2ψ2(1)

ψ(2)

)
+ ψ2(1)

1∑
n=0

ψ2(n)

}
(5.33)

ψ(1) = φ − θ, and ψ(2) = φψ(1).

PROOF. The proof follows along the same lines as Theorem 3.9 and hence we adopt the

same notation. As in proof of Theorem 5.2, we have Bn = I and Fn = ψ(n)I in (3.32) and

so (3.31) implies (x = Min(h, j))

Vjh =
x−1∑
n=0

ψ(j − 1 − n)Π(ν−1)(j−1−n)IΠ(ν−1)(h−1−n)T ψ(h − 1 − n)

=
x−1∑
n=0

ψ2(j − 1 − n)I if j = h

since then Π(ν−1)(j−1−n)Π(ν−1)(h−1−n)T = I so

V11 = ψ2(0)I = I

V22 = [ψ2(1) + ψ2(0)]I = [ψ2(1) + 1]I

Note that, for h �= j, Π(ν−1)(j−1−n)IΠ(ν−1)(h−1−n)T = Π(ν−1)(j−1−n)Π−(ν−1)(h−1−n) = Π(ν−1)(j−h)

Then

V12 = ψ(0)Π(ν−1)(1−2)ψ(1) = ψ(1)Π

V21 = ψ(1)Π−1ψ(0) = ψ(1)Π−1 = ψ(1)ΠT
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and

Q = ( H1 H2 )

⎛
⎝V11 V12

V21 V22

⎞
⎠
⎛
⎝HT

1

HT
2

⎞
⎠

where V21 = V T
12 ⇒ Q is symmetric.

Since Xt is stationary, every ψ�(t) = ψ(t) in (3.1) and so

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · −ψ(2)
ψ2(1)

−ψ(2)
ψ2(1)

0 0 0 · · · 0

...
...

...
...

...

0 0 0 · · · −ψ(2)
ψ2(1)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
−ψ(2)

ψ2(1)
Π−1

and

H2 =
1

ψ(1)
I

V11 = B1 = I

V22 = B2 + F1Π
−1B1ΠF1 = I + ψ2(1)Π−1IΠ = [ψ2(1) + 1]I

V12 = B1ΠF1 = ΠF1 = ψ(1)Π

V21 = V T
12 = ψ(1)Π−1 = ψ(1)ΠT

Q = H1V11H
T
1 + H2V21H

T
1 + H1V12H

T
2 + H2V22H

T
2

= −ψ(2)
ψ2(1)

Π−1I
(

−ψ(2)
ψ2(1)

Π
)

+ −ψ(2)
ψ2(1)

Π−1ψ(1)Π 1
ψ(1)

+ 1
ψ(1)

Iψ(1)Π−1
(

−ψ(2)
ψ2(1)

Π
)

+ 1
ψ(1)

I[ψ2(1) + 1]I 1
ψ(1)

I

Q = {ψ2(2)−2ψ2(1)ψ(2)+[ψ2(1)+1]ψ2(1)
ψ4(1)

}I

So Q = ηQI is actually a scalar multiple of the identity matrix I. Then PUQŨT P̃ T =

QPUŨT P̃ T = Q and hence RQ = LQLT = QLLT or in other words

RQ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηQ diag(ν−1, 2ν−1, . . . , 2ν−1, 2ν−1) (ν odd)

ηQ diag(ν−1, 2ν−1, . . . , 2ν−1, ν−1) (ν even).
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Under the null hypothesis, fφ = [φ, 0, . . . , 0]T and then the theorem follows by considering

the individual elements of the vector convergence from the second line of (5.29).

Under the hypothesis that cbm and sbm are zero for all m ≥ 1 and h �= 0, Theorem

5.4 tells us that, for example, if ν is odd then {ĉb1, ŝb1, . . . , ĉb(ν−1)/2, ŝb(ν−1)/2} form ν − 1

independent and normally distributed random variables with mean zero and standard error

(2ν−1η̂S/Ny)
1/2. The Bonferroni α-level test statistic rejects the null hypothesis that cbm and

sbm are zero for all m ≥ 1 and h �= 0 if |Zc| > zα′/2 and |Zs| > zα′/2, respectively. Here,

Z ∼ N(0, 1), α′ = α/(ν − 1), and

Zc =
ĉbm(h)

(λη̂Q/Ny)1/2
, Zs =

ŝbm(h)

(λη̂Q/Ny)1/2
(5.34)

where

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν−1 (m = ν/2)

2ν−1 (m = 1, 2, . . . , [(ν − 1)/2])

η̂Q = ψ̂−4(1)

{
ψ̂2(2)

(
1 − 2ψ̂2(1)

ψ̂(2)

)
+ ψ̂2(1)

1∑
n=0

ψ̂2(n)

}
.

Theorem 5.5 Let Xt = X̃t − µt, where Xt is the PARMAν(1, 1) process (3.42) and µt a

periodic mean function with period ν. Then, under null hypothesis that the mean-standardized

process is stationary with θt = θ, φt = φ and σt = σ, the elements of f̂θ, defined by (5.25)

with cbr replaced by ĉbr and sbr replaced by ŝbr, are asymptotically independent with

N
1/2
y {ĉam − µam} ⇒ N (0, ν−1ηS) (m = 0 or ν/2)

N
1/2
y {ĉam − µam} ⇒ N (0, 2ν−1ηS) (m = 1, 2, . . . , [(ν − 1)/2])

N
1/2
y {ŝam − µam} ⇒ N (0, 2ν−1ηS) (m = 1, 2, . . . , [(ν − 1)/2])

(5.35)

where
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µam =

⎧⎨
⎩

θ (m = 0)

0 (m > 0)
(5.36)

ηS = ψ−4(1)

{
ψ2(2)

(
1 − 2ψ2(1)

ψ(2)

)
+

2∑
j=1

ψ4/j(1)

j−1∑
n=0

ψ2(n)

}
(5.37)

ψ(1) = φ − θ, and ψ(2) = φψ(1).

PROOF. The proof follows along the same lines as Theorem 3.11 and hence we adopt the

same notation. Note that S = Q + S̄ where

S̄ = V11 − H1V1 − V11H
T
1 − H2V21 − V12H

T
2 = I

so as in Theorem 5.4 proof we get RS = LPUSŨT P̃ T LT = SLPUŨT P̃ T LT = SLLT where

S = RQ − I =

{
ψ2(2) − 2ψ2(1)ψ(2) + [ψ2(1) + 1]ψ2(1) + ψ4(1)

ψ4(1)

}
I.

so that

RS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηS diag(ν−1, 2ν−1, . . . , 2ν−1, 2ν−1) (ν odd)

ηS diag(ν−1, 2ν−1, . . . , 2ν−1, ν−1) (ν even).

Under the null hypothesis, fθ = [θ, 0, . . . , 0]T and then the theorem follows by considering

the individual elements of the vector convergence from the first line of (5.29).

Under the hypothesis that cam and sam are zero for all m ≥ 1 and h �= 0, Theorem

5.5 tells us that, for example, if ν is odd then {ĉa1, ŝa1, . . . , ĉa(ν−1)/2, ŝ(aν−1)/2} form ν − 1

independent and normally distributed random variables with mean zero and standard errors

obtained from (λη̂S/Ny)
1/2 where λ is defined below. The Bonferroni α-level test statistic

rejects the null hypothesis that cam and sam are zero for all m ≥ 1 and h �= 0 if |Zc| > zα′/2

and |Zs| > zα′/2, respectively. Here Z ∼ N(0, 1), α′ = α/(ν − 1), and
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Zc =
ĉam(h)

(λη̂S/Ny)1/2
, Zs =

ŝam(h)

(λη̂S/Ny)1/2
(5.38)

where

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν−1 (m = ν/2)

2ν−1 (m = 1, 2, . . . , [(ν − 1)/2])

η̂S = ψ̂−4(1)

{
ψ̂2(2)

(
1 − 2ψ̂2(1)

ψ̂(2)

)
+

2∑
j=1

ψ̂4/j(1)

j−1∑
n=0

ψ̂2(n)

}
.

5.4 Simulation Study

A detailed simulation study was conducted to demonstrate the effectiveness of the results of

the previous section using simulated data from different PARMAν(p, q) models with finite

fourth moment. For each model, individual realizations of Ny = 50, 100, 300, and 500

years of data (i.e., sample size of N = Nyν) were simulated and the innovations algorithm

was used to obtain parameter estimates for each realization. In each case, estimates were

obtained for k = 15 iterations. Then discrete Fourier transformed innovation estimates and

model parameters were obtained from (5.11), (5.27) and (5.28). The test statistics for the

Fourier coefficients were computed using (5.21), (5.34) and (5.38) to identify those estimates

that were statistically significant. A FORTRAN program was used to simulate the PARMA

samples as well as to make all the necessary calculations.

As an example, we summarize here the results of two particular cases of a PARMA12(p, q)

model and one case of a PARMA52(p, q) model. We first consider the following PARMA12(0, 1)

model

Xkν+i = εkν+i + θiεkν+i−1 (5.39)
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where

θi = ca0 +
6∑

r=1

{
carcos

(
2πri

ν

)
+ sarsin

(
2πri

ν

)}

σi = cd0 +
6∑

r=1

{
cdrcos

(
2πri

ν

)
+ sdrsin

(
2πri

ν

)}

The periodic notation Xkν+i refers to the mean zero simulated data during the ith period

of cycle k. The innovations
{
δt = σ−1

i εkν+i

}
form an iid normal sequence of random variables

with mean zero and standard deviation one.

For example, suppose we wish to test the hypothesis that θi is dominated by two har-

monics of period 12,

θi = ca0 +
2∑

r=1

{
carcos

(
2πki

12

)
+ sarsin

(
2πri

12

)}
(5.40)

For ca0 = 0.45, ca1 = 0.25, sa1 = 0.75, ca2 = 0.80 and sa2 = 0.50, the values of θi are

calculated from (5.40), and assume σi = 2.00+0.15 cos 2πi
12

+0.90 sin 2πi
12

. Then using (5.39), a

single realization with Ny = 500 years of data (i.e., sample size of N = 6000) was generated.

Table 5.2 shows the results after k = 15 iterations of the innovations algorithm.

Table 5.1: Model parameters and estimates for simulated PARMA12(0, 1) data.

ca0 ca1 sa1 ca2 sa2

True Value 0.45 0.25 0.75 0.80 0.50

Estimated 0.463 0.282 0.725 0.806 0.519

Fourier coefficients with test statistics z > 3.32 (for α = 1%) are considered to be

significant. It seems that the ψ-weights are dominated by a few of Fourier coefficients;

especially cm(j) and sm(j) where m = 1, 2. Besides, the Fourier coefficients are statistically

insignificant after lag 1, which indicate that the simulated data are from PARMA12(0, 1).

The estimated standard deviation (σ̂i ≈ 1.92 + 0.15cos2πi
12

+ 0.88sin2πi
12

) is close to the true
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values. The results of the residuals analysis also indicate that they look independent and

normally distributed with mean zero and variance one. Those significant Fourier coefficients

and the true values are summarized in Table 5.1 (neglecting the smaller coefficients). Again,

the results show the closeness of the estimates.

The second model for which simulation results will be presented is a PARMA12(1, 1)

model

Xkν+i = φiXkν+i−1 + εkν+i + θiεkν+i−1 (5.41)

For example, suppose we wish to test the hypothesis that θi and φi are dominated by

two harmonics of period 12,

φi = cb0 +
2∑

k=1

{
cbkcos

(
2πki

12

)
+ sbksin

(
2πki

12

)}
(5.42)

For coefficients given in Table 5.5, the values of θi and φi are calculated from (5.41), and

(5.42), respectively. Here we assume constant innovation variance (σ2
i = 1 for all i). From the

above model, a single realization with Ny = 500 years of quarterly data (sample size of N =

6000) was generated. Table 5.3 shows the results after k = 15 iterations of the innovations

algorithm. Since the discrete Fourier transform of ψ̂i weights do not generally cut-off to

(statistically) zero at a certain lag, we choose a parsimonious mixed model that captures the

periodic behavior as well as the exponential decay evidenced in the autocorrelation function.

After making all the diagnostics, we found that a PARMA12(1, 1) model is adequate. The

discrete Fourier transform of parameter estimates for this model, obtained using equations

(5.27) and (5.28), are summarized in Table 5.4. It seems that estimated model parameters

(θ̂t , φ̂t) of PARMA12(1, 1) model are approximately dominated by two harmonics, and these

Fourier coefficients as well as true values are summarized in Table 5.5. The result shows the
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closeness of the estimates.

The last model used to illustrate the Fourier analysis technique is PARMA52(1, 1). The

same Fourier coefficients as for PARMA12(1, 1) model are used for calculating the PARMA52

(1, 1) model parameters, and then a single realization with Ny = 500 years of weekly data

(sample size of N = 26000) was generated. The Fourier transformed values of the estimated

PARMA52(1, 1) model parameters, the standard errors and the test statistics are summarized

in Table 5.6 and Table 5.7. Fourier coefficients with test statistics z > 3.72 (for α = 1%)

are considered to be significant. They are roughly dominated by two harmonics, and these

Fourier coefficients as well as true values are summarized in Table 5.8. The result shows

again the closeness of the estimates.

5.5 Application to Modeling of River Flows

First, we present a detailed Fourier analysis of monthly Fraser river flow series. We found

that PARMA12(1, 1) is a reasonable fit for monthly flows (see Section 4.5). The monthly

variation of the parameters (see Figure 5.1) is fairly smooth indicating that the Fourier

transform of θ̂t and φ̂t may be dominated by a few components. The Fourier transformed

values of these model parameters, the standard errors and the test statistics are summarized

in Table 5.9. Based on Theorem 5.4 and Theorem 5.5, Fourier coefficients with test statistics

z > 3.32 (for α = 1%) are considered to be significant. It seems that the PARMA12(1, 1)

model parameters are dominated by few Fourier coefficients (see Table 5.9). Those coefficient

with a test statistic close to 3.32 (sa2,sa4sb4) can also be considered statistically insignificant

so as to achieve model parsimony (see the effect in Figure 5.1)

Using those significant Fourier coefficients (ca0 = 0.304, sa1 = −0.426, ca3 = 0.665,

cb0 = 0.337, sb1 = 0.466, cb2 = 0.408, sb2 = 0.355 and cb3 = −0.649, see Table 5.9), the
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Figure 5.1: Plot of PARMA12(1, 1) model parameters (with their Fourier fit) of average

monthly flow series for the Fraser River at Hope, BC.

residuals are calculated again using (3.62). The ACF and PACF (not shown) indicate that

there is no serial dependence. Statistical summary and lognormal probability plot of these

residuals are shown in Figure 5.2, indicating a mixture of lognormal with an appropriate tail

distribution ( compare with Section 4.5).
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Figure 5.2: Statistical summary (a) and lognormal probability plot (b) for model residuals,

Fourier model parameters, monthly Fraser river data. Compare Figure 3.7 (a).

Next we model the 72 years of weekly river flow data from October 1912 to September

1984, and use as a second example for Fourier analysis. The weekly river flow series are

obtained by averaging daily measurements over 7 days (8 or 9 days at the end of a each

water year) starting from October of each year. In this analysis, ν = 0 corresponds to the
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first 7 days of October and ν = 51 corresponds to the last 7 to 9 days of September. The

weekly statistics such as the mean, standard deviation, and lag-1 and lag-2 serial correlation

coefficient are displayed in Figure 5.3. Following similar reasoning as in Section 4.5, we fit

PARMA52(1, 1) model to the data. The parameter estimates for this model, obtained using

equations (3.44) and (3.45), are shown in Figure 5.6. It must be noted that θt in (3.44) must

be replaced with −θt so as to be consistent with the representation in (2.1). Model residuals

were estimated using equation (3.62). Figure 5.4 shows the ACF and PACF of the model

residuals. Although a few values lie slightly outside of the 95% confidence bands, there is no

apparent pattern, providing some evidence that the PARMA52(1, 1) model is adequate.
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Figure 5.3: Sample Statistics (a) mean (b) standard deviation and autocorrelations at lag 1

(c) and lag 2 (d) of weekly river flow data for the Fraser River at Hope, BC.

Statistical summary and lognormal probability plot of model residuals are also shown
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Figure 5.4: ACF and PACF for model residuals, showing the bounds ±1.96/
√

N , indicate

no serial dependence.

in Figure 5.5, indicating a mixture of lognormal with an appropriate tail distribution (see

Section 4.5). The purpose here is to test the hypothesis that the model parameters (θ̂t and φ̂t)

are dominated by few Fourier coefficients. The Fourier transformed values of these model

parameters, the standard errors and the test statistics are summarized in Table 5.10 and

Table 5.11. Based on Theorem 5.4 and Theorem 5.5, Fourier coefficients with test statistics

z > 3.72 (for α = 1%) are considered to be significant. It is true that the PARMA52(1, 1)

model parameters are dominated by few Fourier coefficients (see Table 5.10 and Table 5.11).
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Figure 5.5: Statistical summary (left) and lognormal probability plot (right) for model resid-

uals, weekly Fraser river data. Compare Figure 3.7

The correlation analysis of residuals (obtained from (3.62), for example), using the coef-
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Figure 5.6: Plot of PARMA52(1, 1) model parameters (with their Fourier fit) of average

weekly flow series for the Fraser River at Hope, BC.

ficients: ca0 = 0.255, ca1 = −0.197, ca2 = 0.121 and cb0 = 0.732) indicate that there is no

serial dependence (see Chapter 6).
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Table 5.2: Discrete Fourier transform of moving average parameter estimates ψ̂i(�) at season

i and lag � = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations

algorithm applied to simulated Ny = 500 years of simulated PARMA12(0, 1) data. Note that

the value in (.) is the test statistic (5.21).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.463 0.282* 0.806* -0.013 -0.008 -0.000 0.029

(15.434) (44.143) (-0.700) (-0.436) (-0.016) (2.230)

ŝm(1) 0.725* 0.519* 0.005 -0.028 -0.013

(39.711) (28.441) (0.288) (-1.544) (-0.719)

SE 0.018 0.018 0.018 0.018 0.018 0.013

2 ĉm(2) 0.015 0.053 0.027 0.049 0.001 -0.011 -0.015

(2.678) (1.354) (2.466) (0.054) (-0.536) (-1.073)

ŝm(2) 0.001 -0.004 -0.037 -0.008 0.006

(0.058) (-0.210) (-1.887) (-0.456) (0.299)

SE 0.020 0.020 0.020 0.020 0.020 0.014

3 ĉm(3) 0.010 0.035 0.091* 0.049 0.038 0.006 0.017

(1.750) (4.604) (2.495) (1.939) (0.319) (1.219)

ŝm(3) -0.024 -0.004 0.031 -0.015 -0.007

(-1.211) (-0.220) (1.579) (-0.741) (-0.370)

SE 0.020 0.020 0.020 0.020 0.020 0.014

4 ĉm(4) 0.007 0.027 0.045 -0.007 -0.008 -0.018 -0.021

(1.349) (2.270) (-0.352) (-0.408) (-0.917) (-1.490)

ŝm(4) 0.016 0.067* 0.022 0.036 0.010

(0.798) (3.421) (1.091) (1.815) (0.523)

SE 0.020 0.020 0.020 0.020 0.020 0.014

: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32
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Table 5.3: Discrete Fourier transform of moving average parameter estimates ψ̂i(�) at season

i and lag � = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations

algorithm applied to simulated Ny = 500 years of simulated PARMA12(1, 1) data. Note that

the value in (.) is the test statistic (5.21).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.698 0.410* 0.683* -0.037 -0.021 0.018 -0.001

(22.452) (37.417) (-2.052) (-1.129) (0.989) (-0.085)

ŝm(1) 0.762* 0.180* 0.015 -0.024 -0.012

(41.727) (9.871) (0.833) (-1.337) (-0.664)

SE 0.018 0.018 0.018 0.018 0.018 0.013

2 ĉm(2) 0.378 0.221* 0.226* -0.050 0.147* -0.010 0.004

(10.464) (10.724) (-2.373) (6.963) (-0.472) (0.271)

ŝm(2) 0.378* 0.226* 0.277* 0.112* 0.006

(17.897) (10.726) (13.131) (5.302) (0.286)

SE 0.022 0.022 0.022 0.022 0.022 0.015

3 ĉm(3) 0.157 0.055 0.009 -0.077* -0.061 -0.119* -0.032

(2.530) (0.399) (-3.533) (-2.813) (-5.488) (-2.057)

ŝm(3) 0.225* 0.151* 0.157 * 0.067 * -0.005

(10.329) (3.958) (7.227) (3.084) (-0.229)

SE 0.022 0.022 0.022 0.022 0.022 0.015

4 ĉm(4) 0.069 -0.075* -0.036 -0.106* -0.045 0.036 0.024

(-3.406) (-1.624) (-4.851) (-2.070) (1.637) (1.561)

ŝm(4) 0.126* 0.058 0.016 -0.059 -0.037

(5.771) (2.644) (0.717) (-2.691) (-1.707)

SE 0.022 0.022 0.022 0.022 0.022 0.015

: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32
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Table 5.4: Discrete Fourier transform of model parameters estimates and standard errors

(SE) for simulated PARMA12(1, 1) data. Note that the value in (.) is the test statistic (5.34)

and (5.38).

harmonic m

Parameter Statistic 0 1 2 3 4 5 6

θ̂t ĉam 0.361 0.181* 0.228* -0.023 -0.048 0.009 -0.020

(5.711) (7.204) (-0.715) (-1.529) (0.289) (-0.895)

ŝam 0.418* 0.314* 0.021 -0.021 -0.047

(13.234) (9.916) (0.668) (-0.652) (-1.473)

SE 0.032 0.032 0.032 0.032 0.032 0.022

φ̂t ĉbm 1.165 0.229* 0.455* -0.015 0.028 0.009 0.019

(6.280) (12.471) (-0.406) (0.760) (0.244) (0.733)

ŝbm 0.343* -0.133* -0.006 -0.004 0.034

(9.404) (-3.652) (-0.162) (-0.104) (0.943)

SE 0.022 0.022 0.022 0.022 0.022 0.015

*Fourier coefficients with test statistic ≥ 3.32

Table 5.5: Significant discrete Fourier transform coefficients for simulated PARMA12(1, 1)

model parameters.

ca0 ca1 sa1 ca2 sa2

θt True Value 0.35 0.15 0.40 0.25 0.35

Estimated 0.361 0.181 0.418 0.228 0.313

cb0 cb1 sb1 cb2 sb2

φt True Value 0.35 0.25 0.35 0.45 -0.15

Estimated 0.336 0.229 0.343 0.455 -0.133
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Table 5.6: Discrete Fourier transform of moving average parameter estimate, θ̂t (with stan-

dard error, SE = 0.009 for m = 26 and SE = 0.013 for m �= 26) for the simulated

PARMA52(1, 1) data. Note that the value in (.) is the test statistic (5.38).

harmonic m

0 1 2 3 4 5 6 7 8

ĉam 0.301 0.148* 0.310* -0.046* 0.063* 0.007 -0.049* 0.054* -0.033

(11.836) (24.675) (-3.691) (5.014) (0.559) (-3.918) (4.723) (-2.611)

ŝam 0.452* 0.315* 0.003 0.028 -0.070* 0.019 0.009 -0.076*

(36.031) (25.097) (0.259) (2.235) (-5.508) (1.480) (0.712) (-6.036)

9 10 11 12 13 14 15 16 17

ĉam -0.031 0.054* -0.068* -0.008 0.036 -0.033 0.028 0.060* -0.049*

(-2.495) (4.339) (-5.388) (-0.626) (2.901) (-2.603) (2.207) (4.816) (-3.910)

ŝam 0.056 * -0.018 -0.037 0.066* -0.019 -0.025 0.079* -0.049* -0.027

(4.451) (-1.422) (-2.974) (5.257) (-1.544) (-1.972) (6.301) (-3.920) (-2.174)

18 19 20 21 22 23 24 25 26

ĉam -0.018 0.056* -0.039 0.025 0.061* -0.056* 0.025 0.002 -0.017

(-1.432) (4.428) (-3.117) (2.024) (4.895) (-4.433) (2.000) (0.162) (-1.868)

ŝam 0.032 -0.041 0.021 0.069* -0.074* -0.015 0.028 -0.070*

(2.599) (-3.244) (1.687) (5.475) (-5.865) (-1.218) (2.242) (-5.544)

*Fourier coefficients with test statistic ≥ 3.72
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Table 5.7: Discrete Fourier transform of autoregressive parameter estimate, φ̂t (with standard

error, SE = 0.011 for m = 26 and SE = 0.015 for m �= 26) for the simulated PARMA52(1, 1)

data. Note that the value in (.) is the test statistic (5.34).

harmonics m

0 1 2 3 4 5 6 7 8

ĉam 0.385 0.240 0.417* 0.053* -0.055* -0.007 0.061 -0.058 0.027

(15.661) (27.233) (3.460) (-3.576) (-0.485) (4.014) (-3.767) (1.739)

ŝam 0.280* -0.127 -0.004 -0.021 0.064* -0.038 -0.009 0.077*

(18.260) (-8.308) (-0.273) (-1.355) (4.183) (-2.512) (-0.559) (5.029)

9 10 11 12 13 14 15 16 17

ĉam 0.046 -0.051* 0.057* 0.016 -0.041 0.040 -0.027 -0.071* 0.062*

(3.014) (-3.307) (3.698) (1.064) (-2.697) (2.609) (-1.764) (-4.624) (4.024)

ŝam -0.060* 0.020 0.028 -0.068* 0.009 0.024 -0.070* 0.061* 0.029

(-3.920) (1.308) (1.813) (-4.475) (0.593) (1.556) (-4.563) (3.955) (1.910)

18 19 20 21 22 23 24 25 26

ĉam 0.022 -0.046 0.048 -0.022 -0.047 0.044 -0.015 -0.011 0.018

(1.436) (-3.012) (3.154) (-1.446) (-3.071) (2.855) (-0.976) (-0.694) (1.643)

ŝam -0.049 0.041 -0.020 -0.073* 0.060* 0.010 -0.047 0.064*

(-3.178) (2.691) (-1.307) (-4.750) (3.902) (0.676) (-3.053) (4.166)

*Fourier coefficients with test statistic ≥ 3.72
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Table 5.8: Significant discrete Fourier transform coefficients for simulated PARMA52(1, 1)

model parameters.

ca0 ca1 sa1 ca2 sa2

θt True Value 0.35 0.15 0.40 0.25 0.35

Estimated 0.300 0.148 0.452 0.310 0.314

cb0 cb1 sb1 cb2 sb2

φt True Value 0.35 0.25 0.35 0.45 -0.15

Estimated 0.385 0.240 0.279 0.417 -0.127

Table 5.9: Discrete Fourier transform of model parameters estimates and standard errors

(SE) of average monthly flow series for the Fraser River at Hope, BC. Note that the value

in (.) is the test statistic (5.34) and (5.38).

Parameter Statistic m

SE 0 1 2 3 4 5 6

θ̂t ĉam 0.090 0.304 0.011 -0.253 0.665* -0.008 -0.244 0.214*

(0.128) (-2.816) (7.406) (-0.095) (-2.721) (3.373)

ŝam -0.426* 0.301* 0.039 -0.300* 0.080

(-4.741) (3.351) (0.433) (-3.338) (0.887)

φ̂t ĉbm 0.102 0.337 -0.036 0.408* -0.649* 0.142 0.159 -0.161

(-0.355) (3.998) (-6.369) (1.394) (1.560) (-2.239)

ŝbm 0.466* -0.355* -0.023 0.327* -0.157

(4.570) (-3.487) (-0.230) (3.204) (-1.537)

*Fourier coefficients with test statistic ≥ 3.32
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Table 5.10: Discrete Fourier transform of moving average parameter estimate, θ̂t (with stan-

dard error, SE = 0.017 for m = 26 and SE = 0.024 for m �= 26) for PARMA52(1, 1) model

of average weekly flow series for Fraser River at Hope, BC. Note that the value in (.) is the

test statistic (5.38).

harmonics m

0 1 2 3 4 5 6 7 8

ĉam 0.255 -0.197* 0.121* -0.040 0.081 -0.022 -0.031 -0.013 -0.078

(-8.25) (5.062) (-1.670) (3.388) (-0.941) (-1.300) (-0.531) (-3.283)

ŝam -0.0198 0.081 -0.117* 0.015 -0.044 -0.041 -0.020 -0.016

(-0.828) (3.392) (-4.89) (0.633) (-1.823) (-1.731) (-0.832) (-0.680)

9 10 11 12 13 14 15 16 17

ĉam 0.044 0.052 0.023 -0.071 0.009 0.021 0.139* -0.053 0.017

(1.833) (2.169) (0.957) (-2.996) (0.392) (0.880) (5.836) (-2.240) (0.696)

ŝam 0.018 0.027 -0.059 -0.034 -0.051 -0.071 0.041 0.073 -0.009

(0.753) (1.118) (-2.471) (-1.436) (-2.154) (-2.993) (1.714) (3.078) (-0.396)

18 19 20 21 22 23 24 25 26

ĉam 0.031 -0.007 0.113* 0.019 0.075 -0.016 0.018 -0.065 0.019

(1.335) (-0.280) (4.71) (0.795) (3.151) (-0.660) (0.769) (-2.741) (1.110)

ŝam -0.014 -0.040 -0.076 -0.018 -0.091 -0.041 -0.016 0.008

(-0.569) (-1.696) (-3.177) (-0.748) (-3.829) (-1.716) (-0.669) (0.351)

*Fourier coefficients with test statistic ≥ 3.72
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Table 5.11: Discrete Fourier transform of autoregressive parameter estimate, φ̂t (with stan-

dard error, SE = 0.023 for m = 26 and SE = 0.033 for m �= 26) for PARMA52(1, 1) model

of average weekly flow series for the Fraser River at Hope, BC. Note that the value in (.) is

the test statistic (5.34) .

harmonics m

0 1 2 3 4 5 6 7 8

ĉam 0.732 -0.021 0.051 -0.076 -0.005 -0.045 0.052 0.002 0.082

(-0.621) (1.536) (-2.302) (-0.174) (-1.362) (1.557) (0.058) (2.483)

ŝam -0.065 -0.049 0.063 0.019 -0.009 0.020 0.043 0.000

(-1.957) (-1.470) (1.902) (0.583) (-0.275) (0.588) (1.305) (0.000)

9 10 11 12 13 14 15 16 17

ĉam 0.009 -0.043 -0.018 0.032 0.024 0.021 -0.055 0.044 0.010

(0.275) (-1.298) (-0.539) (0.959) (0.711) (0.648) (-1.667) (1.319) (0.287)

ŝam 0.005 -0.011 0.024 -0.041 0.040 0.016 -0.064 -0.026 0.042

(0.150) (-0.330) (0.714) (-1.226) (1.194) (0.493) (-1.931) (-0.797) (1.279)

18 19 20 21 22 23 24 25 26

ĉam -0.019 0.036 -0.014 0.023 -0.003 0.000 -0.025 0.037 -0.000

(-0.580) (1.071) (-0.418) (0.695) (-0.103) (0.000) (-0.756) (1.105) (-0.007)

ŝam 0.035 -0.001 0.066 0.004 0.071 0.043 -0.010 -0.009

(1.054) (-0.019) (1.999) (0.119) (2.124) (1.283) (-0.304) (-0.282)

*Fourier coefficients with test statistic ≥ 3.72
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6 Application of PARMA Models: Hydrological Drought

Analysis

6.1 General

Obtaining drought properties is important for planning and management of water resources

system. For example, the design of water supply capacity of a given city may be based on

meeting water demands during a critical drought that may occur in a specified planning

horizon (Frick et al., 1990). Moreover, the estimation of return periods associated to severe

droughts can provide useful information in order to improve water systems management

under drought condition.

It is difficult to give a universal definition since there exists widely diverse views about the

interpretation of droughts among the scientists of different disciplines. In a broader sense,

a drought is defined as a deficit of water in time. It can be divided into three categories-

meteorological, hydrological, and agricultural drought-which may occur as a result of pre-

cipitation, river flow, and soil moisture deficits, respectively (see for example, Dracup et al.

1980; Sen 1980, etc). In this study the emphasis is on hydrological drought, which is defined

as uninterrupted sequences of river flows below a threshold level. It has three components-

duration, intensity, and severity. Since river flow sequences are stochastic variables, the

corresponding drought properties are random and must be described in probabilistic terms.

Yevjevich (1967) proposed the theory of runs as a major tool to use in objectively

defining droughts and studying their statistical properties. Many studies of drought prop-

erties followed Yevjevich’s definition of droughts. For example, probabilistic behavior of

drought properties has been derived analytically, assuming a given stochastic structure of

the underlying hydrological series (e.g., Downer et al., 1967; Llamas and Siddiqui, 1969;
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Sen, 1976,1977,1980a; Guven, 1983; Zelenhastic and Salvai, 1987,2002; Mathier et al. 1992;

Sharma, 1995; Chung and Salas, 2000; Shiau and Shen, 2001; Cancelliere and Salas, 2004).

Another subject of much interest when analyzing extreme events such as drought is the

determination of the return period. The return period can be defined in different ways

for different applications. Some authors (e.g., Lloyd, 1970; Loaiciga and Mariño, 1991;

Fernandez and Salas, 1999a,b; Shiau and Shen, 2001) have assumed the return period as

average elapsed time between occurrences of specified events (i.e., droughts exceeding a

critical value). An alternative definition of return period is the average number of trials (or

time periods) required to the first occurrence of a specified drought event (e.g. Vogel, 1987;

Bras, 1990; Fernandez and Salas,1999a,b; Douglas et al., 2002).

Hydrologic droughts can be determined from the historical record alone by using non-

parametric methods but, because the number of drought events that can be drawn from the

historical sample is generally small, the “historical” drought properties have a large degree

of uncertainty. Other alternatives for finding drought properties include using stochastic

models that can represent the underlying river flows, simulating long records of such river

flows, and then deriving droughts properties from the simulated samples based on the theory

of runs. In this chapter, we use PARMA models to model river flows and generate a large

sequence of synthetic flows, and then drought properties are derived from the simulated

samples based on the theory of runs. The applicability of these methods is demonstrated by

using weekly river flow data for the Fraser River near Hope in British Colombia.

6.2 Definitions

An objective definition (as suggested by Yevjevich, 1967) will be made on the basis of

a given sequence of river flows {Xt} and a preselected level of reference X0t, see Figure
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6.1. A hydrologic drought event is defined as uninterrupted sequences of river flows below

the preselected level X0t (also called negative run). This preselected reference level can

correspond to various hydrological quantities (see, for example, Sen, 1976; Dracup et al.

1980a). In case of water supply, X0t may be considered equal to demand, which may be

constant or variable. Thus the drought duration L (negative run length) is the number of

consecutive time intervals in which Xt < X0t, preceded and followed by (at least one interval

where) Xt ≥ X0t. Likewise, a deficit at time t has a magnitude St = X0t − Xt so that

the accumulated deficit (also called severity) D is the sum of deficit St over the drought

duration L. The drought intensity is the average accumulated deficit, i.e., I = D/L. Periods

of deficit and surplus are sometimes referred to as dry and wet periods, respectively. Such

an objective and simple drought definition may enable one to characterize droughts using

stochastic approaches.

Another subject of much interest when analyzing extreme events such as drought is the

determination of the return period. In this analysis, return period of a hydrologic drought is

defined as the mean interarrival time of hydrologic droughts with magnitude that are equal

or greater than a certain arbitrary value M0 (usually critical drought).

6.3 Methodology

Drought properties of various return periods are needed to assess the degree to which a water

supply system will be able to cope with future droughts and accordingly, to plan alternate

water supply strategies. They can be determined from the historical record alone by using

non-parametric methods but, because the number of drought events that can be drawn from

the historical sample is generally small, the “historical” drought properties have a large

degree of uncertainty. In such cases, drought properties can be derived by synthetically
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Figure 6.1: Definition of hydrological drought properties for a periodic river flow series Xt

(solid line) and a periodic water demand X0t (broken line); and definition of variables for

estimation of return period.

generating river flows at key points in the water supply system under consideration.

Estimation Drought properties

Both drought duration and severity are random in character and, therefore, probabilistic

distributions are useful to describe them. In general, several droughts result in a time

series of given demand level and sample size N. Assume that m droughts with durations

L1, . . . , Lm and severities D1, . . . , Dm occur. The means(L̄, D̄), standard deviation(s̄L, s̄D)

and the maximum (L∗, D∗) of drought duration and severity are important characteristics

describing a given time series.
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L̄ = m−1

m∑
j=1

Lj and D̄ = m−1

m∑
j=1

Dj

s̄L =

⎡
⎢⎣

m∑
j=1

(Lj − L̄)2

⎤
⎥⎦

1/2

m−1
and s̄D =

⎡
⎢⎣

m∑
j=1

(Dj − D̄)2

⎤
⎥⎦

1/2

m−1

L∗ = max[L1, . . . , Lm] and D∗ = max[D1, . . . , Dm]

(6.1)

It must be noted that for a given N and demand level X0t, the above characteristics are

random variables. In this analysis, the hydrologic drought properties are derived from the

times series model (PARMA model) fitted to the historical river flows series by Monte Carlo

simulation. That is, first a PARMA model is fitted to the observed river flow data, and a

synthetic river flow series is generated from the PARMA model. Then, drought properties

(e.g. maximum drought duration and severity) are determined by the runs analysis. This

process is repeated several times to find the array of drought properties (e.g. maximum

drought duration) whose average is an estimate of that particular property.

Estimation Return period

The return period of hydrologic droughts, based on the concept of stochastic processes, is

derived in the following manner. Drought events M (severity D or duration L) are assumed

to be independent and identically distributed. The occurrence of hydrologic drought event is

observed beginning at time 0, one arbitrary point on the time axis, and illustrated in Figure

6.1. The interarrival time of drought events is defined as the period of time between two

successive drought events (Li), namely, the time elapsing from the initiation of a drought to

the beginning of the next drought. In Figure 6.1, hydrologic drought events with magnitude

equal to or greater than any arbitrary value (usually critical drought) M0, M ≥ M0, are

denoted by ⊗. It is assumed that there occurs a hydrologic event with M ≥ M0 at any time.
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Once a hydrologic drought event with M ≥ M0 occurs, let N be the number of hydrologic

drought events until the occurrence of the next hydrologic drought event with M ≥ M0.

Let W denote the interarrival time between two successive hydrologic drought events with

M ≥ M0. Then

W =
N∑

i=1

Li (6.2)

where Li is the drought interarrival time between any two successive drought events.

According to the above definition, the return period T of a hydrologic drought event with

M ≥ M0 is the expected value of W . If the drought interarrival times, Li are assumed to

have the same distribution, then

T = EW = E

(
N∑

i=1

Li

)
= E(N)E(Li). (6.3)

In this analysis, the return period can be determined by Monte Carlo simulation. Recall

that the return period is defined as the expected time between successive occurrences of

a drought greater or equal to a specified critical drought, M0. Start the simulation and

continue until two successive droughts occur with magnitude greater or equal to the critical

drought. Denote the time between these two droughts (interarrival time) by W1. Repeat the

simulation n times, to obtain a random sequence W1,W2, . . . , Wn. Then, the estimate of the

mean return period is T = n−1
∑

Wi.

6.4 Example: Hydrologic Drought Analysis for the Fraser River

6.4.1 Modeling of PARMA52(1, 1) Model Residuals

We present a detailed analysis of weekly river flow series for drought analysis. As observed in

Chapter 5, the PARMA52(1, 1) model parameters are dominated by few Fourier coefficients,

and are obtained from
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θ̂i = 0.255 − 0.197cos
(

πi
26

)
+ 0.121cos

(
2πi
26

)
φ̂i = 0.732

(6.4)

and see Table 6.1 for other parameters such as σ̂t and µ̂t. The standardized residuals for

PARMAν(1, 1) are computed using (3.62). Inspection of the ACF and PACF of these resid-

uals indicate that they are iid (see Figure 6.2).
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Figure 6.2: (a) ACF and (b) PACF for PARMA52(1, 1) model residuals of the Fraser River

at Hope, BC.

A summary (histogram) of the residuals as well as probability plot for a three parameter

lognormal distribution are shown in Figure 6.3, indicating that lognormal (scale = 0.094,

location = 2.561 and threshold = −13.01) gives adequate fit except at the tails. This suggest

for the use of a mixture of three parameter lognormal with appropriate tail distributions.

Hill’s estimator (4.12) gives α̂ = 2.512 and Ĉ = 0.379 for the upper tail (r = 215

residuals), and α̂ = 3.518 and Ĉ = 0.252 for the lower tail (r = 207 residuals). Using

(3.70), the p-values are 0.001 and 0.588, respectively. The small p-value as well as the visual

evidence of the probability plot in Figure 6.4 suggests that the Pareto model is not a good

fit for the upper tail of the estimated residuals. Therefore, we decided to fit a truncated

Pareto to roughly the upper 5% of the residuals. Since p > 0.05, Pareto is a good fit for the
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Figure 6.3: Statistical summary (left) and lognormal probability plot (right) for

PARMA52(1, 1) model residuals of the weekly Fraser River data, after applying significant

Fourier coefficients. Compare Figure 5.5 (right).

lower tail. However, we chose a truncated Pareto for the lower 10% of the residuals because

river flows are bounded from below. Then we computed −1.537 = the 10th percentile and

2.115 = the 95th percentile of the three parameter lognormal distribution we fit to the body

of the residuals. Next we determined that r = 215 residuals exceed the 95th percentile, and

r = 207 residuals fall below the 10th percentile. Then the MLE from Theorem 3.13 was used

to estimate the parameters (β̂ = 8.374, γ̂ = 0.547, α̂ = 2.068) of the best fitting truncated

Pareto distribution, and the theoretical distribution tail P (R > r) was plotted over the 215

largest positive residuals in Figure 6.4 (left). In Figure 6.4 (right), we used the same method

to fit a truncated Pareto (β̂ = 8.386, γ̂ = 0.667, α̂ = 3.459) to the 207 largest negative

residuals, after a change of sign. Both of the plots in Figures 6.4 indicate an adequate fit.

A mixture distribution with lognormal body and truncated Pareto tails was used to

simulate the innovations. The mixture has cumulative distribution function (cdf)

P (δ ≤ r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F−(r) if r < −1.537

F0(r) if −1.537 ≤ r ≤ 2.115

F+(r) if r > 2.115

(6.5)
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Figure 6.4: Log-log plot of upper (left) and lower (right) residual tails and fitted Pareto and

truncated Pareto distributions, Fraser river at Hope, BC.

where F0 is the cdf of the lognormal, and F+, F− are truncated Pareto cdfs of the positive

and negative tails, respectively. The truncated Pareto distributions were slightly shifted (by

s = −0.141 on the positive tail and s = 0.240 on the negative tail) to make the mixture

cdf continuous. Now innovations could be simulated by the inverse cumulative distribution

function method δ = F−1(U) where U is a pseudorandom number uniformly distributed on

the unit interval (0, 1). However, this is impractical in the present case since the lognormal

cdf is not analytically invertible. Instead, we used the Box-Müller method to generate

standard normal random variates Z (see Gentle, 2003). Then lognormal random variates

were calculated using δ = 2.561 + exp (2.561 + 0.094Z). If R > 2.115, the 95th percentile

of the lognormal, we generated another uniform (0, 1) random variate U and substituted

δ = F−1
+ (0.95 + 0.05U). If R < −1.537, the 10th percentile of the lognormal, we substituted

δ = F−1
− (0.1U). This gives simulated innovations δ with the mixture distribution (6.5).

Figure 6.5 shows a probability plot for N = Nyν simulated innovations (for ν = 52

weeks and Ny = 100 years) from the mixture distribution (6.5). Comparison with Figure

6.3 (right) shows that the simulated innovations are statistically identical to the computed

model residuals in terms of distribution. Substituting the simulated innovations into the
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Figure 6.5: Probability plot of simulated innovations using the mixed three parameter log-

normal and truncated Pareto distributions. Compare Figure 6.3 (right).

model (3.63) generates Ny years of simulated river flow. It is advantageous to simulate

several extra years of river flows and throw out the initial years (100 years in this case),

since we did not simulate Xt for t < 0. This ensures that the simulated series is periodically

stationary (see Figure 6.6). Figure 6.7 shows the main statistical characteristics (mean,

standard deviation and autocorrelations) of a typical synthetic river flow time series obtained

by this method, as well as the same statistical measures for the observed time series. It is

apparent that PARMA52(1, 1) model closely reproduces the main statistical characteristics,

indicating that the model can used for generating synthetic river flows in drought analysis

of the Fraser River.

6.4.2 Drought Statistics Estimation

The main purpose of this section is to illustrate the proposed methodology for estimating

drought properties based on simulated weekly river flow series of the Fraser River at Hope

for a given water demand. Just as there are criteria for defining flood levels and event,

criteria for defining drought years must also be developed. A more useful approach would be

to define a drought year by a minimum flow required to meet (a) all water right priorities or
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Figure 6.6: Plot of (a) observed and (b) simulated weekly river flows for the Fraser River at

Hope, BC, indicating similarity.

(b) just municipal water requirements, and by how many years would some portion of that

flow would not be met. In general, water demand is high during summer months and low in

winter months. Therefore, we assumed a hypothetical sinusoidal demand curve given by

Di = 34300 + 8000cos

(
2πi

52

)
− 191000sin

(
2πi

52

)
(6.6)

Using PARMA52(1, 1) model, 1000 years and 30 realizations of weekly synthetic flow se-

quences for the Fraser River at Hope are generated. These synthetic flows were analyzed to

ensure that the historical statistics were reproduced, and then equations (6.1) and (6.3) were

applied to derive the necessary drought statistics (for example, maximum duration, severity

and return periods for different values of L0 and M0) for the assumed water demand (6.6).

The resulting droughts (a total of 30 for each drought property) were averaged and summa-

rized in Table 6.2. The historical data were also analyzed to determine the drought statistics

(see Table 6.2), indicating few drought events (which are not useful in obtaining drought

events of large return periods, say 100 years). However, we were able to determine the return

periods of drought duration and severity up to 385 years and 333 years, respectively, from

the generated data set.
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Figure 6.7: Comparison of mean, standard deviation, and autocorrelations for simulated vs.

observed weekly river flow data for the Fraser River at Hope, BC.

It is observed that in 22 realizations a drought with the largest severity is different from

the drought with the longest drought duration. However, in the remaining 8 realization, a

drought with the worst severity is the same as the drought with the longest duration. It

must be noted the result depends on the assumed demand curve and number of years of

simulation.

In summary, a reliable analysis of the drought statistics based on historical data series

can not be properly carried out due to the limited number of drought events in historical data

series. It is essential for the water resource planner to use stochastic models such as PARMA

models to generate long records and obtain more drought events for statistical analysis of

droughts.
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Table 6.1: Other parameter estimates for PARMA52(1, 1) model of average weekly flow series

for the Fraser River at Hope, BC.

Season ν

Parameter 0 1 2 3 4 5 6 7

σ̂t 11341.4 9365.7 10674.6 11173.0 11442.3 10321.3 7949.6 9161.4

µ̂t 73139.4 69715.0 69133.0 68332.7 66348.2 60664.8 54528.4 51692.9

8 9 10 11 12 13 14 15

σ̂t 8064.8 6196.3 8288.3 7374.0 4567.7 5751.0 3381.8 4368.1

µ̂t 49291.5 44493.0 40590.5 38387.8 36543.0 35021.9 33342.0 32970.1

16 17 18 19 20 21 22 23

σ̂t 4699.0 3014.5 4614.0 3065.2 2229.2 3958.7 2543.7 2073.1

µ̂t 32180.6 31958.4 32220.3 30982.1 29701.5 29361.2 28435.7 28440.0

24 25 26 27 28 29 30 31

σ̂t 3805.1 4267.0 5566.1 7582.3 11230.3 17216.4 19467.5 23820.6

µ̂t 29564.3 32309.3 36677.3 45680.3 61496.0 80419.7 107893.3 136771.3

32 33 34 35 36 37 38 39

σ̂t 28120.6 29511.4 35410.9 29142.7 26127.0 29320.7 18830.2 20127.7

µ̂t 172356.4 205165.0 227797.0 245244.2 255747.8 256049.1 242545.2 228583.8

40 41 42 43 44 45 46 47

σ̂t 15124.9 14232.0 11492.2 9000.8 10763.7 10741.4 8428.7 11202.4

µ̂t 211048.4 198195.4 178312.8 155861.5 139551.5 127168.7 117237.5 108533.9

48 49 50 51

σ̂t 8588.8 10147.6 9350.6 9845.6

µ̂t 98497.6 90001.4 81269.0 76323.0
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Table 6.2: Drought statistics estimation of the historical and simulated data for the Fraser

River at Hope, BC. Note that the drought duration (L), severity (D) and return period (T)

are in weeks, in cms and in years, respectively.

Statistics Generated Historical

Max. Duration 13.3 9

Max. Severity* 167729 43331

Return Period L0 T D∗
0 T L0 T D∗

0 T

4 6.2 20, 000 5.1 4 6.0 20,000 4.0

6 14.3 40, 000 8.6 40,000 12.0

8 56.5 60, 000 26.5

10 197.4 80, 000 67.6

12 385.4 100,000 132.5

120,000 211.0

140,000 333.2

* The values can be multiplied by 604800 sec. so as to obtain Severity in (m3)
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7 Summary and Conclusions

Generation of synthetic river flow data is important in planning, design and operation of

water resources systems. River flow series usually exhibit both heavy tails and periodical

stationarity; that is, their mean and covariance functions are periodic with respect to time.

The common procedure in modeling such periodic river flow series is first to standardize or

filter the series and then fit an appropriate stationary stochastic model to the reduced series.

However, standardizing or filtering most river flow series may not yield stationary residuals

due to periodic autocorrelations. Periodic autoregressive moving average (PARMA) models

provide a powerful tool for the modeling of periodic hydrologic series in general and river flow

series in particular. PARMA models are extensions of commonly used ARMA models that

allow parameters to depend on season. The PARMA modeling procedure involves iterative

steps of model identification, parameter estimation, model diagnosis and fitting the residuals

(noise) with a probability distribution function (pdf). The opposite process to step-by-step

modeling is the use of models to generate (simulate) new samples or a long sample of the

process. One starts with the random noise and its pdf by generating its sample(s). Then

generate the corresponding data samples by using the fitted PARMA model.

The main purposes of this dissertation were to fit a PARMA model to represent a given

river flow data, estimate parameters, check for goodness of fit to the data, model the resid-

uals, and to use the fitted model for generating synthetic river flows and apply them to

extreme analysis such as droughts. The innovations algorithm is used to obtain estimates

of the PARMA model parameters. Asymptotic distributions for the innovations estimates

and model parameters (which are developed here) provide us with a general technique for

identifying PARMA models with the minimum number of parameters.

First the innovations algorithm estimation procedure, as well as model identification
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using simulated data from different Gaussian PARMAν(p, q) models, is discussed in detail. A

simulation study demonstrates that the innovations algorithm and asymptotic distributions

are an efficient and reliable technique for parameter estimation and model identification of

PARMA models, respectively. However, such techniques often do not adequately identify the

order of the model when the model is mixed in the sense that both the autoregressive (AR)

and moving average (MA) components are present. In this case, the model identification

technique can be supplemented by modeler experience or the Akaike’s information criterion

(AIC). We used monthly river flow data for the Fraser River in British Colombia in order

to illustrate the model identification procedure and residual modeling procedure, and to

prove the ability to generate realistic synthetic river flows. This example illustrates that the

innovations algorithm is useful for modeling river flow time series. For monthly average river

flow data for the Fraser River, a first order periodic autoregressive moving average model is

adequate to capture the essential features. A mixture of three parameter lognormal body

and truncated Pareto tails fits the model residuals nicely. This mixture model is then applied

with satisfactory results to generate synthetic monthly river flow records.

Secondly, we applied the same methods to monthly flow data for the Salt River in Arizona,

which has heavy tails. In this case, we are able to generate realistic synthetic river flows by

developing a mixture probability model (stable with truncated Pareto tails) for the residuals.

The methodology presented herein provides a useful tool for river flow modeling and synthetic

river flow data generation. The results allow practitioners and planners to explore realistic

decision-making scenarios for a given water resource system.

Thirdly, for analysis and design of water resources systems, it is sometimes required

to generate river flow data with high resolution (that is, weekly or daily values). Fitting

the PARMA model to historical weekly or daily data, however, requires estimation of too
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many parameters which violates the principle of parsimony (model with minimum number

of parameters). In an effort to obtain a parsimonious model representing these periodically

stationary series, we develop the asymptotic distribution of the discrete Fourier transform

of the innovation estimates and then determine those statistically significant Fourier coef-

ficients, which are directly applicable to the selection of significant Fourier coefficients of

the parameters of pure PMAν(q) and PARν(1) processes. For higher order PARMA mod-

els, it is more difficult to obtain an explicit representation for the Fourier transform of the

model parameters, and hence the selection of significant Fourier coefficients is a complicated

problem. However, we developed the asymptotic distribution of the Fourier coefficients of

the model parameters for PARMAν(1, 1). The simulation study demonstrates that these

asymptotic results are efficient and reliable technique for identification of significant Fourier

coefficients of PARMA model parameters. We demonstrated its application for modeling

monthly and weekly Fraser River flow time series. It seems that even for monthly time series

the parameters of PARMA12(1, 1) indeed vary smoothly with respect to t (dominated by a

few Fourier coefficients). For weekly data series, we also found that PARMA52(1, 1) is ade-

quate to capture the essential features. It is true that the PARMA52(1, 1) model parameters

are dominated by few Fourier coefficients. This analysis can be easily extended to historical

daily or weekly time series.

Finally, obtaining drought properties is important for planning and management of water

resources system. For example, hydrologic drought properties (severity and duration) of vari-

ous return periods are needed to assess the degree to which a water supply system will be able

to cope with future droughts and, accordingly, to plan alternative water supply strategies.

They can be determined from the historical record alone by using non-parametric methods

but, because the number of drought events that can be drawn from the historical sample is
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generally small, the “historical” drought properties have a large degree of uncertainty. Other

alternatives for finding drought properties include using stochastic models (such as PARMA

models) that can represent the underlying river flows, simulating long records of such river

flows, and then deriving droughts properties from the simulated samples based on the theory

of runs. In this study, we used lower order PARMA models such as PARMA52(1, 1) and il-

lustrated the methodology for assessing drought properties. It seems that a PARMA52(1, 1)

model is a good fit for the weekly Fraser River flows. Therefore, the PARMA52(1, 1) model

was used to generate a number of synthetic flow sequences of 1000 years. These synthetic

flows were analyzed to ensure that the historical statistics were reproduced, and then equa-

tions (6.1) and (6.3) were applied to derive the necessary drought statistics for the Fraser

River at Hope. We were able to determine the return periods of drought duration and sever-

ity up to 385 years and 333 years, respectively, from the generated data set. We found that

the methodology is useful for drought analysis in rivers where the high resolution data series

(such as weekly) are described by low order PARMA models. In some cases, however, low

order PARMA models may not be good fit to high resolution data series (e.g. weekly flows

for the Truckee River at Farad) due to long term dependence of the weekly data series (long

memory property of time series). Fractionally differenced low order PARMA models can be

useful for river flows with such long memory property. This procedure can also be extended

to flood frequency analysis.

The techniques presented in this research allow hydrologists, practitioners and planners

to explore realistic decision-making scenarios for a given water resource system. As part of

future work, comparison of this new method with the traditional approach in water resources

will be made; a guideline on how (and when) to use the techniques effectively to water

resources application, will be prepared.
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Directions for future research include the development of asymptotic distributions for

the parameters of higher order PARMA models, sensitivity analysis, more general discrete

Fourier analysis for PARMA models and fractionally integrated PARMA models. Demon-

stration of the PARMA modeling procedure for other applications such as reservoir operation,

flood analysis and river flow forecasting will also be part of future work.

As for drought analysis, the focus was on the illustration the proposed methodology for

estimating drought properties based on simulated weekly river flow of the Fraser River. In

the future, detailed investigation of the empirical probability distribution of the drought

properties (duration and severity) both for the historical and simulated data, the goodness

of fit as well as the sensitivity of the drought properties to the number of years and number

of realizations will be carried out. As another case example, a detailed drought study of

the Truckee River (which the main source of water supply in Truckee Meadows) will be

conducted. It involves the determination of the prolonged drought characteristics for the

river as well as the evaluation of drought impact on the water supply system for both present

and future conditions.
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A Basic Concepts

A-1 Definitions, Theorems, etc.

Time series is a set of observations Xt, each one being recorded at a specific time t. For

example, Xt can be river flow (daily, monthly, etc.) quantities at time t. A time series

model for the observed data {Xt} is a specification of the joint distributions (or possible

only the means and covariances) of a sequence of random variables {Xt} of which {xt} is

postulated to be a realization. A mathematical model representing a stochastic process is

called “Stochastic model” or “Time Series model”. It has a certain mathematical form or

structure and a set of parameters.

A complete probabilistic time series model for the sequences of random variables {X1,

X2, ...} would specify all of the joint distributions of the random vectors (X1, X2, ..., Xn)
′
,

n = 1, 2, ... or equivalently all of the probabilities

F (x1, x2, ..., xn) = P{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} −∞ < x1, ..., xn < ∞, n = 1, 2..

(A-1)

Such specification is rarely used in time series analysis (unless the data are generated by some

well-understood simple mechanism), since in general it will contain far too many parameters

to be estimated from the available data. Instead we specify on the first- and second-order

moments of the joint distributions, i.e., the expected values EXt and the expected products

EXt+hXt, t = 1, 2, ..., h = 1, 2, ..., focusing on the properties of the sequence {Xt} which

depends only on these. Such properties of {Xt} are referred to as second-order properties. In

the particular case when all the joint distributions are multivariate normal, the second-order

properties of {Xt} completely determine the joint distributions and hence give a complete

probabilistic characterization of the sequence. In general we shall lose a certain amount of
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information by looking at the time series “through second order spectacles”; however, the

theory of minimum mean squared error linear prediction depends only on the second order

properties, thus providing further justification for the use of the second order characterization

of time series models.

If the joint distribution can be factored into the product of the marginal distributions as

F (x1, x2, ..., xn) = P{X1 ≤ x1}.P{X2 ≤ x2}. . . . .P{Xn ≤ xn}

= F (x1).F (x2). . . . .F (xn)

(A-2)

then process becomes an independent stochastic process and the series is an independent

series. Otherwise there is certain type of serial dependence among the variables and the pro-

cess is called a serially dependent stochastic process and correspondingly a serially dependent

time series.

Definition A.1 (The Autocovariance Function). If {Xt, t ∈ T} is a process such that

Var(Xt) < ∞ for each t ∈ T , then the autocovariance function γX(., .) of {Xt} is defined by

γX(r, s) = Cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], r, s ∈ T (A-3)

The autocovariance measures the linear dependence between two points on the same series

observed at different times. Very smooth series exhibit autocovariance functions that stay

large even when the r and s are far apart, whereas choppy series tend to have autocovariance

functions that are nearly zero for large separations. Recall from classical statistics that if

γX(r, s) = 0, Xr and Xs are not linearly related, but there still may be some dependence

structure between them. If, however, Xr and Xs are bivariate normal, γX(r, s) = 0 ensure

their independence.

Definition A.2 (Stationarity). The time series {Xt, t ∈ Z}, with index set Z = {0,±1,±2, . . .},

is said to be stationary if
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1. E|Xt|2 < ∞ for all t ∈ Z

2. EXt = µ for all t ∈ Z and

3. γX(r, s) = γX(r + t, s + t) for all r, s, t ∈ Z

Remark A.3 Stationarity as just defined is frequently referred to in the literature as weak

stationarity, covariance stationarity, stationarity in a wider sense or second-order station-

arity.

Remark A.4 If {Xt, t ∈ Z} is stationary then γX(r, s) = γX(r − s, 0) for all r, s ∈ Z.

It is therefore convenient to redefine the autocovariance function of a stationary process as

function of just one variable,

γX(h) ≡ γX(h, 0) = Cov(Xt+h, Xt), for all t, h ∈ Z (A-4)

The function γX(.) is referred to as the autocovariance function of {Xt} and γX(h) as its

value at “lag” h. The autocorrelation function (ACF) of {Xt} is defined analogously as the

function whose value at lag h is

ρX(h) ≡ γX(h)/γX(0) = Corr(Xt+h, Xt), for all t, h ∈ Z (A-5)

Remark A.5 It will be noticed that we have defined stationarity only in the case when

T = Z. It is not difficult to define stationarity using a more general index set, but for our

purposes this will not be necessary. If we wish to model a set of data {xt, t ∈ T ⊂ Z} as a

realization of a stationary process, we can always consider it to be part of the a realization

of a stationary process {Xt, t ∈ Z}.

The autocorrelation function measure the linear predictability of the series at time t, say

Xt, using the only values Xs. We can easily show that −1 ≤ ρ(s = t + h, t) ≤ 1 using
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the Cauchy-Schwarz inequality. If we can predict Xt perfectly from Xs through a linear

relationship, Xt = β0 + β1Xs, then the correlation will be 1 when β1 > 0,-1 when β1 < 0,

and 0 when β1 = 0. Hence, we have a rough measure of the ability to forecast the series at

time t from the value at time s.

Partial autocorrelation Function (PACF)

To define the PACF for mean-zero stationary time series, let Xh−1
h denote the best linear

predictor of Xh based on the {X1, X2, . . . , Xh−1}. We note Xh−1
h has the form:

Xh−1
h = β1Xh−1 + β2Xh−2 + . . . + βh−1X1, (A-6)

where the β′s are chosen to minimize the mean square linear prediction error, E
(
Xh − Xh−1

h

)2
.

In addition, let Xh−1
0 denote the minimum mean square linear predictor of X0 based on

{X1, X2, . . . , Xh−1}. Xh−1
0 can be written as

Xh−1
0 = β1X1 + β2X2 + . . . + βh−1Xh−1. (A-7)

Equation (A-6) can be thought of as the linear regression of Xh on the past, Xh−1, Xh−2,

. . . , X1, and (A-7) can be thought of as the linear regression of X0 on the past, X1, X2,

. . . , Xh−1. The coefficients, Xh on the past, β1, β2, . . . , βh−1 are the same as in (A-6) and (A-

7) , which means that, for stationary process, linear prediction backward in time is equivalent

to linear prediction forward in time.

Formally, for a stationary time series, Xt, we define the partial autocorrelation function

(PACF), φhh, h = 1, 2, . . . , by

φ11 = Corr(X1, X0) (A-8)

and

φhh = Corr(Xh − Xh−1
h , X0 − Xh−1

0 ), h ≥ 2 (A-9)
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Both
(
Xh − Xh−1

h

)
and

(
X0 − Xh−1

0

)
are uncorrelated with {X1, X2, . . . , Xh−1}. By sta-

tionarity, the PACF,φhh, is the correlation between Xt and Xt−h with the linear effect of

{Xt−1, Xt−2, . . . , Xt−(h−1)}, on each, removed. If the process Xt is Gaussian, then

φhh = Corr(Xt, Xt−h|Xt−1, Xt−2, . . . , Xt−(h−1)). That is, φhh is the correlation coefficient

between Xt and Xt−h in the bivariate distribution of (Xt, Xt−h) conditional on {Xt−1, Xt−2,

. . . , Xt−(h−1)}.

Definition A.6 (Strict Stationarity). The time series {Xt, t ∈ Z} is said to be strictly

stationary if the joint distribution of (Xt1 , ..., Xtk)
′ and (Xt1+h, ..., Xtk+h)

′ are the same for

all positive integers k and for all t1, . . . , tk, h ∈ Z

Remark A.7 Definition A.6 is equivalent to the statement that (X1, ..., Xk)
′ and (X1+h,

. . . , Xk+h)
′ have the same joint distributions for all integers h and k > 0.

If {Xt} is strictly stationary it immediately follows, on taking k = 1 in Definition A.6, that

Xt has the same distribution for each t ∈ Z. If E|Xt|2 < ∞ this implies in particular that

EXt and Var(Xt) are both constant. Moreover, taking k = 2 in Definition A.6, we find that

Xt+h and Xt have the same joint distribution and hence the same covariance for all h ∈ Z.

Thus a strictly stationary process with finite second moments is stationary.

The converse of the previous statement is not true. For example if Xt is a sequence of

independent random variables such that Xt is exponentially distributed with mean one when

t is odd and normally distributed with mean one and variance one when t is even, then Xt is

stationary with γX(0) = 1 and γX(h) = 0 for h �= 0. However since X1 and X2 have different

distributions, and Xt can not be strictly stationary.

There is one important case however in which stationarity does imply strict stationarity.
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Definition A.8 (Gaussian Time Series). The process Xt is a Gaussian time series if an

only if the distribution functions of Xt are all multivariate normal.

If {Xt, t ∈ Z} is a stationary Gaussian process then {Xt} is strictly stationary, since

for all n ∈ {1, 2, . . .} and for all h, t1, t1, . . . ∈ Z, the random vectors (Xt1 , ..., Xtn)′ and

(Xt1+h, ..., Xtn+h)
′ have the same mean and covariance matrix, and hence the same distribu-

tion.

Definition A.9 The time series Xt is a linear process if it has the representation

Xt =
∞∑

j=−∞
ψjZt−j, (A-10)

for all t, where {Zt} ∼ WN(0, σ2) and {ψj} is a sequence of constants with
∑∞

j=−∞ |ψj| < ∞

Note that WN(0, σ2) is white noise (sequence of uncorrelated random variables) with mean

0 and variance σ2.

A-2 Statistical Properties of Time Series

A stationary process Xt is characterized, at least from second-order point of view, by its mean

µ and its autocovariance function γ(.). The estimation of µ,γ(.) and the autocorrelation

function ρ(.) = γ(.)/γ(0) from observations X1, . . . , Xn therefore plays a crucial role in

problem of inference and in particular in the problem of constructing an appropriate model

for the data.

For a set of observations X1, ..., Xn, the sample mean, autocovariance and autocorrelation

functions are defined by



150

µ̂ = X̄n = n−1

n∑
t=1

Xt

γ̂(h) = (n)−1

n−|h|∑
t=1

(Xt+|h| − X̄n)(Xt − X̄n)

ρ̂(h) =
γ̂(h)

γ̂(0)

(A-11)

Definition A.10 Let {Xn} be a sequence of random variables, and X a random variable.

Then we say that Xn converges in probability to X if

∀ ε > 0 P (|Xn − X| > ε) → 0 as n → ∞. (A-12)

We denote convergence in probability by
p→.

Definition A.11 Let {Xn} be a sequence of random variables and X and random variable.

Then we say that Xn converges in distribution to X if

Fn(x) → F (x) for all x such that F (x) is continuous, as n → ∞ (A-13)

where Fn(x) is the distribution of Xn, and F (x) is the distribution of X. We denote conver-

gence in distribution by ⇒.

Definition A.12 A sequence of normal random variables {Xn} is said to be asymptotical

normal with “mean” µn and “standard deviations” σn if σn > 0 for n sufficiently large and

σ−1
n (Xn − µn) ⇒ Z, where Z ∼ N (0, 1). (A-14)

We shall abbreviate this as

Xn ∼ AN(µn, σ
2
n) (A-15)

where ∼ will denote “is distributed as”.
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Theorem A.13 If Xt is a stationary linear process of the form (A-10) and
∑

j ψj �= 0, then

X̄n ∼ AN(µX , n−1V ), (A-16)

where

V =
∞∑

h=−∞
γ(h) = σ2

( ∞∑
j=−∞

ψj

)2

(A-17)

and γ(.) is the autocovariance function of Xt

PROOF. See Theorem 1.5 of Shumway and Stoffer (2000) for a proof.

Theorem A.14 If Xt is a stationary linear process of the form (A-10) satisfying the fourth

moment condition (i.e., EZ4
t = ησ4 < ∞ where η is some constant), then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̂(0)

γ̂(1)

...

γ̂(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ AN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(0)

γ(1)

...

γ(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n−1V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-18)

where V is the matrix with elements given by

vpq = (η − 3)σ4γ(p)γ(q) +
∞∑

u=−∞
[γ(u)γ(u − p + q) + γ(u + q)γ(u − p)] (A-19)

PROOF. See Theorem 1.6 of Shumway and Stoffer (2000) for a proof.

Theorem A.15 If Xt is a stationary linear process of the form (A-10) satisfying the fourth

moment condition (i.e., EZ4
t = ησ4 < ∞ where η is some constant), then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ̂(0)

ρ̂(1)

...

ρ̂(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ AN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ(0)

ρ(1)

...

ρ(K)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n−1W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A-20)
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where W is the matrix with elements given by

wpq =
∞∑

u=1

[ρ(u + p) + ρ(u − p) − 2ρ(p)ρ(u)] × [ρ(u + p) + ρ(u − q) − 2ρ(q)ρ(u)]

(A-21)

PROOF. See Theorem 1.7 of Shumway and Stoffer (2000) for a proof.

A-3 Spectral Representation of a Stationary Process

Suppose that {Xt} is a non-zero stationary time series with autocovariance function γ(.)

satisfying that
∑∞

h=−∞ |γ(h)| < ∞. The spectral density of {Xt} is the function f(.) defined

by

f(λ) =
1

2π

∞∑
h=−∞

Exp(−ihλ)γ(h), −∞ < λ < ∞ (A-22)

where Exp(−iλ) = cos(λ) + i sin(λ) and i =
√−1.

Basic properties of f

1. f is even, i.e., f(λ) = f(−λ)

2. f(λ) ≥ 0 for all λ ∈ (−π, π] and

3. γ(k) =
∫ π

−π
Exp(ikλ)f(λ)dλ =

∫ π

−π
cos(kλ)f(λ)dλ.

Definition A.16 A function f is the spectral density of a stationary time series {Xt} with

ACVF γ(.) if

1. f(λ) ≥ 0 for all λ ∈ (0, π]

2. γ(h) =
∫ π

−π
Exp(ihλ)f(λ)dλ for all integers h

Remark A.17 Spectral densities are essentially unique. That is, if f and g are two spectral

densities corresponding the autocovariance function γ(.), i.e.,γ(h) =
∫ π

−π
Exp(ihλ)f(λ)dλ =
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∫ π

−π
Exp(ihλ)g(λ)dλ for all integers h, then f and g have the same Fourier coefficients and

hence are equal.

Proposition A.18 A real-valued function f defined on (−π, π] is the spectral density of a

stationary process if and only if

1. f(λ) = f(−λ)

2. f(λ) ≥ 0 and

3.
∫ π

−π
f(λ)dλ < ∞

PROOF. See Proposition 4.1.1 of Brockwell and Davis (1996) for a proof.

Corollary A.19 An absolutely summable function γ(.) is the autocovariance function of a

stationary time series if and only if it is even and

f(λ) =
1

2π

∞∑
h=−∞

Exp(−ihλ)γ(h), −∞ < λ < ∞ (A-23)

in which case f(.) is the spectral density of γ(.)

PROOF. See Corollary 4.1.1 of Brockwell and Davis (1996) for a proof.

Theorem A.20 (Spectral representation of the ACVF) A function γ(.) defined on the inte-

gers is the AVCF of a stationary time series if and only if there exists a right-continuous,

nondecreasing, bounded function F on [−π, π] with F (−π) = 0 such that

γ(h) =

∫
(−π,π]

Exp(ihλ)dF (λ) (A-24)

for all integers h. (For real-valued time series, F is symmetric in the sense that
∫

(a,b]
dF (x) =∫

[−b,−a)
dF (x) for all a and b such that 0 < a < b.)
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PROOF. See Theorem 4.1.1 of Brockwell and Davis (1996) for a proof.

Remark A.21 The function F is a generalized distribution function on [−π, π] if G(λ) =

F (λ)/F (π) is a probability distribution function on [−π, π]. Note that since F (π) = γ(0) =

Var(X1), the ACF of {Xt} has spectral representation

ρ(h) =

∫
(−π,π]

Exp(ihλ)dG(λ). (A-25)

The function F in (A-25) is called the spectral distribution function of γ(.). If F (λ) can be

expressed as F (λ) =
∫ λ

−π
f(y)dy for all λ ∈ [−π, π], then f is the spectral density function

and the time series is said to have a continuous spectrum. If F is a discrete distribution

(i.e., if G is a discrete probability distribution), then the time series is said to have a discrete

spectrum.

A-4 Simulation of Continuous Random Variates

Generating Uniform Random Variates

Consider uniform continuous-values deviates X that lie in the range [0, 1]. The probability

density function (pdf) of X is

fX(x) =

{
1 if 0 ≤ x ≤ 1

0 elsewhere

(A-26)

The mean and standard deviation for this distribution are µ = 1/2, σ2 = 1/12

Because many statistical methods rely on random samples, applied statisticians often

need a source of “random numbers”. Nowadays, a computer is used to generate “random”

(psuedorandom) numbers directly. Psuedorandom numbers are meant to simulate random

numbers.
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A number of different methods for generating pseudo-random uniform numbers (Gentle,

2000). We describe here a linear congruential generators. The linear congruential method

produces a sequence of integers X1, X2, . . . between zero and m−1 according to the following

recursive relationship: Xi+1 = (aXi + c)modm, i = 0, 1, 2, . . .. The initial value X0 is called

the seed, a is called the constant multiplier, c is the increment, and m is the modulus. All

values are integers. If c �= 0, the form is called the mixed congruential method. If c = 0, the

form is known as the multiplicative congruential method.

Each Xi is scaled into a unit interval (0, 1) by division by m, that is

ui =
Xi

m
(A-27)

If a and m are properly chosen, the uis will “look like” they are randomly and uniformly

distributed between 0 and 1.

The selection of the values for a, c, m and X0 are of vital importance to the quality of the

generator. If they are not chosen properly, the generator may not have the longest possible

period, or generated numbers may not exhibit good randomness, or the generator may not

be efficiently implementable. For example, the book by Press et al. (1996), suggests that

a = 16807 and m = 231 − 1.

The Inverse Transformation Method

A general method for simulating a random variable having a continuous distribution -

called the inverse transformation method-is based on the following proposition.

Proposition A.22 Let U be a uniform (0, 1) random variable. For any continuous distri-

bution function F if we define the random variable X by

X = F−1(U) (A-28)
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then the random variable X has the distribution function F . [F−1(u) is defined to equal that

value x for which F (x) = u]

PROOF. See Proposition 11.1 Ross (2000) for a proof.

Generating Normal Random Variates A simple method for generating standard normal

random variates (i.e., with zero mean and unit standard deviation) is based on Box-Müller

method arising from a polar transformation: If U1 and U2 are independently distributed as

U(0,1), and

X1 =
√−2 log(U1) cos(2πU2)

X2 =
√−2 log(U1) sin(2πU2)

(A-29)

then X1 and X2 are independently distributed as N (0, 1).

A-5 Akaike Information Criterion

A mathematical formulation which considers the principle of parsimony in model building is

the Akaike Information Criterion(AIC) proposed by Akaike (1974). For comparing among

competing ARMA (p, q) models he used

AIC(p, q) = N ln(σ̂2
ε) + 2(p + q)

where N is the sample size and σ̂2
ε is the maximum likelihood estimate of the residual

variance. Akaike suggested such criterion to select the correct model among competing

ARMA models. Under this criterion the model which gives the minimum AIC is the one to

be selected. In case of PARMAν(p, q), the AIC is given within an additive constant(C) by

AIC = −2 ln L(φ(�), θ(�), σ) + C

where φ(�) = [φ0(�), φ1(�), · · · , φν−1(�)]
T , 1 ≤ � ≤ p; θ(�) = [θ0(�), θ1(�), · · · , θν−1(�)]

T , 1 ≤

� ≤ q; σ = [σ0, σ1, · · · , σν−1]
T and L(φ(�), θ(�), σ) is the likelihood function. See, for example,
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Lund and Basawa (2000) for the Gaussian likelihood of the PARMA model.

A-6 The Bonferroni Inequality and Simultaneous Confidence In-

tervals

Proposition A.23 (The Bonferroni Inequality). If A1, . . . , Ak are events (not necessarily

independent) which have probability 1 − p of occurring, then the probability they all occur is

at least 1 − kp.

PROOF: The probability that A1, . . . , Ak all occur is

P (A1 ∩ A2 ∩ . . . ∩ Ak) = 1 − P (Ac
1 ∪ Ac

2 ∪ . . . ∪ Ac
k) (A-30)

i.e, the probability they all occur is one minus the probability at least one does not occur.

Now,

P (Ac
1 ∪ Ac

2 ∪ . . . ∪ Ac
k) ≤ P (Ac

1) + P (Ac
2). . . + P (Ac

k) (A-31)

The right side of the above equal to kp since P [Ac
i ] = 1 − (1 − p) = p. Therefore,

P (A1 ∩ A2 ∩ . . . ∩ Ak) = 1 − P (Ac
1 ∪ Ac

2 ∪ . . . ∪ Ac
k) ≥ 1 − kp (A-32)

Use with the confidence intervals

A 1 − α′ confidence interval for a population parameter is constructed such that, before

we collect the data, there is a probability 1 − α that the confidence interval will contain

the parameter. However, if we are going to construct k confidence intervals, each with level

1 − α, for different parameters from the same data set, the probability that the confidence

intervals all contain their respective parameters is less than 1−α. One way to ensure that this

probability is at least 1−α to make each confidence interval individually have level 1−α/k.

Then, by the Bonferroni inequality, the probability they will all contain their respective
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parameters is at least 1 − k(α/k) = 1 − α. When we construct confidence intervals such

that the confidence that they are all correct is 1− α, we call these ’simultaneous 1− α level

confidence intervals’. For example, suppose we wish to construct 95% confidence intervals for

the population means of 5 variables measured on the same sample. Then α = 0.05 so we need

to make each confidence interval separately a 1 − (0.05/5) = 0.99 level confidence interval.

We use the t procedure to construct a 99% confidence interval for each mean. We then call

the set of 5 confidence intervals ’simultaneous 99% confidence intervals for the population

means’ or, to be more specific, ’Benferroni simultaneous 99% confidence intervals’. You could

also these 5 confidence intervals ’individual 99% confidence intervals’. Including the word

’individual’ indicates that the confidence level applies to each interval separately and not to

the whole group simultaneously.
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B Vector Difference Equation for Discrete Fourier Co-

efficients

We wish to relate the Fourier coefficients of ψ(j) to the Fourier coefficients of the model

parameters. Let φ(�) = [φ0(�), φ1(�), · · · , φν−1(�)]
T , 1 ≤ � ≤ p, be the vector of periodic

autoregressive parameters at lag �, θ(�) = [θ0(�), θ1(�), · · · , θν−1(�)]
T , 1 ≤ � ≤ q, be the

vector of periodic moving average parameters at lag �, and let σ = [σ0, σ1, · · · , σν−1]
T denote

the periodic residual standard deviation parameters. These model parameters may be defined

in terms of their finite Fourier coefficients φ∗
t (�), θ

∗
t (�) and σ∗

t as follows

φ∗(�) = Uφ(�) and φ(�) = ŨT φ∗(�)

θ∗(�) = Uθ(�) and θ(�) = ŨT θ∗(�)

σ∗ = Uσ and σ = ŨT σ∗

(B-1)

where ” ∼ ” denotes the complex conjugate and U is the ν × ν Fourier transform matrix

defined in (5.5).

Using the Fourier transformed of ψ∗(�) = Uψ(�) and ψ(�) = ŨT ψ∗(�), then (3.38) leads to

⎧⎨
⎩

ψ∗(j) −∑p
k=1 UAkΠ

−kŨT ψ∗(j − k) = 0 j ≥ Max(p, q + 1)

ψ∗(j) −∑j
k=1 UAkΠ

−kŨT ψ∗(j − k) = −θ∗(j) 0 ≤ j ≤ Max(p, q + 1)

(B-2)

Note that ψ∗
t (0) = 1.

Define

Dj = ν−1/2diag{1, wj, w2j, . . . , w(ν−1)j} (B-3)

where wq = e(
−i2πq

ν ) and w−q = wν−q with eiy = cosy + isiny (the complex exponential

function). By properties of the Fourier transform matrix U (Brockwell and Davis, 1991), we
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have

Dv+j = Dj = ν−1/2UΠ−jŨT (B-4)

also note that U is the unitary matrix (UŨT = I).

Theorem B.1 If we define Dj as in (B-3), then

Dj = ΠmUD̃mΠ−jŨT (B-5)

where D̃j = ν−1/2diag{1, wν−j, wν−2j, . . . , wν−(ν−1)j}

PROOF: See p.25 of Anderson, 1989.

Writing

A� =
ν−1∑
m=0

φ∗
m(�)D̃m (B-6)

where φ∗
m(�) is the mth element of φ∗(�). Then (B-2) becomes

⎧⎨
⎩

ψ∗(j) −∑p
k=1

(∑ν−1
m=0 φ∗

m(k)Π−m
)
Dkψ

∗(j − k) = 0 j ≥ Max(p, q + 1)

ψ∗(j) −∑j
k=1

(∑ν−1
m=0 φ∗

m(k)Π−m
)
Dkψ

∗(j − k) = −θ∗(j) 0 ≤ j ≤ Max(p, q + 1)
(B-7)

Thus equation (B-7) gives the desired difference equation relating the Fourier transformed

ψ(j) to the Fourier coefficients of the model parameters. It may be further simplified by

defining

P� =

(
ν−1∑
m=0

φ∗
m(�)Π−m

)T

(B-8)

then observing that

P� = circ{φ∗
0(�), φ

∗
1(�), . . . , φ

∗
ν−1(�)} (B-9)
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Because the model parameters are real-valued, it follows that φ∗
k(j) = φ̃∗

ν−k(j) (Fuller

1996). This implies that P� is circulant as well as Hermitian (i.e, P� = P̃ T
� ). Using this fact

along the substitution of (B-8) into (B-7) gives

⎧⎨
⎩

ψ∗(j) −∑p
k=1 P̃kDkψ

∗(j − k) = 0 j ≥ Max(p, q + 1)

ψ∗(j) −∑j
k=1 P̃kDkψ

∗(j − k) = −θ∗(j) 0 ≤ j ≤ Max(p, q + 1)

(B-10)

(a) Periodic Moving Average Processes

The vector difference equation concerning the Fourier transformed innovation estimates

of a PMA(q) process given by (B-10) is⎧⎨
⎩

ψ∗(j) = −θ∗(j) 0 ≤ j ≤ q

ψ∗(j) = 0 j > q
(B-11)

(b) Periodic Autoregressive Processes

The vector difference equation concerning the Fourier transformed innovation estimates

of a PAR(p) process given by (B-10) is

ψ∗(j) =
∑p

k=1 P̃kDkψ
∗(j − k) j ≥ p (B-12)
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Figure C-1: Normal probability plots of the residuals (for k=15) from PARMA4(0, 1), support

the normality assumptions of residuals.
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Figure C-2: Normal probability plots of the residuals (for k=15) from PARMA4(1, 1), support

the normality assumptions of residuals.
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Table C-1: Moving average parameter estimates and p–values after k = 20 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(0, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.253 0.002 0.425 0.178 0.889 0.000 0.621 0.212

2 0.247 0.430 -0.066 0.718 -0.279 0.332 -0.039 0.734

3 -0.036 0.610 1.215 0.058 -0.114 0.490 0.294 0.238

4 0.230 0.138 0.190 0.204 1.218 0.038 -0.355 0.014

: : : : : : : : :

σ̂ 0.630 1.399 0.313 1.099

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.179 0.012 0.687 0.000 0.932 0.000 0.394 0.088

2 -0.020 0.904 0.004 0.976 0.051 0.794 0.081 0.250

3 -0.022 0.668 -0.223 0.522 -0.009 0.952 0.064 0.652

4 -0.039 0.704 0.077 0.466 -0.160 0.624 -0.038 0.712

: : : : : : : : :

σ̂ 0.824 1.661 0.503 1.162

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.250 0.000 0.640 0.000 0.899 0.000 0.399 0.008

2 0.289 0.016 0.061 0.516 -0.009 0.936 0.064 0.092

3 0.041 0.174 0.054 0.826 0.044 0.604 -0.121 0.122

4 -0.049 0.424 0.078 0.198 -0.043 0.842 -0.042 0.472

: : : : : : : : :

σ̂ 0.844 1.736 0.428 1.123
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Table C-2: Moving average parameter estimates and p–values after k = 15 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(0, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.217 0.012 0.692 0.032 0.879 0.000 0.703 0.106

2 0.171 0.536 -0.241 0.234 -0.099 0.734 -0.057 0.590

3 0.018 0.788 1.108 0.078 -0.090 0.610 0.279 0.250

4 0.228 0.132 0.190 0.218 0.747 0.168 -0.326 0.028

: : : : : : : : :

σ̂ 0.671 1.530 0.364 1.115

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.372 0.000 0.687 0.000 0.881 0.000 0.268 0.276

2 0.108 0.596 0.162 0.266 0.027 0.872 -0.114 0.124

3 0.014 0.818 0.380 0.294 0.061 0.632 0.105 0.448

4 0.046 0.682 0.011 0.920 0.209 0.502 -0.019 0.850

: : : : : : : : :

σ̂ 0.836 1.541 0.459 1.131

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.268 0.048 0.634 0.000 0.891 0.000 0.385 0.004

2 0.104 0.348 0.108 0.226 -0.033 0.748 0.005 0.904

3 0.004 0.904 -0.116 0.582 0.081 0.308 -0.074 0.332

4 -0.083 0.174 0.049 0.418 -0.083 0.660 -0.025 0.668

: : : : : : : : :

σ̂ 0.880 1.667 0.487 1.144
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Table C-3: Moving average parameter estimates and p–values after k = 10 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(0, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.187 0.026 0.457 0.184 0.879 0.000 0.394 0.378

2 0.215 0.442 -0.108 0.604 -0.299 0.338 -0.061 0.528

3 0.020 0.748 0.573 0.390 -0.143 0.448 0.279 0.242

4 0.343 0.022 0.131 0.368 0.486 0.418 -0.250 0.086

: : : : : : : : :

σ̂ 0.736 1.792 0.389 1.229

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.369 0.000 0.690 0.000 0.888 0.000 0.279 0.250

2 0.087 0.674 0.143 0.332 0.070 0.682 -0.112 0.126

3 0.007 0.904 0.460 0.200 0.045 0.726 0.103 0.436

4 0.057 0.604 0.031 0.772 0.315 0.318 -0.017 0.866

: : : : : : : : :

σ̂ 0.876 1.570 0.470 1.139

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 0.267 0.000 0.630 0.000 0.892 0.000 0.389 0.004

2 0.094 0.396 0.099 0.272 -0.040 0.696 0.008 0.842

3 0.001 0.968 -0.119 0.568 0.067 0.400 -0.075 0.318

4 -0.085 0.164 0.049 0.424 -0.095 0.610 -0.028 0.632

: : : : : : : : :

σ̂ 0.880 1.667 0.487 1.144
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Table C-4: Moving average parameter estimates and p–values after k = 20 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(1, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

φ -0.90 0.50 0.80 0.25

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.794 0.000 1.372 0.000 1.639 0.000 0.257 0.342

2 -0.099 0.780 -0.482 0.082 1.238 0.000 0.652 0.000

3 -0.383 0.004 -0.621 0.250 -0.476 0.200 0.046 0.802

4 -0.058 0.764 -0.232 0.272 -1.366 0.056 -0.602 0.002

: : : : : : : : :

θ̂ -0.408 0.764 0.736 -0.142

φ̂ -0.386 0.607 0.903 0.398

σ̂ 0.817 1.084 0.420 0.795

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.669 0.000 1.320 0.000 1.685 0.000 0.330 0.180

2 -0.349 0.174 -0.306 0.114 1.217 0.000 0.478 0.000

3 -0.331 0.000 -0.003 0.992 -0.183 0.528 0.292 0.064

4 -0.342 0.020 -0.029 0.810 0.198 0.277 -0.106 0.412

: : : : : : : : :

θ̂ 0.390 0.864 0.768 0.047

φ̂ -1.059 0.457 0.922 0.283

σ̂ 0.871 1.738 0.440 1.081

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.620 0.000 1.226 0.000 1.698 0.000 0.584 0.000

2 -0.528 0.000 -0.410 0.000 1.043 0.000 0.365 0.000

3 -0.300 0.000 -0.128 0.618 -0.422 0.006 0.330 0.000

4 -0.333 0.000 0.001 0.984 0.012 0.976 -0.078 0.254

: : : : : : : : :

θ̂ 0.284 0.565 0.847 0.369

φ̂ -0.905 0.661 0.850 0.215

σ̂ 0.860 1.736 0.472 1.171
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Table C-5: Moving average parameter estimates and p–values after k = 15 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(1, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

φ -0.90 0.50 0.80 0.25

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.706 0.000 1.260 0.000 1.651 0.000 0.296 0.304

2 -0.152 0.652 -0.560 0.028 1.304 0.000 0.648 0.000

3 -0.429 0.000 -0.731 0.180 -0.405 0.272 0.236 0.234

4 -0.194 0.322 -0.036 0.858 -1.002 0.186 -0.458 0.016

: : : : : : : : :

θ̂ -0.193 0.466 0.616 -0.096

φ̂ -0.513 0.794 1.035 0.393

σ̂ 0.857 1.218 0.442 0.904

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.673 0.000 1.379 0.000 1.692 0.000 0.325 0.190

2 -0.287 0.266 -0.304 0.114 1.308 0.000 0.455 0.000

3 -0.324 0.000 0.163 0.734 -0.171 0.556 0.343 0.028

4 -0.393 0.008 -0.001 0.992 0.401 0.576 -0.070 0.582

: : : : : : : : :

θ̂ 0.211 0.927 0.744 0.056

φ̂ -0.884 0.452 0.949 0.269

σ̂ 0.898 1.789 0.456 1.133

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.615 0.000 1.241 0.000 1.693 0.000 0.604 0.000

2 -0.546 0.000 -0.412 0.000 1.063 0.000 0.351 0.000

3 -0.291 0.000 -0.156 0.542 -0.407 0.008 0.322 0.000

4 -0.330 0.000 0.027 0.696 -0.002 0.992 -0.070 0.304

: : : : : : : : :

θ̂ 0.289 0.571 0.836 0.396

φ̂ -0.905 0.670 0.857 0.207

σ̂ 0.861 1.754 0.476 1.191
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Table C-6: Moving average parameter estimates and p–values after k = 10 iterations of the

innovations algorithm applied to Ny = 50, 100, 300 years of simulated PARMA4(1, 1) data.

Parameter Season 0 Season 1 Season 2 Season 3

θ 0.25 0.65 0.90 0.35

φ -0.90 0.50 0.80 0.25

σ 0.90 1.90 0.50 1.20

Number of Years, Ny = 50

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.649 0.000 1.412 0.000 1.653 0.000 0.467 0.186

2 -0.190 0.596 -0.473 0.066 1.325 0.002 0.468 0.000

3 -0.310 0.002 -0.541 0.412 -0.527 0.156 0.340 0.126

4 -0.225 0.266 0.096 0.604 -0.913 0.338 -0.251 0.156

: : : : : : : : :

θ̂ -0.242 0.683 0.714 0.184

φ̂ -0.406 0.729 0.938 0.283

σ̂ 0.880 1.634 0.452 1.133

Number of Years, Ny = 100

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.679 0.000 1.413 0.000 1.693 0.000 0.274 0.272

2 -0.247 0.338 -0.328 0.092 1.358 0.000 0.438 0.000

3 -0.320 0.000 0.234 0.632 -0.224 0.448 0.344 0.028

4 -0.398 0.008 -0.003 0.984 0.500 0.496 -0.038 0.764

: : : : : : : : :

θ̂ 0.222 0.929 0.732 0.016

φ̂ -0.900 0.484 0.961 0.259

σ̂ 0.903 1.848 0.465 1.155

Number of Years, Ny = 300

Lag ψ̂0(�) p ψ̂1(�) p ψ̂2(�) p ψ̂3(�) p

1 -0.617 0.000 1.252 0.000 1.694 0.000 0.574 0.000

2 -0.519 0.000 -0.402 0.000 1.081 0.000 0.345 0.000

3 -0.287 0.000 -0.111 0.668 -0.403 0.008 0.325 0.000

4 -0.332 0.000 0.023 0.742 0.085 0.826 -0.065 0.332

: : : : : : : : :

θ̂ 0.287 0.601 0.831 0.370

φ̂ -0.904 0.651 0.863 0.204

σ̂ 0.863 1.768 0.481 1.198
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Table C-7: Discrete Fourier transform of moving average parameter estimates ψ̂i(�) at season

i and lag � = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations

algorithm applied to simulated Ny = 50 years of simulated PARMA12(0, 1) data. Note that

the value in (.) is the test statistic (5.21).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.360 0.128 0.851* -0.108 -0.059 -0.067 -0.053

(2.226) (14.733) (-1.877) (-1.021) (-1.152) (-1.306)

ŝm(1) 0.575* 0.461* 0.024 0.050 0.189

(9.960) (7.976) (0.419) (0.857) (3.269)

SE 0.058 0.058 0.058 0.058 0.058 0.041

2 ĉm(2) -0.029 -0.035 -0.170 -0.021 0.005 -0.005 0.042

(-0.559) (-2.742) (-0.340) (0.082) (-0.081) (0.967)

ŝm(2) -0.035 -0.076 -0.185 -0.097 -0.069

(-0.558) (-1.222) (-2.992) (-1.569) (-1.111)

SE 0.062 0.062 0.062 0.062 0.062 0.044

3 ĉm(3) -0.041 -0.012 0.138 0.180 0.111 0.138 0.091

(-0.200) (2.221) (2.901) (1.796) (2.224) (2.075)

ŝm(3) -0.129 -0.205* -0.070 -0.059 0.092

(-2.085) (-3.324) (-1.122) (-0.962) (1.487)

SE 0.062 0.062 0.062 0.062 0.062 0.044

4 ĉm(4) 0.000 0.017 0.095 -0.134 -0.213* -0.218* -0.108

(0.274) (1.526) (-2.149) (-3.431) (-3.516) (-2.468)

ŝm(4) 0.037 0.077 0.167 0.092 0.128

(0.594) (1.247) (2.695) (1.483) (2.060)

SE 0.062 0.062 0.062 0.062 0.062 0.044

: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32
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Table C-8: Discrete Fourier transform of moving average parameter estimates ψ̂i(�) at season

i and lag � = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations

algorithm applied to simulated Ny = 100 years of simulated PARMA12(0, 1) data. Note that

the value in (.) is the test statistic (5.21).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.502 0.261* 0.816* -0.030 0.000 0.012 0.009

(6.398) (19.984) (-0.742) (0.004) (0.303) (0.308)

ŝm(1) 0.661* 0.512* 0.018 0.014 0.002

(16.193) (12.554) (0.435) (0.349) (0.055)

SE 0.041 0.041 0.041 0.041 0.041 0.029

2 ĉm(2) 0.052 0.037 -0.046 0.013 0.003 -0.031 -0.028

(0.830) (-1.024) (0.292) (0.061) (-0.701) (-0.896)

ŝm(2) 0.041 0.013 -0.122 -0.085 -0.053

(0.903) (0.295) (-2.723) (-1.903) (-1.191)

SE 0.045 0.045 0.045 0.045 0.045 0.032

3 ĉm(3) 0.000 0.088 0.177* 0.193* 0.118 0.044 0.060

(1.967) (3.944) (4.300) (2.631) (0.973) (1.896)

ŝm(3) -0.107 -0.122 -0.130 -0.071 -0.026

(-2.380) (-2.725) (-2.907) (-1.573) (-0.574)

SE 0.045 0.045 0.045 0.045 0.045 0.032

4 ĉm(4) 0.117 0.236* 0.105 0.025 -0.063 0.0008 -0.018

(5.254) (2.334) (0.549) (-1.412) (0.180) (-0.562)

ŝm(4) 0.122 0.155* 0.057 0.100 0.071

(2.704) (3.438) (1.278) (2.223) (1.586)

SE 0.045 0.045 0.045 0.045 0.045 0.032

: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32
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Table C-9: Discrete Fourier transform of moving average parameter estimates ψ̂i(�) at season

i and lag � = 1, . . . , 4, and standard errors (SE), after k = 15 iterations of the innovations

algorithm applied to simulated Ny = 300 years of simulated PARMA12(0, 1) data. Note that

the value in (.) is the test statistic (5.21).

harmonic m

lag Coefficient 0 1 2 3 4 5 6

1 ĉm(1) 0.477 0.292* 0.786* -0.013 -0.006 0.003 0.025

(12.386) (33.328) (-0.557) (-0.252) (0.145) (1.491)

ŝm(1) 0.723* 0.537* 0.018 -0.014 -0.008

(30.693) (22.793) (0.781) (-0.576) (-0.353)

SE 0.041 0.041 0.041 0.041 0.041 0.029

2 ĉm(2) 0.027 0.069 0.029 0.041 -0.050 -0.026 -0.018

(2.700) (1.122) (1.590) (-1.941) (-1.209) (-1.006)

ŝm(2) 0.032 0.016 -0.053 -0.026 0.002

(1.245) (0.645) (-2.702) (-1.003) (0.085)

SE 0.045 0.045 0.045 0.045 0.045 0.032

3 ĉm(3) 0.057 0.095* 0.087* 0.013 0.047 0.051 0.051

(3.708) (3.384) (0.486) (1.831) (1.978) (2.825)

ŝm(3) 0.003 -0.010 0.012 -0.048 -0.004

(0.106) (-0.378) (0.460) (-1.885) (-0.142)

SE 0.045 0.045 0.045 0.045 0.045 0.032

4 ĉm(4) 0.053 0.061 0.054 0.001 0.006 -0.015 -0.027

(2.364) (2.118) (0.049) (0.230) (-0.567) (-1.500)

ŝm(4) 0.064 0.102* 0.023 0.053 0.022

(2.498) (3.946) (0.880) (2.060) (0.876)

SE 0.045 0.045 0.045 0.045 0.045 0.032

: : : : : : : : :

*Fourier coefficients with test statistic ≥ 3.32
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Table C-10: Discrete Fourier transform of model parameters estimates and standard errors

(SE) for simulated PARMA12(1, 1) data (Ny = 100 years). Note that the value in (.) is the

test statistic (5.34) and (5.38).

harmonic m

Parameter Statistic 0 1 2 3 4 5 6

θ̂t ĉam 0.438 0.282* 0.220 -0.070 -0.076 -0.185 -0.122

(3.930) (3.058) (-0.969) (-1.056) (-2.565) (-2.407)

ŝam 0.256* 0.231 -0.043 -0.090 -0.271*

(3.554) (3.216) (-0.596) (-1.252) (-3.767)

SE 0.072 0.072 0.072 0.072 0.072 0.051

φ̂t ĉbm 0.245 0.063 0.452* 0.010 0.033 0.204 0.145

(0.769) (5.643) (0.119) (0.405) (2.472) (2.478)

ŝbm 0.466* -0.056 0.071 0.088 0.213

(5.640) (-0.677) (0.857) (1.065) (2.580)

SE 0.083 0.083 0.083 0.083 0.083 0.058

*Fourier coefficients with test statistic ≥ 3.32

Table C-11: Discrete Fourier transform of model parameters estimates and standard errors

(SE) for simulated PARMA12(1, 1) data (Ny = 300 years). Note that the value in (.) is the

test statistic (5.34) and (5.38).

harmonic m

Parameter Statistic 0 1 2 3 4 5 6

θ̂t ĉam 0.356 0.140* 0.216* 0.013 -0.062 -0.041 -0.032

(3.388) (5.232) (0.316) (-1.496) (-0.999) (-1.108)

ŝam 0.430* 0.302* 0.058 -0.004 -0.069

(10.449) (7.339) (1.410) (-0.106) (-1.670)

SE 0.041 0.041 0.041 0.041 0.041 0.029

φ̂t ĉbm 0.332 0.251* 0.470* -0.047 0.039 0.057 0.031

(5.283) (9.905) (-0.982) (0.827) (1.210) (0.928)

ŝbm 0.340* -0.140 -0.027 -0.007 0.036

(7.163) (-2.952) (-0.572) (-0.137) (0.750)

SE 0.083 0.083 0.083 0.083 0.083 0.058

*Fourier coefficients with test statistic ≥ 3.32
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Table C-12: Some statistical distributions

Distribution pdf and/or cdf Range Moments

Uniform fX (x) = 1
b−a

−∞ < a < b < ∞ µx = a+b
2 ,σ2

x =
(b−a)2

12

Normal fX (x) = 1√
2πσ2

x

exp

[
− (x−µ2

x)
2σ2

x

]
−∞ < x < ∞ µx , σ2

x

Lognormal fX (x) = 1
x
√

2πσ2
y

exp

[
− (y−µ2

y)

2σ2
y

]
x > 0 µy = exp

(
µy +

σ2
y
2

)

y=ln x σ2
y = µ2

y [exp σ2
y − 1]

CSx = 3CVx + CV 3
x

2-parameter Exponential fX (x) = β exp[−β(x − ξ)] x ≥ ξ; β > 0 µx = ξ + 1
β

; σ2
x = 1

β2

FX (x) = 1 − exp[−β(x − ξ)] CSx = 2

3-parameter Gamma fX (x) =
βα(x−ξ)α−1 exp(−β(x−ξ))

Γ(α) x ≥ ξ; α, β > 0 µx = ξ + α
β

(Pearson Type 3) Γ(α)-Gamma function σ2
y = α

β2

Γ(α + 1) = αΓ(α), Γ(1/2) = π1/2 CSx = 2√
α

Γ(n) = (n − 1)! for any integer n ≥ 1

GEV FX (x) = exp

{
−
[
1 −

(
κ(x−ξ)

α

)]1/κ
}

(σ2
xexists forκ > −0.5) µx = ξ +

(
α
κ

)
[1 − Γ(1 + κ)]

whenκ > 0, x <
(

ξ + α
κ

)
σ2

x = ( α
κ

)2{Γ(1 + 2κ) − [Γ(1 + κ)]2}

whenκ < 0, x >
(

ξ + α
κ

)

Weibull fX =
(

k
α

) (
x
α

)k−1
exp

[
−
(

x
α

)]
x > 0; α, k > 0 µx = αΓ

(
1 + 1

k

)

FX = 1 − exp
[
−(x/α)k

]
σ2

x = α2
{

Γ
(
1 + 2

k

)
− Γ

(
1 + 2

k

)2
}

Generalized Pareto fX (x) =
(

1
α

) [
1 − κ

(x−ξ)
α

]1/κ−1
for κ < 0, ξ ≤ x < ∞ µx = ξ + α

(1+κ)

FX (x) = 1 −
[
1 − κ

(x−ξ)
α

]1/κ
for κ > 0, ξ ≤ x ≤ ξ + α

κ
σ2

x = α2

[(1+κ)2(1+2κ)]

(CSx exists for κ > −0.33 CSx =
2(1−κ)(1+2κ)1/2

(1+3κ)

where Mean: µx = EX,Variance: σ2
x = E(X − µx)2,Coefficient of Variation: CVx = µx

σx
, and Coefficient of Skewness:CSx=

E(X−µx)3

σ3
x


