STT 861 (Fall 2019): Homework 1 – SOLUTION

This homework will be collected at the start of the lecture of Wednesday Sep 11, 2019.

Question 1. Let A, B and C be three events and $P(\cdot)$ be a probability. Show that

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

Solution.

$$\begin{split} P(A \cup B \cup C) &= P(A) + P(B \cup C) - P[A \cap (B \cup C)] \\ &= P(A) + [P(B) + P(C) - P(B \cap C)] - P[(A \cap B) \cup (A \cap C)] \\ &= P(A) + P(B) + P(C) - P(B \cap C) - [P(A \cap B) + P(A \cap C) - P\{(A \cap B) \cap (A \cap C)\}] \\ &= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C). \end{split}$$

Question 2. A sequence of events $\{A_n : n = 1, 2, ...\}$ is said to increase to A if

(i)
$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$$
, and (ii) $A = \bigcup_{n=1}^{\infty} A_n$.

We denote $A_n \uparrow A$. Define $B_1 = A_1$, and $B_n = A_n \setminus A_{n-1}$, for n = 2, 3, ... Show the following:

- (a) Show that B_1, B_2, \ldots are pairwise disjoint, i.e. for all $i \neq j$, $B_i \cap B_j = \emptyset$.
- (b) $A_n = \bigcup_{i=1}^n B_i$, for any n = 1, 2, 3, ...
- (c) $A = \bigcup_{j=1}^{\infty} B_j$.
- (d) $P(A) = \lim_{n \to \infty} P(A_n).$
- Solution. (a) Here for any $n = 1, 2, ..., B_n = A_n \setminus A_{n-1}$, where we define $A_0 = \emptyset$. We want to show $B_m \cap B_n = \emptyset$, for any $m \neq n$.

Without any loss of generality we take, m < n. As they are integers, $m \le n-1$, and so $A_m \subseteq A_{n-1}$ which implies $\emptyset \subseteq (A_m \cap A_{n-1}^c) \subseteq (A_{n-1} \cap A_{n-1}^c) = \emptyset$. Hence $A_m \cap A_{n-1}^c = \emptyset$. Thus

$$B_m \cap B_n = (A_m \setminus A_{m-1}) \cap (A_n \setminus A_{n-1}) = (A_m \cap A_{m-1}^c) \cap (A_n \cap A_{n-1}^c) = \emptyset$$

Alternatively if possible $x \in B_m \cap B_n$, which means $X \in B_m$ and also $x \in B_n$. Now if $x \in B_n = A_n \setminus A_{n-1} \Rightarrow x \notin A_{n-1} \Rightarrow x \notin A_m$, because $A_m \subseteq A_{n-1}$. But $B_m = A_m \setminus A_{m-1} \subseteq A_m$, and so $x \notin B_m$. This contradicts the fact that $x \in B_m$. (b) For any j = 1, 2, ..., n, $B_j = A_j \setminus A_{j-1} \subseteq A_j \subseteq A_n$. Hence $\bigcup_{j=1}^n B_j \subseteq A_n$. On the other hand, if $x \in A_n$, suppose $k = \min\{j : x \in A_j, \text{ but } x \notin A_{j-1}, j = ,...n\}$. Then $x \in A_k \setminus B_{k-1} = B_k \subseteq \bigcup_{j=1}^n B_j$. Thus $A_n = \bigcup_{j=1}^n B_j$.

Alternatively, we can prove $A_n = \bigcup_{j=1}^n B_j$ by induction. Obviously true for n = 1, as $A_1 = B_1$. Now we assume it holds for n. Now

$$\bigcup_{j=1}^{n+1} B_j = \left(\bigcup_{j=1}^n B_j\right) \cup B_{n+1}$$

$$= A_n \cup (A_{n+1} \setminus A_n) \qquad \text{[by induction hypothesis]}$$

$$= (A_n \cap A_{n+1}) \cup (A_{n+1} \cup A_n^c) \qquad \text{[because } A_n \subseteq A_{n+1}\text{]}$$

$$= A_{n+1} \cap (A_n \cup A_n^c) \qquad \text{[by distributivity]}$$

$$= A_{n+1} \cap S = A_{n+1}.$$

- (c) For any n, $B_n = A_n \setminus A_{n-1} \subseteq A_n \subseteq \bigcup_{j=1}^{\infty} A_j = A$. Hence $\bigcup_{n=1}^{\infty} B_n \subseteq A$. On the other hand if $x \in A = \bigcup_{j=1}^{\infty} A_j$, hence for some $n \ge 1$, $x \in A_n = \bigcup_{j=1}^n B_j \subseteq \bigcup_{j=1}^{infty} B_j$. Hence $A \subseteq \bigcup_{j=1}^{\infty} B_j$. Thus $A = \bigcup_{j=1}^{\infty} B_j$.
- (d) As B_n 's are disjoint,

$$P(A_n) = P\left(\bigcup_{j=1}^n B_j\right) = \sum_{j=1}^n P(B_n)$$

$$\implies \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \sum_{j=1}^n P(B_n) = \sum_{j=1}^\infty P(B_n) = P\left(\bigcup_{j=1}^\infty B_j\right) = P(A).$$

Question 3. Suppose $P(A^c) = 0.2$ and P(B) = 0.3. Can A and B be disjoint? Justify.

Solution. By Bonferroni's inequality

$$P(A \cap B) \ge 1 - P(A^c) - P(B^c) = 1 - 0.2 - (1 - 0.3) = 0.1 > 0.$$

So A and B cannot be disjoint, otherwise the probability would have been 0.