
Chapter 5: Linear Regression

Study relationship between 2 quantitative variables.

One variable is ______________________ variable,

denoted by 𝑦.

Measures the outcome of the study.

Also called the ___________________ variable.

Other variable is ______________________ variable,

denoted by x.

Thought to explain changes in the response.

Also called the ___________________ variable.
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Modeling a relationship with regression
The linear regression model suggests the relationship that 

predicts the value of 𝑦 for a given value of 𝑥 can be 

expressed as:

𝑌 =

𝑦 is the ______________________ of the dependent variable 𝑌
when the value of the independent variable is 𝑋 = 𝑥.

β0 is the __________________________; the mean of 𝑌 when 

𝑥 = 0.
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Modeling a relationship with regression
The linear regression model suggests the relationship that 

predicts the value of 𝑦 for a given value of 𝑥 can be 

expressed as:

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜖

β1 is the __________________________; the change in the mean 

of 𝑌 per unit change in 𝑋.

ε is an __________________________ that describes the effect 

on 𝑌 of all factors other than 𝑋.
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Example: a fictitious (but famous) data set

Which line better describes the relationship between x & y?

Var 1 2 3 4 5 6 7 8 9 10 11 𝑚𝑒𝑎𝑛 sd 𝑟

X 10 8 13 9 11 14 6 4 12 7 5 9
3.316

7 0.816

4
Y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68 7.5

2.031

6
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Interpreting the slope!

b. Suppose an observation has a predictor-value of 𝑥 = 12? 

What value of 𝑦 would you predict it had? [Get a prediction 

from both lines.]
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Interpreting the slope!

c. How far off are these estimates from observed y-value of 

the case in the collected data with 𝑥 = 12?

These errors are called _________________ .
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Residuals

Residuals are the leftover variation in the data after 

accounting for the model fit. A good way of thinking about 

residuals is:

𝐷𝑎𝑡𝑎 = _________________________________

Equivalently, we can say …

𝑒 = _______________________________
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Fitting a line by OLS regression
A line that fits the data “best” will be the one for which the

_________________________________________________ .
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𝑿 𝒀 ො𝑦𝑑𝑎𝑠ℎ𝑒𝑑 ො𝑦𝑠𝑜𝑙𝑖𝑑 𝑒𝑑𝑎𝑠ℎ𝑒𝑑 𝑒𝑠𝑜𝑙𝑖𝑑 𝑒𝑑𝑎𝑠ℎ𝑒𝑑
2 𝑒𝑑𝑎𝑠ℎ𝑒𝑑

2

10.00 8.04 8.50 7.50 -0.46 0.54 0.21 0.29

8.00 6.95 7.00 6.90 -0.05 0.05 0.00 0.00

13.00 7.58 10.75 8.40 -3.17 -0.82 10.05 0.67

9.00 8.81 7.75 7.20 1.06 1.61 1.12 2.59

11.00 8.33 9.25 7.80 -0.92 0.53 0.85 0.28

14.00 9.96 11.50 8.70 -1.54 1.26 2.37 1.59

6.00 7.24 5.50 6.30 1.74 0.94 3.03 0.88

4.00 4.26 4.00 5.70 0.26 -1.44 0.07 2.07

12.00 10.84

7.00 4.82 6.25 6.60 -1.43 -1.78 2.04 3.17

5.00 5.68 4.75 6.00 0.93 -0.32 0.86 0.10
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Equation of Ordinary Least Squares (OLS) line

d. Which equation has the smaller sum of squared residuals 

∑𝑒2 [i.e., which line better describes the relationship 

between 𝑋 and 𝑌?
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The OLS regression

KEY IDEA: ordinary least-squares (OLS) regression line

will produce the smallest sum of squared residuals 

mathematically possible.

Property 1: An estimate of the slope of the OLS regression 

is

____________________________________ .

Property 2: The OLS line must pass through the point 

______________ , which means an estimate of the y-

intercept of the OLS regression is

______________________________ .
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The OLS regression

e. Use the summary statistics below to compute the 

equation of the OLS regression line, plotted with the 

original data below:

Step 1: Compute 𝑏1, the slope

Step 2: Compute 𝑏0, the intercept

ො𝑦 = ________________________________
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Example 5.1: Predicting Mercury levels from Alkalinity

The scatterplot below describes characteristics of water 

samples taken at 𝑛 = 53 Florida lakes. The acidity (pH) was 

recorded as well as the average mercury level (in parts-per-

million ppm) for a sample of fish (largemouth bass) from each 

lake.

Use the summary statistics provided in the table above to 

compute the equation of the OLS regression line.

ො𝑦 = _____________________ + _________________ ∗ 𝑥
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Variable 𝑚𝑒𝑎𝑛 sd 𝑟
pH level 6.5906 1.288

−0.5754Avg 

Mercury
0.5272 0.3410
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Example 5.1: Predicting Mercury levels from Alkalinity

b. One of the lakes sampled had a pH level of 5.1 and an 

average mercury reading of 1.23 ppm. What was the 

residual for this lake?
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Lecture 5-2: Evaluating OLS Regression

In the previous lecture we learned how to compute the 

Ordinary Least Squares regression line which, under 

certain conditions, is the single best-fitting line statistics 

can produce to summarize a relationship between two 

quantitative variables.

The next logical question is

_______________________________________________ ?
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Lecture 5-2: Evaluating OLS Regression Page 122

To find the standard error for our 

estimates we first calculate the

______________________________:

𝑆𝑆𝐸 = ෍𝑒𝑖
2 =෍ 𝑦𝑖 − ො𝑦𝑖

2

Taking the square root of the average 

gives 𝑠, the

______________________________ :

𝑠 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 2
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Lecture 5-2: Evaluating OLS Regression Page 122

𝒙 𝒚 ෝ𝒚 𝒆 𝒆𝟐

10.00 8.04 8.00 0.04 0.0014

8.00 6.95 7.00 -0.05 0.0027

13.00 7.58 9.50 -1.92 3.6952

9.00 8.81 7.50 1.31 1.7111

11.00 8.33 8.50 -0.17 0.0296

14.00 9.96 10.00 -0.04 0.0018

6.00 7.24 6.00 1.24 1.5336

2.00 4.26 4.00 0.26 0.0670

12.00 10.84 9.00 1.84 3.3775

7.00 4.82 6.50 -1.68 2.8281

5.00 5.68 5.50 0.18 0.0319

9.00 7.50 7.50 0.00 0.0000

𝑺𝑺𝑬

𝑴𝑺𝑬

𝒔
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Interpreting residual standard error Page 123

The residual standard error, 𝑠, measures the typical 

scatter or spread of data around the regression line.

If 𝑠 is ________________________ , the standard 

deviation of the response variable, then the regression 

model does not help us make more accurate prediction 

for a particular x-value than simply guessing the mean, ത𝑦.

If s is ________________________ , then we are getting 

more predictive power from our model. Thus, s is one of 

the ways we evaluate the usefulness of the regression 

model.
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Interpreting residual standard error Page 123

a. Can you match each value of 𝑠 and 𝑠𝑦 to their 

corresponding scatterplots?

Scatterplot
Residual Standard Error 

(average residual size) 𝒔

Standard deviation of 

response 𝒔𝒚

𝑠 = 21.37 𝑠𝑦 = 38.2035

𝑠 = 28.38 𝑠𝑦 = 30.82632

𝑠 = 0.2116 𝑠𝑦 = 0.3410
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Coefficient of Determination Page 124

Often, it is valuable to more formally compare the 

relationship between 𝑠 and 𝑠𝑦. 

Statisticians typically use the coefficient of determination,

which is just the _______________________________ .

Definition: The coefficient of determination R2 quantifies 

the percent of variation in the 

_______________________________ accounted for by its

_________________________ with the explanatory 

variable.
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Coefficient of Determination Page 124

Visualizing 𝑅2: Let’s visualize 𝑅2 using a simple example. 

Below we plot some manufactured data long with its OLS 

regression.

OLS regression line: ො𝑦 = 2.8305 + 0.4068𝑥

𝒙 𝒚 ෝ𝒚 𝒚 − ഥ𝒚 𝟐 ෝ𝒚 − ഥ𝒚 𝟐

2 4 3.64 1 1.8496

3 3 4.05 4 0.9025

4 5 4.46 0 0.2916

6 6 5.27 1 0.0729

8 5 6.08 0 1.1664

9 7 6.49 4 2.2201
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Coefficient of Determination Page 124

a. What is the overall variability 

∑ 𝑦 − ത𝑦 2 in the response 𝑦? 

This value is called the

Total Sum of Squares or SST.

b. The amount of variability that 

is explained by the relationship 

between the two variables is called the Model Sum of Squares 

or SSM. Use the table to calculate this, i.e., what is ∑ ො𝑦 − ത𝑦 2 ?

c. What percentage of this variability does our OLS account for? 

The ratio of SSM/SST is the coefficient of determination, R2. 

Calculate it for this example.

𝒙 𝒚 ෝ𝒚 𝒚 − ഥ𝒚 𝟐 ෝ𝒚 − ഥ𝒚 𝟐

2 4 3.64 1 1.8496

3 3 4.05 4 0.9025

4 5 4.46 0 0.2916

6 6 5.27 1 0.0729

8 5 6.08 0 1.1664

9 7 6.49 4 2.2201
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Coefficient of Determination Page 125

d. How do we interpret the coefficient of determination 𝑅2

computed in (c) above?

Interpretation: We were able to account for

_______________ of the variability in the response

variable by its ____________________________ with the

sampled cases of the predictor variable.
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Coefficient of Determination Page 125

e. Calculate the coefficient of determination 𝑅2 for this 

example. Compare how well the regression line models 

the data in this example to the example above.

New OLS regression line: ො𝑦 = 2.42373 + 0.48305𝑥
𝒙 𝒚 ෝ𝒚

ሺ

ሻ

𝒚

− ഥ𝒚 𝟐 ෝ𝒚 − ഥ𝒚 𝟐

2 3 3.39 1 2.5921

3 4 3.87 4 1.2769

4 5 4.36 0 0.4096

6 5 5.32 1 0.1024

8 6 6.29 0 1.6641

9 7 6.77 4 3.1329
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A note on computation Page 126

Most lecture examples thus far asked us to compute many 

aspects of this regression by-hand, but it is more typical to 

view the results of a regression performed by 

computational software. 

Consider the R output below, which computes the ordinary 

least squares (OLS) regression for our toy data set 

originally introduced in Lecture 5-1.



A note on computation Page 126

Call:

lm(formula = y ~ x)

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept)   3.0001     1.1247   2.667  0.02573 * 

x             0.5001     0.1179   4.241  0.00217 **

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.

1 ‘ ’ 1

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R-squared:  0.6665, Adjusted R-squared:  0.6

295 

F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217

John
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Diagnostics Page 127

Conditions for OLS to be optimal regression method:

_______________________________. The data should show a linear 

trend. If there is a nonlinear trend, an advanced regression method 

from another book or later course should be applied.

________________________________. Generally, the residuals must 

be nearly normal. When this condition is found to be unreasonable, it 

is usually because of outliers or concerns about influential points.

_______________________________. The variability of points around 

the least squares line remains roughly constant. 

________________________________________. Be cautious about 

applying regression to data collected sequentially in what is called a 

time series. Such data may have an underlying structure that should 

be considered in a model and analysis. 
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Diagnostics Page 127

In general, among the best ways to check whether it is 

safe to assume these conditions are met in each research 

scenario is by checking 

__________________________________________ .

John
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Ideally…

Examples of violations…



Lecture 5-3: Inference for OLS Page 128

The California Cooperative Oceanic Fisheries Investigation 

(CalCOFI) data set represents the longest (1949-present) and 

most complete (more than 50,000 sampling stations) data set 

of oceanographic and larval fish data in the world. 

It includes abundance data on the larvae of over 250 species 

of fish; larval length frequency data and egg abundance data 

on key commercial species; and oceanographic and plankton 

data. 

The physical, chemical, and biological data collected at regular 

time and space intervals quickly became valuable for 

documenting climatic cycles in the California Current and a 

range of biological responses to them.



Lecture 5-3: Inference for OLS Page 128

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 140.4988    33.6989   4.169 0.000127

df$Salnty -3.8070     0.9928  -3.834 0.000366 

Residual standard error: 3.62 on 48 degrees of 

freedom

Multiple R-squared:  0.2345
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Lecture 5-3: Inference for OLS Page 128

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 140.4988    33.6989   4.169 0.000127

df$Salnty -3.8070     0.9928  -3.834 0.000366 

Residual standard error: 3.62 on 48 degrees of 

freedom

Multiple R-squared:  0.2345

a. What is the 

correlation between 

ocean water salinity 

and ocean water 

temperature?
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Lecture 5-3: Inference for OLS Page 128

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 140.4988    33.6989   4.169 0.000127

df$Salnty -3.8070     0.9928  -3.834 0.000366 

Residual standard error: 3.62 on 48 degrees of 

freedom

Multiple R-squared:  0.2345

b. What is the OLS 

equation to predict the 

water temperature 

based on its salinity?

John
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Think about it:  What if … Page 128

we had all possible salinity and temperature measurements 

for all station measurements since 1949, 

… and we added all of these points to the scatterplot,

… and then found the best fitting line for this population of 

all points;

… then we could think of that line as the ‘true’ regression 

line, 

the regression line for the population; and we can start 

thinking more about inference.



Think about it:  What if … Page 128
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Inference for regression Page 129

The material covered so far focused on using the data from 

a sample to graph and describe a relationship. 

The slope and y-intercept values we computed from the

sample are ________________________; they are 

______________________ of the corresponding true slope 

and true y-intercept for the underlying true relationship for 

the larger population.

John



Inference for regression Page 129

Sample level

Relationship for an individual response:

Population level

Relationship for an individual response:

John

John



Inference for regression Page 129

Consider the population of all 

station records. When we run 

a linear regression on all 

846,863 observations, 

we get the following 

regression line:

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   167.350630   0.296226   564.9   <2e-16 ***

bottle$Salnty -4.624236   0.008753  -528.3   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.646 on 814245 degrees of freedom

(50616 observations deleted due to missingness)

Multiple R-squared:  0.2553, Adjusted R-squared:  0.2553 

F-statistic: 2.791e+05 on 1 and 814245 DF,  p-value: < 2.2e-16

John



Inference for regression Page 129

d. How does our sample regression line from (b) above 

compare to the true population line?

Sample Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 140.4988    33.6989   4.169 0.000127

df$Salnty -3.8070     0.9928  -3.834 0.000366 

Residual standard error: 3.62 on 48 degrees of 

Freedom Multiple R-squared:  0.2345

Population Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   167.350630   0.296226   564.9   <2e-16 ***

bottle$Salnty -4.624236   0.008753  -528.3   <2e-16 ***

Residual standard error: 3.646 on 814245 degrees of freedom

Multiple R-squared:  0.2553

John

John

John
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Is there a true relationship? Page 130

Null hypothesis 𝑯𝟎: 𝜷𝟏 = 𝟎 Alternative hypothesis 

𝑯𝑨: 𝜷𝟏 ≠ 𝟎
Meaning: The linear model 

has slope zero; i.e., there is 

NO linear relationship 

between x and y

Meaning: The linear model 

has a non-zero slope; i.e., 

some linear relationship 

exists between x and y



Is there a true relationship? Page 130

There are a number of ways to test this hypothesis. One way is 

through a t-test statistic (think about why it is a t and not a z 

test).  

The general form for a t test statistic is:    

𝑡 =
𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑛𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐



Is there a true relationship? Page 130

t-test for the population slope  

To test 𝐻0: 𝛽1 = 0 we would use

𝑡 =
𝑏1−0

𝑠.𝑒ሺ𝑏1ሻ
,    where 𝑠. 𝑒. 𝑏1 =

𝑠

∑ 𝑥− ҧ𝑥 2

and the degrees of freedom for the t-distribution are n – 2.



Is there a true relationship? Page 131

Consider the regression output from our earlier sample of 50 

station records. 

Use it to conduct a hypothesis test of whether there is a 

linear relationship between the salinity and temperature of 

ocean water. 

In other words, test 𝐻0: 𝛽1 = 0 vs.  𝐻𝐴: 𝛽1 ≠ 0.

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 140.4988    33.6989   4.169 0.000127

df$Salnty -3.8070     0.9928  -3.834 0.000366 

Residual standard error: 3.62 on 48 degrees of 

freedom

Multiple R-squared:  0.2345
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What does it mean if we have evidence 
against 𝐻0?

Page 131

In the t-test for the slope, evidence that the null hypothesis is

not consistent with our sample result means that the idea

that there is ______________________________________ is

called into doubt. That is, we have reason to believe there

______________________________ between the

explanatory and response variables.
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What does it mean if we have evidence 
against 𝐻0?

Page 131

Confidence Interval for the population slope β1

𝑏1 ± 𝑡∗ 𝑠. 𝑒. 𝑏1

where df = n – 2 for the t* value

b. Compute the 95% confidence interval for the slope 𝛽1 for 

the water salinity & temperature example.  
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Predicting local species diversity Page 132

A common observation in ecology is that species diversity is 

higher in warmer climates than in colder ones. 

To examine this association, data was sampled from random 

locations participating in the Audubon Society’s Christmas 

Bird Count. During the annual Christmas Bird Count, 

participants attempt to count all birds in a 15-mile diameter 

area. 

Assuming participants’ records have errors at random, we 

can use the latitude of their Bird Count submissions as an 

explanatory (or predictor) variable of the number of unique 

species observed that day. 
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Location Lat Count

Bombay Hook, DE 39.22 128

Cape Henlopen, DE 38.8 137

Middletown, DE 39.47 108

Milford, DE 38.96 118

Rehoboth, DE 38.6 135

Seaford-Nanticoke, DE 38.58 94

Wilmington, DE 39.73 113

Crisfield, MD 38.03 118

Denton, MD 38.9 96

Elkton, MD 39.53 98

Lower Kent County, MD 39.13 121

Ocean City, MD 38.32 152

Salisbury, MD 38.33 108

S. Dorchester County, 

MD

38.37 118

Cape Charles, VA 37.2 157

Chincoteague, VA 37.97 125

Wachapreague, VA 37.67 114

Statistic Mean SD Cor

𝑥 = latitude 38.6358 0.6877

-0.4623        𝑦 = No. of species 

observed
120 17.8851
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Call:

lm(formula = SpeciesDiversity$Count ~ SpeciesDiversity$Lat

Coefficients:

Estimate Std. Error t value Pr(>|t|)  

(Intercept)           XXXXX 230.024   2.544   0.0225 

SpeciesDiversity$Lat XXXXX 5.953  -2.022   0.0613 

Residual standard error: 16.37 on 15 degrees of freedom

Multiple R-squared:  XXXX, Adjusted R-squared:  0.1619 

F-statistic:  4.09 on 1 and 15 DF,  p-value: 0.06134

a. Notice that the OLS estimates for the population slope and 

intercept are missing from the regression output, as well as 

the coefficient of determination. Use the provided sample 

statistics on the previous page to fill in these missing terms.
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b. The researchers who collected this study are interested in 

assessing whether there is a significant linear relationship 

between the temperature during the month of birth and the 

age of locomotor onset. Use the regression output to conduct 

the appropriate hypothesis test for this researcher question 

and draw a conclusion based on your findings.

Hypotheses: H0:___________ Ha :___________

Test Statistic Value: _______  p-value: __________

Conclusion:
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c. Explain why this model might not reliably predict the 

number of birds one could expect to see in East Lansing, MI, 

which has a latitude of 42.74 degrees.


