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Nonlinear noise excitation (Lecture 1)
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dru = 102u+ Mu€ on [0,1] with Dirichlet BC
uo(z) = sin(rz) [K-Kim, 2013]
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Figure: A = 0; u;(z) = sin(nz) exp(—72t/2)
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dru = 102u+ Mu€ on [0,1] with Dirichlet BC
uo(z) = sin(rz) [K-Kim, 2013]

time

space

Figure: A\ = 2; max. peak ~ 35



Nonlinear noise excitation (Lecture 1)

dru = 102u+ Mu€ on [0,1] with Dirichlet BC
uo(z) = sin(rz) [K-Kim, 2013]

time

space

Figure: A\ = 5; max. peak ~ 2.5 x 10!°
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Intermittency

» Ineteremitetent (Dictionary.com):

> stopping or ceasing for a time; alternately ceasing and
beginning again: an intermittent pain;

> alternately functioning and not functioning or alternately
functioning properly and improperly.

» Deep relations to fluid dynamics (Baxendale-Rozovskii,
1993), turbulence (Mandelbrot, 1983; Majda, 1993; Gibbon
and Titi, 2005), complex chemical reactions and the
large-scale structure of galaxies (Molchanov, 1991;
Shandarin-Zel’dovich, 1989; Zel'dovich et al, 1987, 1988,
1990) ...

» Complex problems in random media are associated to
intermittency: As the systems feels more noise, it can begin
to act erratically.

» Many field theories (SPDEs) yield intermittent solutions.
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‘White noise

» Let Z(R") denote the ring of all Borel-measurable subsets
of R™ that have finite Lebesgue measure.

» Definition (Wiener, 1923)

White noise on R™ is a mean-zero set-indexed Gaussian

random field [GRF] {£(A)}ac #mm) With
Cov(§(A1),£(A2)) = [A1N Az| (A € Z(R™)),

where | - -+ | denotes the m-dimensional Lebesgue measure.

» Easy fact: White noise exists and is an L?(9)-valued
countably-additive measure on Z(R™).
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» We can identify the L?(2)-valued measure ¢ with a
L?(Q)-valued integral:
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Wiener integrals

» We can identify the L?(2)-valued measure ¢ with a
L?(§2)-valued integral:
» Suppose h: R™ — R is elementary; i.e.,
h(z) =37, ¢;1a,(x) where A; € ZL(R") are disjoint and
¢; € R. Then,

n

€)= [hdg = [ h@)ean) = Y- ciela)

i=1
is defined unambiguously; the preceding is: (a) Linear in h

[a.s.]; (ii) A GRF indexed by all elementary functions h;
and (i)
2 2
ElER)] =0 and E(|&R)) = [Al3mm):
» This is the Wiener isometry: [|{(h)][z2(q) = |l z2@®m)-
» Define £(h) := [ hd¢ := [ h(z)&(dx) for all h € L*(R™) by

density.
» [LhdE = [h1ladE.
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Wiener integrals

» To summarize:
» L2(R™) > h— [ hd¢ € L?(Q) is a linear isometry, as well
as a GRF;
» E[hd=0; Var [ hd = [g,. |h(z)]* dz Vh € L?(R™);
» Cov([hd, [gde) = [gm h(z)g(x)dz Vh,g € L*(R™);
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Wiener integrals

» To summarize:
L2 R™) 3 h— [hd€ € L*(Q) is a linear isometry, as well

v

as a GRF;
» E [hd¢ =0; Var [ hd§ = me \h )2 dx Vh € L?(R™);
> COV(f hd¢, fgd§ me x)dx Vh,g € L*(R™);

v

If h,ge L>(R™) and h 1L g thcn ] hd¢ is independent from
Jgde.
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Stochastic Convolutions

» If f € L2(R™), then define

(f#6)(x) = / fla — ) &(dy)

» Proposition (A stochastic Young inequality)

If f € L>(R™), then there is a modification of f & that is

measurable [jointly in (x,w)]. Moreover, for all Borel measures
won R™,

E (‘/ ,,,(f*f)(w) u(dz)

2
) < [B™) - I gom)-
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Outline of proof

v

v

v

v

Since C°(R™) is dense in L?(R™) it suffices to prove the
result for f € C°(R™).

In that case, the Wiener isometry shows that
E * —(f = 2) = —2z)— —2)2d
(17 +0@ -+ OWE) = [ 15@=2)=fy=2)da

< const - || — y||2.

Kolmogorov continuity thm = f x £ has a cont.
modification.

The rest follows from the Cauchy—Schwarz inequality. O



Gaussian random fields [GRF's] (Lecture 2)

Example: Brownian sheet



Gaussian random fields [GRF's] (Lecture 2)

Example: Brownian sheet

» Definition (Cencov, 1956)

A Brownian sheet over R is a mean-zero GRF {B(z)},crm
with

m

Cov(B( — [Imin(asl Dl (@ms)  (o,y € R™).
7=1
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Example: Brownian sheet

» Definition (Cencov, 1956)

A Brownian sheet over R™ is a mean-zero GRF {B(x)},erm
with

Cov(B(x), B(y)) = [ [ min(l;| lyi) e (2j55)  (2.y € R™).
j=1

» A construction: B(x) := {(R(z)) where R(z) denotes the
aligned box in R™ with an extremal vertex at 0 € R™ and
another one at x € R™; e.g.,

B(z)=¢€([0,z1] x - x[0,2,]) when x € [0,00)™.
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with

Cov(B(x), B(y)) = [ [ min(l;| lyi) e (2j55)  (2.y € R™).
j=1

» A construction: B(z) := &(R(z)) where R(z) denotes the
aligned box in R™ with an extremal vertex at 0 € R™ and
another one at z € R™; e.g.,

B(z) =&([0,21] X --- x [0,2y,]) when z € [0,00)™.

» [.e., “Br. sheet= CDF of white noise.”
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Example: Brownian sheet

» Definition (Cencov, 1956)

A Brownian sheet over R™ is a mean-zero GRF {B(x)},erm
with

Cov(B(x), B(y)) = [ [ min(l;| lyi) e (2j55)  (2.y € R™).
j=1

v

A construction: B(z) := £(R(z)) where R(x) denotes the
aligned box in R™ with an extremal vertex at 0 € R™ and
another one at z € R™; e.g.,

B(z)=¢([0,21] x --- x [0,2,,]) when x € [0,00)™.

Le., “Br. sheet= CDF of white noise.”
When m =1, B is a [two-sided] Brownian motion.

v vy

B has a continuous modification [Kolmogorov continuity
thm].
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» Br. sheet = CDF of white noise has the following
associated “differentiation theorem”:

» Proposition
For all p € C°(R™),
m 0"o(x
[ ode= (-1 ”

——————B(x)dx a.s.
R™ 07;1 et amm ( )
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Example: Brownian sheet

» Br. sheet = CDF of white noise has the following
associated “differentiation theorem”:

» Proposition
For all p € C(R™),
[ode= v

» In particular, if £ = £(¢, z) is space-time white noise and W
is Br. sheet on R? then

02
Otox

9" 9(x)

— 7 B(x)d .S.
rm 0x1 -+ 0xpy () dz a8

W(t,x) =£&(t,x).
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Proof in the case that m =1

» Goal. V¢ € C*°(R), supported in (0,1): [¢dé = — fol ¢'B
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Example: Brownian sheet (Lecture 2)

Proof in the case that m =1

» Goal. V¢ € C*°(R), supported in (0,1): [¢dé = —fo ¢'B
[a.s.]
» Define ¢, (t) = ¢(|nt|/n) and note that Vn large,

fenae=So0me ([2.572])

n—1
=Y ¢(i/n){B((j +1)/n) — B(j/n)}

J=0

% f/n{ <;>-¢(‘7;1)}
/ (n — o).




Example: Brownian sheet (Lecture 2)

Proof in the case that m =1

» Goal. V¢ € C*°(R), supported in (0,1): [¢dé = —fo ¢'B
[a.s.]
» Define ¢, (t) = ¢(|nt|/n) and note that Vn large,

fenae=So0me ([2.572])

n—1
=Y ¢(i/n){B((j +1)/n) — B(j/n)}

=0

:—jﬁ}B(j/@{aﬁ(i) ~o(H)]
- BB (n > oo)

» LHS — [ ¢ d¢ by definition. O
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Example: Brownian sheet

» Corollary (Stochastic Fubini)
If f € L>(R™) and p is a finite Borel measure on R™, then

/I;Lm(f * &) dp = / (f * u) d¢ (Flx) = f(—)).
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Example: Brownian sheet

» Corollary (Stochastic Fubini)
If f € LA(R™) and u is a finite Borel measure on R™, then

[ wrodn=[(Fen)ae (F(a) = f(-a))

» Step 1: If f € C°(R™), then by ordinary Fubini,

o"f(z —y)

LHS=(-1)" / M(dl‘)/ dy B(y) dy1 - Oy
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Example: Brownian sheet

» Corollary (Stochastic Fubini)
If f € L>(R™) and p is a finite Borel measure on R™, then

[ wrodn=[(Fen)ae (F(a) := F(~).

» Step 1: If f € C2°(R™), then by ordinary Fubini,

o"f(x —y)

LHS:(—l)m/mM(dw)/mdy B(y) Y1 - Oy

" [ By 5T [ ) - )
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Example: Brownian sheet

» Corollary (Stochastic Fubini)
If f € L>(R™) and p is a finite Borel measure on R™, then

[ wrodn=[(Fen)ae (F(a) := F(~).

» Step 1: If f € C2°(R™), then by ordinary Fubini,

o"f(x —y)

LHS:(—l)m/mM(dw)/mdy B(y) Y1 - Oy

" [ By 5T [ ) - )
=RHS.
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Example: Brownian sheet

» Step 2: If f € L?>(R™) then 3fy, fa,... € C°(R™) such
that lim, oo f, = f in L2(R™).
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Example: Brownian sheet

» Step 2: If f € L2(R™) then 3fy, fo,... € C°(R™) such
that lim, oo f, = f in L2(R™).
» By the Young inequality, fy, % u — f % p in L2(R™);
therefore,

/. <f71 * ,u) d¢ — / (f* M) ¢ in L2(Q),

by Wiener’s isometry.
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Example: Brownian sheet

» Step 2: If f € L2(R™) then 3fy, fo,... € C°(R™) such
that lim, oo f, = f in L2(R™).
» By the Young inequality, fy % — f % p in L2(R™);
therefore,

/(fn*u)dfa/(f*u)dg in L*(Q),

by Wiener’s isometry.

» By Step 1, LHS = [(f,, * ) dp; owing to the stochastic
Young inequality, it suffices to prove that f, *§ — f* £ in
L?(2), but this holds also by the Wiener isometry. O
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Example: fractional Brownian motion [fBm]

» Definition (Mandelbrot—Van Ness, 1968)

An fBm with index H is a centered Gaussian process {X¢}>0
with Xo =0 and E (|X; — X,|?) = [t — s|*# (s, > 0).
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An fBm with index H is a centered Gaussian process {X;}¢>0
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Example: fractional Brownian motion [fBm]

» Definition (Mandelbrot—Van Ness, 1968)

An fBm with index H is a centered Gaussian process {X;}¢>0
with Xo =0 and E (|X; — X,|?) = [t — s|*# (s, > 0).

1
> If fBm 3 then Cov(X¢, Xs) = o (27 + 2 — |t — s2H).

» - fBm(H) exists iff H € (0,1).
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Example: fractional Brownian motion [fBm]

» Definition (Mandelbrot—Van Ness, 1968)

An fBm with index H is a centered Gaussian process {X¢}>0
with Xo =0 and E (|X; — X,|?) = [t — s|*# (s, > 0).

1
> If fBm 3 then Cov(X¢, Xs) = o (27 + 2 — |t — s2H).

» - fBm(H) exists iff H € (0,1).
» fBm(1/2) = BM.
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Example: fractional Brownian motion [fBm]

» Definition (Mandelbrot—Van Ness, 1968)

An fBm with index H is a centered Gaussian process {X;}¢>0
with Xo =0 and E (|X; — X,|?) = [t — s|*# (s, > 0).

1
» If fBm 3 then Cov(X;, Xs) = 3 (27 + 2 — |t — s2H).

» . fBm(H) exists iff H € (0,1).

» fBm(1/2) = BM.

» fBm(H) has a Holder-continuous modification [Kolmogorov
continuity thm] of index < H.
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Example: fractional Brownian motion [fBm] (some details)
» Define for all t > 0 and H, s € R,

H—(1/2 H—(1/2
fult,s) = (t =)L~V — (=) 712
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Example: fractional Brownian motion [fBm] (some details)
» Define for all £ > 0 and H,s € R,

H—-(1/2 H—-(1/2

Fi(t,s) = (¢ = ){ 0 — ()70

» Then,

t
wmu»ﬂ;@,—éuﬁyH1®+/

J0

o0 b

{(t + s)Hﬁ(l/Q) — sH-(1/2) ’ ds

is finite iff H € (0,1). And VH € (0,1):
||fH(t7')H%2(R) = CHtQH-



Gaussian random fields [GRF's] (Lecture 2)

Example: fractional Brownian motion [fBm] (some details)

» Define for all £ > 0 and H,s € R,
H—(1/2 H—(1/2
fult,s) =t =)D — (=) 70

» Then,

t
it o) oy = [ (0= s |

0

[e.o]

[(t + 5)H=(1/2) _ GH=(1/2) ’ ds
is finite iff H € (0,1). And VH € (0,1):

||fH(t > °)||2L2(R) = CHt2H-

» Then we can construct fBm(H) as

1 .
X = N / fr(t,s)&(ds) (t >0).
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» Let {X;}i>0 be a fBm(H).
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Gaussian random fields [GRF's] (Lecture 2)

Example: fractional Brownian motion [fBm] (some background facts)

> Let {Xt}t>0 be a me(H)

» Theorem (Marcus, 1968; Shao, 1996; ...)
With probability one:

Xire — X
lim sup e L =1 vt> 0; and

clo efy/2InIn(1/e)

Jim oY Xy = X

a2n<j<b2n

Y= B (W) (- a);

V0 < a < b< oo, where N is a standard normal r.v.



A Linear Heat Equation (Lecture 3)

A non-random heat equation (O;u = (v/2)92u + p)

» Let p be a finite signed Borel measure on R. Want to solve
the initial-value problem

0 v 02

. HE
ot T 22t T (HE)

[u:= w(x)] for x € R with ¢ > 0, subject to a nice initial
function up : R — R.
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A Linear Heat Equation (Lecture 3)

A non-random heat equation (O;u = (v/2)92u + p)

» Let u be a finite signed Borel measure on R. Want to solve
the initial-value problem

0 v 02

P T L (HE)

[u:= w(x)] for x € R with ¢t > 0, subject to a nice initial
function ug : R — R.

» Definition
We say that u = u(x) is a weak solution to (HE) if
ue L (Ry xR) and

/ 9 Lard ’/‘ P L drd +/ |
- u—pdtdr = - pdtdx pdu,
R, xR Ol 2 JR. xR e

for all p € C°((0,0) x R).
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A non-random heat equation (O;u = (v/2)92u + p)

» Define the heat kernel




A Linear Heat Equation (Lecture 3)

A non-random heat equation (0;u = (v/2)02u + p)

» Define the heat kernel

pe(x) == \/%GXP (—5) (t >0,z €R).



A Linear Heat Equation (Lecture 3)

A non-random heat equation (O;u = (v/2)92u + p)

» Define the heat kernel

1 x?
pe(x) = mexp <_21/t> (t>0,z€R).

» Theorem (Duhamel’s principle)

The following is the unique weak solution to (HE):

w() = (po *wo) (@) + / Prosly — ) pu(ds dy).
(0,t)xR
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A non-random heat equation (O;u = (v/2)92u + p)

» Define the heat kernel

1 x?
pe(x) = mexp <_2ut> (t>0,z€R).

» Theorem (Duhamel’s principle)

The following is the unique weak solution to (HE):

ur(z) = (pr % o) (&) + /( P~ P s ).

» “Mild—a.k.a. integral—solution.”
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A non-random heat equation (O;u = (v/2)92u + p)

» Define the heat kernel

1 x?
pe(x) = mexp <_21/t> (t>0,z€R)

» Theorem (Duhamel’s principle)

The following is the unique weak solution to (HE):

ur(z) = (pr % o) (&) + /( Py T )

> “Mild—a.k.a. integral—solution.”
> “Mild = weak,” even when p is signed and o-finite, as long
as p has “bounded thermal energy” (Watson, 1974).



A Linear Heat Equation (Lecture 3)

A non-random heat equation (O;u = (v/2)92u + p)

» Define the heat kernel
1

pi() '_\/%GXP< 2;)

(t>0,z€R).

» Theorem (Duhamel’s principle)
The following is the unique weak solution to (HE):

ur(z) = (pr % o) (&) + /( P~ P s ).

> “Mild—a.k.a. integral—solution.”
> “Mild = weak,” even when p is signed and o-finite, as long
as 1 has “bounded thermal energy” (Watson, 1974).

» 1 =0= w(x) = (pt*ug)(x) solves (HE).



A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

1 22
> pi(x) = exp | —— t>0 e R).
mia) = s (-2, ) @>02cR
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Comments on the heat kernel

> pi(z) = exp (—x2> (t>0,z€R).



A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

1 z?
| g pt(x) = 7% exp <_2yt> (t > O, T € R)
> pi(z) = exp (—Vt22/2) .
> (pt*ps)(x) = prys(T) [Chapman—Kolmogorov].



A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

1 x?
> pi(x) = \/%exp <_2yt> (t>0,zeR).
> Di(2) = exp (—vtz?/2)
> (pt*ps)(x) = prys(z) [Chapman—Kolmogorov].

. / " i) dz = (p + p)(0)
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A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

v

1 x?
pi(x) = \/ﬁexp <—M> (t>0,z€R).
Pi(z) = exp (—vtz?/2).
(pt * ps) () = prys(x) [Chapman—Kolmogorov].

> [ @) de = (0 0) = pal0) = T

Alternatively, by Plancherel,

OO . 1 (0.)
/ [pe(2)]? dz = e 4z

—00 2m J —00

v

v

v



A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

v

1 x2
pi(x) = \/ﬁexp <—M> (t>0,z€R).
Pi(z) = exp (—vtz?/2).
(pt * ps) () = prays(x) [Chapman—Kolmogorov].

| @) ds = e 0) = pu(0) = T

Alternatively, by Plancherel,

v

v

v

v

1 o0

/_ Z[pt(m)]2dx =— | e dz

2m J_



A Linear Heat Equation (Lecture 3)

Comments on the heat kernel

v

1 x2
pi(x) = \/ﬁexp <—M> (t>0,z€R).
Pi(z) = exp (—vtz?/2).
(pt * ps) () = prays(x) [Chapman—Kolmogorov].

| @) ds = e 0) = pu(0) = T

Alternatively, by Plancherel,

v

v

v

v

e 1 [ 2 1
2 —vtz
pi(x)]“de = — e dz = .
/_oo (@) 2m J_ VAvrt




A Linear Heat Equation (Lecture 3)
A random heat equation (9yu = (v/2)02u + £)

» Now we study the “linear stochastic heat equation,”

0 v 0?
%Y= 35, —su+E, (SHE)

subject to ug := nice and non random; £ := space-time
white noise.
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A random heat equation (9yu = (v/2)02u + £)

» Now we study the “linear stochastic heat equation,”
0 v 02
—UuU=—-=—=U
ot 2 Oz
subject to ug := nice and non random; £ := space-time
white noise.

+¢, (SHE)

» We define the solution as the mild solution,

ug(x) := (pe * up)(x) + / pi—s(y — x) {(ds dy),

(0,6) xR

where the integral now is Wiener’s.
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A random heat equation (9yu = (v/2)02u + £)

» Now we study the “linear stochastic heat equation,”
0 v 02
—UuU=—-=—=U
ot 2 Oz
subject to ug := nice and non random; £ := space-time
white noise.

+¢, (SHE)

» We define the solution as the mild solution,

w(e) = prw)@)+ [ gy - o) g(dsdy),
(0,6) xR
where the integral now is Wiener’s.

» Proposition
The mild solution is a weak solution to (SHE).
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A random heat equation (9yu = (v/2)02u + £)

» Now we study the “linear stochastic heat equation,”
0 v 02
—UuU=—-=—=U
ot 2 Oz
subject to ug := nice and non random; £ := space-time
white noise.

+¢, (SHE)

» We define the solution as the mild solution,
w(e) = prw)@)+ [ gy - o) g(dsdy),
(0,6) xR
where the integral now is Wiener’s.

» Proposition
The mild solution is a weak solution to (SHE).
» Sketch of proof: Use stochastic Fubini. O



A Linear Heat Equation (Lecture 3)

A random heat equation (9yu = (v/2)02u + £)

» Now we study the “linear stochastic heat equation,”
0 v 02
—UuU=—-=—=U
ot 2 Oz
subject to ug := nice and non random; £ := space-time
white noise.

+¢, (SHE)

» We define the solution as the mild solution,
w(e) = prw)@)+ [ gy - o) g(dsdy),
(0,6) xR
where the integral now is Wiener’s.
» Proposition
The mild solution is a weak solution to (SHE).

» Sketch of proof: Use stochastic Fubini. O
» The solution is a GRF!



A Linear Heat Equation (Lecture 3)

Structure theory

» Immediate goal: Describe the local behavior of the solution
to (SHE). Let

Zuw) = /(O,WRP”@ — ) €(ds dy).
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Structure theory

» Immediate goal: Describe the local behavior of the solution
to (SHE). Let

Zi(x) == / pi—s(y — x) {(ds dy).
(0,6) xR
» This solves 8;Z = (v/2)02Z + £ subject to Zo(x) = 0. The

general case is u(z) = (p * uo)(x) + Z¢(x), so the real issue
is to understand the structure of Z.
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Structure theory

» Immediate goal: Describe the local behavior of the solution
to (SHE). Let

Zi(x) == /(O,t)XRpt_S(y —x)&(dsdy).

» This solves 0;Z = (v/2)02Z + £ subject to Zy(x) = 0. The
general case is ui(x) = (pg * ug)(z) + Zi(x), so the real issue
is to understand the structure of Z.

» We are about to see that ¢t — Z;(z) is a smooth
perturbation of fBm(1/4) and x — Z;(x) is a smooth
perturbation of a two-sided Br. motion. In particular, the
local behavior of Z looks like fBm(1/4) in time and Br.
motion in space, viz.



A Linear Heat Equation (Lecture 3)

Structure theory

» Immediate goal: Describe the local behavior of the solution
to (SHE). Let

Zi(x) == /(o,t)xRpt_S(y —x)&(dsdy).

» This solves 0;Z = (v/2)02Z + £ subject to Zy(x) = 0. The
general case is us(z) = (p * uo)(x) + Z¢(x), so the real issue
is to understand the structure of Z.

» We are about to see that t — Z;(z) is a smooth
perturbation of fBm(1/4) and x — Z;(x) is a smooth
perturbation of a two-sided Br. motion. In particular, the
local behavior of Z looks like fBm(1/4) in time and Br.
motion in space, viz.

» 2-sided BM is any GRF {B(z)},er with
E(|B(z) = B(y)I?) o | — yl.



A Linear Heat Equation (Lecture 3)

Structure theory (some corollaries; Z;(z) := f(o t)xRpt_s(y —z)&(dsdy).)

Corollary (Swanson, 2007; Pospisil-Tribe, 2007)

With probability one t — Z(x) is Hélder continuous of index < 1/4

and x — Zy(x) is Holder continuous of index < 1/2. Moreover:
Zi(x +¢€) — Zy(x) 1

lim su = — vVt >0,z € R);
lo P 2elnln(1/e) Vv ( ' )
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Structure theory (some corollaries; Z;(z) := f(o t)xRpt_s(y —z)&(dsdy).)

Corollary (Swanson, 2007; Pospisil-Tribe, 2007)

With probability one t — Zy(x) is Holder continuous of index < 1/a

and x — Zy(x) is Holder continuous of index < 1/2. Moreover:
Zi(x +¢€) — Zy(x) 1

limsu = — vVt >0, x € R);
TR iy SV )
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Structure theory (some corollaries; Z;(z f(o tyxR Pt— s(y —z)&(dsdy).)

Corollary (Swanson, 2007; Pospisil-Tribe, 2007)

With probability one t — Zy(x) is Holder continuous of index < 1/a
and x — Zy(x) is Holder continuous of index < 1/2. Moreover:

Zy(x+e)— Zy(x) 1

limsu = — vVt >0, x € R);
TR iy SV )
Z 2
lim sup tre(®) — = < (Vt >0, z € R);
€l0 61/4 21nIn( 1/6 v



A Linear Heat Equation (Lecture 3)

Structure theory (some corollaries; Z;(z f(o tyxR Pt— s(y —z)&(dsdy).)

Corollary (Swanson, 2007; Pospisil-Tribe, 2007)

With probability one t — Zy(x) is Holder continuous of index < 1/a
and x — Zy(x) is Holder continuous of index < 1/2. Moreover:

Zy(x+e)— Zy(x) 1

limsu = — vVt >0, x € R);
TR iy SV )
lim sup Zorel®) = <2> (Vt >0,z € R);
€l0 61/4 21nIn( 1/6 v
. Jj+1 J .
'th—>H;o Z [Zt ( on ) <2n>} (t>0,a<b);

a2n<j<han



A Linear Heat Equation (Lecture 3)

Structure theory (some corollaries; Z;(z f(o tyxR Pt— s(y —z)&(dsdy).)

Corollary (Swanson, 2007; Pospisil-Tribe, 2007)

With probability one t — Zy(x) is Holder continuous of index < 1/a
and x — Zy(x) is Holder continuous of index < 1/2. Moreover:

lim sup 2z te) — Zu@) _ (Vt >0, z € R);

el0 2elnln(1/e) N2
Z 2
lim sup re(®) = <> (Vt >0, z € R);
€l0 61/4 21nIn( 1/6 v
. Jj+1 .
a2n <j<h2n
. 4 6(d—c)
dim Y [Zsyan (@) — Zijen(@)] = — (0<c<d,z€R)

c2m<iLd2m
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» Theorem (Lei—Nualart, 2009; Foondun—K—Mahboubi,
2013)



A Linear Heat Equation (Lecture 3)
Structure theory (Z:(z) := f(o’t)xRpt_s(y —x)&(dsdy))

» Theorem (Lei—Nualart, 2009; Foondun—K—Mahboubi,
2013)

(1) VY fized x € R, 3Bm(Y/4) {X;}i>0 such that

Zu(w) - (2)1/4 X, (t>0)

vm

is a mean-zero continuous Gaussian process that is C°° on
(0,00).



A Linear Heat Equation (Lecture 3)
Structure theory (Z:(z f(o xR Pt— s(y —z)&(dsdy))

» Theorem (Lei—Nualart, 2009; Foondun—K—Mahboubi,
2013)

(1) V¥ fized x € R, 3Bm(Y/4) {X;}i>0 such that

2

vm

Zt(:c)—( )1/4Xt (t>0)

is a mean-zero continuous Gaussian process that is C*° on
(0, 00).
(ii) For each fized t > 0 3 2-sided BM {B(x)}ser such that
—B(x) (x € R)

is a mean-zero Gaussian process with C* sample functions.



A Linear Heat Equation (Lecture 3)
Structure theory (Z:(z f(()t g Pt—s(y —x) &(ds dy))

» Theorem (Lei—Nualart, 2009; Foondun—K—Mahboubi,
2013)

(1) V¥ fized x € R, 3Bm(Y/4) {X;}i>0 such that
9\ 1/4
Z - — X >
- () % =0

is a mean-zero continuous Gaussian process that is C*° on
(0, 00).
(ii) For each firedt > 0 3 2-sided BM {B(x)}ser such that

Zi(x) — B(z) (x eR)

N
is a mean-zero Gaussian process with C* sample functions.

» A version of (ii) was first found in Walsh (1986).



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—-Nualart; Z;(z) := f(o,t)xnpt—s(y —z)&(dsdy)]

» Expand
Zite(x) — Zi(z) = J1 + Jo,

where

Ty = / Proes(y — ) — prs(y — )] £(ds dy):
(0,t)xR

Jo 1= / Piye—s(y — ) &(ds dy).
(t,t+e)xR



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—-Nualart; Z;(z) := f(o,t)xﬁpf—s(y —z) &(ds dy)]

» Expand

Zive(x) — Z(x) = J1 + Ja,

where

Jy = / [Prse—s(y — ) — po—s(y — )] £(ds dy);
(0,t)xR

Iy m / Prie—s(y — ) E(ds dy).
(t,t+e)xR

» Ji and Js are indep’t GRFs.
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Ideas of proof [Lei—-Nualart; Z;(z) := f(o,t)xﬁpf—s(y —z)&(dsdy)]

» Expand

Zive(x) — Z(x) = J1 + Ja,

where

Jy = / [Prse—s(y — ) — po—s(y — )] £(ds dy);
(0,t)xR

Iy m / Prie—s(y — ) E(ds dy).
(t,t+e)xR

» J; and J, are indep’t GRFs.

> B (\ZHE(;L») - Zt(:z;)\Q) = E(J2) + E(J2).



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; Z;(z) := f(o,t)xRPf—S(y —z)&(dsdy)]

» Expand
Zie(x) = Zi(x) = J1 + Ja,

where

Jy = / [Prse—s(y — ) — po—s(y — )] £(ds dy);
(0,t)xR

Iy m / Prie—s(y — ) E(ds dy).
(t,t+e)xR

» J; and J, are indep’t GRFs.

o B(|Ze(@) - Zi@)) = (D) + B(3).

» We compute these terms separately, using Wiener’s
isometry.



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

> Since ']2 - f(t’t_‘_g)XRpt‘f’E*S(y - ‘7’)) E(dS dy)'

t+e o0
E(J%)—/t ds/ dy [prye—s(y — :1:)]2
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Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

t+e o]
E(J2)= /t ds / dy [prie—s(y —2))°



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

t+e o]
E(J2)= /t ds / dy [prie—s(y —2))°

=/0€ s /Z dy [ps(y))?
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» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

O Y T
/ ds/ dy [ps(y /st( )ds
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Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

O Y T
/ ds/ dy [ps(y /st( )ds



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jp = f(t’t_;,_E)XRpt—i-s—s(y — ) €(d3 dy),

O Y T
/ds/ dy [ps(y /st( )ds

> Since Ji1 = [ yxgr [Prre—s(y — ) = pe—s(y — @) §(ds dy),

t 9]
B = [ ds [y sty —2) = oy = o)



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

O Y T
/ ds/ dy [ps(y /st( )ds

> Since J1 = [ yxgr [Prre—s(y — ) = pe—s(y — 2)] E(ds dy),

E(Jf)Z/O ds /_OO Ay [prie—s(y — 2) — p—s(y — o)]?



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

» Since Jo = f(t’t%)xRpHE_s(y—:):){(dsdy),

O Y T
/ ds/ dy [ps(y /st( )ds

> Since J1 = [ yxgr [Prre—s(y — ) = pe—s(y — 2)] E(ds dy),

E(Jf)Z/ ds /OO Ay [prie—s(y — 2) — p—s(y — o)]?

/ds/ Ay [Pera(y) — ).



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

> BE(J7) = [y ds [, dy [pess(y) — ps()].



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

> E(J7) = [y ds [72, dy [pers(y) — ps(v))*.
» By Plancherel’s theorem,

[ s [ awpentwpo = | = (vE-1) = [ E-pp),



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

> B(J7) = Jods [°2 dy [pets(y) — ps(y))*.
» By Plancherel’s theorem,

[0 [T aybespior = [ 2 (V1) = Zmon),

» Let n be an independent white noise on R, and define
T, = (2um)~Y2 [* 2711 — exp{—vtz?/2})n(dz). Then T
is smooth, and similar computations show that

E (|Tiye — Ty / d@/ dy [psre(y) — ps ()]



A Linear Heat Equation (Lecture 3)
Ideas of proof [Lei—Nualart; E(|Z;1-(z) — Zi(z)|?) = E(J?) + E(J3)]

> B(J7) = Jods [°2 dy [pets(y) — ps(y))*.
» By Plancherel’s theorem,

[0 [T aybespior = [ 2 (V1) = Zmon),

» Let 1 be an independent white noise on R, and define
T := (2um) 1/2f 2711 — exp{— Vt22/2}) n(dz). Then T
is smooth, and smrular computations show that

E (T — T / dS/ Ay [ps+e(y) — ps(y))*.

» Therefore,

B(1Z4e(0) + Toe — 20+ TP) = | 2 (i)



A Linear Heat Equation (Lecture 3)
Ideas of proof [Foondun—K—-Mahboubi]

> Zy(zte)=Zy(x) = [ pxrlPt-s(y—2—8)—pi—s(y—2)| {(ds dy) =



A Linear Heat Equation (Lecture 3)
Ideas of proof [Foondun—K—-Mahboubi]

> Z(z+e)—Zi(x f(Ot wrPt—s(y—x—€)—pi—s(y—x)| (ds dy) =

» By Wiener+Plancherel,
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Ideas of proof [Foondun—K—-Mahboubi]

> Zi(zt+e)—Zy(x f(()t R[pt s(y—z—e)—pr—s(y—2)]{(dsdy) =
» By Wiener+Plancherel,
B(1Z+e) - 2 /d/ @y [psy =) = p (o))

< ( etV (w/e)?

where S(z) := /(t : R[ s(w — ) — ps(w)] ¢(ds dw), for an

independent space-time white noise ¢. So, Z(x) + S(z) =
2-sided BM O
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Approximation by interacting BMs

» Consider a particle system on £Z where:

» Every particle moves as BMs;

» The ith particle experiences a push, at rate 2, toward the
average position of particles ¢ — ¢ and 7 + &:

» This means: Given iid BMs {B)(i)};ccz,

XO6i+e)+ X% —e)
9

dx ¥ (i)=2 ( ~ X, (i)) dt + dB (i)

= (AczX):(3)dt + dBt(E)(i) a semidiscrete linear SPDE
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A Linear Heat Equation (Lecture 3)

Approximation by interacting BMs

» Speed up the drift [dt «» e~2d¢] and diffusion
[ABy (i) <> e~ Y2dBy (i)

> dXO) =2A,XO dt +e712dBE (X (z) = a0).

» Theorem (Funaki, 1983; Joseph—Mueller—-K, 2013)
Ase — 0T, Xt(s) (elz/e]) “converges weakly as a space-time
random field” to the solution ui(x) to the linear (SHE) with
v =2 and up(x) = xo.

» There are, more interesting, nonlinear versions as well.

» [ omit the proof, as it takes us too far afield.

» The preceding says that we can think of the linear
stochastic heat equation as the infinite-density limit of a
system of interacting BMs with nearest-neighbor
gravitational attraction.
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Curse of dimensionality (Lecture 3)

» So far we have studied the stochastic heat equation (SHE)
only when z € R is 1-D.

» What if € R for d > 1?7

» The natural candidate for (SHE) in RY is
Ou = (V/2)Au+¢ (t > 0,2 € RY), subject to a nice
initial value such as ug(z) = 1 for all z € R

» We will soon argue that then d > 2, the solution is not a
random field [i.e., not a function!].

» Such SPDEs driven by space-time white noise are
inherently equations on R¢ “for d < 2.”

» However, if we “regularize the noise,” then the SPDE can
sometimes have a function solution in R? for d > 2.

» The same sort of remark applies to space-time white noise,
as long as we “regularize the Laplacian” [e.g., replace it
with —(—A)!*9 for a suitable § > 0].
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Curse of dimensionality (Lecture 3)

» Now consider the SHE,
0
52 = —AZ+§ (t>0,z e R d>2),
subject to Z;(z) = 0 [say].
» The weak solution is

Zi(z) = /( o P~ D)€ ),

where p;(z) = (2umt) =2 exp{—||z||?/(2v1)}.
» Not a random function; if it were then it would be a GRF

with
\Zt /ds/ dy [ps(y —/ p2s(0) ds
Rd
oc/ 572 ds = 00
0
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Non-linear SPDEs (Lecture 3)
0 v 0?

> 54T 52 + b(u) + o(u)§, where:

» v > 0 is fixed [viscosity coefficient x2];

» b,0: R — R are non random, and Lipschitz continuous

» initial function up(x) non random, as well as measurable
and bounded.

» We expect that the mild solution is, by Duhamel’s
principle,

wle) = (oru)@)+ [ (= 0)olus(y) €dsdy

(0,6) xR

4 /M sl = )b (0)) dsdy.

» We need to make sense of the stochastic integral (next).

» The case 0 =1 is similar to o = 1, b = 0 that we just
looked at.
» Similar issues arise in the It6 theory of SDEs.
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form: [ hy(z)®.(x) £(dt dz) for meas. non-random h.

> Need a filtration first ... Answer: Brownian filtration.

» If h € L?(R; x R) then the Gaussian process
0 <t Xy(h):= f(O,t)xR hd§ is a continuous
L?(Q2)-martingale, and hence a [nonrandom| time-change of
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Stochastic integration

v

Wish to construct an Ito-type integral [ @;(z)&(dtdx)
when @ is a “predictable” random field. More convenient
form: [ hy(z)®.(x) £(dt dz) for meas. non-random h.

Need a filtration first ... Answer: Brownian filtration.

If h € L(R; x R) then the Gaussian process

0 <t Xi(h):= f(o pxr v d€ is a continuous

L?(Q2)-martingale, and hence a [nonrandom| time-change of
a BM. Let .72 "(h) denote the sigma-algebra generated by
{X7(h) + zhocr<s.

F(h) := the sigma-algebra generated by the completions
of all Z)"(h), over all z € R.

Fy := the sigma-algebra generated by % (h). Intuitively,
Z; contains all the white noise information by time ¢.

{Z}+>0 the “Brownian filtration.”
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The stochastic integral

> (t,x) — Py(x) is an elementary random field when
30 < a < b and an F,-meas. X € L*(Q) and ¢ € L*(R)
such that

By(z) = X1puy(t)d(z) (6> 0,2 €R).

> A random field ® is simple if 3 elementary random fields
oW ... &™) with disjoint supports, such that
=", ).

» If h = ht( ) is nonrandom and & is elementary, then

/ hdd¢ = X he(2)o(x) £(dt da).

(a,b) xR

» The stochastic integral is Wiener’s; well-defined iff
he(@)(x) € L2([a,b] x R).
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The stochastic integral

» If ® is a simple random field then

/hcbdg = ;/h@@ de.

> E [ h®dE = 0.

» We have the Walsh isometry,

B (]/ h d ) - /x s /Z dy [hs()PE (195(9)[2)
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The stochastic integral

v

If @ is a simple random field then

/h®d§ = ;/f@(i) de.

v

E [h®dE = 0.
We have the Walsh isometry,

D (’/h@ds 2) =/O°ods/2dy eI (124 (y)P) -

[ h® d¢ is defined unambiguously, as a result.

v

v
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The stochastic integral

> |1 Z1p = {E(1ZP)} P
» Choose and fix 8 > 0 and define for every space-time
random field v the norm,

Ns2(0) = sup sup (e~ |juy()]])

t>0 zeR

» Note that if ® is any simple random field, then

E('/ )/d/ ay [hs (0)°E (1))

ROk /O e ds / dy [hs(y)]-

» Definition
Let £P2 := the completion of all simple random fields in norm

N2
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well-defined, finite, etc.



Walsh—Dalang integrals (Lecture 4)

Stochastic integration

» If & € £72 then I := [ h® d¢ well-defined, and
E(1%) < [Np2(®)]? [57 P ds [0 dy [hs(y)]?, provided that
h is meas. and the preceding 1ntegral converges.

» We have the Walsh isometry for all ® € £72 and h as
above: E(I?) = [7°ds [0 da [h(z)]E(|®(2)[?).

» [ h®d¢ is linear in A, and linear in .

» If AC Ry xR, then fAhq)dé = [14h® dE is
well-defined, finite, etc.



Walsh—Dalang integrals (Lecture 4)
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» If & € £72 then I := [ h® d¢ well-defined, and
E(1%) < [Np2(®)]? [57 P ds [0 dy [hs(y)]?, provided that
h is meas. and the preceding 1ntegral converges.

» We have the Walsh isometry for all ® € £72 and h as
above: E(I?) = [ ds [ dx [h(x)]?E(|®¢(x)]?).

» [ h®d¢ is linear in h, and linear in ®.
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well-defined, finite, etc.

» Remark
M, = f(o,t)xR h® d¢ is a continuous L?(Q)-martingale with
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Stochastic integration

» If & € £72 then I := [ h® d¢ well-defined, and
E(1%) < [Np2(®)]? [57 P ds [0 dy [hs(y)]?, provided that
h is meas. and the preceding 1ntegral converges.

» We have the Walsh isometry for all ® € £72 and h as
above: E(I?) = [ ds [ dx [h(x)]?E(|®¢(x)]?).

» [ h®d¢ is linear in h, and linear in ®.

» If AC Ry xR, then fAhq)df = [14h® dE is
well-defined, finite, etc.

» Remark
My = f(()’t)xR h® d€ is a continuous L*(Q)-martingale with
quadratic variation (M) = [} ds [*_dy [hs(y)]?|®s(y)[>.

» Proof: Check when ® is simple; appeal to Doob’s maximal
inequality when ® € £P2. -



Walsh—Dalang integrals (Lecture 4)

BDG inequality



Walsh—Dalang integrals (Lecture 4)

BDG inequality

» Theorem (Burkholder—-Davis—Gundy, 1966, 1970, 1972;
Carlen—Kree, 1991; Davis, 1970, 1976)
If My is a continuous L?(Q)-martingale with quadratic variation
(M), then for all real numbers k € [2,00),

|| M,

[k <ARIM)llz, (2> 0).
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» Theorem (Burkholder—-Davis—Gundy, 1966, 1970, 1972;
Carlen—Kree, 1991; Davis, 1970, 1976)

If My is a continuous L%(Q))-martingale with quadratic variation
(M), then for all real numbers k € [2,00),

1M < 4RIl (€2 0).

» See the lecture notes [Appendix B] for proofs etc.
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BDG inequality

» Theorem (Burkholder—-Davis—Gundy, 1966, 1970, 1972;
Carlen—Kree, 1991; Davis, 1970, 1976)

If My is a continuous L%(Q))-martingale with quadratic variation
(M), then for all real numbers k € [2,00),

1M < 4RIl (€2 0).

» See the lecture notes [Appendix B] for proofs etc.
» Equivalently, E(|M,|F) < (4k)Y2E((M)F/?).
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BDG inequality

» Proposition
If ® and h are as before, then ¥t > 0,

3 2 t (e'e}
[ nedg) <ar [as ["ay n@Ple.wlR:
(0,6)xR. N 0 S
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BDG inequality

» Proposition

If ® and h are as before, then ¥Vt > 0,

/ hcbdg 4k/ ds/ dy [hs()]?|®s(w)|2.
(0,t)xR

» Proof. The quadratic variation of M; := f(O.t)xR h® d€ is
(M), = fo ds [%_[hs(y)]*[®s(y)]?, whence by BDG,

2kH/ ds/ s(y)]?

Apply Minkowski’s inequality.

k/2.
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Good integrands

» Remaining question. When is a random field ® in £%2?

» Definition
We say that @ is a space-time random field [random field, for
short] if: (i) @ is adapted; i.e., ®(z) is .Fp-meas. for all t > 0
and z € R; and
(ii) @ is continuous in L?(Q); i.e., for all N > 0,

lim sup E (|<I>s(y) — @t(x)lz) = 0.
=00 (5.4),(t,z)€[0,N]xR
|s—t|,|]z—y|<1/n
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Good integrands

» Remaining question. When is a random field ® in £%2?

» Definition
We say that ® is a space-time random field [random field, for
short] if: (i) @ is adapted; i.e., ®(z) is .Fp-meas. for all t > 0
and z € R; and
(ii) @ is continuous in L?(Q); i.e., for all N > 0,

lim sup E (]@s(y) — @t(x)IQ) = 0.
=00 (5.4),(t,z)€[0,N]xR
|s—t|,|]z—y|<1/n

» Proposition

Suppose @ is a space-time random field that is continuous in
L*(Q) and Nj2(®) < oo, then ® € Ngsp LY.
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SpN () 1= @y n(lnz) /1) - Lo npxr (E 5 2),

where |—y| := —|—y| when y < 0.
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SpN (@) 1= @y n(lnz) /1) - Lo npur (E 5 ),

where |—y| := —|[—y| when y < 0.
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where:
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Good integrands (Idea of proof)

» Approximate ® with

SpN (@) 1= @y n(lnz) /1) - Lo npur (E 5 ),

where |—y| := —|[—y| when y < 0.
» We can write (N > n > 1 fixed)

N
SN @) = D Xl en)m (B85 (1),
1,jEZ:
0<i<niN
where:
> Xi = (I)ign(jn);
> OJ(I) = 1[.]'/7L,(,j+])/71,)<'/1;)'
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Good integrands (Idea of proof)

» Approximate ® with

SpN (@) 1= @y n(lnz) /1) - Lo npur (E 5 ),

where |—y| := —|[—y| when y < 0.
» We can write (N > n > 1 fixed)
n, N
Sy = > Xil(in(41)/n) (D)5 (1),
i,jEZ:
0<i<nN
where:

> Xi = Qian(jn);
> ¢J( ) = 1j/m, (J+1)/n)( ).
» Prove that N, (S""N — (I>) — 0 asn, N — oo, for all
a > f. O]
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integral].
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» Recall p := heat kernel.

» Definition
For a random field ®, define the stochastic convolution of p and
P as

(0 ® D)y(x) = /(0 Py = 2B € ),

whenever this makes sense [as a Walsh—Dalang stochastic
integral].

» Theorem
If ® € LP2 for some B> 0, then p® ® is defined and has a
continuous version that is in ﬂa>3£“s2,
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Stochastic Convolutions

» Recall p := heat kernel.

» Definition
For a random field ®, define the stochastic convolution of p and
P as

(0 ® D)y(x) = /(0 Py = 2B € ),

whenever this makes sense [as a Walsh—Dalang stochastic
integral].

» Theorem
If & € £P? for some B> 0, then p® ® is defined and has a
continuous version that is in ﬂa>5ﬁo"2.

> p®e:UpsoLh? = UgsolP?
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t>0 zeR
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The key step of the proof [see the lecture notes for the rest]

» If 3>0and k € [2,0), then

N3 i (®) := sup sup (e*ﬁtHCI)t(m)Hk) .
t>0 zeR

» When k£ = 2 this is a familiar norm.

» Proposition (Foondun—K, 2009; Conus—K, 2010)
For all >0, k € [2,00), and ® € £L5?2,

k,l/2

Nap(p® @) < B2/ :
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Proof of the stochastic Young inequality [N3(p ® @) < % - Np,k(P)]

» BDG inequality yields

't 00
Ip ® ®||2 <4k / ds / dy [prs(y — 2) 22 ) 12
JO J —00
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Proof of the stochastic Young inequality [Ngx(p ® ®) < % - Np,k(P)]

» BDG inequality yields
t fe'e)
W®@%<M1}m/ Ay [pes(y — )2 () 2

<N @) [ s [ dy ety - o

—00
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Proof of the stochastic Young inequality [Ngx(p ® ®) < % - Np,k(P)]

» BDG inequality yields
t fe'e)
W®¢%<M1}m/ Ay [pes(y — )2 () 2

<N @) [ s [ dy ety - o

—00

t —20r dr
— 4k )220 / e o
[Nai(®)]%e o (dvmr)i/2

» Do the remaining arithmetic. O
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Existence and uniqueness

> O = (v/2)02u + blu) + o (W)E;
» subject to ug(z) being non-random, measurable, and
bounded;

> v > 0 fixed;
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Existence and uniqueness

v

Ou = (v/2)02u + b(u) + o(u)é;
subject to ugp(x) being non-random, measurable, and
bounded;

v > 0 fixed;
» 0,b: R — R Lipschitz. That is, dLip > 0 such that

v

v

o(z) = a(y)| v |b(z) = b(y)| < Liplz —y[  Vz,y € R.
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Existence and uniqueness

> O = (v/2)02u + blu) + o (W)E;
subject to ugp(x) being non-random, measurable, and
bounded;

v > 0 fixed;
0,b: R — R Lipschitz. That is, dLip > 0 such that

v

v

v

lo(z) —o(y)| V [b(z) —b(y)| < Liplz —y|  Vz,y € R.

v

WLOG, Lip > max{|c(0)|,[6(0)|}.
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Existence and uniqueness

> O = (v/2)02u + blu) + o (W)E;
» subject to ug(z) being non-random, measurable, and
bounded;

> v > 0 fixed,;
» 0,b: R — R Lipschitz. That is, dLip > 0 such that

o(x) —o(y)|V |b(x) —b(y)| < Liplz —y| ~ Vz,y €R.

» WLOG, Lip > max{|a(0)|, [b(0)|}.
» Because |o(z)| < |0(0)| 4+ Lip|z| and |b(z)| < [b(0)| + Lip|z|,

lo(z)| V [b(z)| < Lip(1 + |z|) Vx € R.
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Existence and uniqueness
0 v 0?

> 5% = 3t u+b(u)+o(u)E, ug € L°(R) non-random.
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Existence and uniqueness

8 1% 82 o]
> s §aiu—|—b( u)+o(u)é, ug € L°(R) non-random.
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Existence and uniqueness

v DV ) tou)e e L®(R) d
8t 2 a 'LL ol\u ) UuQ non-random.

» Theorem
There exists a random field u € U5>0£572 that solves this initial
value problem. Moreover, it is [a.s.] the only solution for which
there exists a positive and finite L such that

sup E (|ut(x)|k) < LFexp {Lkt} Vk e [l,00),t>0.
z€R
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Existence and uniqueness

2 v 92

> at 587u+b( u)+o(u)é, ug € L°(R) non-random.

» Theorem
There exists a random field u € U5>0£/B’2 that solves this initial

value problem. Moreover, it is [a.s.] the only solution for which
there exists a positive and finite L such that

sup E <|ut(:v)|k) < LFexp {Lkt} Vk e [l,00),t>0.
zeR
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» Theorem
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there exists a positive and finite L such that
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Existence and uniqueness

» D=V b +ou)e e L®(R) d
at 2 a u ol\u ) UuQ non-random.

» Theorem
There exists a random field u € U5>0£/B’2 that solves this initial
value problem. Moreover, it is [a.s.] the only solution for which
there exists a positive and finite L such that

sup E <|ut(:n)|k) < LFexp {Lkt} Vk e [l,00),t>0.
zeR

» Remark

> For uniqueness, k = 2 suffices.
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Existence and uniqueness

» D=V b +ou)e e L®(R) d
at 2 a u ol\u ) UuQ non-random.

» Theorem
There exists a random field u € U5>0£/B’2 that solves this initial
value problem. Moreover, it is [a.s.] the only solution for which
there exists a positive and finite L such that

sup E <|ut(:n)|k) < LFexp {Lkt} Vk e [l,00),t>0.
zeR

» Remark

» For uniqueness, k = 2 suffices.
» The proof will show more: t — us(x) is Holder continuous
of index < 1/4 and x — v(x) is Holder continuous of index

< 1/2.
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Existence and uniqueness

» D=V b +ou)e e L®(R) d
at 2 a u ol\u ) UuQ non-random.

» Theorem

There exists a random field u € U5>0£/B’2 that solves this initial
value problem. Moreover, it is [a.s.] the only solution for which
there exists a positive and finite L such that

sup E <|ut(:n)|k) < LFexp {Lkt} Vk e [l,00),t>0.
zeR

» Remark

» For uniqueness, k = 2 suffices.

» The proof will show more: t — us(x) is Holder continuous
of index < 1/4 and x — vi(x) is Hélder continuous of index
< 1/a.

> We will see soon that the exponent bound of k3 is not
artificial. ]
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» We consider the more important contribution of diffusion;
thus, b = 0 from now on; it is easy to adapt the proof to
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» We consider the more important contribution of diffusion;
thus, b = 0 from now on; it is easy to adapt the proof to
work for general drift function b.

» Recall that u is a mild solution if

ur ()= (pr o) () + / Pros(y — 2)o (us(y)) E(ds dy)

(0,t) xR
=(pt * uo)(z) + (p ® o (u)), ().

» Proceed by Picard iteration.
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» Recall that u is a mild solution if
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> Proceed by Picard iteration.

> uf” () == up(x);
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Existence; sketch of proof

» We consider the more important contribution of diffusion;
thus, b = 0 from now on; it is easy to adapt the proof to
work for general drift function b.

» Recall that u is a mild solution if

ur ()= (pr o) () + / Pros(y — 2)o (us(y)) E(ds dy)

(0,t) xR
=(pt * uo)(z) + (p ® o (u)), ().

> Proceed by Picard iteration.
> ) (z) = uo(a);
> 1 (n,+1)(m) —

1t

(pt * uo) () + /(0 ) RpH(y — z)o(ul™ (y)) &(ds dy).
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Existence; sketch of proof

» We consider the more important contribution of diffusion;
thus, b = 0 from now on; it is easy to adapt the proof to
work for general drift function b.

» Recall that u is a mild solution if

ur ()= (pr o) () + / Pros(y — 2)o (us(y)) E(ds dy)
(0,t) xR
=(pt * uo)(x) + (p ® o(u)), ().

> Proceed by Picard iteration.
> o) (@) = uo(2);
> u£n+1) ($) =
@)+ [ (- 2ol ) s dy).
(0,6) xR
» We will have to prove a priori that u(™’s are all well
defined etc.
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Existence; sketch of proof
uf™ ™ (@) = (e xu0) (@) + fig,p)wr Pr—s(¥ — D)o (ul” (1)) £(ds dy) |

> A priori bound #1:

N (a0 ) <Nk (o % 0) + N (p @ o(u™)
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Existence; sketch of proof
uf™ ™ (@) = (e xu0) (@) + fig,p)wr Pr—s(¥ — D)o (ul” (1)) £(ds dy) |

> A priori bound #1:
N (u(nJrl)) <Nk (Do * u0) + Nk <p ® U(u(")))

k1/2 (n)
<ol oo (r) + WNM (U ou'" )

1/2

e (i (o)

<Lconst -
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uf™ ™ (@) = (e xu0) (@) + fig,p)wr Pr—s(¥ — D)o (ul” (1)) £(ds dy) |

> A priori bound #1:

Ns. (U(HH)) SN3.k (pe * ug) + Np i (p ® a(u(”)))

k1/2 (n)
<ol oo (r) + WNM (0 ou'" )

L1/2

A (e ().

» For the special choice, § = 16k?: 3C < co—independent of
ke, n—such that Mgz (u™) < C.

<Lconst -
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uf™ ™ (@) = (e xu0) (@) + fig,p)wr Pr—s(¥ — D)o (ul” (1)) £(ds dy) |

> A priori bound #1:

Ns. (U(”H)) SN3.k (pe * ug) + Np i (p ® a(u(”)))

k1/2 .
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1/2

e (i (o)

» For the special choice, = 16k?: 3C < co—independent of
ki, n—such that Mgz (u™) < C.

<Lconst -
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Existence; sketch of proof
uf™ ™ (@) = (e xu0) (@) + fig,p)wr Pr—s(¥ — D)o (ul” (1)) £(ds dy) |

> A priori bound #1:

Ns. (U(HH)) SN3.k (pe * ug) + Np i (p ® a(u(”)))

k1/2 .
<ol ey + o N (0 u™)

vB/2)

1/2

e (i (o)

» For the special choice, = 16k?: 3C < co—independent of
ki, n—such that Mgz (u™) < C.

» E ()ug’” (1)‘k> < CFexp {16]{%} .

<Lconst -
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» A priori bound #2 (similar): 3D < co—independently of
k,n—such that Njg2 (u('HU - "u,(n)> < De /P,



A Nonlinear Heat Equation (Lecture 5)
Existence; sketch of proof
[t (@) = (e % w0) (@) + [ 4y Pr—s (Y — @)o(ul" (y)) £(ds dy).]

» A priori bound #2 (similar): 3D < co—independently of
k,n—such that Mgz & (u(”“) — u(”)) < De /P,

» Easier bounds: VI, k >0 Eék,T < oo—independently of
n—s.t.

uniformly for x,2’ € R and ¢,¢' € [0,T].

(@) - u (@)

]‘u
) < G (o= 12 4 jr = o141,




A Nonlinear Heat Equation (Lecture 5)
Existence; sketch of proof
[ut" " (@) = (pe * 10)(@) + fig 4y Pe—s (¥ — D)o (ul” (1)) €(ds dy).]

» A priori bound #2 (similar): 3D < co—independently of
k,n—such that Mgz & (u(”“) — u(”)) < De /P,

» Easier bounds: VI, k >0 Hé'k,T < oo—independently of
n—s.t.

B ([l (@) - i @)

k ~
> < Cva <|£E o x/|k:/2 + |t . t/|k/4) ,

uniformly for z,2’ € R and ¢,t' € [0, T].

> /\/'16;{27k(u,<”)) < oo and continuity in L?(Q) = u(®) ¢ £642
Vn, and existence works, as in PDEs, by taking Cauchy
limits. 0J
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Uniqueness; sketch of proof
» Suppose Ja > 0 and u,v € L2, so that
sup,er{E(Jue(2)]?) V E(|ve(2)|?)} < Lexp{at} Vt > 0 and

ut(z) = (pr xup)(z) + (p ® o(u))e(x),
ve(z) = (pt * uo)(x) + (p ® 0(v))e(z).
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» Suppose Ja > 0 and u,v € L2, so that
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A Nonlinear Heat Equation (Lecture 5)

Uniqueness; sketch of proof

» Suppose Ja > 0 and u,v € L2, so that
supxeR{E(|ut(:c)]2) V E(|vg(2)]?)} < Lexp{at} Vt > 0 and

ut(x) = (pt * uo)(w) + (p ® o(u))e(z),
ve(x) = (pt * uo)(x) + (p ® o (v))e(z).
> V3 > a,

N2 (u—0)<Np2 (p® [o(u) — o(v)])

LipVv/2
<G e =)
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Uniqueness; sketch of proof

» Suppose Ja > 0 and u,v € L2, so that
supxeR{E(|ut(:r)]2) V E(|vg(2)]?)} < Lexp{at} Vt > 0 and

ut(x) = (pt * uo)(w) + (p ® o(u))e(z),
ve(z) = (pt * uo)(x) + (p ® o (v))e(z).

> VG > a,
N2 (u—v)<Ng2 (p® [o(u) — o(v)])
LipVv/2
<GppAba =)

» Choose 3 large to see that Nga(u —v) = 0.
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» Mild solution = weak solution (see lecture notes); proof
requires a stochastic Fubini theorem, as in the linear case.

> “Stopping-time arguments” can be used to replace the
Lipschitz-continuity hypotheses on ¢ and b to the
following:
» o and b are locally Lipschitz continuous;
» o and b have at-most-linear growth.

» At-most-linear growth cannot be improved upon. For
example:
Theorem (Foondun—Parshad, 2013)

Suppose b > 0, inf ug > 0, and |o(y)| > Cly|* 0 for all y. Then
there is no solution that satisfies
sup,er E(Ju(2)|?) < Lexp{Lt} for all t > 0.
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Addenda

» Mild solution = weak solution (see lecture notes); proof
requires a stochastic Fubini theorem, as in the linear case.

> “Stopping-time arguments” can be used to replace the
Lipschitz-continuity hypotheses on ¢ and b to the
following:

» o and b are locally Lipschitz continuous;
» o and b have at-most-linear growth.

» At-most-linear growth cannot be improved upon. For
example:

Theorem (Foondun—Parshad, 2013)

Suppose b > 0, infug > 0, and |o(y)| = Cly|**° for ally. Then
there is no solution that satisfies
sup,er E(|ue(7)|?) < Lexp{Lt} for allt > 0.

> See lecture notes for proof.



A Nonlinear Heat Equation (Lecture 5)
Addenda

» Mild solution = weak solution (see lecture notes); proof
requires a stochastic Fubini theorem, as in the linear case.

> “Stopping-time arguments” can be used to replace the
Lipschitz-continuity hypotheses on ¢ and b to the
following:

» o and b are locally Lipschitz continuous;
» o and b have at-most-linear growth.

» At-most-linear growth cannot be improved upon. For
example:
Theorem (Foondun—Parshad, 2013)
Suppose b > 0, infug > 0, and |o(y)| = Cly|**° for ally. Then
there is no solution that satisfies
sup,er E(|ue(7)|?) < Lexp{Lt} for allt > 0.
> See lecture notes for proof.

» Similarly for b, as we will see next (easier).
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Addenda

> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that

E(Jut(2)|) = Eus(2)

e u)@)+ [ s [y sy - B b))

0 —00
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Addenda

> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that
E(u¢(2)]) > Eue(2)

—(pe * uo)(z) + / as [ " 4y peosly — DE Blus())]

—00
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Addenda

> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that
B(Jus (1)) > Eue ()
— (o * ) / ds / dy pr_a(y — 2)E [b(us(1))]

>0+ q/o ds/_ dy pi—s(y — z)E (|u5(y)‘1+6)
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> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that
B(Jus (1)) > Eue ()
— (o * ) / ds / dy pr_a(y — 2)E [b(us(1))]

S / ds / dy pe_s(y — 2)E (Jua()[1*)
S04 q / as [ " dy peoaly — ) [B (lus() )]

J(t) :=inf, E(Ju(y)|) is a supersolution to the ODE
f’(f) = [f(f)]Hé s.t. f(0) = £
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Addenda

> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that
B(Jus (1)) > Eue ()
— (o * ) / ds / dy pr_a(y — 2)E [b(us(1))]

S04 g / ds / dy pr—a(y — 2)E (Jus(y)|*)
>e+q/ds/ dy pe_s(y — ) [E (lua ()]

> . J(t) :=inf y | +(y)]) is a supersolutlon to the ODE
= qlfO st f(0) =



A Nonlinear Heat Equation (Lecture 5)
Addenda

> Goal [Foondun—Parshad]: If £ := inf uy > 0 and
q := inf,[b(y)/|y|*t°] > 0 for some § > 0, then there is no “finite
energy solution.”

» Note that
B(Jus (1)) > Eue ()
— (o * ) / ds / dy pr_a(y — 2)E [b(us(1))]

S / ds / dy pe_s(y — 2)E (Jua()[1*)
S04 q / as [ " dy peoaly — ) [B (lus() )]

o J(t) == inf, (| ( )|) is a supersolution to the ODE
’(t): [ () f(0) = ¢. Easy: f(t) = oo for all
t > (6q00)~! ( ) oo for all t > (5g€%)~L. O
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Intermezzo: Brownian Local Times (Lecture 6)

» Let {X;}i>0 := BM with speed x > 0.

» A(x) := |z| satisfies A’(x) = sgn(z) and A”(x) = 20¢(x).
» Apply It6’s formula—a la Tanaka (1962/1963)—to the
function f(z) = |z — x| to see that

t

t
| Xt — x| = || +/ sgn(Xs — ) dX; + fi/ 0z (Xs)ds.
0 0



Intermezzo: Brownian Local Times (Lecture 6)

v

Let {X;}+>0 := BM with speed x > 0.

v

A(z) := |z| satisfies A'(z) = sgn(z) and A" (x) = 2d0(x).
Apply Itd’s formula—a la Tanaka (1962/1963)—to the
function f(z) = |z — x| to see that

v

¢ t
| X —z| = |:C|+/ sgn(Xs—x)dX5+/-i/ 0z (Xs) ds.
0 0

t
» L7(X) = / 0:(Xs) ds is a continuous random field.
Jo
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subject to ug(z) := 1.
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» Consider the following parabolic Anderson model:

0 V82

5%t 352 S ou+us, (PAM)

subject to up(z) := 1.

» The solution exists, is unique, and satisfies

sup E (|ut(T)|l‘> < Lexp { LKt} Vk €[2,00),t > 0.
T€R
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Intermezzo: PAM (Lecture 6)

» Consider the following parabolic Anderson model:

0 V82

5%t 352 S ou+us, (PAM)

subject to up(z) := 1.

» The solution exists, is unique, and satisfies

sup E <|ut(a:)|k) < Lexp {Lk*t} Vk € [2,00),t > 0.
zeR

» Theorem (Bertini—Cancrini, 1995)
For all integers k > 1, and all reals t > 0 and x € R,

B (o)) > exp (M1,
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PAM: Oyu = (v/2)0%u + ué, up = 1

» Because (py* 1)(z) =1 and w is mild, u =1 + (p ® u),
whence u=1l+@pea)+(p@®l®l)+ .
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PAM: Ou = (v/2)02u + ué, up = 1

» Because (py*1)(z) =1 and w is mild, u =1 + (p ® u),
whence u=1+(pe®l)+(p®1®1)+---.
> We seek a different representation.
» Let us first solve a related [bona fide] PDE with random
forcing:
OU(z) = g@gUt(w) + Uy(2)Gy(2),

where Up = 1 and G is a smooth function of (¢,z) and
doesn’t grow too fast.



Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1

» Because (py*1)(z) =1 and w is mild, u =1 + (p ® u),
whence u=1+(pe®l)+(p®1®1)+---.
> We seek a different representation.

» Let us first solve a related [bona fide] PDE with random
forcing:
v
8tUt(x) = 583(]75(%) + Ut(l’)Gt((L’),

where Uy = 1 and G is a smooth function of (¢, z) and
doesn’t grow too fast.

» By the Feynman—Kac formula,

U(zr) =E {exp < /O t Gi—s(Bs + ) dsﬂ :

where {G;}>0 is BM with speed v.
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PAM: Ou = (v/2)02u + ué, up = 1

> cifzy, ...,z € R, then
k k )
H Ui(z;) =E (ezjzlFJ ) ,
j=1

where TU) := jé Gt,s(ng) + z;) ds for i.i.d. BMs
BW ... B®) of speed v.
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PAM: Oyu = (v/2)0%u + ué, up = 1

> - ifxq,...,2 € R, then
i k (©)]
[T Uiy =B (1),
j=1

where T'0) := fg Gt,s(Bng) + x;)ds for i.i.d. BMs
BW ... B® of speed v.
» Intuitively, £ is a centered GRF with
Cov(&(z),&s(y)) = o(t — s)dp(z — y).

[Formally integrate both sides w.r.t. o (x)9s(y)dt de dsdy]



Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1

» - ifzq,..., 2, € R, then
i k ©)
[T Uiy =B (1),
j=1

where T'0) ;= fg Gt,s(Bng) + x;) ds for i.i.d. BMs
BW ... B® of speed v.
> Intuitively, £ is a centered GRF with

Cov(&i(x) ,&s(y)) = do(t — s)do(x —y).

[Formally integrate both sides w.r.t. o (x)9s(y)dt de dsdy]
» Now consider the case where G is a smooth approximation

to & A GRF with EG¢(z) = 0 and

Cov(Gi(x),Gs(y)) = pe(s — t)py(x — y), where €, ~ 0 are

positive.
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PAM: Oyu = (v/2)0%u + ué, up = 1

>

E (e ?:1 @

BW .., B(’“))

E (f[ Ut(:cj)) =E (eEf:lF“”) —-E
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PAM: Oyu = (v/2)0%u + ué, up = 1

>

k
E|[[tue;) | =E (e=="") =E
j=1

E (ezj?:l @

BW .., B(’“))

r@ | ) . B

M=

1
=Eexp 3 Var
j=1




Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1

>

k
r (H Ut<:cj>) =B (=) =B B ( b
j=1

1 .
=Eexp (2Var ( ) B(lz...,B(k))>
j=1

» Compute directly:

k
Var [ 310
j=1

BW .., B(’“))

M=

BW .. B®
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PAM: Oyu = (v/2)0%u + ué, up = 1

>

k
E (H Ut(:cj)) —B (X)) =B
j=1
1 o
=Eexp iVar ZF(J)
j=1

» Compute directly:

k
Var (Z r@ | M B(k)>
j=1

E (ezj?:l @

B“Z...,B(’"))>

BW .., B(’“))




Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1

» -..

E (H Ut(:cj)) =E (e2?=1f<”) =E|E (e TP ) .,B(’“))
j=1

k
1
=Eexp (2 Var (Z r@ | B .., B(k)) )
i=1

» Compute directly:
k
ZF .,B®
-y /d/ dr pe(s — )y (BY ~ BY —a; + ;).

1<4,5<k
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Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1

> Set x1,...,x, : = € R to see that

ar (f: ) .,B(k))
Z / ds/ dr pe(s —r)py (B(])—B()>

1<i,j<k

thpy(0) + > /pn (BY - BY) ds

1<i#j<k
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PAM: Oyu = (v/2)0%u + ué, up = 1

> Set x1,...,x, : = € R to see that

k
Var [ YT | BY)..., BW
j=1
t t ' '
= Z /ds/ dr pe(s —r)py (ng)—B§Z)>
0 0

1<i,j<k

~tkp,(0) + Z /Otp77 (ng) - Béﬂ) ds

I<i#j<k

tk . ,
~ + 10 (W _ g
V2T Kggk t < )
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PAM: Oyu = (v/2)0%u + ué, up = 1

> Set x1,...,x, : = € R to see that

k
Var [ YT | BY)..., BW
j=1
t t ' '
= Z /ds/ dr pe(s —r)py (ng)—B§Z)>
0 0

1<i,j<k

~tkp,(0) + Z /Otp77 (ng) - Béﬂ) ds

I<i#j<k

tk . ,
~ + 10 (W _ g
V2T Kggk t < )




Intermezzo: PAM (Lecture 6)

PAM: Oyu = (v/2)0%u + ué, up = 1
» Combine to see that

, 1] | ,
E(U z ") ~F Ry L LY <B<JLB<”)
o) =von (34 g+ 3
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PAM: Oyu = (v/2)0%u + ué, up = 1
» Combine to see that

1
E (|Ut(m)|k) ~ Eexp 3 Trm/ 1<;<kLO (B(J) - BC ))

> X(I D B(]) Bfi’) is a BM with speed 2v.
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PAM: Oyu = (v/2)0%u + ué, up = 1
» Combine to see that

1] , A
E (|Ut(m)|k) ~Eexp | ={ ——— + Z LY (B(J) _ B(z))
2\ VA T
» X .= BY — B is a BM with speed 2v.

» This and Brownian scaling together motivate [It6 vs
Stratonovich]:



Intermezzo: PAM (Lecture 6)

PAM: Ou = (v/2)02u + ué, up = 1

» Combine to see that
1 tk , A
) 70 (Bo) _ B(z))
2 | V2mnv * Z K

ISi#Aj<k

E(jUi(@)") ~ Eexp

» X .= BY _ B is a BM with speed 2v.

» This and Brownian scaling together motivate [Itd vs
Stratonovich]:

Theorem (Bertini—Cancrini, 1995; Hu—Nualart, 2009; Conus,
2011)

For all integers k > 2 and all realst > 0 and x € R,

E (u()) = Besp [~ 37 L2, (30 —5®)

1<i<j<k

where the b ’s are i.i.d. BMs with speed one.
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PAM: Oyu = (v/2)0%u + ué, up = 1

» E(|us(z)|*) = Eexp{v~'L;}, where

L, = Z Lgt <b(j) _ b(i)> )

1<i<j<k
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PAM: Ou = (v/2)02u + ué, up = 1

» E(|ui(x)|*) = Eexp{v—1L;}, where

Lo= 30 L (b9 —).

1<i<j<k

» Note: b)) — b’ are BMs with speed two. Therefore, by
Tanaka’s formula, £; > f%]\;ﬁ,t, where

M= Y W for Wit ;:/

1<i<j<t J0

t
sen (bgﬂ . bg?)) d (b<-7'> . b@)

S
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PAM: Oyu = (v/2)0%u + ué, up = 1

» E(|ui(x)|*) = Eexp{v—1L;}, where
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» E(|ui(x)|*) = Eexp{v—1L;}, where

3L, (bm _ b(z‘)) ,

1<i<j<k

» Note: b)) — b’ are BMs with speed two. Therefore, by

Tanaka’s formula, £; > —%Myt, where

S Wi for Wi = /O e (29 =60 a (b —6)

1<i<j<t

> But
M; = % Zlgmgk Wt(W) g 1 ﬁ) i=1 580 (bm bﬁ”) dbgj)-

> Thus, (M) =3, 1f0 { Z' L sgn (bU) _bgi>>rds
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PAM: Oyu = (v/2)0%u + ué, up = 1

> After a little bookkeeping, (M); =

k(k2—1)
f >< t.

» Therefore, M is a BM with speed 02 = k(k* —1)/3

» Combine to finish:

> E(luy(2)]*) = Eexp{v~"L¢};
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PAM: Oyu = (v/2)0%u + ué, up = 1

. . _ k(k*-1)
> After a little bookkeeping, (M); = =—5—

» Therefore, M is a BM with speed 02 = k(k* —1)/3

X t.

» Combine to finish:
> E(|ue(2)|*) = Eexp{v~'L:};
> L > %Mut;
» E(|ug(2)|*) = Eexp{(2v) ' M,;} = exp{c?t/(8v)}.
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Some motivation

> Let v := {¢¢(2) }¢=0,.cz be a [discrete] space- [discrete]
time non negative random field and z — 1y(z) is i.i.d.
mean one V/ > 0.
» Suppose the kth moment Lyapunov exponent
(k) :== lim 1logE ([W(z)]k) exists and is positive and
e
finite.

» Definition (Zel'dovich—-Molchanov—Ruzmaikin—Sokoloff,
1988; Zel’dovich—Ruzmaikin—Sokoloff, 1990; Molchanov,
1991; Gibbon—Titi, 2005; ...)

(k)

k

We say that 1 is intermittent when k — is strictly
increasing for k € [2,00).

> TIf 2 < k < K, then 18 < 1K)

issue is with strict inequalities.

by Jensen’s inequality. The
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Some motivation

» The following shows ¢ is intermittent, as long as y(2) > 0.

» Proposition (Carmona—Molchanov, 1994)

The function k — k= ~y(k) is well-defined and convex on (0, 00).
Moreover, if v(ko) > 0 for some ko > 1, then k — k= 'y(k) is strictly
increasing on [kq , 00).

> Proof. Convexity follows from Jensen’s inequality. If
K >k>ky |, then write k = oK + (1 — a) for
a:=(k-1)/(K-1).

» Because v(1) = 0, convexity yields
k—1
g1

Rearrange, using the facts that: (i) v(k) > 0 for all k& > ko; and
(i) (k—-1)/(K-1)<Ek/K. O

(k) < ay(K) + (1 —a)y(1) =
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» Lemma (Paley—Zygmund, 1932)

Fiz reals n >m > 2, and let X € L™(2) be non negative with
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) [E(Xm)}n/(nfm)

P {X 2 (5||X||m} 2 (1 - 67n)7l/("*7n ’ [E(Xn)}m/(n*nl) :
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Separation of scales

» Lemma (Paley—Zygmund, 1932)

Fiz reals n >m > 2, and let X € L™(2) be non negative with
P{X >0} >0. ThenV§ € (0,1),

PAX 2 01X} > (1= 00 - p

» Proof. Apply Hélder’s inequality:

E(X™)<OMEX™) +E(X™; X > 0| X||m)
SOTE(X™) + (B(X™)™™ (P{X > 6] Xl }) "™/

Solve to finish. OJ
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Separation of scales

» Lemma
Vm € [2,00) and 6 € (0,1),
lim inf ! log P {v¢(z) = d||¢e(0)]|;n} = — inf <
t—oo { n

>m

my(n) - m(’m)) |

n—m
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Separation of scales

» Lemma
VYm € [2,00) and § € (0,1),

L log P {e(2) > 31 (O)lm} > — inf (””(’”‘)‘m(m)) .

lim inf
l—oo { n>m n—m

» Proof. By Paley—Zygmund inequality, for all n > m,

& (& mngnemy  [B([we(0)]™)) )
P{ve(2) = 6[[the(0) Im} = (1 — ™) B O
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Separation of scales

» Lemma
Vm € [2,00) and 6 € (0,1),

it 7105 (00(2) > 60} > — it

» Proof. By Paley—Zygmund inequality, for all n > m,

g/ (n=m) [E([00(0)]™)] (=)
[E([t0(0)]7)]m/ (n=m)

P {be(2) = 6ll1e(0)[[m}=(1 =
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Separation of scales

» Lemma

Vm € [2,00) and 6 € (0,1),
1
!
» Proof. By Paley—Zygmund inequality, for all n > m,

myn/(n—m [E([wé(o)]m)]n/(n—m)
U 2 OOl =00 [E([4e(0)])]m/ (a=m)

exp (e. ”’V(”’g _‘W”ZV(”) (e))

()= i)

m
- - o
it 7105 (00(2) > 64r(0)n} > — jut ("L

+
QS
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Separation of scales

» Lemma
Vm € [2,00) and 6 € (0,1),

it 7105 (00(2) > 60} > — it

» Proof. By Paley—Zygmund inequality, for all n > m,

myn/(n—m) B[ (0))™)]"/ )
PO 2 SOl == [E([¢j(0)]”)]m/(n—m)

—exp (z cmym) = mr(n) 0(€)> .

n—m

Take logs etc.
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» There is an easy corresponding upper bound too:
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Separation of scales

» There is an easy corresponding upper bound too:

p{ _mw () > ox Ol

1<z<exp(ON)

<Y PO > O} < (14 [e]) TxO)

1<z<exp(ON) HwN(O)”m

e (-3 [ a] o).
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Separation of scales

» There is an easy corresponding upper bound too:

p{,max, 0w > 0w Ol }

1<z<exp(ON)
E(¥n(0))
< Z P{Yn(0) = [[¥n(0)[m} < (1 + LQGNJ) W
1<z<exp(ON) N m
= exp (N {V(m) - 9] + 0(N)> .
m
» Borel-Cantelli: 30 < 1 < 65 < - -+ such that a.s. Vi,
0<l L log ¥y (2)
imsup — max og 1y (z
A“'\T*)xp 1<z<exp(O; N) E¥N
1
< liminf — max logWn(z) < oc.

N—oc N 1<z<exp(6;+1N)
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Back to SPDEs

> Counsider the drift-free SHE Ou = (1/2)0%u + o (u)€,
ug € L>®(R) non random — all as before.

» Definition

The lower and upper Lyapunov exponents:

o1 k
'yk(x)::htrgg‘}fglogE(\ut(x)\ )

. 1
i (2):=limsup — logE (\ut(x)\k) .
t—o0 t

» Fact. If vo(z) > 0 Vo then k — k™ 1y, (z) is strictly increasing;
same for upper L. exponents.
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» Theorem (Foondun—K, 2009; see also Doéring—Savov, 2010)
4
o(2)

z

If inf > 0 then inf vo(z) > (4v)~t  inf
[ int ug| > 0 then inf yo(r) > () ! _inf
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» Proof works by direct estimation, and a comparison argument:
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Back to SPDEs

» Theorem (Foondun—K, 2009; see also Doéring—Savov, 2010)

o(z) 4

If inf 0 then inf > ()"  inf
f inf |uo| > en ;ng(w) (4v) ze%?\{o}

z

» Proof works by direct estimation, and a comparison argument:

B(ue(2) %) =| (pe * o) (@)? + / ds / 7y sy — B2 (1))
inuzctssoot_g—z2
>f\o|+/of<>d/m[p Sy~ )]

" I(s)
=inf Juo|? + ’/ ds,
inf |ug|” + ¢ i s

t
I
where I(s) := yléllflE(‘”vLs(y)‘Q):> I(t) > 1 + 02/0 t(S_)s ds.
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> I(s):= }QEE(\ug(y)F) = I(t) > + (’:2/
: 0
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> 1(s) := inf Blus(y)I*) = 1(2) >Cl+"‘2/o \/17% ds-

» Theorem (Georgiou—Joseph—K—Mahboubi—Shiu, 2013+)

I(t) = f(t), where [ solves the renewal equation

f(f) =1+ Co /0 f%db
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Back to SPDEs

> 1(s) = inf Bllus(w)’) = 1) > e + 02/0 \/17% ds-

» Theorem (Georgiou—Joseph—K—Mahboubi—Shiu, 2013+)

I(t) = f(t), where f solves the renewal equation

O
Vi—s

t
f(t) = C +CQ/0

» Apply the “key renewal theorem” to see that
I(t) > csexp{cat}.
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» We just showed that if inf |ug| > 0 then a cone conditions
such as “L, :=inf, |0(2)/2]| > 0” automatically ensures
weak intermittency [y2 > 0].

» What if inf |ug| = 0, say up has compact support?

» From now, consider a non-random initial function
uo : R — R that is measurable and bounded [as before],

has compact support, and is strictly positive on an open
subinterval of (0, 00).

» We examine the drift-free stochastic heat equation,
ou = (v/2)0%u + o (u)t.
» o : R — R Lipschitz and ¢(0) = 0.

» Synopsis of behavior. A kind of weak intermittency occurs.
Roughly, tall peaks arise as t — oo, but the farthest peaks
move roughly linearly with time away from the origin.
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» Define, for all a > 0,

1
() == limsup - sup logE (Jus(z)[?).

t—o0 |z|>at

» Think of oy, as an intermittency lower front when
S (a) <0 for all @ > af.

» And ay as an intermittency upper front when () > 0
for all a < ay.

» If there exists a, that is both a lower front and an upper
front then a is the intermittency front.
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» Theorem (Conus—K, 2012)

Under the present conditions, the SHE has a nontrivial
intermittency lower front. In fact, & (a) <0 if « > %Lipg.
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» Theorem (Conus—K, 2012)

Under the present conditions, the SHE has a nontrivial
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» Theorem (Conus—K, 2012)

Under the present conditions, the SHE has a nontrivial
intermittency lower front. In fact, (o) <0 if o> %Lipg.
If, in addition, L, :=inf ..o |0(2)/2| > 0, then there exists

ap > 0 such that L (o) >0 if ae(0,a).

» Conus-K showed in fact that ag > L2/(27).

» When o(z) = Cx Lip, = L, = C. In that case, the
work of Conus—K implies that, if there were an
intermittency front, then it would lie between C?/27 and
C?)2.

» The existence of an intermittency front has been proved
recently by Le Chen—Dalang; in fact, they proved that the
intermittency front is at C2/2.

» A closely-related result: Because o(0) = 0 and ug € L*(R),
uy € L2(R) a.s. for all t > 0 [Dalang-Mueller, 2003].



Intermittency Fronts (Lecture 8)
Sketch of proof

—Bt+ 2y]1/2
» Nj.o(®) :=supsup {e PIFErE (|®¢(2)| )} .
t>0 zeR



Intermittency Fronts (Lecture 8)
Sketch of proof

1/2
> Nia(®) = sup sup [eE (1o, () )] .
t>0 zeR

» Warning. N o(®) is what we used to write as N9 o(®).



Intermittency Fronts (Lecture 8)
Sketch of proof

1/2
> Nia(®) = sup sup [eE (1o, () )] .
t>0 zeR

» Warning. N o(®) is what we used to write as Nj/o o(®).
» The following uses similar ideas as the stochastic Young
inequality of yore.



Intermittency Fronts (Lecture 8)

Sketch of proof

1/2
> Nia(®) = sup sup [eE (1o, () )] .
t>0 zeR

» Warning. N o(®) is what we used to write as Nj/o o(®).

» The following uses similar ideas as the stochastic Young
inequality of yore.



Intermittency Fronts (Lecture 8)
Sketch of proof

1/2
> Npel®) = sup sup [ 2 (j@,(2))]
t>0 zeR
» Warning. N o(®) is what we used to write as Nj/o o(®).
» The following uses similar ideas as the stochastic Young
inequality of yore.

» Proposition
For allc € R, B> c*v/4, and ® € LP?,

Npo(®)
(v(48 — c2v))l/4

Nselp® @) <
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Sketch of proof

>

» Recall. ugnH)(x) = (pt *uo)(z) + (p ® o (u™))¢(x).

» Because o(0) = 0, |o(ul™ (2))| < Lip, [u{™ (z)| =

Lip
o (1) Po (n)
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Sketch of proof

>

» Recall. ugnH)(x) = (pt*up)(z) + (p® a( ™))e().

» Because o(0) = 0, |a(u§ )( )| < Llpalut (af)] =

Nﬂ,c (U(n+1)) < N,B,c (Pe * uo)+ (v (4BLlpU ))1/4'/\/5,0 (u(")) )

» Also,

o

C—[3t+(::1;<pt*|u())(I):C—Bt/ pt(y ) —c(y—=x) ‘U‘UO< )|dy

— 00
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Sketch of proof

>

» Recall. ugnH)(x) = (ps xug)(z) + (p ® o (u™))s(x).

» Because o(0) = 0, |U(u§n)(a;))] < Lipglugn) ()] =

n Lip, n
N/B,C (u( +1)) < Nﬁ,c (p' * UO)+(V(4B _ CQV))1/4NB,C (u( )) X

> Also,
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Sketch of proof

» Recall. ugnH)(x) = (pt*up)(z) + (p® 0( ™))e().

» Because o(0) = 0, |a(u§ )( )| < Llpolut (x)] =

Nﬂ,c (U(n+1)) < N,B,c (Pe * uo)+ (v (46Llpa ))1/4'/\/5,0 (u(")) )

> Also,

P e ) )= [y = e e g 0) dy
—00

Nistuems (- [5-24]).

» Apply this with 3 := c?v/2 to see that

Nezyjoe (u (n+1) ) No,e(uo) + \I/Ap—a/\[(%/h ( (“)) :
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> up has compact support
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Sketch of proof

> up has compact support
= No(uo) + No.—c(ug) < oo Ve € R.

Iteration yields N2, /5 .(u) < oo when Lip, /+/|c[v < 1.
Equivalently, if ¢ > Lip2 /v, then
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t
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Sketch of proof

> up has compact support
= No(uo) + No.—c(ug) < oo Ve € R.

Iteration yields N2, /5 .(u) < oo when Lip, /+/|c[v < 1.
Equivalently, if ¢ > Lip2 /v, then

v

v

2
t
E (Ju(2)[?) < const - exp <—c|x + C;) -

v

2
t
Therefore, sup E (\ut(x)|2) < const - exp <—cat + CV) )
|z|>at 2
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The exponent is < 0 iff @ > cv/2 for any ¢ > Lip2/v.
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Sketch of proof

> up has compact support
= No(uo) + No.—c(ug) < oo Ve € R.

Iteration yields N2, /5 .(u) < oo when Lip, /+/|c[v < 1.
Equivalently, if ¢ > Lip2 /v, then

v

v

2
t
E (Ju(2)[?) < const - exp <—c|x + C;) -

v

2
t
Therefore, sup E (\ut(x)|2) < const - exp <—cat + CV) )
|z|>at 2

v

The exponent is < 0 iff a > cv/2 for any ¢ > Lip2 /v.
o (o) < 0if a > Lip2 /2.

v
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Sketch of proof

» Recall. u(x) = (pr *xuo)(x) + (p ® o(u))(x).
» Therefore, by the Walsh isometry,

E (Jur(2)[2) =|(pr * o) (2)]? + / ds / " 4y [peealy — 2)E [0 (us(w))]
> |(pe * u0) ()| +LU/O ds/mdy [pr—a(y — D) (Jus (3) 2) .

> 1[at,oo) (CL‘) = 1[a(t—s),oo) (y - l‘) : 1[as,oo) (y)
| 2

»00 "t 00
[ e [as [ ay ety - o)PE (. )P)
at 0 —00

> [ ( [ [pt,q<z>}2dz> ([ B utr) )
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> o My(t) := [T E (Jug(x)]?) da solves

o0

M) > [ (s w)(@) do+ LT 5 Ma) (o),

Jat

where T'(t) := [ [pe(2)]* dz.

67
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ML (t) = [ E (Jug(x)[?) da solves

o0

Aﬁ@>/\%*@@W®+%UWMMW

at

where T'(1) := f [ ()]
> Similarly, M_(t) := [~ (\ut )|?) dz solves

M(ﬂ>/f\@wmm>2m+L%Tuux»
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Sketch of proof

ML (t) = [ E (Jug(x)[?) da solves

o0

M, (1) > / (1 o) (@) [Pz + L2 (T = My ) (1),

at

where T'(t) := [ [pe(2)]* dz.
> Similarly, M_(t) := [Z2'E (Jus(2)]?) da solves

M_(t) > /__a |(pe * wo) (x)|* da + L5 (T + M_)(t),

> L M(t) = E (Jus(z)[*) dz solves

]\z|>at

MW [ s )@ e+ LT M)
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ML (t) = [ E (Jug(x)[?) da solves

o0

M, (1) > / (1 o) (@) [Pz + L2 (T = My ) (1),

at

where T'(t) := [ [pe(2)]* dz.
> Similarly, M_(t) := [Z2'E (Jus(2)]?) da solves

M_(t) > /__a |(pe % o) ()| da + L3 (T + M_)(1),
> L M(t) = f‘m|>at E (Jut(z)]?) dz solves

M(t) > /||> t](pt*uo)(x)|2dx—|—L§(T*M)(t).

» Laplace transform: (Z¢)(3) := [;~ e PLo(t) dt.
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(ZM)(8)
> / .y / dz |(pe % uo) ()]? + L2(LT)(8)(LM)(B).
JO J|z|>at
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(ZM)(8)
> / et / A [(pr * o) (x) 2 + L2(LT)(8)(L M) (5).
0 |z|>at

» Direct computation:

(ZT)(0) = ! % / dz e % /) 5 00 as a | 0.
0 Jat

um
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Sketch of proof

(ZM)(8)
> / et / A [(pr * o) (x) 2 + L2(LT)(8)(L M) (5).
0 |z|>at

» Direct computatlon
dt
(Z£T)(0) / / dz e /0 5 o0 as a | 0.
at
» Therefore, 3(»./[)’ >0 bllCh that (ZM)(B) =
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Sketch of proof

(ZM)(8)
> / et / A [(pr * o) (x) 2 + L2(LT)(8)(L M) (5).
0 |z|>at

v

Direct computatlon

(ZT)(0) / dt/ dz e /) 5 o0 as a | 0.
at
Therefore, Eia, B > 0 such that (L M)(8) = oco.

Argue by contradiction to see that for this choice of «, 53,

() = limsup,_,, ¢t * SUP|z|>at 108 E(ju(x)|?) = 8 >
0. O

v

v
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Q(’ZU) = Z ‘u,vj‘”zi (w c Rm).
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Kolmogorov’s Continuity Theorem

> {X,}ter a stochastic process, where ' C R™ is meas. and bdd.

» If0<ay,...,a, <1, then p is a ”distance” on R™—compatible
with the topology of R™—where

ofw) =Y fusl™ (weR™)
Theorem (KCT) =1

Suppose 3 finite C >0 and k > H := 37" a;l so that
| X — X5l < Colt—s) Vs, t e .

Then X has a continuous modification X that is Hélder continuous.

In fact, Vg € (0,1 — (H/k)),
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> “Garsia’s theorem” (1970/1971) nowadays refers to a class
of theorems that show that if f: R"™ — R has good
integrability properties, then f is in fact smooth.

» Let o := a “norm” on R that is compatible with the
topology of R™.

» Bo(z;r) ={yeR™: oy —x) <r}.

» f:R™ — R locally integrable

» u: Ry — Ry is a continuous, strictly increasing function
with p(0) = 0.

» Garsia’s integral[s]:
g k
Tk ::/ dm/ dy

(
p(o(z —y)) =t

f(z) = f(y)
(x —




Aside: Regularity Theory (Appendix C)

k
_ F@)— )
Tr = [pm 47 [pm Y | Giemms))

Theorem (Garsia’s theorem)

If Iy, < oo for some k € [1,00) and 1o’ 1B, (r)|"%* du(r) < oo,
then f = f a.e., where f : R™ — R satisfies

i , (s—1) .
F(s) - F(0)] < 127" / T B Y du(r),

for all s,t € R™ that satisfy o(s —t) < rp.
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» V meas. Q C R™ with |@] > 0, define

_ 1 .
fo(z) .:M/Qf(erz)dz (r € R™).
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» V meas. Q C R™ with |Q] > 0, define

_ 1 .
fo(x) .:m/Qf(erz)dz (x € R™).
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k
_ F@)—F @)
Tr = [pm 47 [pm Y | Giemms))

» V meas. @ C R™ with |Q| > 0, define

_ 1 .
fo(x) .:m/Qf(erz)dz (x € R™).

» Lemma (Garsia’s lemma)
V k > 1 and bounded and meas. Q C Q' C R™ with |Q| > 0,

f 7 1/k
sup |fo(2) = for(2)] < sup  p(e(a —b))- ( Iy, > |

zeR™ acQ,beq’ ‘Q|2
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» Jensen’s inequality:

|fa(2) — for(z

|/dx/ dy ( — fly+2)) |
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» Jensen’s inequality:
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Fa(2) = Fa )= gy L= [ v (o) = s+
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» Jensen’s inequality:
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» Jensen’s inequality:

k

Fa(2) = Fa )= gy L= [ v (o) = s+

L - g
<|Q‘2/Qdm/@dy|f(x+z) Fly+2)".

» Choose and fix a > sup,¢( suppey p(0(a — b)) =

) ) 1/k
Fa(z) - for(2)] <o (é‘[) .
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» Jensen’s inequality:

k

Fa(2) = Fa )= gy L= [ v (o) = s+

L - g
<|Q‘2/Qd:c/@dy|f(x+z) Fly+2)".

» Choose and fix a > sup,¢( suppey p(0(a — b)) =

) ) 1/k
Fa(z) - for(2)] <o (é‘[) .

O

> Let a | sup,cq supyeqr f(o(a — b)) to finish.
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» Define 7, | 0 via: ro > 0 fixed; pu(2ry,) = 27" u(2rp);
equivalently,

1
Tn4l := Sup {r >0: p(2r) = 2#(27‘11)} .
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» Define 7, | 0 via: ro > 0 fixed; pu(2ry,) = 27" u(2rp);
equivalently,

1
Tpt1 :=supqr >0: p(2r) = 5#(27‘71) .
> Define

fn(2) == f, () (2)
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» Define 7, | 0 via: ro > 0 fixed; pu(2ry,) = 27" u(2rp);
equivalently,

1
Tpt1 :=supqr >0: p(2r) = 5#(27‘71) .
> Define

Fa(2) = Fi o (2) = ‘/ fla+2)d
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» Lemma
Suppose Jk € [1,00) so that:
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k
= fz)—fy)
Tk := me dz me dy M(‘;(17y@;>

» Lemma
Suppose 3k € [1,00) so that:
» T, < 0o: and
> f(:‘“ |Ba(71)‘72/k du(r) < co.
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» Lemma
Suppose Jk € [1,00) so that:
> T < o0: and

> Jo " IBo(r)[7*/* dpu(r) < oco.
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» Lemma
Suppose Jk € [1,00) so that:
> T < o0: and
> o IBo(r)| ¥ dpu(r) < oo.
Then, f :=limy,_ o0 fn exists, and

sup |f(2) = fe(2)] < 4I;/k~/0”“ B,(r)| "2 du(r) Vee{1,2,...}.

ZGR"L
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» Lemma
Suppose Jk € [1,00) so that:

> T < o0: and
> Jo" IBo(r)| 7 * dpu(r) < oo

Then, f :=limy,_ o0 fn exists, and

— _ Te+1
sup [(2) — )] < 47" /0 Bo(r)["2/*du(r) Vee{1,2,...}.
zeR™

Consequently, f = f a.e.
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» Proof. If a € B,(ry,) and b € By(ry41), then

o(a—b) < o(a) + o(b)
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» Proof. If a € B,(ry,) and b € By(r41), then

o(a —b) < o(a) + o(b) < rp 4 rng1 < 27y,
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» Proof. If a € B,(ry,) and b € By(ry+41), then

Q(a - b) < Q(a) + Q(b) S Tn + Tnt1 < 2.

» Garsia’s lemma =

{+L—-1

| ferL(2) (2)|< Z | Frt1(2) = fu(2)]

2r
<z/* n) Ve, L > 0.
Z ‘B Tn+1 |2/k

» Since p(2r,) = 2u(2r,41), we can write
12r) = H{p(2ras1) — p(2rasa)}
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Therefore, ¢ — f; is uniformly Cauchy and f := limy_,o f¢3

» Remains: f = f a.e.: V nice ¢,

[ o@ia)do=im [ o(a)fute)do
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T = Jrum 2 Jrom Ay | SGEE
o (2rni1) = (2rn2)
_ — k - 2
| fern(2) = Folz)| <az/* T RS nt

2 mw+m%

DY
Tn+2 |B 74n—‘,—1

e (7 du(r)
! / )
0 [By(r)]

Q/k

Therefore, ¢ — f; is uniformly Cauchy and f := limy_,o f¢3

» Remains: f = f a.e.: V nice ¢,

/ o) () da= lim [ o(a)ful) dx

/¢xﬁxm:/wwﬁum%»/wmﬂmm

» Therefore f = f a.e.
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> Similar ideas yield the following [see lecture notes]:
Lemma

Under the preceding integrability conditions, f is continuous. In fact,
if s,t € R™ satisfy o(s —t) < ro, then

_ _ ) o(s—t) o
1F(s) - F(t)| < 12227 / 1B, ()]~ dpu(r).
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> Similar ideas yield the following [see lecture notes]:
Lemma

Under the preceding integrability conditions, f is continuous. In fact,
if s,t € R™ satisfy o(s —t) < ro, then

_ _ o(s—t)
1F(s) — F()| < 122" / IBo(r)[7>/* du(r).

» This concludes the proof of Garsia’s theorem. ]
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» Back to PAM: dyu = (v/2)0%u + ué, s.t. ug = 1.
» The solution is ui(z) = 1+ (p ® u)¢(z).

» Theorem (Conus—Joseph—K, 2013)
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» The biggest peaks grow as exp{c(log|z|)?/3} with z.
» Mueller’s comparison principle: u(x) > 0 a.s.

= log |u(x)| = log us(x).
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» Back to PAM: dyu = (v/2)0%u + ué, s.t. ug = 1.
» The solution is ui(z) = 1+ (p ® u)¢(z).

» Theorem (Conus—Joseph—K, 2013)

loglu@|

0 < limsup (log [z])2/3

|z]—o0
» The biggest peaks grow as exp{c(log|z|)?/3} with z.
» Mueller’s comparison principle: u(z) > 0 a.s.

= log |u ()| = log u¢().
» Eu(x) =1 = |Jug(x)]|1. Therefore, by Fatou’s lemma,

lim inf|,| o u¢(z) < oo. So the limsup is not a lim.



Intermittency Islands (Lecture 9)

» hi(z) =logus(z) “Cole-Hopf solution to KPZ”:

0 < limsup ()

—_— .
oo (log [z))2/3 =



Intermittency Islands (Lecture 9)

> hi(z) =logus(z) “Cole-Hopf solution to KPZ”:

: hi(x)
0 < limsup ——————~
|z|—o0 (IOg |x|)2/3

» The KPZ equation is:

0 v 0? {8
h —

2
ot = 202 ah} ¢
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» Let us say that F'(z) < G(z) for all z > 1 when 3c € (1,

such that
¢ 1G(2) < F(2) < cG(2) Vz > 1.

» The upper bound follows from a careful application of
Chebyshev inequality, sub sequencing, and the upper
bound of the following tail probability bound:

Theorem
Yt >0 and z > 1, log P {us(z) > 2} < —(log 2)*/2.
» In terms of KPZ, we have

log P {h:(x) > z} = 25/2,

o0)
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» Let us say that F'(z) < G(z) for all z > 1 when 3¢ € (1,00)
such that
¢ 1G(2) < F(2) < cG(2) Vz > 1.

» The upper bound follows from a careful application of
Chebyshev inequality, sub sequencing, and the upper
bound of the following tail probability bound:

Theorem
Yt >0 and z > 1, log P {us(z) > 2} < —(log 2)*/2.
» In terms of KPZ, we have

log P {hs(z) > 2} = 2%/2,
» Well-known conjecture [based on RMT]:

log P {hy(z) < —2} < —c23?
» So far (Conus—Joseph—K, 2012; Mueller—Nualart, 2008):
log(1/z) 3/2

z

logP {hi(z) < —2} < —c
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» Lemma
Suppose X is non negative and Ja,C > 0 and b > 1 such that
E(X*) < C* exp{ak®} Vk € [1,00). Then,
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In particular,
P{X >z} < crexp (—coflog, 2% (~D) vz > 1.
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» The following will yield the upper bound.

» Lemma
Suppose X is non negative and Ja,C >0 and b > 1 such that
E(X*) < CF exp{ak®} VEk € [1,00). Then,

b/(6-1) L-b
Eexp(a(log+X) )<oo Vo € O’W .

In particular,
P{X > 2z} < ¢y exp (—coflog,, z]b/(b_l)) Vz > 1.

» The probability bound follows from the expectation bound
and the Chebyshev inequality.
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Proof of the expectation bound

» WLOG I will assume that E(X*) < (" exp{ak®}.
» If z > e and k > 1, then by Chebyshev’s inequality,

P {ea(log+ XD z}:P {X > exp {(log(z)/a)(b_l)/b} }

<E(X") exp [—k(log(2)/a) *~ /"]

<exp | ak® — k(log(z) /)b 1/b

=—g(k)

» - P {ea(10g+ X)b/(b=1) > Z} < e~ SUPk>1 g(k) _ e—clog(z) _

1—-0bt
a- (ab)t/(0=1)"
» Choose « small so that ¢ > 1. ]

2z~ ¢, where ¢ :=
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)
Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)
Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,

|log 2*/2(1 + 0(1))>
Vi3
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» Proof. By the Paley—Zygmund inequality,
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)
Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,

|log 2*/2(1 + 0(1))>
Vi3

P{X >z} > exp (Q (z = 0).

» Proof. By the Paley—Zygmund inequality,
2 [B(X™))?
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)

Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,

|log z|3/2(1 + 0(1))>
P{X >z} >exp| — Z — 00).
(X>2) p( Q = (2 = o0)

» Proof. By the Paley—Zygmund inequality,

B E(Xm)P

PIX S LX) s (1 —2-m)2 EEIE

(X2 X2 (- 27

o L?™ exp(2Lm3t)

> . _2
>(1-27) exp(8¢m3t)
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)

Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,

|log 2*/2(1 + 0(1))>
P{X >z} >exp| — Z — 00).
(> ) > o (- (= - 20)
» Proof. By the Paley—Zygmund inequality,
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» For the lower bound we need 2 easy lemmas.

» Lemma (Easy Lemma 1)

Suppose X is a non negative r.v. with

exp(lk*t) < E(X*) < L exp(Lk3t). Then, 3Q > 0 s.t.,

|log 2[*/2(1 + 0(1))>
P{X >z} >exp| — Z — 00).
(> ) > o (- (= - 20)
» Proof. By the Paley—Zygmund inequality,
_my2 [BX™))?
P X > LX) (1— 2 B
(X2 X2 (- 27
S0 - 2_2)2L2m exp(2Lm3t)
- exp(8¢m3t)

9 m
> 1—6L2 exp (meSt)

> = () > 0= solve.
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1963)
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» Lemma (Easy lemma 2; Paley—Zygmund, 1932;
Chung—Erddss, 1947, 1952; Erd6s—Rényi, 1959; Lamperti,
1963)

Let Eq, Es, ... be events such that:

» >, P(E,) = o0;
> 0 [1,00) s.t. P(E | E;) < OP(E;) Vj >i> 1.

Then P{E,, i.0.} > 071
» Proof. Jy = ZN 1g

n=1 n

» E(Jy) = 0 as N — oo;
> E(J2) < 0[EJN]2.
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» Lemma (Easy lemma 2; Paley—Zygmund, 1932;
Chung—Erddss, 1947, 1952; Erd6s—Rényi, 1959; Lamperti,
1963)

Let Eq, Es, ... be events such that:
> ZnP(E’ﬂ) = 005
» 0 € [l,00) s.t. P(E; | E;) < OP(E;) Vji>i>1.
Then P{E,, i.0.} > 071
» Proof. Jy = ZN 1g

n=1 n

» E(Jy) = 0 as N — oo;
> E(JX) < 0[EJN]*

> Apply the Paley—Zygmund inequality: V§ € (0,1),

P{Jy 2 0E(JN)} = (1 — 5)2(];[({]1\;]))2 > (1 _96)2' .
N
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» PAM: Qyu = (v/2)0%u + ué; ug = 1.
» Basic problems:
» If © > 2 then w;(x) is “nearly independent” from wg(x’).
> u(®) =1+ [, Pr-s(y — T)us(y) E(ds dy).
» Roughly speaking, p;—s(y — z) ~ 0 when |z — y| > 1.
» Therefore, us(z) and u;(x’) “use up” different parts of
white noise.

» This isn’t quite honest.
» If w,(z) > 1 then |z| > 1; therefore, the collection of y
“near” x with us(y) > 1 should be “relatively small.”
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> Qu = (v/2)0%u + u&; up = 1.

» Definition
b>a>0andt >0 non random, fixed. We say that a random
subinterval [c,d] of Ry is an (a,b)-island for u at time ¢ if:
> u(c) = w(d) = a;
» u(x) > a for all x € (¢,d); and
> SUPgefe,aq Ut(T) > b

v

d — ¢ := the length of the (a,b)-island [c,d].
SUPge(e,q ut() := the height ... .

v

v

All of the preceding “peaks” are (1,2)-islands [say].

v

A priori fact. (1,2)-islands exist.
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contained entirely in [0, R].

» Theorem (Conus—Joseph-K, 2013)
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» By comparison: If o < 1, then ui(z) < /log |z|; and
> Ji(a,b; R)= O (log R[log log 3]3/2) .
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> Qu = (1/2)02u + u&; up = 1.

» Definition
Ji(a,b; R) := the length of the largest (a,b)-island that is
contained entirely in [0, R].

» Theorem (Conus—Joseph-K, 2013)
Vt>03b>a>1 such that Ji(a,b; R) = O (|log R|?) .
» By comparison: If o < 1, then ui(z) < /log |z|; and
» Ji(a,b; R) =0 (log RJloglog R]B/Q) .

» [ am not aware of any non-trivial lower bounds on
Jt(a 5 b; R)
» E.g., does Ji(a,b; R) — o0 as R — oo?
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then Y (x1),Y (x2),... are totally independent.

» Step 1. Solve for all 5 > 0,
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then Y (x1),Y (x2),... are totally independent.

» Step 1. Solve for all 5 > 0,

U (z) =1+ / pr—s(y — 2)UP) (y) £(ds dy).
(0,6) x [+ /5]

» Existence, uniqueness, ..., all ok.
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> UM (@) = 1+ [ wpos v Prs (=0 U™ (y) £(ds dy),
» If 3> 1 then UP) ~ u.
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» Theorem
Fizt>0and N €{0,1,---}. Then 3 C =C(t) and
{Y(2)}rer such that:
> E (Jue(z) — Y(J;)|N) < ONe N, gnd
» If x1,22,... € R are non random and |z; — ;| > IN3/2\/t
then Y (x1),Y (x2),... are totally independent.

» Step 1. Solve for all 5 > 0,

U (z) =1+ / pr—s(y — 2)UP) (y) £(ds dy).
(0,6) x [+ /5]

» Existence, uniqueness, ..., all ok.
> U @) = 14 flo gy Pros@ =)0 () (s dy).
» If 3> 1 then UP) ~ u.

» Step 2. UBN) ~ ),

> Y(z) = U (2). O



Correlation length (Lecture 10)

Remarks on how to prove asymptotic independence

» Theorem
Fizt>0and N €{0,1,---}. Then 3 C =C(t) and
{Y(2)}rer such that:
> E (Jue(z) — Y(J;)|N) < ONe N, gnd
» If x1,22,... € R are non random and |z; — ;| > IN3/2\/t
then Y (x1),Y (x2),... are totally independent.

» Step 1. Solve for all 5 > 0,

U (z) =1+ / pr—s(y — 2)UP) (y) £(ds dy).
(0,6) x [+ /5]

» Existence, uniqueness, ..., all ok.
> U @) = 14 flo gy Pros@ =)0 () (s dy).
» If 3> 1 then UP) ~ u.

» Step 2. UBN) ~ ),

» Y(z) = Ut(B’N)(x). O



