Page 118

Chapter 5: Linear Regression

Study relationship between 2 quantitative variables.

One variable is -}&, W&Lvariable,

denoted by .
Measures the outcome of the studly.

Also called the ‘M’%MLM variable.

Other variable is _ e, variable,
denoted by x.
Thought to explain changes in the response.

Also called the MM—WJ&_:- variable.
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Modeling a relationship with regression

The linear regression model suggests the relationship that
predicts the value of y for a given value of x can be
expressed as:

_ B! ﬁ n
Y = lg" X+ &
y is the _,zéﬁn‘[m‘_\mL of the dependent variable Y

when the value of the independent variable is X = x.

B, is the 3}"’ mﬁﬁ(%y'/' : the mean of Y when
x = 0.
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Modeling a relationship with regression

The linear regression model suggests the relationship that
predicts the value of y for a given value of x can be
expressed as:

Y=,30-|-,31x-|-6

B, is the S R ; the change in the mean
of Y per unit char(ge in X.

gisan __ ey ‘II’M\/\ that describes the effect
on Y of all factors other than X.
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Example: a fictitious (but famous) data set "&° '
var 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 [mean| sd | -

3.316
10 8 13 9 11 14 6 4 12 7 5 9 7 0.816

8.04 695 758 88l 833 996 724 426 1084 482 568 715 2‘%31 4

-—
—

Which line better describes the relationship between x & y? T
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Interpreting the slope!

b. Suppose an observation has a predictor-value of x = 127
What value of y would you predict it had? [Get a prediction
from both lines.]

b 1+0.25(13)= 10 ; ( "t{'),;”/ -

\° 45 0.3(0)> {1
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Interpreting the slope!

c. How far off are these estimates from observed y-value of
the case in the collected data with x = 127

6, -0 =0 N

These errors are called V‘Cblduﬁls : L
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Residuals

Residuals are the leftover variation in the data after
accounting for the model fit. A good way of thinking about
residuals is:

Data = \/(Il'-’b Jfﬁ"d 68_ + m

Equivalently, we can say ...

e=_<)§3a'~\’\'\"'d 'Qlﬁﬂcb’hd

(w - &)
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Fitting a line by OLS regression
A line that fits the data “best” will be the one for which the

snallest

i AA '\ 'A 1
T 8.04 8.50 7.50 0.46 0.54 0.21 0.29
6.95 7.00 6.90 0.05 0.05 0.00 0.00
13.00 A 10.75  8.40 317 082 1005  0.67
900 XA 7.75 7.20 1.06 1.61 112 2.59
BN  8.33 9.25 7.80 0.92 0.53 0.85 0.28
PN 096 1150 870 1.54 1.26 2.37 1.59
. 600 [EAY 5.50 6.30 1.74 0.94 3.03 0.88
4.26 4.00 5.70 0.26 1.44 0.07 2.07
12.00 EELEYEE (0 9[ 9 Y 92.7%H o Z| +.34
4.82 6.25 6.60 143 -1.78 2.04 3.17
5.68 4.75 6.00 0.93 0.32 0.86 0.10
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. . . Page 120
Equation of Ordinary Least Squares (OLS) line

d. Which equation has the smaller sum of squared residuals
Ye? [i.e., which line better describes the relationship
between X and Y?

P)IU(J ‘2\6?" - &13‘
M e ]CI,Cﬁ
So W 1 Svpanar rnodd
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The OLS regression Page 120

KEY IDEA: ordinary least-squares (OLS) regression line
will produce the smallest sum of squared residuals
mathematically possible.

Property 1: An estimate of the slope of the OLS regression

IS 6
b= O (g%;

Property 2: The OLS line must pass through the point

—
\ , which means an estimate of the y-
mtercept of the OLS regression is

bo-" 6-5.‘32
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The OLS regression Page 120

e. Use the summary statistics below to compute the
equation of the OLS regression line, plotted with the
original data below:

Step 1: Compute b4, the slope
|
L = o (39 oo
\ 3.315%F
Step 2: Compute b, the intercept

b,> 1S - (05)4=73
L+ S x

A
I
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Example 5.1: Predicting Mercury levels from Alkalinity page 121

The scatterplot below describes characteristics of water
samples taken at n = 53 Florida lakes. The acidity (pH) was
recorded as well as the average mercury level (in parts-per-

million ppm) for a sample of fish (largemouth bass) from each
lake.

 Veriable | mean | sd | 1 |
6.5906 1.288

0.5272 03410 02724
ercury

eeeeeee

Use the summary statistics provided in the table above to
compute the equation of the OLS regression line.

P = ]§300\ + -015a3 ., -
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Example 5.1: Predicting Mercury levels from Alkalinity page 121
b. One of the lakes sampled had a pH level of 5.1 and an

average mercury reading of 1.23 ppm. What was the
residual for this lake?

A . 15309 9153 (s.\)
. 8. 2543, Ml

= W - 4|.9~'5'0-:"5-‘6. * 5. N .
6= 374
= 90.43F5% ppm.
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Lecture 5-2: Evaluating OLS Regression Page 122

In the previous lecture we learned how to compute the
Ordinary Least Squares regression line which, under
certain conditions, is the single-best-fitting-line statistics
can produce to summarize a relationship between two
quantitative variables.

The next logical question is

o well does Hho moded Bb
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Lecture 5-2: Evaluating OLS Regression Page 122

—
—

To find the standard error for our
estimates we first calculate the

MMM onfovs:
SSE = Zeiz =Z()’i — 91)?

Taking the square root of the average

o |
=

7

gives s, the
aadl . oreer T
s = VHSE = SSE

n—2
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Lecture 5-2: Evaluating OLS Regression Page 122

2 =

X y y e e
10.00 8.04 8.00 0.04 0.0014 | °1

8.00 6.95 700 -0.05 0.0027]| . |
13.00 7.58 9.50 -1.92 3.6952
9.00 8.81 7.50 1.31 1.7111
11.00 8.33 850 -0.17 0.0296| - -
1400 996 10.00 -0.04 0.0018
6.00 7.24 6.00 1.24 1.5336
2.00 4.26 4.00 0.26 0.0670| -1
12.00 10.84 9.00 1.84 3.3775
* 7.00 4.82 6.50 -1.68 2.8281 4 6 : 10 12 14
5.00 5.68 5.50 0.18 0.0319
9.00 7.50 7.50 0.00 0.0000

SSE 13,3799
MSE | 3939

s 1152y
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Interpreting residual standard error Page 123

The residual standard error, s, measures the typical
scatter or spread of data around the regression line.
(l,(,., & smlar ke 1 Sa_,)

If s is % \Q\_ , the standard
deviation of thNe response variable, then the regression

model does not help us make more accurate prediction
for a particular x-value than simply guessing the mean, y.

| | (i smalter Hhan Sy
ifsis & “then we are gettméw
more predicHdve power from our model. Thus, s is one of

the ways we evaluate the usefulness of the regression
model.
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Interpreting residual standard error Page 123

a. Can you match each value of s and s,, to their
corresponding scatterplots?

Plot A Plot B Plot C

150

100

50

Residual Standard Error Standard deviation of
Scatterplot . :
(average residual size) s response s
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Coefficient of Determination Page 124

Often, it is valuable to more formally compare the
relationship between s and s,,.

Statisticians typically use the coefficient of determination,
which is just the '56(/ua\rc/ 1? wﬂd&ma

Definition: The coefficient of determination R? quantifies
the percent of variation in the

accounted for by its

IIM Yd“)')m'fbnﬂ with the explanatory

variable.
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Coefficient of Determination Page 124

Visualizing R?: Let’s visualize R* using a simple example.
Below we plot some manufactured data long with its OLS
regression.

OLS regression line: y = 2.8305 4+ 0.4068x

| 3
4/
2 4 3.64 1

1.8496 ]
0 .
3 405 4 0.9025 !
4.46 0 0.2916 1R

6 5.27 1 0.0729
5 6.08 0] 1.1664
7 6.49 4 2.2201

o1

2 3 4 5 6 7 8 9
X-variable
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Coefficient of Determination Page 124
a. What is the overall variability -.-

Y(y — ¥)? in the response y? 18496
This value is called the

3 4.05 4 0.9025
Total Sum of Squares or SST. ] = | e o 0.2916

6 5.27 1 0.0729
ool grwn “"‘5“" s 10

5 6.08 0 1.1664

7 6.49 4 2.2201

b. The amount of variability that
is explained by the relationship
between the two variables is called the Model Sum of Squares
or SSM. Use the table to calculate this, i.e., what is Y.(§ — y)? ?

Tl ved \w\ﬁnns s 6.509

c. What percentage of this variability does our OLS account for?
The ratio of SSM/SST is the coefficient of determination, R=.

Calculate it for this example. 1 b. 503 . 0 4508

3=



John

John

John

John

John

John


Coefficient of Determination Page 125

d. How do we interpret the coefficient of determination R?
computed in (c) above?

Interpretation: We were able to account for

(f)g .0 %Q}o of the variability in the response

variable by its \I\Mm’ VQ&)GU\AS(A;P with the

sampled cases of the predictor variable.
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Coefficient of Determination Page 125

e. Calculate the coefficient of determination R? for this
example. Compare how well the regression line models
the data in this example to the example above.

New OLS regression line: y = 2.42373 4+ 0.48305x

~ ( ~
)
2 3 3.39 1

2.5921

4 387 4 1.2769 25
d
5 4.36 0 0.4096 <
™ .
5 5.32 1 0.1024 2 3 4 5 & 7 & 3
X-variable

= 6 6.29 0 1.6641 q ,7,3

& } )
n 7 677 4 31329 )Z ., — 0. q17'

10 4.173§ -
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A note on computation Page 126

Most lecture examples thus far asked us to compute many
aspects of this regression by-hand, but it is more typical to
view the results of a regression performed by
computational software.

Consider the R output below, which computes the ordinary
least squares (OLS) regression for our toy data set
originally introduced in Lecture 5-1.




A note on computation Page 126

Call: e
Im(formula = y ~ X)

b, b |

CoeffidNent

stimate Std. Error t wvalue Pr(>]|t]|)
3.0001 1.1247 2.007 0.02573 *
0.5001 0.1179 4.241 0.00217 **

(Intercep
X

Signif. codes: 0 Y*x**’ Q0,001 ‘**’ (0.01 >’ 0.05 ‘.’ O.

1 Y71

d pd
Residual standard error: «1.237 oyf 9 degrees of freedom
Multiple R-squared: «©.6665, justed R-squared: 0.6
295

F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
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Diagnostics Page 127

Conditions for OLS to be optimal regression method:

&L&lﬂdﬁlﬂ‘n ')I‘(’ N1y B \M The data should show a linear

trend. If ther‘e is:a nonlinear trend, an advanced regression method
from another book or later course should be applied.

o
Mb AL EAS NIWM“‘@_(} _. Generally, the residuals must
on

be nearly normal. When this dition is found to be unreasonable, it
is usually because of outliers or concerns about influential points.

Trt)b A {1 m W\‘)’bnﬂ‘]' Varola- The variability of points around

the least squares line remains roughly constant.

lPas\T(A 6W\’6‘\'\MLQ‘_QM . Be cautious about
applying regression to data*Collected sequentially in what is called a

time series. Such data may have an underlying structure that should
be considered in a model and analysis.
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Diagnostics Page 127

In general, among the best ways to check whether it is
safe to assume these conditions are met in each research
scenario is by checking

o visdwk . &?AW p(# |
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Diagnostics
Ideally...

Family heights

Residuals vs. Fitted Values
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Lecture 5-3: Inference for OLS Page 128

The California Cooperative Oceanic Fisheries Investigation
(CalCOFI) data set represents the longest (1949-present) and
most complete (more than 50,000 sampling stations) data set
of oceanographic and larval fish data in the world.

It includes abundance data on the larvae of over 250 species
of fish; larval length frequency data and egg abundance data
on key commercial species; and oceanographic and plankton
data.

The physical, chemical, and biological data collected at regular
time and space intervals quickly became valuable for
documenting climatic cycles in the California Current and a
range of biological responses to them.



Lecture 5-3: Inference for OLS Page 128

Temperature (C)

"g 103D 3. JOtx

33.0 335 34.0 345 35.0 355

Salinity (PSU)
Coefficients:
Estimate Std. Error t value Pr(>]|t])
(Intercept) 140.4988 33.6989 4.169 0.000127
df$Salnty -3.8070 0.9928 -3.834 0.00030606

Residual standard error: 3.62 on 48 degrees of
freedom
Multiple R-squared: 0.2345
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Lecture 5-3: Inference for OLS Page 128

a. What is the
correlation between
ocean water salinity
and ocean water
temperature?

R?'-: 0. 9%"\{: 99 . . . . . I
= J n4Us G OLIQ"{% e e

15

Temperature (C)
10

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 140.4988 33.6989 4.169 0.000127
df$Salnty -3.8070 0.9928 -3.834 0.000366

Residual standard error: 3.62 on 48 degrees of
freedom .
Multiple R-squared: ©.2345 m
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Lecture 5-3: Inference for OLS Page 128

b. What is the OLS
equation to predict the °
water temperature

based on its salinity?

Temperature (C)

33.0 335 34.0 345 35.0 355

%-_ 40,4438 -3.S0Fx

Salinity (PSU)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) “140:4988 33.6989 4.169 0.000127
df$Salnty -3.8070 0.9928 -3.834 0.000366

Residual standard error: 3.62 on 48 degrees of

freedom .
Multiple R-squared: 0.2345 ]
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Think about it: What if... Page 128

we had all possible salinity and temperature measurements
for all station measurements since 1949,

... and we added all of these points to the scatterplot,

... and then found the best fitting line for this population of
all points;

... then we could think of that line as the ‘true’ regression
line,

the regression line for the population; and we can start
thinking more about inference.



S“Mw‘, detn

of 864,863 station records pmy{l’s‘

34

Salinity (PSU)
32
I

30
|

Temperature (C)
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Inference for regression Page 129

The material covered so far focused on using the data from
a sample to graph and describe a relationship.

The slope and y-intercept values we computed from the

ovd -Hn\h\
sample are ﬂ’b‘\'\‘fl'\% ( R ,_;theyare

L"D‘l'l WV/\T\’ELS of the corresponding true slope

and true y-intercept for the underlying true relationship for
the larger population.
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Inference for regression Page 129

Sample level
Relationship for an individual response:
% < bo } b‘ X ¥+ @,
Population level

Relationship for an individual response:

%: Y)‘¥B1x+€
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Inference for regression Page 129

Population of 864,863 station records

Consider the population of all
station records. When we run
a linear regression on all
846,863 observations,

we get the following :
regression line: e

Temperature (C)

36

34

Salinity (PSU)

32

30

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 167.350630 0.296226 564.9 <2e-16 ***
bottleS$SSalnty —=4.624236 0.008753 -=528.3 <2e-16 **x*

Signif. codes: 0 ‘“***" (0.001 ‘*** 0.01 *" 0.05 ‘. 0.1 Y " 1

Residual standard error: 3.646 on 814245 degrees of freedom
(50616 observations deleted due to missingness)

Multiple R-squared: 0.2553, Adjusted R-squared: 0.2553

F-statistic: 2.791e+05 on 1 and 814245 DF, p-value: < 2.2e-16
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Inference for regression Page 129

d. How does our sample regression line from (b) above
compare to the true population line?

Sample Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) @40.4988 33.6989 4.169 0.000127
dfSSalnty -3.8070 0.9928 -3.834 0.000366

Residual standard error: 3.62 on 48 degrees of
Freedom Multiple R-squared: 0.2345

Population Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 167.350630 0.296226 564.9 <2e-16 **x*
bottle$Salnty —4.624236 0.008753 -528.3 <2e-16 ***

Residual standard error: 3.646 on 814245 degrees of freedom
Multiple R-squared: @ 0.2553
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Is there a true relationship?

Null hypothesis Hy: 1 =0

Alternative hypothesis
HA: ﬁl == O

Meaning: The linear model
has slope zero; i.e., there is
NO linear relationship
between x andy

Meaning: The linear model
has a non-zero slope; i.e.,
some linear relationship
exists between x and y

1 2 3 4 5 6 f 8 9 10

Page 130

)]

L = T = 7 Rt IR = = B £ R

AN

1 2 3 4 5 6 7 8 9 10




Is there a true relationship? Page 130

There are a number of ways to test this hypothesis. One way is
through a t-test statistic (think about why itisatand not az

test).

The general form for a t test statistic is:

. sample statistic — null value
~ standard error of the sample statistic




Is there a true relationship? Page 130
t-test for the population slope

To test Hy: f; = 0 we would use

S

V2 (x—%)2

b0
 s.e(by)

where s.e.(b;) =

and the degrees of freedom for the t-distribution are n - 2.




Is there a true relationship?

Page 131

Consider the regression output from our earlier sample of 50

station records.

Use it to conduct a hypothesis test of whether there is a
linear relationship between the salinity and temperature of

ocean water.

In other words, test Hy: f; = 0 vs. Hy: [y
Coefficients:

Estimate Std. Error t wvalue
(Intercept) 140.4988 33.6989 4.169
df$Salnty -3.8070 0.9928 —3.834

* 0.

Pr(>|tl)
0.000127
0.000366

Residual standard error: 3.62 on 48 degrees of

freedom
Multiple R-squared: 0.2345
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What does it mean if we have evidence Page 131
against Hy?

In the t-test for the slope, evidence that the null hypothesis is

not consistent with our sample result means that the idea

that there is _\0 \IW m\x\m\ﬁlm;) l)/‘l' X‘?é: is

called into doubt. That is, we have reason to believe there

ﬁS / ‘\m_ﬂ\f }'dh")dh“/\i”D between the
=

explanatory and response variables.
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What does it mean if we have evidence Page 131
against Hy?

Confidence Interval for the population slope B,
b, + t*[s.e.(by)]

where df = n - 2 for the t* value

b. Compute the 95% confidence interval for the slope f; for
the water salinity & temperature example. mvT(oaS'j g ?')

b t %((a\ = .3.0106
.2 3073 2.0 (0.9 + (-3031 .1 5107)
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Predicting local species diversity = pege 132

A common observation in ecology is that species diversity is
higher in warmer climates than in colder ones.

To examine this association, data was sampled from random
locations participating in the Audubon Society’s Christmas
Bird Count. During the annual Christmas Bird Count,
participants attempt to count all birds in a 15-mile diameter
area.

Assuming participants’ records have errors at random, we

can use the latitude of their Bird Count submissions as an

explanatory (or predictor) variable of the number of unique
species observed that day.



Predicting local species diversity = pege 132

Lat Latitude vs. Species Count
39.22 128

38.8 137

39.47 108

38.96 118 |

38.6 135 .

38.58 94 g %1

39.73 113 izal

38.03 118 o

38.9 96 £

39.53 98 |

39.13 121 ) .
38.32 152 37|,5 3al,o 33‘,5 39‘,0 39‘,5
38.33 108

MD

37.2 157

37.97 125

37.67 114

Statistc | Mean | __SD | Cor
x = latitude 38.6358 0.6877

120 17.8851 L

y = No. of species
observed




Predicting local species diversity reee 132133

Call:
Im(formula = SpeciesDiversity$Count ~ SpeciesDiversitySLat

Coefficients:
Estimate Std. Error t wvalue Pr (>]|t])

(Intercept) XXXXX 230.024 2.544 0.0225
SpeciesDiversity$Lat XXXXX 5.953 -2.022 0.0613

Residual standard error: 16.37 on 15 degrees of freedom
Multiple R-squared: XXXX, Adjusted R-squared: 0.1619
F-statistic: 4.09 on 1 and 15 DF, p-value: 0.06134

a. Notice that the OLS estimates for the population slope and
intercept are missing from the regression output, as well as
the coefficient of determination. Use the provided sample

statistics on the previous page to fill in these missing terms.
.




Predicting local species diversity paee 133

b. The researchers who collected this study are interested in
assessing whether there is a significant linear relationship
between the temperature during the month of birth and the
age of locomotor onset. Use the regression output to conduct
the appropriate hypothesis test for this researcher question
and draw a conclusion based on your findings.

Hypotheses: H,: H,:
Test Statistic Value: p-value:
Conclusion:



Predicting local species diversity paee 133

c. Explain why this model might not reliably predict the
number of birds one could expect to see in East Lansing, Ml,
which has a latitude of 42.74 degrees.




