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The non-linear stochastic heat equation.

We study the nonlinear stochastic heat equation, namely

∂

∂t
ut(x) =

κ

2
∆ut(x) + σ(ut(x))Ẇ (t, x), (SHE)

where

t > 0, x ∈ R;

σ : R→ R is a Lipschitz function with constant Lipσ;

Ẇ is a noise that is white in time and (possibly) correlated in space, i.e.

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t − s)f (x − y),

where f is a positive definite function (possibly δ0);

the initial function u0 : R→ R+ is bounded.
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Motivation.

(SHE) arises in different settings. For instance,

With σ(x) = λx , (SHE) is the continuous version of the Parabolic
Anderson Model. It models branching processes in a random environment,
when the spatial motion is a Brownian motion.

Ref:
Carmona & Molchanov (1994).

(SHE) is connected to the so-called KPZ equation, modelling growing
interfaces: log ut(x) ”solves” the KPZ equation.

Refs:
Kardar, Parisi & Zhang (1986);
Hairer (2012).
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Solution to the non-linear stochastic heat equation.

We consider the mild solution to (SHE), i.e. a stochastic process
(ut(x); t > 0, x ∈ R) satisfying:

ut(x) = (pt ∗ u0)(x) +

∫ t

0

∫
R

pt−s(y − x)σ(us(y))W (ds, dy),

where pt is the heat kernel and the stochastic integral is defined in the sense of
Walsh (1986).

Theorem (Dalang (1999))

The non-linear stochastic heat equation (SHE) has a unique random-field
solution such that, for all T > 0,

sup
06t6T

sup
x∈R

E[ut(x)2] <∞.
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Intermittency and chaos.

We have seen throughout the week that the solution to SHE is a (weakly-)
intermittent random-field, provided that:

Lσ := inf
x∈R

|σ(x)|
|x | > 0.

σ(0) = 0 if infx∈R u0(x) = 0.

Refs:

Foondun & Khoshnevisan (2009)

C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks
concentrated on some spatial islands for large time t.

For physicists, intermittency is believed to happen in part because the system is
chaotic. What happens before the onset of intermittency ?
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A couple reminders.

We have seen in Davar’s lectures:

Theorem (Foondun-Khoshnevisan (2009))

If σ(0) = 0 and u0 has compact support, then for all t > 0,

sup
x∈R

ut(x) <∞ a.s.

and

Theorem (C.-Joseph-Khoshnevisan (2011))

If σ(x) = λx, then

lim sup
|x|→∞

log ut(x)

(log |x |)2/3
� C a.s. for all t > 0.

Remark: In the deterministic case, the solution remains bounded, whether the
initial condition has compact support or is bounded away from 0.

=⇒ the noise induces a chaotic behavior, i.e. a dependence on the initial
conditions.
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Summary of the techniques.

We essentially need two main ingredients to obtain the result:

A tail probability estimate on the behavior of ut(x) for fixed t and x . This
is obtained with good moment estimates and the Paley-Zygmund
inequality.

A localization result, namely that ut(x) and ut(y) are somewhat
independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that u0(x) ≡ 1.

Quizz: We know that if f (x) = δ0(x), then

E[|ut(x)|k ] 6 C exp(Ckγt).

What is γ ?
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If f (x) = δ0(x), then
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We also know that σ(u) = λu (Parabolic Anderson Model) achieves the upper
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More on the techniques.

Now, we can get a general lower bound on moments, namely

Proposition

If f (x) = δ0(x) and infu∈R σ(u) := a > 0, then

E[|ut(x)|2k ] > cktk/2kk = c exp(ck log(k)).

We have

ut(x) = (pt ∗ u0)(x) +

∫ t

0

∫
R

pt−s(y − x)σ(us(y))W (ds, dy),

and, if we set

vt(x) = (pt ∗ u0)(x) + a

∫ t

0

∫
R

pt−s(y − x)W (ds, dy),

then we can show that E[ut(x)2k ] > E[vt(x)2k ].

But vt(x) is Gaussian, hence E[vt(x)2k ] ' σ2k (2k)!

k!2k
. Stirling’s formula gives the

result.
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General result.

We have: c exp(ck log(k)) 6 E[ut(x)k ] 6 C exp(Ck3)

We plug this into the Paley-Zygmund inequality to get

log P(|ut(x)| > λ) % −λ6

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If f (x) = δ0(x) and infx∈R σ(x) > a > 0, then for all t > 0,

sup
x∈[−R,R]

ut(x) % (log R)1/6 as R →∞.

The order (log R)1/6 is not sharp.

We will now consider the particular cases, where either

σ is bounded above and below;

σ(x) = λx (Parabolic Anderson Model).
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Case where σ is bounded above and below.

Similarly, we get a Gaussian upper bound and

c exp(ck log(k)) 6 E[ut(x)2k ] 6 C exp(Ck log(k))

Using the PZ inequality and a Lemma presented by Davar, we obtain

log P(|ut(x)| > λ) � −
√
κλ2

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If f (x) = δ0(x) and, 0 < a < σ(x) < b for all x ∈ R, then

lim sup
|x|→∞

ut(x)

(log |x |)1/2
� κ−1/4 a.s. for all t > 0.

This shows that if σ is bounded above and below, then ut(x) behaves as the
solution to the equation with additive noise, i.e. as a Gaussian process.
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Parabolic Anderson Model.

When σ(u) = λu,

c exp(ck3) 6 E[|ut(x)|k ] 6 C exp(Ck3).

We have seen that these estimates lead to

Theorem (C.-Joseph-Khoshnevisan (2011))

If f (0) = δ0(x) and σ(x) = λx, then

lim sup
|x|→∞

log ut(x)

(log |x |)2/3
� κ−

1
3 a.s. for all t > 0.

The power of κ suggests the universality class of random matrices models,
unlike the Gaussian case.
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Spatially colored noise.

We can obtain similar results for colored noise, i.e. when f 6= δ0.

We first assume that f (0) <∞ with appropriate tail behavior. The latter
ensures that localization occurs.

In that case, one can prove that

c exp(ck2) 6 E[|ut(x)|k ] 6 C exp(Ck2)

This can be directly obtained from the Feynman-Kac formula for moments of
the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

E[ut(x)k ] = E

exp

∑∑
16i 6=j6k

∫ t

0

ds f (
√
κ(B i

s − B j
s))


The spatially-discrete Parabolic Anderson Model with f = δ0 also satisfies
E[ut(x)k ] ∼ exp(k2). (Carmona-Molchanov (1994))
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f (0) <∞

Plugging into the usual machinery gives

log P(|ut(x)| > λ) � −(log λ)2

And,

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If σ(x) = λx, then

lim sup
|x|→∞

log ut(x)

(log |x |)1/2
� 1 a.s.,

for all t > 0, and all sufficiently small κ.

We notice now that the behavior of the supremum of the solution does not
depend on κ.
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Riesz kernel correlation.

We have a similar result in the case of a Riesz kernel covariance function, i.e.
f (x) = |x |−α.

Then,

c exp(ck
4−α
2−α ) 6 E[ut(x)k ] 6 C exp(Ck

4−α
2−α ),

and

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If σ(x) = λx, then

lim sup
|x|→∞

log ut(x)

(log |x |)2/(4−α)
� κ−

α
4−α a.s. for all t > 0.
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Summary and a comparison.

For (SHE) with σ(x) = λx (Parabolic Anderson Model), we have proved both
for white and colored noise:

lim sup
|x|→∞

log ut(x)

(log |x |)ψ � κ
−(2ψ−1) a.s. for all t > 0.

To summarize, we have:

Noise Ψ 2Ψ− 1
Space-time white noise 2/3 1/3
Riesz kernel 2/(4− α) α/(4− α).
Colored noise with f (0) <∞ 1/2 0

Since in dimension d = 1, α ∈ (0, 1), Riesz kernels show that we can achieve
any exponent between space-time white noise and bounded correlation.
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Space-time scaling

We have

lim sup
|x|→∞

log ut(x)

(log |x |)ψ � κ
−(2ψ−1) a.s. for all t > 0.

Since we can think of κ to intuitively scale like 1/t, these results can be
understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

Balazs-Quastel-Seppäläinen (2011)

We point out that these results are valid for any t > 0. However, if we
understand κ ∼ 1/t, then we see that the constant in the result gets small as
t → 0. ”One needs to go further out in space in order to find the high peaks.”
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We point out that these results are valid for any t > 0. However, if we
understand κ ∼ 1/t, then we see that the constant in the result gets small as
t → 0. ”One needs to go further out in space in order to find the high peaks.”

SPDEs: chaotic character. Daniel Conus NSF/CBMS Aug. 22, 2013 17 / 22



Extensions and open problems.

Similar results hold for:

The stochastic non-linear wave equation.

Higher dimensions.

The size of the intermittent islands, through a more careful analysis of the
proofs (see Davar’s lecture # 10).

Work in progress (with R.Balan):

Equations driven by a fractional noise in time. (See also Chen, Hu, Song,
Xing (2013))

Open problem:

What happens for generators of Lévy processes instead of Laplacian ?
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The wave equation.

We study the stochastic nonlinear wave equation

∂2

∂t2
ut(x) = κ2(∆u)t(x) + σ(ut(x))Ẇ (t, x), (SWE)

where

t > 0, x ∈ R,

σ : R→ R is a Lipschitz function with constant Lipσ,

Ẇ is space-time white noise.

the initial function u0 > 0 and derivative v0 are constant.

This equation has a unique solution according to Dalang (1999).

If Lσ > 0, then the solution is intermittent. (Dalang & Mueller (2009), C.,
Joseph, Khoshnevisan & Shiu (2012))
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Case where σ is bounded above and below.

We can use a similar argument as for the heat equation and get

c exp(ck log(k)) 6 E[|ut(x)|k ] 6 C exp(Ck log(k)).

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If f (x) = δ0(x) and, 0 < a < σ(x) < b for all x ∈ R, then

lim sup
|x|→∞

ut(x)

(log |x |)1/2
� κ1/2 a.s. for all t > 0.

This shows that if σ is bounded above and below, then ut(x) behaves as a
Gaussian process.

Notice the difference with the heat equation in the behavior of κ.
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Case where σ(u) = λu.

When σ(u) = u, we obtain

c exp(ck3/2) 6 E[|ut(x)|k ] 6 C exp(Ck3/2)

A consequence of this is the following estimate:

Theorem (2013 ??)

If f (x) = δ0(x) and σ(u) = λu, then

lim sup
|x|→∞

log ut(x)

(log |x |)1/3
� κ1/3 a.s. for all t > 0.

This result would also show a drastically different behavior in the intermittent
vs. non-intermittent case. It relies on a yet to be completed proof.
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