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Point Estimation

Basic Concepts of Point Estimation

A point estimate of a parameter θ, denoted by θ̂, is a single number that
can be considered as a possible value for θ. Since it is computed from the
sample X = (X1, . . . ,Xn), it is a function of X , that is, θ̂ = θ̂(X).

Some simple examples are:
(i) If X1, . . . ,Xn is from B(1, p) (Bernoulli data), then p̂ = 1

n
∑n

i=1 Xi , the
sample proportion of success.
(ii) If X1, . . . ,Xn is a random sample from a continuous population F(x)
with mean µ and variance σ2, then the commonly used estimators of µ
and σ2 are

µ̂ = X ; σ̂2 =
1

n − 1

n∑
i=1

(Xi − X)2 = S2.

Some other estimators of µ are the sample median, the trimmed mean,
etc.
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Point Estimation

Next, we discuss some properties of the estimators.

(i) The Unbiased Estimators
Definition: An estimator θ̂ = θ̂(X) for the parameter θ is said to be
unbiased if E(θ̂(X)) = θ for all θ.

Result: Let X1, . . . ,Xn be a random sample on X ∼ F(x) with mean µ and
variance σ2. Then the sample mean X and the sample varance S2 are
unbiased estimators of µ and σ2, respectively.
Proof: (i) Note that

E(Xn) = E
(1
n

n∑
i=1

Xi

)
=

1
n

n∑
i=1

E(Xi) =
1
n

(nµ) = µ.

(ii) Note

S2 =
1

n − 1

n∑
i=1

(Xi − X)2.
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Then

E((n − 1)S2) = E
( n∑

i=1

(Xi − X)2
)

= E
( n∑

i=1

X2
i − n(X)2

)
= nE(X2

1 ) − nE(X
2
)

= n(µ2 + σ2) − n
(
µ2 +

σ2

n

)
= (n − 1)σ2,

using E(X2
1 ) = Var(X1) + (E(X1))2 and E(X

2
) = Var(X) + (E(X))2.

Thus,
E(S2) = σ2.
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Example 1 (Ex. 4): Let X and Y denote the strength of concrete beams
and cylinders. The following data are obtained
X : 5.9, 7.2, 7.3, 6.3, 8.1, 6.8, 7.0, 7.6, 6.8, 6.5, 7.0, 6.3, 7.9, 9.0,

8.2, 8.7, 7.8, 9.7, 7.4, 7.7, 9.7, 7.8, 7.7, 11.6, 11.3, 11.8, 10.7.
Y : 6.1, 5.8, 7.8, 7.1, 7.2, 9.2, 6.6, 8.3, 7.0, 8.3, 7.8, 8.1,

7.4, 8.5, 8.9, 9.8, 9.7, 14.1, 12.6, 11.2.
Suppose E(X) = µ1, V(X) = σ2

1; E(Y) = µ2, V(Y) = σ2
2.

(a) Show that X − Y is an unbiased estimator of µ1 − µ2. Calculate it for the
given data.

(b) Find the variance and standard deviation (standard error) of the
estimator in Part(a), and then compute the estimated standard error.

(c) Calculate an estimate of the ratio σ1/σ2 of the two standard deviations.

(d) Suppose a single beam X and a single cylinder Y are randomly
selected. Calculate an estimate of the variance of the difference X − Y .
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Solution: (a) E(X − Y) = E(X) − E(Y) = µ1 − µ2. Hence, the unbiased
estimate based on the given data is

x − y = 8.141 − 8.575 = 0.434

(b) V(X − Y) = V(X) + V(Y) = σ2
X

+ σ2
Y

=
σ2

1
n1

+
σ2

2
n2
. Thus,

σX−Y =

√
V(X − Y) =

√
σ2

1

n1
+
σ2

2

n2
.

An estimate would be

SX−Y =

√
S2

1

n1
+

S2
2

n2
=

√
(1.666)2

27
+

(2.104)2

20
= 0.5687.

Note S1 is not an unbised estimator of σ1. Similarly, S1/S2 is not an
unbiased estimator of σ1/σ2.
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(c) An estimate of σ1/σ2 is (this is a biased estimate)

S1

S2
=

1.660
2.104

= 0.7890.

(d) Note that

V(X − Y) = V(X) + V(Y) = σ2
1 + σ2

2.

Hence, σ̂1
2 + σ̂2

2 = (1.66)2 + (2.104)2 = 7.1824

Example 2 (Ex 8): In a random sample of 80 components of a certain
type, 12 are found to be defective.
(a) Give a point estimate of the proportion of all not-defective units.
(b) A system is to be constructed by randomly selecting two of these
components and connecting them in series. Estimate the proportion of all
such systems that work properly.
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Solution: (a) With p denoting the true proportion of non-defective
components,

p̂ =
80 − 12

80
= 0.85

(b) P(system works)=p2, since the system works if and only if both
components work. So, an estimate of this probability is

p̂ =
(68
80

)2
= .723

Variances of estimators
The unbiased estimators are not in general unique. Given two unbiased
estimators, it is natural to choose the one with less variance. In some
cases, depending on the form of F(x |θ), we can find the unbiased
estimator with minimum variance, called the MVUE. For instance, in the
N(µ, 1) case, the MVUE of µ is X .
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Example 3 (Ex 10): Using a rod of length µ, you lay out a square plot
whose length of each side is µ. Thus, the area of the plot will be µ2

(unknown). Based on n independent measurements X1, . . . ,Xn of the
length, estimate µ2. Assume that each Xi has mean µ and variance σ2.

(a) Show that X
2

is not an unbiased estimator for µ2.
(b) For what value of k is the estimator X

2
− kS2 unbiased for µ2?

Solution: (a) Note E(X
2
) = Var(X) + [E(X)]2 = σ2

n + µ2. So, the bias of

the estimator X
2

is E(X
2
− µ2) =

σ2

n
. Also, X

2
tends to overestimate µ2.

(b) Also,

E(X
2
− kS2) = E(X

2
) − kE(S2) = µ2 +

σ2

n
− kσ2.

Hence, with k = 1/n, E(X
2
− kS2) = µ2.

(P. Vellaisamy: MSU-STT-351-Sum-19A) Probability & Statistics for Engineers 9 / 31



Point Estimation

The Standard Error of an Estimator

It is useful to report the standard error of the estimator, in addition to its
value. Unfortunately, it depends on the unknown parameters, and hence
its estimate is usually used.
For a binomial model the estimator p̂ = Sn/n of p, has the standard

deviation
√

p(1−p)
n which depends on p (unknown).

To estimate µ based on a random sample from a normal distribution, we
use the estimator X , whose standard deviation σ√

n
which depends on

another unknown parameter σ.

Using estimates of p and σ, we obtain

s.e.(p̂) =

√
p̂(1 − p̂)

n
; s.e.(X) =

s
√

n
.
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Example 4 (Ex 12): Suppose fertilizer-1 has a mean yield per acre of µ1

with variance σ2, whereas the expected yield for fertilizer-2 is µ2 with the
same variance σ2. Let S2

i denote the sample variances of yields based on
sample sizes n1 and n2, respectively, of the two fertilizers. Show that the
pooled (combined) estimator

σ̂2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is an unbiased estimator of σ2.

Solution:

E
[(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

]
=

(n1 − 1)

n1 + n2 − 2
E(S2

1 ) +
(n2 − 1)

n1 + n2 − 2
E(S2

2 )

=
(n1 − 1)

n1 + n2 − 2
σ2 +

(n2 − 1)

n1 + n2 − 2
σ2

= σ2.
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Method of Estimation

It is desirable to have some general methods of estimation which yield
estimators with some good properties. One of the classical methods is the
method of moments (MoM), though it is not frequently used these days.
The maximum likelihood (ML) method is one of the popular methods and
the resulting maximum likelihood estimators (MLEs) have several finite
and large sample properties.

The method of moments

Early in the development of statistics, the moments of a distribution (mean,
variance, skewness, kurtosis) were discussed in depth, and estimators
were formulated by equating the sample moments (i.e., x, s2, . . .) to the
corresponding population moments, which are functions of the parameters.
The number of equations should be equal to the number of parameters.
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Example 1: Consider the exponential distribution, E(λ), with density

f(x; λ) =

{
λe−λx , x ≥ 0
0, otherwise.

Then E[X ] = 1/λ, and so solving X = 1
λ , we obtain MoM as λ̂ = (1/X).

Drawbacks of MoM estimators
(i) A drawback of the MoM estimators is that it is difficult to solve the
associated equations. Consider the parameters α and β in a Weibull
distribution (see pp. 181-183). In this case, we need to solve

µ = βΓ
(
1 +

1
α

)
, σ2 = β2

[
Γ
(
1 +

2
α

)
−

[
Γ
(
1 +

1
α

)]2]
,

which is not an easy one.
(ii) Since MoM estimators use only a few population moments and their
sample counterparts, the resulting estimators may sometimes
unreasonable, as in the following example.
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Example 5: Suppose X1, . . . ,Xn is a random sample from uniform U(0, θ)
distribution. Then solving E(X) = θ

2 = X , we get MoM estimator as
θ̂ = 2X . It is possible θ̂ > max(Xi), while each Xi < θ.

Example 6 (Ex 22): Let X denote the proportion of allotted time that a
randomly selected student spends working on a certain aptitude test.
Suppose the pdf of X is

f(x; θ) =

{
(θ + 1)xθ, 0 ≤ x ≤ 1
0, otherwise

where −1 < θ.

A random sample of ten students yields data

x1 = 0.92, x2 = 0.79, x3 = 0.90, x4 = 0.65, x5 = 0.86,

x6 = 0.47, x7 = 0.73, x8 = 0.97, x9 = 0.94, x10 = 0.77.
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(a) Obtain MoM estimator and find it from the above data.

(b) Obtain MLE of θ, and compute it for the given data.

Solution: (a)

E(X) =

∫ 1

0
x(θ + 1)xθdx =

θ + 1
θ + 2

= 1 −
1

θ + 2
.

So, the moment estimator θ̂ is the solution to X = 1 −
1

θ̂ + 2
, yielding

θ̂ =
1

1 − X
− 2.

For the given data, x = 0.80, θ̂ = 5 − 2 = 3.
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Maximum Likelihood Estimators
The ML method, introduced by R.A. Fisher, is based on the likelihood
function of unknown parameter.
Definition: Let X = (X1, . . . ,Xn) be a random sample from f(x |θ). Then
the joint density

f(x1, . . . , xn |θ) =
n∏

i=1

f(xi |θ) = L(θ|x) (veiwed as a function of θ)

is called the “likelihood function” of θ, for an observed X = x = (x1, . . . , xn).

An estimate θ̂(x) that maximizes the L(θ|x) is called a maximum likelihood
estimate of θ. Also, the estimator θ̂(X) = θ̂(X1, . . . ,Xn) is called the
maximum likelihood estimator (MLE) of θ. Here, θ may be a vector.
This method yields estimators that have many desirable properties; both
finite as well as large sample properties. The basic idea to find an
estimator θ̂(x) which is the most likely given the data X = (X1, . . . ,Xn).
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Example 7: Consider the density, discussed in Example 6,

f(x; θ) =

{
(θ + 1)xθ, 0 ≤ x ≤ 1
0, otherwise.

Obtain the MLE of θ and compute it for the data given there.
Solution: Note the likelihood function is

f(x1, . . . , xn; θ) = (θ + 1)n(x1x2 . . . xn)θ.

So, the log-likelihood is
n ln(θ + 1) + θ

∑
ln(xi).

Taking d
dθ and equating to 0 yields

n
θ + 1

= −
∑

ln(xi). Solve for θ to get

θ̂ = −
n∑

ln(Xi)
− 1.

Taking ln(xi) for each given xi yields ultimately θ̂ = 3.12.
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Example 8: Let X ∼ B(1, p), Bernoulli distribution, with pmf

P(X = x |p) = p(x |p) = px(1 − p)1−x , x = 0, 1,

where p = P(X = 1). Find the MLE of p, based on X1, . . . ,Xn.

Solution: Aim is to estimate the population proportion p based on a
random sample X = (X1, . . . ,Xn) of size n. Note X1, . . . ,Xn are
independent and identically distributed random variables.
For xi ∈ {0, 1}, we have the joint pmf of X1, . . . ,Xn is (using independence)

P
(
X1 = x1, . . . ,Xn = xn

)
= P

(
X1 = x1

)
. . .P

(
Xn = xn

)
= px1(1 − p)1−x1 . . . pxn (1 − p)1−xn

= p
∑n

1 xi (1 − p)n−
∑n

1 xi ,

since Xi ’s have identical pmf.
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Write the above density as a function of p, the likelihood function is

L(p|x) = p
∑n

1 xi (1 − p)n−
∑n

1 xi = psn (1 − p)n−sn ,

where sn =
∑n

1 xi .

Choose an estimator that maximizes L(p|x). Take

` = ln L = sn ln p + (n − sn) ln(1 − p).

Now
∂ ln L
∂p

= 0 ⇒
sn

p
−

n − sn

1 − p
= 0

⇒ p̂ =
sn

n
= p,

the sample mean (proportion).
Also, it can be shown that

∂2`

∂p2 |p̂ < 0.

Hence, p̂ = Sn/n =
∑n

i=1 Xi , the sample proportion, is the MLE of p.
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Example 9: Let X1, . . . ,Xn be a random sample from N(µ, σ2), where both
mean µ and σ2 are unknown. Find the MLE’s of µ and σ2.

Solution: Let θ = (µ, σ2). Then

f(xi |θ) =
1
√

2πσ
e

1
2

(xi − µ

σ

)2

= (2πσ2)−1/2e
−

1
2

(x − µ
σ

)2

.

Hence, the joint density is

f(x1, . . . , xn |θ) = f(x1|θ)f(x2|θ) . . . f(xn |θ)

= (2πσ2)
−

n
2 e
−

1
2

n∑
i

(xi − µ

σ

)2

= L(µ, σ2|x).
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Then

` = ln L(µ, σ2|x) = −
n
2

ln(2πσ2) −
1

2σ2

n∑
1

(xi − µ)2

= −
n
2

ln(2π) −
n
2

ln(σ2) −
1

2σ2

n∑
i=1

(xi − µ)2.

Then, for all σ2 > 0,
∂ ln L
∂µ

= 0⇒ µ̂ = x.

Substituting µ̂ = x in `(µ, σ2), we get

`(µ, σ2) = −
n
2

ln(2π) −
n
2

ln(σ2) −
1

2σ2

n∑
i=1

(xi − x)2.
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Then
∂`(µ, σ2)

∂σ2 = −
n

2σ2 +
1

2(σ2)2

n∑
i=1

(xi − x)2.

Hence,
∂`(µ, σ2)

∂σ2 = 0⇒ σ̂2 =
1
n

n∑
i=1

(xi − x)2.

Also, the Hessian matrix of second order partial derivatives of `(x, σ2),
calculated at µ̂ = x and σ̂2, can be shown to be nonnegative definite.

Therefore, µ̂ and σ̂2 are the MLEs of µ and σ2.
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Example 10: Let X1, . . . ,Xn be a random sample from exponential density

f(x |λ) = λ e−λx , x > 0, λ > 0.

Find the MLE of λ.
Solution: The joint density of X1, . . . ,Xn (likelihood function) is

f(x |λ) =
n∏

i=1

f(xi |λ) =
n∏

i=1

λ e−λxi = λn e−λ
∑n

1 xi .

Hence,
L(λ|x) = λne−nλx

⇒ ` = log(L) = n ln(λ) − nλx;

∂`

∂λ
= 0⇒ λ̂ =

1
x
.

Thus, the MLE of λ is λ̂ =
1

X
.
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Example 11 (Ex 29): Suppose n time head-ways X1, . . . ,Xn in a traffic
flow follow a shifted-exponential with pdf

f(x |λ, θ) =

{
λe−λ(x−θ), x ≥ θ;
0, otherwise.

(a) Obtain the MLE’s of θ and λ.

(b) If n = 10 time headway observations are

3.11, .64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93, 17.82, 1.30

calculate the estimates of θ and λ.
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Solution: (a) The joint pdf of X1, . . . ,Xn is

f(x1, . . . , xn |λ, θ) =
n∏

i=1

f(xi |λ, θ)

=

{
λne−λ

∑n
i=1(xi−θ), x1 ≥ θ, . . . , xn ≥ θ

0, otherwise.

Notice that x1 ≥ θ, . . . , xn ≥ θ iff min(xi) ≥ θ, and also

−λ

n∑
i=1

(xi − θ) = −λ
n∑

i=1

xi + nλθ.
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Let now min1≤i≤n(xi) = x(1). Then the likelihood function is

L(λ, θ|x) =

{
λne(nλθ−λ

∑n
i=1 xi), x(1) ≥ θ

0, otherwise.

Consider first the maximization with respect to θ. Note first the likelihood is
zero for θ > x(1). Also, it is increasing in θ for θ ≤ x(1) and hence attains the
maximum when θ = x(1). Hence, the MLE of θ is θ̂ = x(1).

Now, substituting θ̂ in likelihood function

L(λ, θ̂|x) = λne(nλx(1)−λ
∑n

i=1 xi) = λne−n
∑n

i=1(xi−x(1)).
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This implies (taking log on both sides)

`(λ, θ̂|x) = ln(L(λ, θ̂|x)) = n ln(λ) − n
n∑

i=1

(xi − x(1))

⇒
∂`

∂λ
=

n
λ
−

n∑
i=1

(xi − x(1)) = 0.

Solving for λ, the MLE of λ as

λ̂ =
n∑

(xi − x(1))
.

(b) From the data, θ̂ = min(xi) = .64 and
∑n

i=1 xi = 55.80. hence,

λ̂ =
10

55.80 − 6.4
= 0.202.
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Properties of MLE’s

(i) For large n, the MLE θ̂(X) is asymptotically normal, unbiased, and has
variance smaller than any other estimator.

(ii) Invariance property: If θ̂ is an MLE of θ, then g(θ̂) is an MLE of g(θ)
for any function g.

Example 12: Let X1, . . . ,Xn be a random sample from exponential
distribution E(λ) with parameter λ. Find the MLE of the mean of the
distribution.
Solution: As seen in Example 10, the MLE of λ is λ̂ = 1

X
.

Then the MLE of g(λ) = 1
λ = E(Xi) is

ĝ(λ) =
1

λ̂
= x,

using the invariance property of the MLE.

(P. Vellaisamy: MSU-STT-351-Sum-19A) Probability & Statistics for Engineers 28 / 31



Point Estimation

Example 11 (Ex 26): The following data represents shear strength (X) of
the test spot weld 392, 376, 401, 367, 389, 362, 409, 415, 358, 375.
(a) Assuming that X is normally distributed, estimate the true average
shear strength and standard deviation of shear strength using the method
of maximum likelihood.
(b) Obtain the MLE of P(X ≤ 400).

Solution: (a) The MLE’s of µ and σ2 are

µ̂ = X ; σ̂2 =
1
n

n∑
i=1

(Xi − X)2 =
n − 1

n
S2.

Hence, the MLE of σ is σ̂ =
√

n−1
n S2.
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From the data given: µ̂ = x = 384.4; S2 = 395.16. So,

1
n

∑
(xi − x)2 = σ̂2 =

9
10

(395.16) = 355.64 and σ̂ =
√

355.64 = 18.86.

(b) Let θ = P(X ≤ 400). Then

θ = P
(X − µ

σ
≤

400 − µ
σ

)
= P

(
Z ≤

400 − µ
σ

)
(note Z ∼ N(0, 1))

= Φ
(400 − µ

σ

)
.

The MLE of θ, by invariance property, is

θ̂ = Φ
(400 − µ̂

σ̂

)
= Φ

(400 − 384.4
18.86

)
= 0.7881.
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Home work:

Sect 6.1: 3, 11, 13, 15, 16

Sect 6.2: 20, 23, 28, 30, 32
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