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1. Definitions. The basic theory of U-statistics was developed by W. Hoeffding
(1948a). Detailed expositions of the general topic may be found in M. Denker (1985)
and A. J. Lee (1990). See also Fraser (1957) Chapter 6, Serfling (1980) Chapter 5, and
Lehmann (1999), Chapter 6.

Let P be a family of probability measures on an arbitrary measurable space. The
problems treated here are nonparametric, which means that P will be taken to be a large
family of distributions subject only to mild restrictions such as continuity or existence of
moments. Let θ(P ) denote a real-valued function defined for P ∈ P . The first notion we
need is that of an estimable parameter. (Hoeffding called these regular parameters.)

Definition 1. We say that θ(P ) is an estimable parameter within P , if for some integer
m there exists an unbiased estimator of θ(P ) based onm i.i.d. random variables distributed
according to P ; that is, if there exists a real-valued measurable function h(x1, . . . , xm) such
that

EP (h(X1, . . . ,Xm)) = θ(P ) for all P ∈ P , (1)

when X1, . . . ,Xm are i.i.d. with distribution P . The smallest integer m with this property
is called the degree of θ(P ).

It should be noted that the function h may be assumed to be a symmetric function of
its arguments. This is because if f is an unbiased estimator of θ(P ), then the average of f
applied to all permutations of the variables is still unbiased and is, in addition, symmetric.
That is,

h(x1, . . . , xm) =
1
m!

∑
π∈Πm

f(xπ1 , . . . , xπm ), (2)

where the summation is over the group Πm of all permutations of an m-vector, is obviously
symmetric in its arguments, and has the same expectation under P as does f .

Definition 2. For a real-valued measurable function, h(x1, . . . , xm) and for a sample,
X1, . . . ,Xn, of size n ≥ m from a distribution P , a U-statistic with kernel h is defined
as

Un = Un(h) =
(n−m)!

n!

∑
Pm,n

h(Xi1 , . . . ,Xim) (3)
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where the summation is over the set Pm,n of all n!/(n −m)! permutations (i1, i2, . . . , im)
of size m chosen from (1, 2, . . . , n). If the kernel, h, is symmetric in its arguments, Un has
the equivalent form

Un = Un(h) =
1(
n
m

) ∑
Cm,n

h(Xi1 , . . . ,Xim) (4)

where the summation is over the set Cm,n of all
(

n
m

)
combinations of m integers, i1 < i2 <

. . . < im chosen from (1, 2, . . . , n).

If θ(P ) = EPh(X1, . . . ,Xm) exists for all P ∈ P , then an obvious property of the
U-statistic, Un, is that it is an unbiased estimate of θ(P ). Moreover it has the optimality
property of being a best unbiased estimate of θ(P ) if P is large enough, for example if it
contains all distributions, P , for which θ(P ) is finite. Then the order statistics form a com-
plete sufficient statistic from P ∈ P . And Un, being a symmetric function of X1, . . . ,Xn,
is a function of the order statistics, and so is a best unbiased estimate of its expectation,
due to the Hodges-Lehmann theorem. This means, for example, that no unbiased estimate
of θ(P ), based on X1, . . . ,Xn, can have a variance smaller than the variance of Un. We do
not deal further with this subject since our interest here is in the asymptotic distribution
of Un.

2. Examples. 1. Moments. If P is the set of all distributions on the real line with
finite mean, then the mean, µ = µ(P ) =

∫
xdP (x), is an estimable parameter of degree

m = 1, because f(X1) = X1 is an unbiased estimate of µ. The corresponding U-statistic
is the sample mean, Un = Xn = (1/n)

∑n
1 Xi. Similarly, if P is the set of all distributions

on the real line with finite kth moment, then the kth moment, µk =
∫
xk dP (x) is an

estimable parameter of degree 1 with U-statistic, (1/n)
∑n

1 X
k
i .

How about estimating the square of the mean, θ(P ) = µ2? Since E(X1X2) = µ2, it
is also an estimable parameter with degree at most 2. It is easy to show it cannot have
degree 1 (Exercise 1), so it has degree 2. The U-statistic Un of (3) and (4) corresponding
to h(x1, x2) = x1x2 is

Un =
1

n(n− 1)

∑
i�=j

XiXj =
2

n(n− 1)

∑
i<j

XiXj . (5)

If P is taken to be the set of all distributions on the real line with finite second moment,
then the variance, σ2 = µ2 −µ2, is also estimable of degree 2, since we can estimate µ2 by
X2

1 and µ2 by X1X2:
E(X2

1 −X1X2) = σ2. (6)

However the kernel, f(x1 , x2) = x2
1 − x1x2, is not symmetric in x1 and x2. The corre-

sponding symmetric kernel given by (2) is the average,

h(x1, x2) =
1
2
(f(x1 , x2) + f(x2 , x1)) =

x2
1 − 2x1x2 + x2

2

2
=

(x1 − x2)2

2
. (7)
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This leads to the U-statistic,

Un =
2

n(n− 1)

∑
i<j

(Xi −Xj)2

2

= · · · = s2x =
1

n− 1

n∑
1

(Xi −X)2 .

(8)

This is the unbiased sample variance.
It is easy to see that any linear combination of estimable parameters is estimable,

and any product of estimable parameters is estimable (Exercise 2). Thus there are U-
statistics for estimating all moments and all cumulants. (The cumulants are the coefficients
of (it)k/k! in the power series expansion of log φ(t), the logarithm of the characteristic
function. They are polynomial functions of the moments.)

In the definition of estimable parameter and its corresponding U-statistic, no restric-
tion is made on the space on which the distributions must lie. Thus each P ∈ P could
be a distribution on the plane or in d-dimensions, and then the corresponding observa-
tions would be random vectors. One can construct U-statistics for estimating a covariance
(Exercise 3) and higher cross moments.

2. The Wilcoxon Signed Rank Test. Let P be the family of continuous distributions on
the real line. Consider the problem of testing the hypothesis,H0, that the true distribution,
P , is symmetric about the origin based on a sample Z1, . . . , Zn from P . (This problem
arises most naturally from a paired comparison experiment based on random variables,
(Xi, Yi), when Zi = Xi − Yi. The hypothesis that Xi and Yi are independent identically
distributed leads to the hypothesis that Zi is distributed symmetrically about the origin.)

Of course the sign test (reject H0 if the number of positive Zi is too large) can be
used in this problem as a quick and dirty test, but if you have more time, a better choice
is the Wilcoxon signed rank test. This test is based on the statistic

W+
n =

n∑
i=1

R+
i I(Zi > 0) (9)

where R+
i is the rank of |Zi| among |Z1|, |Z2|, . . . , |Zn|. Although it is not a U-statistic,

one can show (Exercise 4) that W+
n is a linear combination of two U-statistics,

W+
n =

∑
i

I(Zi > 0) +
∑
i<j

I(Zi + Zj > 0). (10)

and writing it in this way gives some insight into its behavior. The first U-statistic is
based on the kernel, h(z) = I(z > 0). The U-statistic itself is U (1)

n = n−1
∑n

1 I(Zi > 0).
This is the U-statistic used for the sign test. The second U-statistic is based on the kernel,
h(z1, z2) = I(z1 + z2 > 0), and the corresponding U-statistic is U (2)

n =
(
n
2

)−1 ∑
i<j I(Zi +

Zj > 0). Thus,

W+
n = nU (1)

n +
(
n

2

)
U (2)

n . (11)
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For large n the second term dominates the first, so asymptotically W+
n behaves like

n2U
(2)
n /2. The Wilcoxon signed rank test rejects H0 if W+

n is too large, and this is asymp-
totically equivalent to the test that rejects if U (2)

n is too large.
3. Testing Symmetry. In some situations, it is important to test for symmetry about

an unknown center. Here is one method based of the observation that for a sample of size 3,
X1,X2,X3 from a continuous distribution, symmetric about a point ξ, P (X1 > (X2 +
X3)/2) = P ((X1 − ξ) > ((X2 − ξ) + (X3 − ξ))/2) = 1/2. Because of this, f(X1 ,X2,X3) =
sgn(2X1 − X2 − X3) is an unbiased estimate of θ(P ) = P (2X1 > X2 + X3) − P (2X1 <
X2 +X3). Here, sgn(x) represents the sign function, which is 1 if x > 0, 0 if x = 0 and
−1 if x < 0. When P is symmetric, θ(P ) has value zero . The corresponding symmetric
kernel is

h(x1, x2, x3) =
1
3
[sgn(2x1 − x2 − x3) + sgn(2x2 − x1 − x3) + sgn(2x3 − x1 − x2)]. (12)

This is an example of a kernel of degree 3. The hypothesis of symmetry is rejected if the
corresponding U-statistic is too large in absolute value. One can easily show that

h(x1, x2, x3) =
1
3
sgn(median(x1, x2, x3)−mean(x1 , x2, x3)). (13)

Thus the validity of the test also follows from the observation that for a sample of size
three from a symmetric distribution, the sample median is equally likely to be above the
sample mean as below it.

4. Measures of Association. For continuous probability distributions in 2-dimensions,
there are several measures of dependence, or association, the simplest of which is perhaps
Kendall’s tau. Two vectors (x1, y1) and (x2, y2), are said to be concordant if x1 < x2 and
y1 < y2, or if x2 < x1 and y2 < y1; in other words, if the line joining the points has positive
slope. If the line joining the points has negative slope, the points are said to be discordant.

Suppose (X1, Y1) and (X2, Y2) are independently distributed according to a distribu-
tion F (x, y) in the plane. If the probability of concordance, P (X1 < X2, Y1 < Y2)+P (X2 <
X1, Y2 < Y1) is bigger than 1/2, there is a positive association between X and Y . If it
is negative, there is negative association. This leads to a measure of association called
Kendall’s τ , defined as

τ = 2[P (X1 < X2, Y1 < Y2)+P (X2 < X1, Y2 < Y1)]−1 = 4P(X1 < X2, Y1 < Y2)−1. (14)

Kendall’s tau behaves like a correlation coefficient in that −1 ≤ τ ≤ 1, τ = 0 when X
and Y are independent, and τ = +1, (resp. τ = −1), if an increase in X almost surely
implies and increase (resp. decrease) in Y . The definition of Kendall’s tau shows that it
is an estimable parameter with kernel, f((x1 , y1), (x2 , y2)) = 4 I(x1 < x2, y1 < y2) − 1 of
degree two, and a corresponding symmetric kernel, h((x1, y1), (x2 , y2)) = 2 I(x1 < x2, y1 <
y2) + 2 I(x2 < x1, y2 < y1)− 1. The corresponding U-statistic,

Un =
1(
n
2

) ∑
i<j

h((Xi, Yi), (Xj , Yj)), (15)
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is known as Kendall’s coefficient of rank correlation. This was seen in Exercise 5.7 of
Ferguson (1996) to have an asymptotically normal distribution, when suitably normalized,
in the case where X and Y are independent. We will see that the asymptotic distribution
is normal for general dependent X and Y .

Another measure of association in 2-dimensions is given by Spearman’s rho, defined
as

ρ = 12P (X1 < X2, Y1 < Y3)− 3, (16)

where (X1, Y1), (X2, Y2) and (X3, Y3) are independently distributed according to F . It also
has the properties of a correlation coefficient, being between zero and one and zero when the
variables are independent. In fact, one can show that ρ is simply the correlation coefficient
between the random variables F (X,∞) and F (∞, Y ). It is clear that ρ is also an estimable
parameter with kernel of degree 3, h((x1, y1), (x2 , y2), (x3 , y3)) = 12 I(x1 < x2, y1 < y3)−3.
The symmetrized version has 6 terms. The corresponding U-statistic is related to the rank
statistic of Example 12.5 of Ferguson (1996), which was seen to have an asymptotically
normal distribution under the hypothesis of independence.

3. The Asymptotic Distribution of Un. For a given estimable parameter, θ =
θ(P ), and corresponding symmetric kernel, h(x1, . . . , xm), we take P to be the class of
distributions for which Var(h(X1, . . . ,Xm)) < ∞. Let us define a sequence of functions
related to h. For c = 0, 1, . . . ,m, let

hc(x1, . . . , xc) = Eh(x1, . . . , xc,Xc+1, . . . ,Xm) (17)

where Xc+1, . . . ,Xn are i.i.d. P . Then h0 = θ and hm(x1, . . . , xm) = h(x1, . . . , xm). These
functions are all have expectation θ,

Ehc(X1, . . . ,Xc) = Eh(X1, . . . ,Xc,Xc+1, . . . ,Xm) = θ, (18)

but they cannot be called kernels since they may depend on P .
The variance of the U-statistic Un of (4) depends on the variances of the hc. For

c = 0, 1, . . . ,m, let
σ2

c = Var(hc(X1, . . . ,Xc)), (19)

so that σ2
0 = 0 and σ2

m = Var(h(X1, . . . ,Xm)).
To compute the variance of Un of (4), we start out by

Var(Un) = Var


(

n

m

)−1 ∑
i∈Cm,n

h(Xi1 , . . . ,Xim)




=
(
n

m

)−2 ∑
i∈Cm,n

∑
j∈Cm,n

Cov(h(Xi1 , . . . ,Xim), h(Xj1 , . . . ,Xjm))

(20)

The following lemma relates these covariances to the σ2
c .
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Lemma 1. For P ∈ P and (i1, . . . , im) and (j1, . . . , jm) in Cm,n,

Cov(h(Xi1 , . . . ,Xim), h(Xj1 , . . . ,Xjm))
= Cov(hc(X1, . . . ,Xc), h(X1, . . . ,Xm))

= σ2
c ,

(21)

where c is the number of integers common to (i1, . . . , im) and (j1, . . . , jm).

Proof. If (i1, . . . , im) and (j1, . . . , jm) have c elements in common, then

Cov(h(Xi1 , . . . ,Xim), h(Xj1 , . . . ,Xjm ))
= E[(h(X1, . . . ,Xc,Xc+1, . . . ,Xm)− θ)(h(X1 , . . . ,Xc,X

′
c+1 . . . ,X

′
m)− θ)),

(22)

where X1, . . . ,Xm,X
′
c+1, . . . ,X

′
m are i.i.d. Conditionally, given X1, . . . ,Xc, the two terms

in this expectation are independent, so taking the expectation of the conditional expecta-
tion, we have

Cov(h(Xi1 , . . . ,Xim ), h(Xj1 , . . . ,Xjm ))
= E[(hc(X1, . . . ,Xc)− θ)(hc(X1, . . . ,Xc)− θ))

= σ2
c .

(23)

The same argument shows Cov(hc(X1, . . . ,Xc), h(X1, . . . ,Xm)) = σ2
c .

From this we see that σ2
c ≤ σ2

m for all c because σ2
c = Cov(hc, h) ≤ σcσm. The same

argument shows that the σ2
c are nondecreasing: σ2

1 ≤ σ2
2 ≤ · · · ≤ σ2

m.

Theorem 1. For P ∈ P ,

Var(Un) =
(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
σ2

c . (24)

If σ2
m < ∞, then Var(Un) ∼ m2σ2

1/n for large n.

Proof. We continue (20) by separating out of the sum those terms with exactly c elements
in common. The number of such pairs of m-tuples, (i1, . . . , im) and (j1, . . . , jm), having

exactly c elements in common is
(
n

m

)(
m

c

)(
n−m

m− c

)
, because there are

(
n

m

)
ways of

choosing i1, . . . , im, and then
(
m

c

)
ways of choosing a subset of size c from them, and

finally
(
n−m

m− c

)
ways of choosing the remaining m − c elements of j1, . . . , jm from the

remaining n−m numbers. Therefore,

Var(Un) =
(
n

m

)−2 m∑
c=0

(
n

m

)(
m

c

)(
n−m

m− c

)
σ2

c

=
(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
σ2

c .

(25)
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If σ2
m < ∞, then σ2

i <∞ for i < m. For large n, the first term of the sum dominates since

it is the largest order. The coefficient of σ2
1 is m

(
n−m

m− 1

)
/

(
n

m

)
∼ m2/n.

In the example of estimating a variance with kernel (7), h(x1, x2) = (x1 − x2)2/2,
we find h1(x1) = E(X − x1)2/2 = σ2/2 + (x1 − µ)2/2. Then σ2

1 = Var(h1(X1)) =
Var((X − µ)2/2) = (µ4 − σ4)/4, and σ2

2 = Var((X1 −X2)2/2) = (µ4 − σ4)/2. From this
we find

Var(Un) =
2

n(n − 1)
[2(n− 2)σ2

1 + σ2
2 ] = (µ4 − σ4)/n. (26)

Theorem 2. If σ2
m < ∞, then

√
n(Un − θ) L−→ N (0,m2σ2

1).

Proof. Let

U∗
n =

m

n

n∑
k=1

(h1(Xi)− θ). (27)

Then since m(h1(Xi) − θ) are i.i.d. with mean 0 and variance m2σ2
1 , the central limit

theorem implies that
√
nU∗

n
L−→ N (0,m2σ2

1). We complete the proof by showing that√
n(Un − θ) and

√
nU∗

n are asymptotically equivalent and so have the same limiting distri-
bution. For this it suffices to show that nE(U∗

n − (Un − θ))2 → 0.

nE(U∗
n − (Un − θ))2 = nVar(U∗

n)− 2nCov(U∗
n , Un) + nVar(Un) (28)

The first term on the right is equal to m2σ2
1 and the last term converges to m2σ2

1 from
Theorem 1, so we will be finished when we show nCov(U∗

n , Un) is equal to m2σ2
1 .

nCov(U∗
n , Un) =

m(
n
m

) n∑
k=1

∑
j∈Cm,n

Cov(h1(Xk), h(Xj1 , . . . ,Xjm )). (29)

The inside covariance is zero if k is not equal to one of the ji, and it is σ2
1 otherwise, from

Lemma 1. For fixed k the number of sets {i1, . . . , im} containing k is
(

n−1
m−1

)
and since

there are n such k,

nCov(U∗
n , Un) =

m(
n
m

)n
(
n− 1
m− 1

)
σ2

1 = m2σ2
1 . (30)

Application. As an application of this theorem, consider the U-statistic, U (2)
n with

kernel, h(x1, x2) = I(x1 + x2 > 0) of degree m = 2, associated with the Wilcoxon signed
rank test. The parameter estimated is θ = Eh(X1,X2) = P(X1 +X2 > 0). From Lemma
1, we have

σ2
1 = Cov(h(X1,X2), h(X1 ,X3)) = P(X1 +X2 > 0,X1 +X3 > 0)− θ2. (31)

Under the null hypothesis that the distribution P is symmetric about 0, we have θ = 1/2
and P(X1 + X2 > 0,X1 + X3 > 0) = P(X1 > −X2,X1 > −X3) = P(X1 > X2,X1 >
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X3) = 1/3, since this is just the probability that of three i.i.d. random variables, the first
is the largest. Therefore, under the null hypothesis, σ2

1 = (1/3)− (1/2)2 = 1/12, and since
m = 2, Theorem 2 gives √

n(U (2)
n − 1/2) L−→ N (0, 1/3). (32)

This test of the null hypothesis based on U (2)
n is consistent only for alternatives P for which

θ(P ) �= 1/2. In Exercise 5, you are to find a test that is consistent against all alternatives.

Under the general hypothesis,
√
n(U (2)

n − θ) L−→ N (0, 4σ2
1). This may be used to find

a confidence interval for θ. For this purpose though, we need an estimate of σ2
1 . Why

not use a U-statistic? One can estimate P(X1 +X2 > 0,X1 +X3 > 0) by the U-statistic
associated with the kernel, f(x1, x2, x3) = I(x1 + x2 > 0, x1 + x3 > 0), or its symmetrized
counterpart, h(x1, x2, x3) = (1/3)[f(x1 , x2, x3) + f(x2 , x1, x3) + f(x3 , x2, x1)].

4. Two-Sample Problems. The important extention to k-sample problems for
k ≥ 2 has been made by Lehmann (1951). The basic ideas are contained in the 2-sample
case which is discussed here. Here P is a family of pairs of probability measures, (F,G).

Consider independent samples, X1, . . . ,Xn1 from F (x) and Y1, . . . , Yn2 from G(y).
Let h(x1, . . . , xm1 , y1, . . . , ym2 ) be a kernel, and let P be the set of all pairs such that the
expectation

θ = θ(F,G) = EF1,F2h(X1, . . . ,Xm1 , Y1, . . . , Ym2 ) (33)

is finite. As before we may assume without loss of generality that h is symmetric under
independent permutations of x1, . . . , xm1 and y1, . . . , ym2 . The corresponding U-statistic
is

Un1,n2 = U(h) =
1(

n1
m1

)(
n2
m2

) ∑
h(Xi1 , . . . ,Xim1

, Yj1 , . . . , Yjm2
), (34)

where the sum is over all
(

n1
m1

)(
n2
m2

)
sets of subscripts such that 1 ≤ i1 < · · · < im1 ≤ n1

and 1 ≤ j1 < · · · < jm2 ≤ n2. Again it is clear that U is an unbiased estimate of θ.
Examples. There are various two-sample tests based on U-statistics of the hypothesis

of equality of distributions, H0 : F = G. They differ in their behavior against various
alternative hypotheses.

1. A two-sample comparison of means. Taking F and G to be distributions on the
real line with finite variances, let h(x1, y1) = x1 − y1, a kernel of degree (m1,m2) = (1, 1).
Then θ = EX − EY . The corresponding U-statistic is

Un1,n2 =
1

n1n2

n1∑
i=1

n2∑
j=1

(Xi − Yj) = Xn1 − Yn2. (35)

2. The Wilcoxon (1945), Mann-Whitney (1947), two-sample test. Take F and G to
be continuous distributions on the real line, and let the kernel be h(x, y) = I(y < x), with
expectation θ = P (Y < X). The corresponding U-statistic is

Un1,n2 =
1

n1n2

n1∑
i=1

n2∑
j=1

h(Xi, Yj) =
W

n1n2
(36)
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where W is the number of pairs, (Xi, Yj), with Xi > Yj . The corresponding test of the
hypothesis F = G (or θ = 1/2) is equivalent to the rank-sum test. It is consistent only
against alternatives (F,G) for which PF,G(X > Y ) �= 1/2.

3. A test consistent against all alternatives. With F and G continuous as before, let
h(x1, x2, y1, y2) = I(x1 < y1, x2 < y1) + I(y1 < x1, y2 < x1). (The symmetrized version
would have four terms.) The expectation is

θ = P (X1 < Y,X2 < Y ) + P (Y1 < X,Y2 < X)

=
2
3
+

∫
(F (x)−G(x))2d(F (x) +G(x))/2.

(37)

(See Exercise 6.) The hypothesis that F = G is equivalent to the hypothesis θ = 2/3. The
test that rejects this hypothesis if the corresponding U-statistic is too large is consistent
against all alternatives.

Asymptotic Distribution. Corresponding to theorems 1 and 2, we have the follow-
ing. Let

σ2
ij = Cov[h(X1, . . . ,Xi,Xi+1, . . . ,Xm1 , Y1, . . . , Yj , Yj+1, . . . , Ym2),

h(X1, . . . ,Xi,X
′
i+1, . . . ,X

′
m1
, Y1, . . . , Yj , Y

′
j+1, . . . , Y

′
m2

)]
(38)

where the X’s and Y ’s are independently distributed according to F and G respectively.

Theorem 3. For P ∈ P ,

Var(Un1,n2) =
m1∑
i=1

m2∑
j=1

(
m1
i

)(
n1−m1
m1−i

)
(

n1
m1

)
(
m2
j

)(
n2−m2
m2−j

)
(

n2
m2

) σ2
ij . (39)

Moreover, if σ2
m1m2

is finite, and if n1/N → p ∈ (0, 1) as N = (n1 + n2) → ∞, then

√
N(Un1,n2 − θ) L−→ N (0, σ2), where σ2 =

m2
1

p
σ2

10 +
m2

2

1− p
σ2

01. (40)

As an application of this theorem, let us derive the asymptotic distribution of the
Wilcoxon two-sample test of Example 2. We have h(x, y) = I(y < x) and θ = P(Y < X).
To find σ2, we have m1 = m2 = 1 so we need σ2

10 and σ2
01.

σ2
10 = Cov(I(Y < X), I(Y ′ < X)) = P(Y < X,Y ′ < X)− P(Y < X)2, (41)

and similarly, σ2
01 = P(Y < X,Y < X ′) − P(Y < X)2. Under the null hypothesis that

F = G, we have θ = 1/2 and σ2
10 = σ2

01 = 1/3− 1/4 = 1/12, so that σ2 = 1/(12p(1− p)).
Then p may be replaced by n1/N resulting in

√
N (U − 1/2) ≈ N (0, N2/(12n1n2)). (42)

5. Degeneracy. When using U-statistics for testing hypotheses, it occasionally
happens that at the null hypothesis, the asymptotic distribution has variance zero. This
is a degenerate case, and we cannot use Theorem 2 to find approximate cutoff points. The
general definition of degeneracy for a U-statistic of orderm and variances, σ2

1 ≤ σ2
2 ≤ · · · ≤

σ2
m given by (19) is as follows.

9



Definition 3. We say that a U-statistic has a degeneracy of order k if σ2
1 = · · · = σ2

k = 0
and σ2

k+1 > 0.

To present the ideas, we restrict attention to kernels with degeneracy of order 1, for
which σ2

1 = 0 and σ2
2 > 0.

Example 1. Consider the kernel, h(x1, x2) = x1x2, used in (5). Then, h1(x1) =
E(x1X2) = x1E(X2) = x1µ, and σ2

1 = Var(h1(X1)) = µ2σ2, where σ2 = Var(X1). So
from Theorem 2, √

n(Un − µ2) L−→ N (0, 4µ2σ2). (43)

But suppose that µ = E(X1) = 0 under the null hypothesis. Then the limiting variance is
zero, so that this theorem is useless for finding cutoff points for a test of the null hypothesis.

But, assuming σ2 > 0, we have σ2
2 = Var(X1X2) = σ4 > 0, so that the degeneracy

is of order 1. To find the asymptotic distribution of Un =
(
n
2

)−1 ∑
i<j XiXj for a sample

X1,X2, . . . from a distribution with mean 0 and variance σ2, we rewrite Un as follows.

Un =
1

n(n − 1)

∑∑
i�=j

XiXj =
1

n(n− 1)
((

n∑
i=1

Xi)2 −
n∑

i=1

X2
i )

=
1

n− 1
((

1√
n

n∑
i=1

Xi)2 −
1
n

n∑
i=1

X2
i )

(44)

From the central limit theorem we have 1√
n

∑n
1 Xi

L−→ N (0, σ2), and from the law of large

numbers we have 1
n

∑n
1 X

2
i

L−→ σ2. Therefore by Slutsky’s Theorem, we have

nUn
L−→ (Z2 − 1)σ2 where Z ∈ N (0, 1). (45)

As a slight generalization of Example 1, consider the kernel, h(x1, x2) = f(x1)f(x2)
for some real-valued function f(x) for which Ef(X1) = 0 and σ2 = Ef(X1)2 > 0. Then
the above analysis implies that

nUn =
1

(n− 1)

∑∑
i�=j

f(Xi)f(Xj )
L−→ (Z2 − 1)σ2 (46)

as well.
Example 2. Suppose now that h(x1, x2) = af(x1)f(x2) + bg(x1)g(x2), where f(x)

and g(x) are orthonormal functions of mean zero; that is, Ef(X)2 = Eg(X)2 = 1,
Ef(X)g(X) = 0 and Ef(X) = Eg(X) = 0. Then, h1(x1) = Eh(x1,X2) ≡ 0, so that
σ2

1 = 0, and

σ2
2 = a2Var(f(X1)f(X2)) + 2abCov(f(X1)f(X2), g(X1)g(X2)) + b2Var(g(X1)g(X2))

= a2 + b2

(47)
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so the degeneracy is of order 1 (assuming a2+b2 > 0). To find the asymptotic distribution
of Un, we perform an analysis as in Example 1.

(n− 1)Un =
1
n

∑∑
i�=j

[af(Xi)f(Xj ) + bg(Xi)g(Xj)]

= a[(
1√
n

∑
f(Xi))2 −

1
n

∑
f(Xi)2] + b[(

1√
n

∑
g(Xi))2 − 1

n

∑
g(Xi)2]

L−→ a(Z2
1 − 1) + b(Z2

2 − 1)
(48)

where Z1 and Z2 are independent N (0, 1).
The General Case. Example 2 is indicative of the general result for kernels with de-

generacy of order 1. This is due to a result from the Hilbert-Schmidt theory of integral
equations: For given i.i.d. random variables, X1 and X2, any symmetric, square inte-
grable function, A(x1, x2), (A(x1 , x2) = A(x2, x1) and EA(X1,X2)2 <∞), admits a series
expansion of the form,

A(x1 , x2) =
∞∑

k=1

λkϕk(x1)ϕk(x2) (49)

where the λk are real numbers, and the ϕk are an orthonormal sequence,

Eϕj(X1)ϕk(X1) =
{
1 if j = k,
0 if j �= k. (50)

The λk are the eigenvalues, and the ϕk(x) are corresponding eigenfunctions of the trans-
formation, g(x) → EA(x,X1)g(X1). That is, for all k,

EA(x,X2)ϕk(X2) = λkϕk(x). (51)

Equation (49) is to be understood in the L2 sense, that

n∑
k=1

λkϕk(X1)ϕk(X2)
q.m.−→ A(X1,X2). (52)

Stronger conditions on A are required to obtain convergence a.s.
In our problem, we take A(x1 , x2) = h(x1, x2)− θ, where θ = Eh(X1,X2). This is a

symmetric square integrable kernel, but we are also assuming σ2
1 = Varh1(X) = 0, where

h1(x) = Eh(x,X2). Note Eh1(X) = θ, but since Varh1(X) = 0, we have h1(x) ≡ θ a.s.
Now replace x in (51) by X1 and take expectations on both sides. We obtain

λkE(ϕk(X1)) = E[(h(X1,X2)− θ)ϕk(X2)]
= E[E(h(X1,X2)− θ|X2)ϕk(X2)]
= E[(h1(X2)− θ)ϕk(X2)] = 0.

(53)

Thus all eigenfunctions corresponding to nonzero eigenvalues have mean zero. Now we can
apply the method of Example 2, to find the asymptotic distribution of n(Un − θ).
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Theorem 4. Let Un be the U-statistic associated with a symmetric kernel of degree 2,

degeneracy of order 1, and expectation θ. Then n(Un − θ) L−→
∑∞

1 λj(Z2
j − 1), where

Z1, Z2, . . . are independent N (0, 1) and λ1, λ2, . . . are the eigenvalues satisfying (49) with
A(x1 , x2) = h(x1, x2)− θ.

For h having degeneracy of order 1 and arbitrary degree m ≥ 2, the corresponding
result gives the asymptotic distribution of n(Un − θ) as

(
m
2

)∑∞
1 λj(Z2

j − 1), where the λi

are the eigenvalues for the kernel h2(x1 , x2)− θ. (See Serfling (1980) or Lee (1990).)
Computation. To obtain the asymptotic distribution of Un in a specific case requires

computation of the eigenvalues, λi, each taken with its multiplicity. In general, there may
be an infinite number of these. However, for many kernels, there are just a finite number
of nonzero eigenvalues. This occurs, for example, when h(x, y) is a polynomial in x and
y, or more generally, when h(x, y) is given in the form, h(x, y) =

∑p
1 fi(x)gi(y), for some

functions fi and gi. See Exercise 8 for an indication of how the λi are found for such
kernels.

Exercises.

1. Let P be the set of all distributions on the real line with finite first moment. Show
that there does not exist a function f(x) such that EP f(X) = µ2 for all P ∈ P , where µ
is the mean of P , and X is a random variable with distribution P .

2. Let g1 and g2 be estimable parameters within P with respective degrees m1 and
m2. (a) Show g1 + g2 is an estimable parameter with degree ≤ max{m1,m2}. (b) Show
g1 · g2 is an estimable parameter with degree at most m1 +m2.

3. Let P be the class of distributions of two-dimensional vectors, V = (X,Y ), with
finite second moments. Find a kernel, h(V1,V2) of degree 2, for estimating the co-
variance. Show that the corresponding U-statistic is the (unbiased) sample covariance,
sxy = 1

n−1

∑n
1 (Xi −Xn)(Yi − Yn).

4. Derive Equation (10).
5. A continuous distribution, F (x), on the real line is symmetric about the origin if,

and only if, 1− F (x) = F (−x) for all real x. This suggests using the parameter,

θ(F ) =
∫
(1 − F (x)− F (−x))2 dF (x)

=
∫
(1 − F (−x))2 dF (x) − 2

∫
(1 − F (−x))F (x)dF (x) +

∫
F (x)2 dF (x)

as a nonparametric measure of departure from symmetry. Find a kernel, h, of degree
3, such that EFh(X1,X2,X3) = θ(F ) for all continuous F . Find the corresponding U-
statistic. (This provides another test for the problem of Example 2. It has the advantage of
being consistent against all alternatives to the hypothesis of symmetry about the origin.)

6. (a) In the two-sample problem with samples X1, . . . ,Xn1 from F and Y1, . . . , Yn2

from G, what is the U-statistic with kernel h(x1, x2, y1) = I(x1 < y1, x2 < y1)?
(b) What is its asymptotic distribution as n1+n2 → ∞ and n1/(n1+n2) → p ∈ (0, 1)?
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(c) What is the asymptotic distribution under the hypothesis H0 : F = G? (Give
numerical values for the mean and variance.)

7. Suppose the distribution of X is symmetric about the origin, with variance σ2 > 0
and EX4 < ∞. Consider the kernel, h(x, y) = xy + (x2 − σ2)(y2 − σ2).

(a) Show the problem is degenerate of order 1.
(b) Find λ1, λ2, and ϕ1(x) and ϕ2(x) orthonormal, so that h(x, y) = λ1ϕ1(x)ϕ1(y) +

λ2ϕ2(x)ϕ2(y).
(c) Find the asymptotic distribution of nUn.
8. Suppose the distribution of X is symmetric about the origin, with variance σ2 > 0

and EX6 < ∞. Consider the kernel, h(x, y) = xy(1 + x2y2).
(a) Show the problem is degenerate of order 1.
(b) Using (51) with A = h, show that any eigenfunction with nonzero eigenvalue must

be of the form, ϕ(x) = ax3 + bx, for some a and b.
(c) Specializing to the case where X has a N (0, 1) distribution (EX2 = 1, EX4 = 3

and EX6 = 15), find the linear equations for a and b by equating coefficients of x and x3

in (51).
(d) Find the two nonzero eigenvalues (no need to find the eigenfunctions).
(e) What is the asymptotic distribution of nUn?
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