
Journal of Multivariate Analysis 99 (2008) 94–116
www.elsevier.com/locate/jmva

Innovations algorithm asymptotics for periodically
stationary time series with heavy tails

Paul L. Andersona, Laimonis Kavalierisb, Mark M. Meerschaertc,∗,1

aDepartment of Mathematics, Albion College, MI, USA
bDepartment of Mathematics & Statistics, University of Otago, Dunedin, New Zealand

cDepartment of Statistics and Probability, Michigan State University, East Lansing, MI 48823, USA

Received 9 February 2006
Available online 7 March 2007

Abstract

The innovations algorithm can be used to obtain parameter estimates for periodically stationary time
series models. In this paper we compute the asymptotic distribution for these estimates in the case where
the underlying noise sequence has infinite fourth moment but finite second moment. In this case, the sample
covariances on which the innovations algorithm are based are known to be asymptotically stable. The asymp-
totic results developed here are useful to determine which model parameters are significant. In the process,
we also compute the asymptotic distributions of least squares estimates of parameters in an autoregressive
model.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A stochastic process Xt is called periodically stationary (in the wide sense) if �t = EXt and
�t (h) = EXtXt+h for h = 0, ±1, ±2, . . . are all periodic functions of time t with the same
period ��1. If � = 1 then the process is stationary. Periodically stationary processes manifest
themselves in such fields as economics, hydrology, and geophysics, where the observed time series
are characterized by seasonal variations in both the mean and covariance structure. An important
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class of stochastic models for describing periodically stationary time series are the periodic ARMA
models, in which the model parameters are allowed to vary with the season. Periodic ARMA
models are developed by many authors including [1,2,4–7,20,22–24,26,28,30,31,33–41].

Anderson et al. [5] develop the innovations algorithm for periodic ARMA model parameters.
Anderson and Meerschaert [4] develop the asymptotics necessary to determine which of these
estimates are statistically different from zero, under the classical assumption that the noise se-
quence has finite fourth moment. In this paper, we extend those results to the case where the
noise sequence has finite second moment but infinite fourth moment. This case is important in
applications to river flows, see for example Anderson and Meerschaert [3]. In that case, Anderson
and Meerschaert [2] proved that the sample autocovariances, the basis for the innovations algo-
rithm estimates of the model parameters, are asymptotically stable. Surprisingly, the innovations
estimates themselves turn out to be asymptotically normal, although the rate of convergence (in
terms of the number of iterations of the innovations algorithm) is slower than in the finite fourth
moment case. Brockwell and Davis [13] discuss asymptotics of the innovations algorithm for
stationary time series, using results of Berk [8] and Bhansali [10]. However, all of these results
assume a finite fourth moment for the noise sequence. Hence our results seem to be new even in
the stationary case when the period � = 1. Since our technical approach extends that of [13], we
also need to develop periodically stationary analogues of results in [8,10] for the infinite fourth
moment case. In particular, we obtain asymptotics for the least squares estimates of a periodically
stationary process. Although the innovations estimates are more useful in practice, the asymptotics
of the least squares estimates are also of some independent interest.

2. The innovations algorithm

The periodic ARMA process {X̃t } with period � (denoted by PARMA�(p, q)) has representation

Xt −
p∑

j=1

�t (j)Xt−j = εt −
q∑

j=1

�t (j)εt−j , (1)

where Xt = X̃t − �t and {εt } is a sequence of random variables with mean zero and standard
deviation �t such that {�−1

t εt } is i.i.d. The autoregressive parameters �t (j), the moving average
parameters �t (j), and the residual standard deviations �t are all periodic functions of t with the
same period ��1. We also assume that the model admits a causal representation

Xt =
∞∑

j=0

�t (j)εt−j , (2)

where �t (0) = 1 and
∑∞

j=0 |�t (j)| < ∞ for all t, and satisfies an invertibility condition

εt =
∞∑

j=0

	t (j)Xt−j , (3)

where 	t (0) = 1 and
∑∞

j=0 |	t (j)| < ∞ for all t. We will say that the i.i.d. noise sequence 
t =
�−1

t εt is RV(�) if P [|
t | > x] varies regularly with index −� and P [
t > x]/P [|
t | > x] → p

for some p ∈ [0, 1]. The case where E|
t |4 < ∞ was treated in Anderson and Meerschaert
[4]. In this paper, we assume that the noise sequence {
t } is RV(�) for some 2 < � < 4. This
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assumption implies that E|
t |p < ∞ if 0 < p < �, in particular the variance of εt exists. With
this technical condition, Anderson and Meerschaert [2] show that the sample autocovariance is a
consistent estimator of the autocovariance, and asymptotically stable with tail index �/2. Stable
laws and processes are comprehensively treated in, e.g., Feller [16], Samorodnitsky and Taqqu
[29], and Meerschaert and Scheffler [25].

Let X̂
(i)
i+k = PHk,i

Xi+k denote the one-step predictors, where Hk,i = sp{Xi, . . . , Xi+k−1},
k�1, and PHk,i

is the orthogonal projection onto this space, which minimizes the mean squared
error

vk,i = ‖Xi+k − X̂
(i)
i+k‖2 = E(Xi+k − X̂

(i)
i+k)

2.

Recall that �t (h) = Cov(Xt , Xt+h), h = 0, ±1, ±2, . . . . Then

X̂
(i)
i+k = �(i)

k,1Xi+k−1 + · · · + �(i)
k,kXi, k�1, (4)

where the vector of coefficients �(i)
k = (�(i)

k,1, . . . ,�
(i)
k,k)

′ solves the prediction equations

�k,i�
(i)
k = �(i)

k (5)

with �(i)
k = (�i+k−1(1), �i+k−2(2), . . . , �i (k))′ and

�k,i = [
�i+k−�(� − m)

]
�,m=1,...,k

(6)

is the covariance matrix of (Xi+k−1, . . . , Xi)
′ for each i = 0, . . . , � − 1. Let

�̂i (�) = N−1
N−1∑
j=0

Xj�+iXj�+i+� (7)

denote the (uncentered) sample autocovariance, where Xt = X̃t − �t . If we replace the auto-
covariances in the prediction equation (5) with their corresponding sample autocovariances, we
obtain the estimator �̂(i)

k,j of �(i)
k,j .

Because the scalar-valued process Xt is non-stationary, the Durbin–Levinson algorithm (see,
e.g., [14, Proposition 5.2.1]) for computing �̂(i)

k,j does not apply. However, the innovations algo-
rithm (see, e.g., [14, Proposition 5.2.2]) still applies to a non-stationary process. Writing

X̂
(i)
i+k =

k∑
j=1

�(i)
k,j (Xi+k−j − X̂

(i)
i+k−j ) (8)

yields the one-step predictors in terms of the innovations Xi+k−j − X̂
(i)
i+k−j . Proposition 4.1 of

Lund and Basawa [22] shows that if �2
i > 0 for i = 0, . . . , �−1, then for a causal PARMA�(p, q)

process the covariance matrix �k,i is non-singular for every k�1 and each i. Anderson et al. [5]
show that if EXt = 0 and �k,i is nonsingular for each k�1, then the one-step predictors X̂i+k ,
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k�0, and their mean-square errors vk,i , k�1, are given by

v0,i = �i (0),

�(i)
k,k−� = (v�,i)

−1

⎡
⎣�i+�(k − �) −

�−1∑
j=0

�(i)
�,�−j�

(i)
k,k−j vj,i

⎤
⎦ ,

vk,i = �i+k(0) −
k−1∑
j=0

(�(i)
k,k−j )

2vj,i , (9)

where (9) is solved in the order v0,i , �
(i)
1,1, v1,i , �

(i)
2,2, �(i)

2,1, v2,i , �
(i)
3,3,�(i)

3,2, �(i)
3,1, v3,i , . . . . The results

in [5] show that

�(〈i−k〉)
k,j → �i (j),

vk,〈i−k〉 → �2
i ,

�(〈i−k〉)
k,j → −	i (j) (10)

as k → ∞ for all i, j , where 〈j〉 = j mod �.
If we replace the autocovariances in (9) with the corresponding sample autocovariances (7),

we obtain the innovations estimates �̂(i)
k,� and v̂k,i . Similarly, replacing the autocovariances in (5)

with the corresponding sample autocovariances yields the least squares or Yule–Walker estimators
�̂(i)

k,�. The consistency of these estimators was also established in [5]. Suppose that {Xt } is the
mean zero PARMA process with period � given by (1). Assume that the spectral density matrix
f (�) of the equivalent vector ARMA process is such that mz′z�z′f (�)z�Mz′z, −	���	, for
some m and M such that 0 < m�M < ∞ and for all z in R�. Recall that the i.i.d. noise sequence

t = �−1

t εt is RV(�) for some 2 < � < 4, viz., the noise sequence has infinite fourth moment but
finite variance, and define

aN = inf{x : P(|
t | > x) < 1/N} (11)

a regularly varying sequence with index 1/�, see for example Proposition 6.1.37 in [25]. If k is
chosen as a function of the sample size N so that k5/2a2

N/N → 0 as N → ∞ and k → ∞, then
the results in Theorems 3.5–3.7 and Corollary 3.7 of [5], specific to the infinite fourth moment
case, also show that

�̂
(〈i−k〉)
k,j

P→ �i (j),

v̂k,〈i−k〉
P→ �2

i ,

�̂
(〈i−k〉)
k,j

P→ −	i (j) (12)

for all i, j . This yields a practical method for estimating the model parameters, in the case of
infinite fourth moments. The results of Section 3 can then be used to determine which of these
model parameters are statistically significantly different from zero.
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3. Asymptotic results

In this section, we compute the asymptotic distribution for the innovations estimates of the
parameters in a periodically stationary time series (2) with period ��1. In the process, we also
obtain the asymptotic distribution of the least squares estimates. For any periodically stationary
time series, we can construct an equivalent (stationary) vector moving average process in the
following way: Let Zt = (εt�, . . . , ε(t+1)�−1)

′ and Yt = (Xt�, . . . , X(t+1)�−1)
′, so that

Yt =
∞∑

j=−∞
�jZt−j , (13)

where �j is the � × � matrix with i� entry �i (t� + i − �), and we number the rows and columns
0, 1, . . . , �−1 for ease of notation. Also, let N(m, C) denote a Gaussian random vector with mean
m and covariance matrix C, and let ⇒ indicate convergence in distribution. Our first result gives
the asymptotics of the least squares estimates in the case where the noise sequence has heavy tails
with an infinite fourth moment but finite second moment. The corresponding result in the case
where the noise sequence has finite fourth moments was obtained by Anderson and Meerschaert
[4]. A similar result was obtained in the finite fourth moment case by Lewis and Reinsel [21]
for vector autoregressive models, however, the prediction problem here is different. For example,
suppose that (2) represents monthly data with � = 12. For a periodically stationary model, the
prediction equations (4) use observations for earlier months in the same year. For the equivalent
vector moving average model, the prediction equations use only observations from past years.

Theorem 3.1. Suppose that the periodically stationary moving average (2) is causal, invert-
ible, the i.i.d. noise sequence 
t = �−1

t εt is RV(�), and that for some 0<m�M<∞ we have
mz′z�z′f (�)z�Mz′z for all −	���	, and all z in R�, where f (�) is the spectral density
matrix of the equivalent vector moving average process (13). If k = k(N) → ∞ as N → ∞ with
k3a2

N/N → 0 where aN is defined by (11), and if

N1/2
∞∑

j=1

|	�(k + j)| → 0 for � = 0, 1, . . . , � − 1 (14)

then for any fixed positive integer D

N1/2
(
	i (u) + �̂〈i−k〉

k,u : 1�u�D, i = 0, . . . , � − 1
)

⇒ N(0, �) (15)

where

� = diag(�2
0�

(0), �2
1�

(1), . . . , �2
�−1�

(�−1)) (16)

with

(�(i))u,v =
m−1∑
s=0

	i−m+s(s)	i−m+s(s + |v − u|)�−2
i−m+s (17)

and m = min(u, v), 1�u, v�D.
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In Theorem 3.1, note that �(i) is a D × D matrix and the D�-dimensional vector given in (15)
is ordered

N1/2(	0(1) + �̂〈0−k〉
k,1 , . . . , 	0(D) + �̂〈0−k〉

k,D , . . . , 	�−1(1) + �̂〈�−1−k〉
k,1 , . . . , 	�−1(D)

+�̂〈�−1−k〉
k,D )′.

Note also that aN is roughly on the order of N1/� for some 2 < � < 4 so that the condition on k
is essentially that k3 grows slower than N1−2/�. In practice, on the boundary � = 2 + 
, 
 > 0,
we look for the value k in the innovations algorithm where the estimates have stabilized. Next we
present our main result, giving asymptotics for innovations estimates of a periodically stationary
time series.

Theorem 3.2. Suppose that the periodically stationary moving average (2) is causal, invert-
ible, the i.i.d. noise sequence 
t = �−1

t εt is RV(�), and that for some 0<m�M<∞ we have
mz′z�z′f (�)z�Mz′z for all −	���	, and all z in R�, where f (�) is the spectral density
matrix of the equivalent vector moving average process (13). If k = k(N) → ∞ as N → ∞ with
k3a2

N/N → 0 where aN is defined by (11), and if

N1/2
∞∑

j=1

|	�(k + j)| → 0 for � = 0, 1, . . . , � − 1 (18)

then

N1/2(�̂(〈i−k〉)
k,u − �i (u) : u = 1, . . . , D, i = 0, . . . , � − 1) ⇒ N(0, V ) (19)

where

V = A diag(�2
0D

(0), . . . , �2
�−1D

(�−1))A′, (20)

A =
D−1∑
n=0

En�
[D�−n(D+1)], (21)

En = diag

⎛
⎝ n︷ ︸︸ ︷

0, . . . , 0,

D−n︷ ︸︸ ︷
�0(n), . . . ,�0(n),

n︷ ︸︸ ︷
0, . . . , 0,

�1(n), . . . ,�1(n)︸ ︷︷ ︸
D−n

, . . . , 0, . . . , 0︸ ︷︷ ︸
n

, ��−1(n), . . . , ��−1(n)︸ ︷︷ ︸
D−n

⎞
⎟⎠ , (22)

D(i) = diag(�−2
i−1, �

−2
i−2, . . . , �

−2
i−D), (23)

and � an orthogonal D� × D� cyclic permutation matrix,

� =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ . (24)
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Note that �0 is the D� × D� identity matrix and �−� ≡ (�′)�. Matrix multiplication yields
the following corollary.

Corollary 3.3. Regarding Theorem 3.2, in particular, we have that

N1/2(�̂(〈i−k〉)
k,u − �i (u)) ⇒ N

(
0, �−2

i−u

u−1∑
n=0

�2
i−n�

2
i (n)

)
(25)

Remark. Corollary 3.3 also holds the asymptotic result for the second-order stationary process
where the period is just � = 1. In this case �2

i = �2 so (25) becomes

N1/2(�̂k,u − �(u)) ⇒ N

(
0,

u−1∑
n=0

�2(n)

)

which extends Theorem 2.1 in [13] to the case where the noise sequence has only moments of
order 2 + 
, 
 > 0.

4. Proofs

Theorem 3.1 depends on modulo � arithmetic which requires our 〈i − k〉-notation. Since the
lemmas in this section do not have this dependence, we proceed with the less cumbersome i-
notation.

Lemma 4.1. Let 	(i)
k = (	i+k(1), . . . , 	i+k(k))′ and X

(i)
j (k) = (Xj�+i+k−1, . . . , Xj�+i )

′. Then
for all i = 0, . . . , � − 1 and k�1 we have

	(i)
k + �̂(i)

k = (�̂k,i)
−1 1

N

N−1∑
j=0

X
(i)
j (k)εj�+i+k,k (26)

where εt,k = Xt + 	t (1)Xt−1 + · · · + 	t (k)Xt−k .

Proof. The least squares equations are

�̂(i)
k =

(
�̂k,i

)−1
�̂(i)
k (27)

where

�̂k,i = 1

N

N−1∑
j=0

⎛
⎝Xj�+i+k−1

...

Xj�+i

⎞
⎠ (Xj�+i+k−1, . . . , Xj�+i )

and

�̂(i)
k = 1

N

N−1∑
j=0

⎛
⎝Xj�+i+k−1

...

Xj�+i

⎞
⎠Xj�+i+k
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from Eq. (7). Thus,

�̂k,i	
(i)
k + �̂(i)

k = 1

N

N−1∑
j=0

⎛
⎝Xj�+i+k−1

...

Xj�+i

⎞
⎠

×
⎧⎨
⎩(Xj�+i+k−1, . . . , Xj�+i )

⎛
⎝	i+k(1)

...

	i+k(k)

⎞
⎠ + Xj�+i+k

⎫⎬
⎭

= 1

N

N−1∑
j=0

⎛
⎝Xj�+i+k−1

...

Xj�+i

⎞
⎠ εt,k

since Xj�+i+k + 	i+k(1)Xj�+i+k−1 + · · · + 	i+k(k)Xj�+i = εt,k by definition. Then, using the
least squares equations (27), we have

	(i)
k + �̂(i)

k =
(
�̂k,i

)−1 (
�̂k,i	

(i)
k + �̂(i)

k

)

=
(
�̂k,i

)−1 1

N

N−1∑
j=0

⎛
⎝Xj�+i+k−1

...

Xj�+i

⎞
⎠ εt,k

=
(
�̂k,i

)−1 1

N

N−1∑
j=0

X
(i)
j (k)εt,k

which finishes the proof of Lemma 4.1. �

Lemma 4.2. Let ci(�), di(�) for � = 0, 1, 2, . . . and i = 0, . . . , � − 1 be arbitrary sequences of
real numbers such that

∑∞
�=0 |ci(�)| < ∞ and

∑∞
�=0 |di(�)| < ∞, and let

ut�+i =
∞∑

k=0

ci(k)εt�+i−k and vt�+j =
∞∑

m=0

dj (m)εt�+j−m

and set

Ci =
∞∑

k=0

|ci(k)| and Dj =
∞∑

m=0

|dj (m)|

for 0� i, j < �. Then

E

∣∣∣∣∣
M∑
t=1

ut�+ivt�+j

∣∣∣∣∣ �MCD
, (28)

where C = max(Ci), D = max(Dj ), and 
 = maxt,t ′(�t�t ′�2
1, �

2
t ) where �1 = E(|
t |).

Proof. Write

E

∣∣∣∣∣
M∑
t=1

ut�+ivt�+j

∣∣∣∣∣ �E

M∑
t=1

∣∣ut�+ivt�+j

∣∣ ,
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where∣∣ut�+ivt�+j

∣∣ =
∣∣∣∣∣

∞∑
k=0

∞∑
m=0

ci(k)dj (m)εt�+i−kεt�+j−m

∣∣∣∣∣
�

∞∑
k=0

∞∑
m=0

∣∣ci(k)dj (m)
∣∣ ∣∣εt�+i−kεt�+j−m

∣∣ .
Then

E
∣∣ut�+ivt�+j

∣∣ �
∞∑

k=0

∞∑
m=0

∣∣ci(k)dj (m)
∣∣ E

∣∣εt�+i−kεt�+j−m

∣∣ ,
where

E
∣∣εt�+i−kεt�+j−m

∣∣ =
{

E|εt�+i−k|E|εt�+j−m| if i − k �= j − m,

E(ε2
t�+i−k) if i − k = j − m.

Since E|εt�+i−k| = E|�i−k �−1
i−kεt�+i−k| = E|�i−k
t�+i−k| = �i−k�1, we have that

E
∣∣εt�+i−kεt�+j−m

∣∣ =
{

�i−k�j−m�2
1 if i − k �= j − m,

�2
i−k if i − k = j − m.

Hence,

E
∣∣ut�+ivt�+j

∣∣ �

∞∑

k=0

|ci(k)|
∞∑

m=0

∣∣dj (m)
∣∣ �CD


for 0� i, j < �, and then (28) follows easily, which finishes the proof of Lemma 4.2. �

Lemma 4.3. For εt,k as in Lemma 4.1 and ut�+i as in Lemma 4.2 we have

E

∣∣∣∣∣
N−1∑
t=0

ut�+i (εt�+�,k − εt�+�)

∣∣∣∣∣ �
NCB max
�

∞∑
j=1

	�(k + j), (29)

where C, 
 are as in Lemma 4.2 and B = ∑�−1
i=0

∑∞
�=0 |�i (�)|.

Proof. Write

εt�+� − εt�+�,k =
∞∑

m=k+1

	�(m)Xt�+�−m

=
∞∑

m=k+1

	�(m)

∞∑
r=0

��−m(r)εt�+�−m−r

=
∞∑

j=1

d�,k(k + j)εt�+�−k−j ,

where

d�,k(k + j) =
j∑

s=1

	�(k + s)��−(k+s)(j − s).
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Since {Xt } is causal and invertible,
∞∑

j=1

|d�,k(k + j)| =
∞∑

j=1

∣∣∣∣∣∣
j∑

s=1

	�(k + s)��−(k+s)(j − s)

∣∣∣∣∣∣
�

∞∑
s=1

|	�(k + s)|
∞∑

j=s

|��−(k+s)(j − s)|

=
∞∑

s=1

|	�(k + s)|
∞∑

r=0

|��−(k+s)(r)|

is finite, and hence we have
∑∞

j=1 |d�,k(k + j)| < ∞. Now apply Lemma 4.2 with vt�+� =
εt�+�,k − εt�+� to see that

E

∣∣∣∣∣
N−1∑
t=0

ut�+i (εt�+�,k − εt�+�)

∣∣∣∣∣ �NCD�,k
�NCDk
,

where D�,k = ∑∞
j=1 |d�,k(k + j)| and Dk = max(D�,k : 0�� < �). Next compute

D�,k =
∞∑

j=1

|d�,k(k + j)| �
∞∑

s=1

|	�(k + s)|
∞∑

r=0

|��−(k+s)(r)|

�
∞∑

s=1

|	�(k + s)|
�−1∑
j=0

∞∑
r=0

|�i (r)|

= B

∞∑
s=1

|	�(k + s)|

and (29) follows easily.
The next lemma employs the matrix 1-norm given by

‖M‖1 = max‖x‖1=1
‖Mx‖1,

where ‖x‖1 = |x1| + · · · + |xk| is the vector 1-norm (see, e.g., [17]). �

Lemma 4.4. For εt,k and X
(i)
j (k) as in Lemma 4.1 we have that

E

∥∥∥∥∥∥N−1
N−1∑
j=0

X
(i)
j (k)(εj�+i+k,k − εj�+i+k)

∥∥∥∥∥∥
1

�Ak max
�

∞∑
j=1

|	�(k + j)|, (30)

where A = 
B maxi

∑∞
�=0 |�i (�)| and B is from Lemma 4.3.

Proof. Rewrite the left-hand side of (30) in the form

N−1
k−1∑
s=0

E

∥∥∥∥∥
N−1∑
t=0

Xt�+i+s(εt�+i+k,k − εt�+i+k)

∥∥∥∥∥
1

and apply Lemma 4.3 k times with ut�+i = Xt�+i+s for each s = 0, . . . , k − 1 and C =
maxi

∑∞
�=0 |�i (�)| to obtain the upper bound of (30). �



104 P.L. Anderson et al. / Journal of Multivariate Analysis 99 (2008) 94–116

Lemma 4.5. Suppose that the periodically stationary moving average (2) is causal, invertible,
and that the noise sequence 
t = �−1

t εt is RV(�) with 2 < � < 4. Assume that for some 0 <

m�M < ∞ we have mz′z�z′f (�)z�Mz′z for all −	���	, and all z in R�, where f (�) is the
spectral density matrix of the equivalent vector moving average process (13). If k = k(N) → ∞
as N → ∞ with k3a2

N/N → 0 where aN is defined by (11) and (14) holds then

N1/2b(k)′(	(i)
k + �̂(i)

k ) − N−1/2b(k)′�−1
k,i

N−1∑
j=0

X
(i)
j (k)εj�+i+k

P→ 0 (31)

for any b(k) = (bk1, . . . , bkk)
′ such that ‖b(k)‖1 remains, of k and X

(i)
j (k) is from Lemma 4.1.

Proof. Using (26) the left-hand side of (31) can be written as

N−1/2b(k)′
⎡
⎣�̂−1

k,i

N−1∑
j=0

X
(i)
j (k)εj�+i+k,k − �−1

k,i

N−1∑
j=0

X
(i)
j (k)εj�+i+k

⎤
⎦ = I1 + I2,

where

I1 = N−1/2b(k)′
⎡
⎣(�̂−1

k,i − �−1
k,i

)N−1∑
j=0

X
(i)
j (k)εj�+i+k,k

⎤
⎦ ,

I2 = N−1/2b(k)′
⎡
⎣�−1

k,i

N−1∑
j=0

X
(i)
j (k)(εj�+i+k,k − εj�+i+k)

⎤
⎦

so that

|I1|�N−1/2‖b(k)‖1 · ‖�̂−1
k,i − �−1

k,i ‖1 ·
∥∥∥∥∥∥

N−1∑
j=0

X
(i)
j (k)εj�+i+k,k

∥∥∥∥∥∥
1

= J1 · J2 · J3,

where J1 = ‖b(k)‖1 is bounded by assumption, J2 = k‖�̂−1
k,i −�−1

k,i ‖1, and J3 = N1/2

k

∥∥∥ 1
N

∑N−1
j=0

X
(i)
j (k)εj�+i+k,k

∥∥∥
1
.

Next we will show that J2 = k‖�̂−1
k,i − �−1

k,i ‖1 → 0 in probability. The proof is similar to

Theorem 3.1 in Anderson et al. [5]. Define pki = ‖�−1
k,i ‖1, qki = ‖�̂−1

k,i − �−1
k,i ‖1, and Qk,i =

‖�̂k,i − �k,i‖1. Then we have

qki �(qki + pki)Qkipki (32)

exactly as in the proof of Theorem 3.1 in [5], and we want to show that kqki → 0 in probability.
From Theorem A.2 in [5] we have, for some C > 0, that

E

∣∣∣Na−2
N (�̂i (�) − �i (�))

∣∣∣ �C

uniformly over all i = 0, . . . , � − 1, all integers � and all positive integers N. Then, using the
bound

E‖A‖1 = E max
1� j �k

k∑
i=1

|aij |�k max
i,j

E|aij |�kC
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in the proof of Theorem 3.5 in [5] it follows that EQki �ka2
NC/N for all i, k, and N. Since

pki �k1/2‖�−1
k,i ‖2 we also have using Theorem A.1 from [5] that for somem > 0,pki �k1/2/(2	m)

for all i and k. Then

E(pkiQki) = pkiEQki �
k3/2a2

NC

2	Nm
→ 0

as k, N → ∞ since we are assuming k3a2
N/N → 0. Then it follows from the Markov inequality

that pkiQki → 0 in probability. If pkiQki < 1 then 1 − pkiQki > 0, and then it follows easily
from (32) that

kqki �
kp2

kiQki

1 − pkiQki

.

Since pki �k1/2/2	m, we have

E
(
kp2

kiQki

)
�k · k2a2

NC

(2	m)2N
→ 0

so that kp2
kiQki → 0 in probability. As pkiQki → 0 in probability, it follows that

kp2
kiQki

1 − pkiQki

P→ 0.

Now the remainder of the proof that J2 → 0 in probability is exactly the same conditioning
argument as in Theorem 3.1 of [5]. As for the remaining term in I1, write

J3 = N1/2

k

∥∥∥∥∥∥
1

N

N−1∑
j=0

X
(i)
j (k)εj�+i+k,k

∥∥∥∥∥∥
1

so that E(J3)�E(J31) + E(J32) where

J31 = N1/2

k

∥∥∥∥∥∥
1

N

N−1∑
j=0

X
(i)
j (k)εj�+i+k

∥∥∥∥∥∥
1

and

J32 = N1/2

k

∥∥∥∥∥∥
1

N

N−1∑
j=0

X
(i)
j (k)(εj�+i+k,k − εj�+i+k)

∥∥∥∥∥∥
1

.

Lemma 4.4 implies that

E(J32)�
N1/2

k
Ak max

�

∞∑
s=1

|	�(k + s)| = N1/2A max
�

∞∑
s=1

|	�(k + s)| → 0,

where the maximum is taken over � = 0, . . . , � − 1. Also

E(J31) � N1/2

k
k1/2E

∥∥∥∥∥∥
1

N

N−1∑
j=0

X
(i)
j (k)εj�+i+k

∥∥∥∥∥∥
2

�
(

N

k

)1/2

√√√√√E

∥∥∥∥∥∥
1

N

N−1∑
j=0

X
(i)
j (k)εj�+i+k

∥∥∥∥∥∥
2

2
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=
(

N

k

)1/2

√√√√√√ 1

N2

k−1∑
t=0

E

⎡
⎢⎣
⎛
⎝N−1∑

j=0

Xj�+i+t εj�+i+k

⎞
⎠2

⎤
⎥⎦

=

√√√√√ 1

kN

k−1∑
t=0

N−1∑
j=0

E(X2
j�+i+t )E(ε2

j�+i+k)

=

√√√√√k−1
k−1∑
t=0

�i+t (0) · N−1
N−1∑
j=0

�2
i+k

so that E(J31)�
√

D where D = maxi �i (0) · maxi �2
i . Thus E(J3) < ∞, J1 is bounded, and

J2 → 0 in probability. Then it is easy to show that I1 → 0 in probability.
Next write

I2 = N−1/2
N−1∑
j=0

uj�+i+k−1(εj�+i+k,k − εj�+i+k),

where uj�+i+k−1 = b(k)′�−1
k,i X

(i)
j (k). Then

Var(uj�+i+k−1) = E(u2
j�+i+k−1) = b(k)′�−1

k,i E[X(i)
j (k)X

(i)
j (k)′]�−1

k,i b(k)

= b(k)′�−1
k,i b(k)�‖b(k)‖2

2/(2	m)

by Theorem A.1 in [5], since �k,i is the covariance matrix of X
(i)
j (k). Hence by Lemma 4.3,

E|I2| = Constant · N1/2 max
�

∞∑
j=1

|	�(k + j)| → 0

for � = 0, . . . , �− 1 by (14). Then I2 → 0 in probability, which finishes the proof of Lemma 4.5.
�

Proof of Theorem 3.1. Define eu(k) to be the k dimensional vector with 1 in the uth place and
zeros elsewhere. Let

w
(〈i−k〉)
uj,k = eu(k)′�−1

k,〈i−k〉X
(〈i−k〉)
j (k)εj�+〈i−k〉+k (33)

so that

t
(〈i−k〉)
N,k (u) = N−1/2

N−1∑
j=0

w
(〈i−k〉)
uj,k . (34)

Here X
(〈i−k〉)
j (k) = [Xj�+〈i−k〉+k−1, . . . , Xj�+〈i−k〉]′ and

�k,〈i−k〉 = E{X(〈i−k〉)
j (k)X

(〈i−k〉)
j (k)′} (35)

thus for i, u, k fixed, w
(〈i−k〉)
uj,k are stationary martingale differences since the first two terms in

(33) are non-random and do not depend on j while the third term is in the linear span of εs ,
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s < j� + 〈i − k〉 + k due to the causality assumption. Then E{w(〈i−k〉)
uj,k w

(〈i′−k〉)
vj ′,k } = 0 unless

j� + 〈i − k〉 = j ′ + 〈i′ − k〉
because, if j� + 〈i − k〉 > j ′ + 〈i′ − k〉, X

(〈i−k〉)
j (k), X

(〈i′−k〉)
j ′ (k) and εj ′+〈i′−k〉 are in the linear

span of εs for s < j� + 〈i − k〉. Otherwise X
(〈i−k〉)
j (k) = X

(〈i′−k〉)
j ′ (k) and

E{w(〈i−k〉)
uj,k w

(〈i−k〉)
vj,k } = �2

i eu(k)′�−1
k,〈i−k〉ev(k).

Take

wjk = [w(〈0−k〉)
1j,k , . . . , w

(〈0−k〉)
Dj,k , . . . , w

(〈�−1−k〉)
1j,k , . . . , w

(〈�−1−k〉)
Dj,k ]′.

It follows immediately that the covariance matrix of the vector

tN,k = N−1/2
N−1∑
j=0

wjk

is �k = diag{�2
0�

(0)
k , �2

1�
(1)
k , . . . , �2

�−1�
(�−1)
k } where

(�(i)
k )u,v = eu(k)′�−1

k,〈i−k〉ev(k), (36)

and 1�u, v�D. Apply Lemma 1 of [4] to see that

eu(k)′�−1
k,〈i−k〉ev(k) −→ (�(i))u,v

as k → ∞ where, taking m = min{u, v},

(�(i))u,v =
m−1∑
s=0

	i−m+s(s)	i−m+s(s + |v − u|)�−2
i−m+s .

Then, provided that k = k(N) increases to ∞ with N,

lim
N→∞ Var{tN,k(N)} = �, (37)

where � is given in (16).
Next we want to use the martingale central limit theorem (Theorem 3.2, p.58 in Hall and Heyde

[18]) to show that

�′tN,k ⇒ N (0, �′�k�)

for a fixed k and any � ∈ RD�. Consider the triangular array of summands XN(j) = N−1/2�′wjk ,
j = 0, . . . , N − 1, N = 1, 2, . . . . For each fixed k, it is sufficient to show that

(i) max0� j<N XN(j)2 P−→ 0,

(ii)
∑N−1

j=0 XN(j)2 P−→ V for V > 0, and

(iii) supN E{max0� j<N XN(j)2}�c < ∞.
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As wjk is stationary with a finite second moment, wjk = o(j1/2) and therefore Xj(j)2 = o(1),
where both expressions hold almost surely [27, Lemma 7.5.1]. Now

max
0� j<n

XN(j)2 � max
0� j<n

Xj (j)2

so that for any � > 0 and n�N , the Markov inequality obtains

P

{
max

0� j<N
XN(j)2 > ε

}
�

n∑
j=0

P {XN(j)2 > ε} + P

{
max

n<j<N
Xj (j)2 > ε

}

� n

N

E{(�′wjk)
2}

ε
+

∞∑
j=n

P {Xj(j)2 > ε}.

Upon taking n an increasing function of N so that n/N → 0, and noting that
∑∞

j=1 P {Xj(j)2 >

c} < ∞, the RHS converges to zero, which establishes (i). Moreover

E

{
max

0� j<N
XN(j)2

}
�

N−1∑
j=0

E{XN(j)2} = �′E{wjkw
′
jk}� < ∞

so that (iii) also holds. To establish (ii) note that wjk is ergodic (see the discussion in [15, p. 458])
and consequently

N−1∑
j=0

XN(j)2 −→ �′E{wjkw
′
jk}� = �′�k�,

where the RHS is the positive quantity V in (ii). Thus the conditions of Hall and Heyde [18],
Theorem 3.2 are satisfied and therefore, for each � and fixed k, �′tN,k converges to a normal
distribution with zero mean and variance �′�k�. Then an application of the Cramér–Wold device
[12, p. 48] yields

tN,k ⇒ N (0, �k).

To extend the central limit theorem to the case where k = k(N) → ∞ as N → ∞ we use a result
due to Bernstein [9] that we refer to as Bernstein’s Lemma, which is proved in Hannan [19, p. 242].
Let xN be a sequence of vector valued random variables with zero mean such that for every ε > 0,
� > 0, 
 > 0 there exist sequences of random vectors yN(ε), zN(ε) so that xN = yN(ε) + zN(ε)
where yN(ε) has a distribution converging to the multivariate normal distribution with zero mean
and covariance matrix V (ε), and

lim
ε→0

V (ε) = V, P {zN(ε)′zN(ε) > �} < 
.

Then the distribution of xN converges to the multivariate normal distribution with covariance
matrix V.

Using the notation of Bernstein’s Lemma, take xN = tN,k(N) where now k = k(N) is explicitly
written as a function of N. For any ε > 0 take k = [ε−1] and yN(ε) = tN,k . We have shown that
yN(ε) converges to a multivariate normal distribution with zero mean and variance Var{tNk} =
�k = V (ε) and, in (37), that �k → � as k → ∞ thus verifying the first condition of Bernstein’s
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Lemma. Consider

zN(ε) = xN − yN(ε) = tN,k(N) − tN,k.

The second condition of Bernstein’s Lemma follows if E{zN(ε)′zN(ε)} → 0 as k, N → ∞ which
holds if the variance of each component of zN(ε) converges to zero.

For a given k, take N sufficiently large so that k(N) > k. The components of zN(ε) are
t
(〈i−k(N)〉)
N,k(N) (u) − t

(〈i−k〉)
N,k (u), i = 0, . . . , �, u = 1, . . . , D which have variance

Var{t (〈i−k(N)〉)
N,k(N) (u)} + Var{t (〈i−k〉)

N,k (u)} − 2Cov{t (〈i−k(N)〉)
N,k(N) (u), t

(〈i−k〉)
N,k (u)}.

From (36) the first two terms are �2
i (�

(i)
k(N))uu and �2

i (�
(i)
k )uu, respectively. The covariance term

is the expectation of

N−1
N−1∑
j=0

N−1∑
j ′=0

eu(k(N))′�−1
k(N),〈i−k(N)〉X

(〈i−k(N)〉)
j (k(N))εj�+〈i−k(N)〉+k(N)

×εj ′�+〈i−k〉+k(X
(〈i−k〉)
j ′ (k))′�−1

k,〈i−k〉eu(k). (38)

The only summands with non-zero expectation occur when j� + 〈i − k(N)〉 + k(N) =
j ′� + 〈i − k〉 + k = s, say, and then

X
(〈i−k(N)〉)
j (k(N)) = [Xs−1, . . . , Xs−k(N)]′,

X
(〈i−k〉)
j ′ (k) = [Xs−1, . . . , Xs−k]′

so that E{X(〈i−k(N)〉)
j (k(N))(X

(〈i−k〉)
j ′ (k))′} is the matrix consisting of the first k columns of

�k(N),〈i−k(N)〉. Thus the mean of those summands with non-zero expectation in (38) may be

evaluated (compare the argument for Lemma 4.6 later in this paper) as �2
i (�

(i)
k )uu and hence

Var{t (〈i−k(N)〉)
N,k(N) (u) − t

(〈i−k〉)
N,k (u)} = �2

i

[
(�(i)

k(N))uu − N−1CN(�(i)
k )uu

]
,

where CN is the number of those summands. Since j� + 〈i − k(N)〉 + k(N) = j ′� + 〈i − k〉 + k

can occur for at most one value of j ′ for each j = 0, . . . , N − 1 it is not hard to check that
N−1CN → 1 as N → ∞. Lemma 1 from Anderson et al. [4] shows that the (u, u)th elements of
�−1

i,〈i−k(N)〉 and �−1
i,〈i−k〉 converge to

�2
i+s

u∑
s=0

	i−j+u(u)2

as k, k(N) → ∞ and therefore E{zN(ε)′zN(ε)} → 0. Thus for any � > 0, � > 0 and 
 > 0 we
may take k, N sufficiently large, k > [ε−1] so that E{zN(ε)′zN(ε)} < 
� and an application of
Markov’s inequality establishes the second condition of Bernstein’s Lemma. Thus we conclude

tN,k(N) ⇒ N (0, �), (39)

where limk→∞ �k = �.
Applying Lemma 4.5 yields N1/2eu(k)′(	(〈i−k〉)

k + �̂(〈i−k〉)
k ) − t

(〈i−k〉)
N,k (u) → 0 in probability.

Note that 	(〈i−k〉)
k = (	i (1), . . . , 	i (k))′ and �̂(〈i−k〉)

k = (�̂(〈i−k〉)
k,1 , . . . , �̂(〈i−k〉)

k,k ). Combining (39)
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with eu(k)′(	(〈i−k〉)
k + �̂(〈i−k〉)

k ) = 	i (u) + �̂(〈i−k〉)
k,u implies that

N1/2(	i (u) + �̂(〈i−k〉)
k,u ) − t

(〈i−k〉)
N,k (u)

P→ 0 (40)

as N → ∞. Then Theorem 3.1 follows from (39) and (40) and the continuous mapping theorem.
�

Proof of Theorem 3.2. From the two representations of X̂
(i)
i+k given by (4) and (8) it follows that

�(〈i−k〉)
k,j =

j∑
�=1

�(〈i−k〉)
k,� �(〈i−k〉)

k−�,j−� (41)

for j = 1, . . . , k if we define �(〈i−k〉)
k−j,0 = 1 and replace i with 〈i − k〉. Eq. (41) can be modified

and written as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�(〈i−k〉)
k,1

�(〈i−k〉)
k,2

�(〈i−k〉)
k,3

...

�(〈i−k〉)
k,D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= R
(〈i−k〉)
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�(〈i−k〉)
k,1

�(〈i−k〉)
k,2

�(〈i−k〉)
k,3

...

�(〈i−k〉)
k,D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (42)

where

R
(〈i−k〉)
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0

�(〈i−k〉)
k−1,1 1 0 · · · 0 0

�(〈i−k〉)
k−1,2 �(〈i−k〉)

k−2,1 1 · · · 0 0
...

...
. . .

...

�(〈i−k〉)
k−1,D−1 �(〈i−k〉)

k−2,D−2 · · · �(〈i−k〉)
k−D+1,1 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (43)

for fixed lag D. From the definitions of �̂(i)
k,u and �̂

(i)

k,u we also have

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̂(〈i−k〉)
k,1

�̂(〈i−k〉)
k,2

�̂(〈i−k〉)
k,3

...

�̂(〈i−k〉)
k,D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= R̂
(〈i−k〉)
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̂
(〈i−k〉)
k,1

�̂
(〈i−k〉)
k,2

�̂
(〈i−k〉)
k,3

...

�̂
(〈i−k〉)
k,D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (44)

where R̂
(〈i−k〉)
k is defined as in (43) with �̂(〈i−k〉)

k,u replacing �(〈i−k〉)
k,u . From (12) we know that

�̂
(〈i−k〉)
k,u

P→ �i (u), hence for fixed � with k′ = k − �, we have �̂(〈i−k〉)
k−�,u = �̂(〈i−�−k′〉)

k′,u
P→ �i−�(u).

Thus,

R̂
(〈i−k〉)
k

P→ R(i), (45)
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where

R(i) =

⎛
⎜⎜⎝

1 0 · · · 0 0
�i−1(1) 1 · · · 0 0

...
...

. . .
...

�i−1(D − 1) �i−2(D − 2) · · · �i−D+1(1) 1

⎞
⎟⎟⎠ . (46)

We have

�̂
(〈i−k〉) − �(〈i−k〉) = R̂

(〈i−k〉)
k (�̂

(〈i−k〉) − �(〈i−k〉)) + (R̂
(〈i−k〉)
k − R

(〈i−k〉)
k )�(〈i−k〉), (47)

where �(〈i−k〉) = (�(〈i−k〉)
k,1 , . . . , �(〈i−k〉)

k,D )′, �(〈i−k〉) = (�(〈i−k〉)
k,1 , . . . ,�(〈i−k〉)

k,D )′, and �̂
(〈i−k〉)

and

�̂
(〈i−k〉)

are the respective estimators of �(〈i−k〉) and �(〈i−k〉). Note that

(R̂
(〈i−k〉)
k − R

(〈i−k〉)
k )�(〈i−k〉) = (R̂

(〈i−k〉)
k − R̂

(〈i−k〉)∗
k )�(〈i−k〉)

+(R̂
(〈i−k〉)∗
k − R

(〈i−k〉)∗
k )�(〈i−k〉)

+(R
(〈i−k〉)∗
k − R

(〈i−k〉)
k )�(〈i−k〉), (48)

where

R
(〈i−k〉)∗
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0

�(〈i−1−k〉)
k,1 1 0 · · · 0 0

�(〈i−1−k〉)
k,2 �(〈i−2−k〉)

k,1 1 · · · 0 0

...
...

. . .
...

�(〈i−1−k〉)
k,D−1 �(〈i−2−k〉)

k,D−2 · · · �(〈i−D+1−k〉)
k,1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(49)

and R̂
(〈i−k〉)∗
k is the corresponding matrix obtained by replacing �(〈i−k〉)

k,u with �̂(〈i−k〉)
k,u for every

season i and lag u. We next need to show that R
(〈i−k〉)∗
k − R

(〈i−k〉)
k = o(N1/2) and R̂

(〈i−k〉)
k −

R̂
(〈i−k〉)∗
k = oP (N1/2). This is equivalent to showing that

N1/2(�(〈i−�−k〉)
k,u − �(〈i−k〉)

k−�,u ) → 0 (50)

and

N1/2(�̂(〈i−�−k〉)
k,u − �̂(〈i−k〉)

k−�,u )
P→ 0 (51)

for � = 1, . . . , D − 1 and u = 1, . . . , D. Using estimates from the proof of [5] Corollary 2.2.4
and condition (14) of Theorem 3.1, it is not hard to show that N1/2(�(〈i−k〉)

k,u + 	i (u)) → 0 as
N → ∞ for any u = 1, . . . , k. This leads to

N1/2(�(〈i−�−k〉)
k,u + 	i−�(u)) → 0 (52)

by replacing i with i − � for fixed �. Letting ak = N1/2(�(〈i−�−k〉)
k,u + 	i−�(u)) and bk =

N1/2(�(〈i−k〉)
k−�,u + 	i−�(u)) we see that bk = ak−�. Since ak → 0 then bk → 0 as k → ∞.

Hence,

N1/2(�(〈i−k〉)
k−�,u + 	i−�(u)) → 0 (53)
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as k → ∞. Subtracting (53) from (52) yields

N1/2(�(〈i−�−k〉)
k,u − �(〈i−k〉)

k−�,u ) → 0 (54)

which holds for � = 1, . . . , u − 1 and u = 1, . . . , k. Since

�(〈i−�−k〉)
k,1 − �(〈i−k〉)

k−�,1 = �(〈i−�−k〉)
k,1 − �(〈i−k〉)

k−�,1

we have (50) with u = 1. The cases u = 2, . . . , D follow iteratively using (10), (42), and (54).
Thus, (50) is established. To prove (51), we need the following lemma. �

Lemma 4.6. For all � = 1, . . . , u − 1 and u = 1, . . . , k we have

N1/2(�̂
(〈i−�−k〉)
k,u − �̂

(〈i−k〉)
k−�,u )

P→ 0. (55)

Proof. Starting from (34), we need to show that t
(〈i−�−k〉)
N,k (u) − t

(〈i−k〉)
N,k−� (u)

P→ 0. Note that

E(w
(〈i−�−k〉)
uj,k w

(〈i−k〉)
uj ′,k−�

) = 0 unless

j ′ = j − � + (〈i − � − k〉 + � − 〈i − k〉)/� (56)

which is always an integer. For each j there is at most one j ′ that satisfies (56) for j ′ ∈ {k −
�, . . . , N − 1}. If such a j ′ exists then

E(w
(〈i−�−k〉)
uj,k w

(〈i−k〉)
uj ′,k−�

) = �2
i−�eu(k)′(�k,〈i−�−k〉)−1C(�k−�,〈i−k〉)−1eu(k − �),

where C = E(X
(〈i−�−k〉)
j (k)X

(〈i−k〉)
j ′ (k − �)′). Note that the (k − �)-dimensional vector X

(〈i−k〉)
j ′

(k − �) is just the first (k − �) of the k entries of the vector X
(〈i−�−k〉)
j (k). Hence, the matrix C

is just �k,〈i−�−k〉 with the last � columns deleted. Then (�k,〈i−�−k〉)−1C = I (k, �) which is the
k × k identity matrix with the last � columns deleted. But then for any fixed u, for all k large we
have eu(k)′(�k,〈i−�−k〉)−1C = eu(k − �)′. Then

E(w
(〈i−�−k〉)
uj,k w

(〈i−k〉)
uj ′,k−�

) = �2
i−�eu(k − �)′(�k−�,〈i−k〉)−1eu(k − �)

= �2
i−�(�k−�,〈i−k〉)−1

uu .

Consequently,

Var(w(〈i−�−k〉)
uj,k − w

(〈i−k〉)
uj ′,k−�

) = E[(w(〈i−�−k〉)
uj,k − w

(〈i−k〉)
uj ′,k−�

)2]
= �2

i−�(�k,〈i−�−k〉)−1
uu + �2

i−�(�k−�,〈i−k〉)−1
uu

−2�2
i−�(�k−�,〈i−k〉)−1

uu

= �2
i−�[(�k,〈i−�−k〉)−1

uu − (�k−�,〈i−k〉)−1
uu ]

→ 0

by Lemma 1 of [4]. Thus,

Var(t(〈i−�−k〉)
N,k (u) − t

(〈i−k〉)
N,k−� (u)) � N−1Var(w(〈i−�−k〉)

uj,k − w
(〈i−k〉)
uj ′,k−�

)N

→ 0
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since for each j = k, . . . , N − 1 there is at most one j ′ satisfying (56) along with j ′ =
k − �, . . . , N − 1. Then Chebyshev’s inequality shows that t

(〈i−�−k〉)
N,k (u) − t

(〈i−k〉)
N,k−� (u)

P→ 0.
Now (40) yields

N1/2(	i−�(u) + �̂(〈i−�−k〉)
k,u ) − t

(〈i−�−k〉)
N,k (u)

P→ 0

and another application of (40) using i − � − (k − �) = i − k gives

N1/2(	i−�(u) + �̂(〈i−k〉)
k−�,u ) − t

(〈i−k〉)
N,k−� (u)

P→ 0

and then Lemma 4.6 follows easily.
Now, since

�̂(〈i−�−k〉)
k,1 − �̂(〈i−k〉)

k−�,1 = �̂
(〈i−�−k〉)
k,1 − �̂

(〈i−k〉)
k−�,1

we have (51) with u = 1. The cases u = 2, . . . , D follow iteratively using (44), Lemma 4.6,
and (41) with �, � replaced by �̂, �̂. Thus, (51) is established. From (47), (48), (50), and (51) it
follows that

�̂
(〈i−k〉) − �(〈i−k〉) = R̂

(〈i−k〉)
k (�̂

(〈i−k〉) − �(〈i−k〉)) + (R̂
(〈i−k〉)∗
k − R

(〈i−k〉)∗
k )�(〈i−k〉)

+oP (N1/2). (57)

To accommodate the derivation of the asymptotic distribution of �̂
(i) − �(i), we need to rewrite

(57). Define

�̂ − � = (�̂(〈0−k〉)
k,1 − �(〈0−k〉)

k,1 , . . . , �̂(〈0−k〉)
k,D − �(〈0−k〉)

k,D , . . . ,

�̂(〈�−1−k〉)
k,1 − �(〈�−1−k〉)

k,1 , . . . , �̂(〈�−1−k〉)
k,D − �(〈�−1−k〉)

k,D )′

and

� = (�(〈0−k〉)
k,1 , . . . ,�(〈0−k〉)

k,D , . . . ,�(〈�−1−k〉)
k,1 , . . . ,�(〈�−1−k〉)

k,D )′. (58)

Using (58) we can rewrite (57) as

�̂ − � = R̂k(�̂ − �) + (R̂∗
k − R∗

k )� + oP (N1/2), (59)

where �̂ is the estimator of � and

Rk = diag(R
(〈0−k〉)
k , R

(〈1−k〉)
k , . . . , R

(〈�−1−k〉)
k )

and

R∗
k = diag(R

(〈0−k〉)∗
k , R

(〈1−k〉)∗
k , . . . , R

(〈�−1−k〉)∗
k )

noting that both Rk and R∗
k are D�×D� matrices. The estimators of Rk and R∗

k are, respectively,

R̂k and R̂∗
k . Now write (R̂∗

k − R∗
k )� = Ck(�̂ − �) where

Ck =
D−1∑
n=1

Bn,k�
[D�−n(D+1)] (60)
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and

Bn,k = diag

⎛
⎜⎝

n︷ ︸︸ ︷
0, . . . , 0,

D−n︷ ︸︸ ︷
�(〈0−k〉)

k,n , . . . ,�(〈0−k〉)
k,n ,

n︷ ︸︸ ︷
0, . . . , 0,

�(〈1−k〉)
k,n , . . . ,�(〈1−k〉)

k,n︸ ︷︷ ︸
D−n

, . . . , 0, . . . , 0︸ ︷︷ ︸
n

, �(〈�−1−k〉)
k,n , . . . ,�(〈�−1−k〉)

k,n︸ ︷︷ ︸
D−n

⎞
⎟⎠

with � the orthogonal D� × D� cyclic permutation matrix (24). Thus, we write Eq. (59) as

�̂ − � = R̂k(�̂ − �) + Ck(�̂ − �) + oP (N1/2). (61)

Then,

(I − Ck)(�̂ − �) = R̂k(�̂ − �) + oP (N1/2)

so that

�̂ − � = (I − Ck)
−1R̂k(�̂ − �) + oP (N1/2). (62)

Let C = limk→∞ Ck so that C is Ck with �(〈i−k〉)
k,u replaced with −	i (u). Also, let R =

limk→∞ Rk where

R = diag(R(0), . . . , R(�−1))

and R(i) as defined in (46). Eq. (45) shows that R̂k
P→ R, and then Theorem 3.1 along with Eq.

(62) yield

N1/2(�̂ − �) ⇒ N(0, V )

where

V = (I − C)−1R�R′[(I − C)−1]′ (63)

and � is as in (16). Let

S(i) =

⎛
⎜⎜⎝

1 0 · · · 0 0
	i−1(1) 1 · · · 0 0

...
...

. . .
...

	i−1(D − 1) 	i−2(D − 2) · · · 	i−D+1(1) 1

⎞
⎟⎟⎠ . (64)

It can be shown that

�(i) = S(i)diag(�−2
i−1, �

−2
i−2, . . . , �

−2
i−D)S(i)′ .

From the equation, �i (u) = ∑u
�=1 −	i (�)�i−�(u − �), it follows that R(i)S(i) = ID×D , the

D × D identity matrix. Therefore,

R(i)�(i)R(i)′ = R(i)S(i)diag(�−2
i−1, �

−2
i−2, . . . , �

−2
i−D)S(i)′R(i)′

= diag(�−2
i−1, �

−2
i−2, . . . , �

−2
i−D)
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and it immediately follows that

R�R′ = diag(D(0), . . . , D(�−1))

where D(i) = diag(�−2
i−1, �

−2
i−2, . . . , �

−2
i−D). Thus, Eq. (63) becomes

V = (I − C)−1 diag(D(0), . . . , D(�−1))[(I − C)−1]′. (65)

Also, from the relation �i (u) = ∑u
�=1 −	i (�)�i−�(u − �), it can be shown that

(I − C)−1 =
D−1∑
n=1

En�
[D�−n(D+1)]

where En is defined in (22). Using estimates from the proof of Corollary 2.2.3 in [5] along with
condition (18) it is not hard to show that N1/2(� − �) → 0. Then it follows that

N1/2(�̂ − �) ⇒ N(0, V ),

where � = (�0(1), . . . ,�0(D), . . . ,��−1(1), . . . ,��−1(D))′. We have proved the theorem. �
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