Chaotic properties for a family of SPDEs.

(More on Lecture $\#9 \dots$)

Daniel Conus

(Lehigh University)

NSF/CBMS conference on Analysis of SPDEs, Michigan State University

August 22, 2013.

This is joint work with:

- Mathew Joseph (Sheffield)
- Davar Khoshnevisan (U of Utah)
- Shang-Yuan Shiu (NCU Taiwan)

$$\frac{\partial}{\partial t}u_t(x) = \frac{\kappa}{2}\,\Delta u_t(x) + \sigma(u_t(x))\dot{W}(t,x),\tag{SHE}$$

where

- $t > 0, x \in \mathbb{R}$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$;
- \dot{W} is a noise that is white in time and (possibly) correlated in space, i.e.

$$\mathbb{E}[\dot{W}(t,x)\dot{W}(s,y)] = \delta_0(t-s)f(x-y),$$

where *f* is a positive definite function (possibly δ_0);

$$\frac{\partial}{\partial t}u_t(x) = \frac{\kappa}{2}\Delta u_t(x) + \sigma(u_t(x))\dot{W}(t,x), \tag{SHE}$$

where

- $t > 0, x \in \mathbb{R}$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$;
- W is a noise that is white in time and (possibly) correlated in space, i.e.

$$\mathbb{E}[\dot{W}(t,x)\dot{W}(s,y)] = \delta_0(t-s)f(x-y),$$

where *f* is a positive definite function (possibly δ_0);

$$\frac{\partial}{\partial t}u_t(x) = \frac{\kappa}{2}\Delta u_t(x) + \sigma(u_t(x))\dot{W}(t,x), \qquad (SHE)$$

where

- $t > 0, x \in \mathbb{R}$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$;

• W is a noise that is white in time and (possibly) correlated in space, i.e.

$$\mathbb{E}[\dot{W}(t,x)\dot{W}(s,y)] = \delta_0(t-s)f(x-y),$$

where *f* is a positive definite function (possibly δ_0);

$$\frac{\partial}{\partial t}u_t(x) = \frac{\kappa}{2}\,\Delta u_t(x) + \sigma(u_t(x))\dot{W}(t,x),\tag{SHE}$$

where

- $t > 0, x \in \mathbb{R}$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$;
- W is a noise that is white in time and (possibly) correlated in space, i.e.

$$\mathbb{E}[\dot{W}(t,x)\dot{W}(s,y)] = \delta_0(t-s)f(x-y),$$

where *f* is a positive definite function (possibly δ_0);

$$\frac{\partial}{\partial t}u_t(x) = \frac{\kappa}{2}\,\Delta u_t(x) + \sigma(u_t(x))\dot{W}(t,x),\tag{SHE}$$

where

- $t > 0, x \in \mathbb{R}$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$;
- \dot{W} is a noise that is white in time and (possibly) correlated in space, i.e.

$$\mathbb{E}[\dot{W}(t,x)\dot{W}(s,y)] = \delta_0(t-s)f(x-y),$$

where *f* is a positive definite function (possibly δ_0);

(SHE) arises in different settings. For instance,

 With σ(x) = λx, (SHE) is the continuous version of the Parabolic Anderson Model. It models branching processes in a random environment, when the spatial motion is a Brownian motion.

Ref:

```
• Carmona & Molchanov (1994).
```

• (SHE) is connected to the so-called KPZ equation, modelling growing interfaces: log *u*_t(*x*) "solves" the KPZ equation.

Refs:

- Kardar, Parisi & Zhang (1986);
- Hairer (2012).

(SHE) arises in different settings. For instance,

• With $\sigma(x) = \lambda x$, (SHE) is the continuous version of the Parabolic Anderson Model. It models branching processes in a random environment, when the spatial motion is a Brownian motion.

Ref:

- Carmona & Molchanov (1994).
- (SHE) is connected to the so-called KPZ equation, modelling growing interfaces: log *u*_t(*x*) "solves" the KPZ equation.

Refs:

- Kardar, Parisi & Zhang (1986);
- Hairer (2012).

(SHE) arises in different settings. For instance,

• With $\sigma(x) = \lambda x$, (SHE) is the continuous version of the Parabolic Anderson Model. It models branching processes in a random environment, when the spatial motion is a Brownian motion.

Ref:

- Carmona & Molchanov (1994).
- (SHE) is connected to the so-called KPZ equation, modelling growing interfaces: log u_t(x) "solves" the KPZ equation.

Refs:

- Kardar, Parisi & Zhang (1986);
- Hairer (2012).

We consider the *mild solution* to (SHE), i.e. a stochastic process $(u_t(x); t > 0, x \in \mathbb{R})$ satisfying:

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

where p_t is the heat kernel and the stochastic integral is defined in the sense of Walsh (1986).

Theorem (Dalang (1999))

The non-linear stochastic heat equation (SHE) has a unique random-field solution such that, for all T > 0,

 $\sup_{0\leqslant t\leqslant T}\sup_{x\in\mathbb{R}}\mathbb{E}[u_t(x)^2]<\infty.$

We consider the *mild solution* to (SHE), i.e. a stochastic process $(u_t(x); t > 0, x \in \mathbb{R})$ satisfying:

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

where p_t is the heat kernel and the stochastic integral is defined in the sense of Walsh (1986).

Theorem (Dalang (1999))

The non-linear stochastic heat equation (SHE) has a unique random-field solution such that, for all T > 0,

$$\sup_{0\leqslant t\leqslant T}\sup_{x\in\mathbb{R}}\mathbb{E}[u_t(x)^2]<\infty.$$

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time *t*.

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time *t*.

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0.$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time *t*.

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0.$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time *t*.

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0.$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time t.

•
$$L_{\sigma} := \inf_{x \in \mathbb{R}} \frac{|\sigma(x)|}{|x|} > 0.$$

• $\sigma(0) = 0$ if $\inf_{x \in \mathbb{R}} u_0(x) = 0.$

Refs:

- Foondun & Khoshnevisan (2009)
- C. & Khoshnevisan (2011).

Weak intermittency implies that the solution develops very high peaks concentrated on some spatial islands for large time t.

We have seen in Davar's lectures:

Theorem (Foondun-Khoshnevisan (2009))

If $\sigma(0) = 0$ and u_0 has compact support, then for all t > 0,

$$\sup_{x\in\mathbb{R}}u_t(x)<\infty \qquad a.s.$$

and

Theorem (C.-Joseph-Khoshnevisan (2011))

If
$$\sigma(x) = \lambda x$$
, then
$$\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp C \qquad a.s. \text{ for all } t > 0.$$

Remark: In the deterministic case, the solution remains bounded, whether the initial condition has compact support or is bounded away from 0.

 \implies the noise induces a chaotic behavior, i.e. a dependence on the initial conditions.

We have seen in Davar's lectures.

Theorem (Foondun-Khoshnevisan (2009))

If $\sigma(0) = 0$ and u_0 has compact support, then for all t > 0,

$$\sup_{x\in\mathbb{R}}u_t(x)<\infty \qquad a.s.$$

and

Theorem (C.-Joseph-Khoshnevisan (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x|\to\infty}\frac{\log u_t(x)}{(\log |x|)^{2/3}}\asymp C$ a.s. for all t > 0.

A D b 4 A b

We have seen in Davar's lectures:

Theorem (Foondun-Khoshnevisan (2009))

If $\sigma(0) = 0$ and u_0 has compact support, then for all t > 0,

$$\sup_{x\in\mathbb{R}}u_t(x)<\infty \qquad a.s.$$

and

Theorem (C.-Joseph-Khoshnevisan (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp C \qquad \text{ a.s. for all } t > 0.$

Remark: In the deterministic case, the solution remains bounded, whether the initial condition has compact support or is bounded away from 0.

 \implies the noise induces a chaotic behavior, i.e. a dependence on the initial conditions.

イロン 不同 とくほう イヨン

We have seen in Davar's lectures:

Theorem (Foondun-Khoshnevisan (2009))

If $\sigma(0) = 0$ and u_0 has compact support, then for all t > 0,

$$\sup_{x\in\mathbb{R}}u_t(x)<\infty \qquad a.s.$$

and

Theorem (C.-Joseph-Khoshnevisan (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp C \qquad \text{a.s. for all } t > 0.$

Remark: In the deterministic case, the solution remains bounded, whether the initial condition has compact support or is bounded away from 0.

 \Longrightarrow the noise induces a chaotic behavior, i.e. a dependence on the initial conditions.

イロン 不得 とくほう イヨン しほう

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Quizz: We know that if $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{\gamma}t).$

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Quizz: We know that if $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{\gamma} t).$

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Quizz: We know that if $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{\gamma}t).$

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Quizz: We know that if $f(x) = \delta_0(x)$, then $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{\gamma}t).$

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Quizz: We know that if $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{\gamma}t).$

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Proposition

If $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^3 t).$

We also know that $\sigma(u) = \lambda u$ (Parabolic Anderson Model) achieves the upper bound.

- A tail probability estimate on the behavior of $u_t(x)$ for fixed t and x. This is obtained with good moment estimates and the Paley-Zygmund inequality.
- A localization result, namely that $u_t(x)$ and $u_t(y)$ are somewhat independent if x and y are sufficiently far away.

Assume from now on (for simplicity) that $u_0(x) \equiv 1$.

Proposition

If $f(x) = \delta_0(x)$, then

 $\mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^3 t).$

We also know that $\sigma(u) = \lambda u$ (Parabolic Anderson Model) achieves the upper bound.

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \ge c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

and, if we set

$$v_t(x) = (p_t * u_0)(x) + a \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x) W(ds, dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}]$.

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

Image: A mage: A ma

-

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \geqslant c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

and, if we set

$$v_t(x) = (p_t * u_0)(x) + a \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x) W(ds, dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}]$.

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

-

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \ge c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy)$$

and, if we set

$$v_t(x) = (p_t * u_0)(x) + a \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x) W(ds, dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}]$.

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

э

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \ge c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

and, if we set

$$v_t(x) = (p_t * u_0)(x) + a \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)W(ds, dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}]$.

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

-

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \ge c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

and, if we set

$$v_t(x)=(p_t*u_0)(x)+a\int_0^t\int_{\mathbb{R}}p_{t-s}(y-x)W(ds,dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}].$

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

-

Proposition

If
$$f(x) = \delta_0(x)$$
 and $\inf_{u \in \mathbb{R}} \sigma(u) := a > 0$, then

$$\mathbb{E}[|u_t(x)|^{2k}] \ge c^k t^{k/2} k^k = c \exp(ck \log(k)).$$

We have

$$u_t(x) = (p_t * u_0)(x) + \int_0^t \int_{\mathbb{R}} p_{t-s}(y-x)\sigma(u_s(y))W(ds, dy),$$

and, if we set

$$v_t(x)=(p_t*u_0)(x)+a\int_0^t\int_{\mathbb{R}}p_{t-s}(y-x)W(ds,dy),$$

then we can show that $\mathbb{E}[u_t(x)^{2k}] \ge \mathbb{E}[v_t(x)^{2k}].$

But $v_t(x)$ is Gaussian, hence $\mathbb{E}[v_t(x)^{2k}] \simeq \sigma^{2k} \frac{(2k)!}{k!2^k}$. Stirling's formula gives the result.

General result.

We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \geqslant \lambda) \succsim -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If
$$f(x) = \delta_0(x)$$
 and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all $t > 0$,
$$\sup_{x \in [-R,R]} u_t(x) \succeq (\log R)^{1/6} \qquad \text{as } R \to \infty.$$

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

- σ is bounded above and below;
- $\sigma(x) = \lambda x$ (Parabolic Anderson Model).

General result.

We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \geqslant \lambda) \succeq -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011)) If $f(x) = \delta_0(x)$ and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all t > 0, $\sup_{x \in [-R,R]} u_t(x) \succeq (\log R)^{1/6}$ as $R \to \infty$.

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

- σ is bounded above and below;
- $\sigma(x) = \lambda x$ (Parabolic Anderson Model).
We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \ge \lambda) \succeq -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all t > 0,

$$\sup_{x\in [-R,R]} u_t(x) \succsim (\log R)^{1/6} \qquad \text{as } R \to \infty.$$

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

- σ is bounded above and below;
- $\sigma(x) = \lambda x$ (Parabolic Anderson Model).

We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \ge \lambda) \succeq -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all t > 0,

$$\sup_{x\in [-R,R]} u_t(x) \succsim (\log R)^{1/6} \qquad \text{as } R \to \infty.$$

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

- σ is bounded above and below;
- $\sigma(x) = \lambda x$ (Parabolic Anderson Model).

We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \ge \lambda) \succeq -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all t > 0,

$$\sup_{x\in [-R,R]} u_t(x) \succsim (\log R)^{1/6} \qquad \text{as } R \to \infty.$$

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

• σ is bounded above and below;

• $\sigma(x) = \lambda x$ (Parabolic Anderson Model).

We have: $c \exp(ck \log(k)) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^3)$

We plug this into the Paley-Zygmund inequality to get

 $\log P(|u_t(x)| \ge \lambda) \succeq -\lambda^6$

A consequence of this is the following general theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and $\inf_{x \in \mathbb{R}} \sigma(x) \ge a > 0$, then for all t > 0,

$$\sup_{x\in [-R,R]} u_t(x) \gtrsim (\log R)^{1/6} \qquad \text{as } R \to \infty.$$

The order $(\log R)^{1/6}$ is not sharp.

We will now consider the particular cases, where either

• σ is bounded above and below;

•
$$\sigma(x) = \lambda x$$
 (Parabolic Anderson Model).

10 / 22

Similarly, we get a Gaussian upper bound and

 $c \exp(ck \log(k)) \leqslant \mathbb{E}[u_t(x)^{2k}] \leqslant C \exp(Ck \log(k))$

Using the PZ inequality and a Lemma presented by Davar, we obtain

 $\log P(|u_t(x)| \ge \lambda) symp - \sqrt{\kappa} \lambda^2$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty}\frac{u_t(x)}{(\log|x|)^{1/2}}\asymp \kappa^{-1/4} \qquad \text{a.s. for all }t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as the solution to the equation with additive noise, i.e. as a Gaussian process.

Similarly, we get a Gaussian upper bound and

$$c \exp(ck \log(k)) \leqslant \mathbb{E}[u_t(x)^{2k}] \leqslant C \exp(Ck \log(k))$$

Using the PZ inequality and a Lemma presented by Davar, we obtain

 $\log P(|u_t(x)| \geqslant \lambda) \asymp -\sqrt{\kappa}\lambda^2$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty}\frac{u_t(x)}{(\log|x|)^{1/2}}\asymp \kappa^{-1/4} \qquad \text{a.s. for all } t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as the solution to the equation with additive noise, i.e. as a Gaussian process.

Similarly, we get a Gaussian upper bound and

 $c \exp(ck \log(k)) \leqslant \mathbb{E}[u_t(x)^{2k}] \leqslant C \exp(Ck \log(k))$

Using the PZ inequality and a Lemma presented by Davar, we obtain

 $\log P(|u_t(x)| \ge \lambda) \asymp -\sqrt{\kappa}\lambda^2$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty}\frac{u_t(x)}{(\log|x|)^{1/2}}\asymp \kappa^{-1/4} \qquad \text{ a.s. for all }t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as the solution to the equation with additive noise, i.e. as a Gaussian process.

- 4 漢字 4 漢字 5

Similarly, we get a Gaussian upper bound and

 $c \exp(ck \log(k)) \leqslant \mathbb{E}[u_t(x)^{2k}] \leqslant C \exp(Ck \log(k))$

Using the PZ inequality and a Lemma presented by Davar, we obtain

 $\log P(|u_t(x)| \ge \lambda) \asymp -\sqrt{\kappa}\lambda^2$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty}\frac{u_t(x)}{(\log|x|)^{1/2}}\asymp \kappa^{-1/4}\qquad \text{ a.s. for all }t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as the solution to the equation with additive noise, i.e. as a Gaussian process.

When $\sigma(u) = \lambda u$,

$c \exp(ck^3) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^3).$

We have seen that these estimates lead to

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(0) = \delta_0(x)$ and $\sigma(x) = \lambda x$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \kappa^{-\frac{1}{3}} \qquad a.s. \text{ for all } t > 0$$

The power of κ suggests the universality class of random matrices models, unlike the Gaussian case.

When $\sigma(u) = \lambda u$,

$$c \exp(ck^3) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck^3).$$

We have seen that these estimates lead to

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(0) = \delta_0(x)$ and $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \kappa^{-\frac{1}{3}} \qquad \text{a.s. for all } t > 0.$

The power of κ suggests the universality class of random matrices models, unlike the Gaussian case.

() <) <)
 () <)
 () <)
</p>

э

When $\sigma(u) = \lambda u$,

$$c \exp(ck^3) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck^3).$$

We have seen that these estimates lead to

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(0) = \delta_0(x)$ and $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \kappa^{-\frac{1}{3}} \qquad \text{a.s. for all } t > 0.$

The power of κ suggests the universality class of random matrices models, unlike the Gaussian case.

3

We can obtain similar results for colored noise, i.e. when $f \neq \delta_0$.

We first assume that $f(0) < \infty$ with appropriate tail behavior. The latter ensures that localization occurs.

In that case, one can prove that

 $c \exp(ck^2) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^2)$

This can be directly obtained from the Feynman-Kac formula for moments of the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

$$\mathbb{E}[u_t(x)^k] = \mathbb{E}\left[\exp\left(\sum_{1 \leq i \neq j \leq k} \int_0^t ds \, f(\sqrt{\kappa}(B_s^i - B_s^j))\right)\right]$$

We can obtain similar results for colored noise, i.e. when $f \neq \delta_0$.

We first assume that $f(0) < \infty$ with appropriate tail behavior. The latter ensures that localization occurs.

In that case, one can prove that

 $c \exp(ck^2) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^2)$

This can be directly obtained from the Feynman-Kac formula for moments of the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

$$\mathbb{E}[u_t(x)^k] = \mathbb{E}\left[\exp\left(\sum_{1 \leq i \neq j \leq k} \int_0^t ds \, f(\sqrt{\kappa}(B_s^i - B_s^j))\right)\right]$$

We can obtain similar results for colored noise, i.e. when $f \neq \delta_0$.

We first assume that $f(0) < \infty$ with appropriate tail behavior. The latter ensures that localization occurs.

In that case, one can prove that

 $c \exp(ck^2) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck^2)$

This can be directly obtained from the Feynman-Kac formula for moments of the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

$$\mathbb{E}[u_t(x)^k] = \mathbb{E}\left[\exp\left(\sum_{1 \leq i \neq j \leq k} \int_0^t ds \, f(\sqrt{\kappa}(B_s^i - B_s^j))\right)\right]$$

We can obtain similar results for colored noise, i.e. when $f \neq \delta_0$.

We first assume that $f(0) < \infty$ with appropriate tail behavior. The latter ensures that localization occurs.

In that case, one can prove that

 $c \exp(ck^2) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^2)$

This can be directly obtained from the Feynman-Kac formula for moments of the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

$$\mathbb{E}[u_t(x)^k] = \mathbb{E}\left[\exp\left(\sum_{1 \leq i \neq j \leq k} \int_0^t ds \, f(\sqrt{\kappa}(B_s^i - B_s^j))\right)\right]$$

We can obtain similar results for colored noise, i.e. when $f \neq \delta_0$.

We first assume that $f(0) < \infty$ with appropriate tail behavior. The latter ensures that localization occurs.

In that case, one can prove that

 $c \exp(ck^2) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^2)$

This can be directly obtained from the Feynman-Kac formula for moments of the solution (Bertini & Cancrini (1994), Hu & Nualart (2009), C. (2011))

$$\mathbb{E}[u_t(x)^k] = \mathbb{E}\left[\exp\left(\sum_{1 \leq i \neq j \leq k} \int_0^t ds \, f(\sqrt{\kappa}(B_s^i - B_s^j))\right)\right]$$

Plugging into the usual machinery gives

$$\log P(|u_t(x)| \geqslant \lambda) \asymp - (\log \lambda)^2$$

And,

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1$

We notice now that the behavior of the supremum of the solution does not depend on κ .

Image: Image:

-

Plugging into the usual machinery gives

$$\log P(|u_t(x)| \ge \lambda) \asymp - (\log \lambda)^2$$

And,

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1$ for all t > 0, and all sufficiently small κ .

We notice now that the behavior of the supremum of the solution does not depend on κ .

< < >>

∃ ► < ∃ ►</p>

э

a.s..

Plugging into the usual machinery gives

$$\log P(|u_t(x)| \ge \lambda) \asymp - (\log \lambda)^2$$

And,

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If $\sigma(x) = \lambda x$, then $\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/2}} \asymp 1 \qquad \text{ a.s.,}$ for all t > 0, and all sufficiently small κ .

We notice now that the behavior of the supremum of the solution does not depend on κ .

() <) <)
 () <)
 () <)
</p>

3

We have a similar result in the case of a Riesz kernel covariance function, i.e. $f(x) = |x|^{-\alpha}$.

Then,

$$c \exp(ck^{\frac{4-lpha}{2-lpha}}) \leqslant \mathbb{E}[u_t(x)^k] \leqslant C \exp(Ck^{\frac{4-lpha}{2-lpha}}),$$

and

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If $\sigma(x) = \lambda x$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/(4-\alpha)}} \asymp \kappa^{-\frac{\alpha}{4-\alpha}} \qquad \text{a.s. for all } t > 0.$$

< □ > < 同 >

∃ ► < ∃ ►</p>

э

We have a similar result in the case of a Riesz kernel covariance function, i.e. $f(x) = |x|^{-\alpha}$.

Then,

$$c \exp(ck^{\frac{4-\alpha}{2-\alpha}}) \leq \mathbb{E}[u_t(x)^k] \leq C \exp(Ck^{\frac{4-\alpha}{2-\alpha}}),$$

em (C.-Joseph-Khoshnevisan-Shiu (2011))
$$f) = \lambda x, \ then$$
$$\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{2/(4-\alpha)}} \asymp \kappa^{-\frac{\alpha}{4-\alpha}} \qquad a.s. \ for \ all \ t > 0.$$

-

3

We have a similar result in the case of a Riesz kernel covariance function, i.e. $f(x) = |x|^{-\alpha}$.

Then,

$$c\exp(ck^{\frac{4-lpha}{2-lpha}}) \leqslant \mathbb{E}[u_t(x)^k] \leqslant C\exp(Ck^{\frac{4-lpha}{2-lpha}}),$$

and

Theorem (C.-Joseph-Khoshnevisan-Shiu (2011))

If $\sigma(x) = \lambda x$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/(4-\alpha)}} \asymp \kappa^{-\frac{\alpha}{4-\alpha}} \qquad a.s. \text{ for all } t > 0.$$

< 口 > < 同

프 문 문 프 문

3

For (SHE) with $\sigma(x) = \lambda x$ (Parabolic Anderson Model), we have proved both for white and colored noise:

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

To summarize, we have:

Noise	Ψ	$2\Psi - 1$
Space-time white noise	2/3	1/3
Riesz kernel	$2/(4-\alpha)$	$\alpha/(4-\alpha).$
Colored noise with $f(0) < \infty$	1/2	

Since in dimension d = 1, $\alpha \in (0, 1)$, Riesz kernels show that we can achieve any exponent between space-time white noise and bounded correlation.

For (SHE) with $\sigma(x) = \lambda x$ (Parabolic Anderson Model), we have proved both for white and colored noise:

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

To summarize, we have:

Noise	Ψ	$2\Psi-1$
Space-time white noise	2/3	1/3
Riesz kernel	$2/(4-\alpha)$	$\alpha/(4-\alpha)$.
Colored noise with $f(0) < \infty$	1/2	0

Since in dimension d = 1, $\alpha \in (0, 1)$, Riesz kernels show that we can achieve any exponent between space-time white noise and bounded correlation.

For (SHE) with $\sigma(x) = \lambda x$ (Parabolic Anderson Model), we have proved both for white and colored noise:

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

To summarize, we have:

Noise	Ψ	$2\Psi - 1$
Space-time white noise	2/3	1/3
Riesz kernel	$2/(4-\alpha)$	$\alpha/(4-\alpha)$.
Colored noise with $f(0) < \infty$	1/2	0

Since in dimension d = 1, $\alpha \in (0, 1)$, Riesz kernels show that we can achieve any exponent between space-time white noise and bounded correlation.

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

Since we can think of κ to intuitively scale like 1/t, these results can be understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

• Balazs-Quastel-Seppäläinen (2011)

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

Since we can think of κ to intuitively scale like 1/t, these results can be understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

• Balazs-Quastel-Seppäläinen (2011)

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

Since we can think of κ to intuitively scale like 1/t, these results can be understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

• Balazs-Quastel-Seppäläinen (2011)

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

Since we can think of κ to intuitively scale like 1/t, these results can be understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

• Balazs-Quastel-Seppäläinen (2011)

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^\psi} \asymp \kappa^{-(2\psi-1)} \qquad \text{a.s. for all } t>0.$$

Since we can think of κ to intuitively scale like 1/t, these results can be understood as space-time scaling results.

We recover the scaling exponents obtained for the KPZ equation.

• Balazs-Quastel-Seppäläinen (2011)

• The stochastic non-linear wave equation.

- Higher dimensions.
- The size of the intermittent islands, through a more careful analysis of the proofs (see Davar's lecture # 10).

Work in progress (with R.Balan):

• Equations driven by a fractional noise in time. (See also Chen, Hu, Song, Xing (2013))

Open problem:

- The stochastic non-linear wave equation.
- Higher dimensions.
- The size of the intermittent islands, through a more careful analysis of the proofs (see Davar's lecture # 10).

Work in progress (with R.Balan):

• Equations driven by a fractional noise in time. (See also Chen, Hu, Song, Xing (2013))

Open problem:

- The stochastic non-linear wave equation.
- Higher dimensions.
- The size of the intermittent islands, through a more careful analysis of the proofs (see Davar's lecture # 10).

Work in progress (with R.Balan):

• Equations driven by a fractional noise in time. (See also Chen, Hu, Song, Xing (2013))

Open problem:

- The stochastic non-linear wave equation.
- Higher dimensions.
- The size of the intermittent islands, through a more careful analysis of the proofs (see Davar's lecture # 10).

Work in progress (with R.Balan):

• Equations driven by a fractional noise in time. (See also Chen, Hu, Song, Xing (2013))

Open problem:

- The stochastic non-linear wave equation.
- Higher dimensions.
- The size of the intermittent islands, through a more careful analysis of the proofs (see Davar's lecture # 10).

Work in progress (with R.Balan):

• Equations driven by a fractional noise in time. (See also Chen, Hu, Song, Xing (2013))

Open problem:

We study the stochastic nonlinear wave equation

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \tag{SWE}$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

If $L_{\sigma} > 0$, then the solution is intermittent. (Dalang & Mueller (2009), C., Joseph, Khoshnevisan & Shiu (2012))
$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \tag{SWE}$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma : \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \tag{SWE}$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \tag{SWE}$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \qquad (SWE)$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \qquad (SWE)$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

$$\frac{\partial^2}{\partial t^2} u_t(x) = \kappa^2 (\Delta u)_t(x) + \sigma(u_t(x)) \dot{W}(t, x), \qquad (SWE)$$

where

- $t > 0, x \in \mathbb{R}$,
- $\sigma: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function with constant $\operatorname{Lip}_{\sigma}$,
- W is space-time white noise.
- the initial function $u_0 > 0$ and derivative v_0 are constant.

This equation has a unique solution according to Dalang (1999).

 $c \exp(ck \log(k)) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck \log(k)).$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty}\frac{u_t(x)}{(\log|x|)^{1/2}}\asymp \kappa^{1/2} \qquad \text{a.s. for all } t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as a Gaussian process.

 $c \exp(ck \log(k)) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck \log(k)).$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011)) If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then $\limsup_{|x| \to \infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \kappa^{1/2} \quad a.s. \text{ for all } t > 0.$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as a Gaussian process.

 $c \exp(ck \log(k)) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck \log(k)).$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \kappa^{1/2} \qquad \text{ a.s. for all } t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as a Gaussian process.

 $c \exp(ck \log(k)) \leq \mathbb{E}[|u_t(x)|^k] \leq C \exp(Ck \log(k)).$

A consequence of this is the following theorem.

Theorem (C.-Joseph-Khoshnevisan (2011))

If $f(x) = \delta_0(x)$ and, $0 < a < \sigma(x) < b$ for all $x \in \mathbb{R}$, then

$$\limsup_{|x|\to\infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \kappa^{1/2} \qquad \text{ a.s. for all } t>0.$$

This shows that if σ is bounded above and below, then $u_t(x)$ behaves as a Gaussian process.

When $\sigma(u) = u$, we obtain

$c \exp(ck^{3/2}) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{3/2})$

A consequence of this is the following estimate:

Theorem (2013 ??)

If
$$f(x) = \delta_0(x)$$
 and $\sigma(u) = \lambda u$, then
$$\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/3}} \asymp \kappa^{1/3} \qquad a.s. \text{ for all } t > 0.$$

This result would also show a drastically different behavior in the intermittent vs. non-intermittent case. It relies on a yet to be completed proof.

When $\sigma(u) = u$, we obtain

$$c \exp(ck^{3/2}) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{3/2})$$

A consequence of this is the following estimate:

Theorem (2013 ??)

If
$$f(x) = \delta_0(x)$$
 and $\sigma(u) = \lambda u$, then
$$\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/3}} \asymp \kappa^{1/3} \qquad \text{a.s. for all } t > 0.$$

This result would also show a drastically different behavior in the intermittent vs. non-intermittent case. It relies on a yet to be completed proof.

When $\sigma(u) = u$, we obtain

$$c \exp(ck^{3/2}) \leqslant \mathbb{E}[|u_t(x)|^k] \leqslant C \exp(Ck^{3/2})$$

A consequence of this is the following estimate:

Theorem (2013 ??)

If
$$f(x) = \delta_0(x)$$
 and $\sigma(u) = \lambda u$, then
$$\limsup_{|x| \to \infty} \frac{\log u_t(x)}{(\log |x|)^{1/3}} \asymp \kappa^{1/3} \qquad \text{a.s. for all } t > 0.$$

This result would also show a drastically different behavior in the intermittent vs. non-intermittent case. It relies on a yet to be completed proof.

э

Thank you for your attention!

э