STT 861 (Fall 2019): Homework 1

This homework will be collected at the start of the lecture of Wednesday Sep 11, 2019.

Question 1. Let A, B and C be three events and $P(\cdot)$ be a probability. Show that

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Question 2. A sequence of events $\{A_n : n = 1, 2, ...\}$ is said to increase to A if

(i)
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$$
, and (ii) $A = \bigcup_{n=1}^{\infty} A_n$.

We denote $A_n \uparrow A$. Define $B_1 = A_1$, and $B_n = A_n \setminus A_{n-1}$, for n = 2, 3, ... Show the following:

- (a) Show that B_1, B_2, \ldots are pairwise disjoint, i.e. for all $i \neq j$, $B_i \cap B_j = \emptyset$.
- (b) $A_n = \bigcup_{j=1}^n B_j$, for any $n = 1, 2, 3, \dots$
- (c) $A = \bigcup_{j=1}^{\infty} B_j$.
- (d) $P(A) = \lim_{n \to \infty} P(A_n).$

Question 3. Suppose $P(A^c) = 0.2$ and P(B) = 0.3. Can A and B be disjoint? Justify.