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Stochastic wave equation

Consider the wave equation on R3

∂2u
∂t2 = ∆u + b(t , x ,u) + σ(t , x ,u)Ẇ (t , x), (1)

with zero initial conditions, and t ∈ [0,T ].
Ẇ is a centered Gaussian noise with covariance

E [Ẇ (t , x)Ẇ (s, y)] = δ(t − s)f (x − y),

where f is a non-negative and non-negative definite, locally
integrable function.

David Nualart 3D stochastic wave equation



Gaussian noise

W = {W (ϕ), ϕ ∈ C∞0 ([0,T ]× R3)} is a zero mean
Gaussian family with covariance

E(W (ϕ)W (ψ)) =

∫ T

0

∫
R3

∫
R3
ϕ(t , x)f (x − y)ψ(t , x)dxdydt .

W can be extended to L2([0,T ]; U), where U is the
completion of C∞0 (R3) under the inner product

〈h,g〉U =

∫
R3

∫
R3

h(x)g(y)f (x − y)dxdy .

Then Wt (h) = W (1[0,t]h), h ∈ U, defines a cylindrical
Wiener process in U.
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Stochastic integral

We can define the stochastic integral∫ T

0

∫
R3

g(t , x)W (dt ,dx)

of any predictable process g ∈ L2(Ω× [0,T ]; U) and we have

E

(∫ T

0

∫
R3

g(t , x)W (dt ,dx)

)2

= E
∫ T

0
‖g(t)‖2Udt .

See Da Prato-Zabczyk ’92, Dalang-Quer Sardanyons ’11.
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Fundamental solution

Let Gt = 1
4πt σt be the fundamental solution to the 3-D wave

equation, where σt is the uniform measure on the sphere or
radius t .

Lemma
Suppose ∫

|x |≤1

f (x)

|x |
dx <∞. (2)

Then Gt ∈ U and

‖Gt‖2U =

∫
R3

∫
R3

f (x − y)Gt (dx)Gt (dy) =
1

8π

∫
|x |≤2t

f (x)

|x |
dx
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This follows from the property

(Gt ∗Gt )(x) =
1

8π|x |
1[0,2t](|x |).

Probabilistic interpretation: If X and Y are two independent
three dimensional random variables uniformly distributed in the
sphere of radius 1, then X + Y has the density

1
8π|x |

1[0,2](|x |)

Condition (2) implies that the stochastic convolution∫ t
0 Gt−s(dy)W (ds,dy) is the solution to the 3D stochastic

wave equation with additive noise.
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Fix t > 0. Let ϕ : R3 → R, such that∫
R3

∫
R3
|ϕ(x)ϕ(y)|G(t ,dx)G(t ,dy)f (x − y) <∞.

Then, ϕG(t) belongs to U and

‖ϕG(t)‖2U =

∫
R3

∫
R3
ϕ(x)ϕ(y)G(t ,dx)G(t ,dy)f (x − y).
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Mild solution

A predictable process u(t , x) is a mild solution of (1) if for all
(t , x)

u(t , x) =

∫ t

0

∫
R3

Gt−s(x − dy)σ(s, y ,u(s, y))W (ds,dy)

+

∫ t

0
[Gt−s ∗ b(s, ·,u(s, ·))](x)ds,

in the sense that the measure-valued process

(s, y) 7→ Gt−s(x − dy)σ(s, y ,u(s, y))1[0,t](s)

is a predictable process in L2(Ω× [0,T ]; U).
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Burkholder’s inequality

For any predictable process Z = {Z (t , x), t ∈ [0,T ], x ∈ R3}
and p ≥ 2

E
∣∣∣∣∫ t

0

∫
R3

Zs,yGs(x − dy)W (ds,dy)

∣∣∣∣p
≤ cpE

∣∣∣∣∫ t

0

∫
R3×R3

Zs,x−yZs,x−zGs(dy)Gs(dz)f (y − z)ds
∣∣∣∣

p
2

≤ c′p

∫ t

0

(
sup
x∈R3

E |Z (s, x)|p
)(∫

|x |≤2s

f (x)

|x |

) p
2

ds.
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Existence and uniqueness of solutions

Theorem (Dalang ’99)

Fix T > 0. Assume condition (2). Suppose σ and b and
Lipschitz functions with linear growth. Then, there is a unique
mild solution such that for all p ≥ 1,

sup
(t ,x)∈[0,T ]×R3

E |u(t , x)|p <∞.

The proof is done using the Fourier analysis. Suppose that
f is the Fourier transform of a tempered measure µ. Then,
for any h ∈ C∞0 (R3),

‖h‖2U =

∫
R3

∫
R3

h(x)h(y)f (x−y)dxdy =

∫
R3
|F(h)(ξ)|2µ(dξ).

Condition (2) is equivalent to
∫
R3

µ(dξ)
1+|ξ|2 <∞.
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Hölder continuity

Problem: We need to estimate the p-norm the increment

E |u(t , x1)− u(t , x2)|p.

Using Burkholder’s inequality we need to control terms like

E
∣∣∣ ∫ t

0

∫
R3

∫
R3
σ(s, y ,u(s, y))f (y − z)σ(s, z,u(s, z))

×(Gt−s(x1 − dy)−Gt−s(x2 − dy))

×(Gt−s(x1 − dz)−Gt−s(x2 − dz))ds
∣∣∣ p

2
.

Main technique: Transfer the increments from G to σ and f .
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Dalang and Sanz-Solé ’09 established the Hölder
continuity when f is the Riesz kernel, f (x) = |x |−β, where
β ∈ (0,2), in the space and time variables, of order 1− β

2 .
They used Fourier analysis, the Sobolev embedding
theorem, and fractional derivatives to express the
increments of the Riesz kernel.
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Hölder continuity in space

Theorem
Suppose that for some γ ∈ (0,1] and γ′ ∈ (0,2] we have, for all
w ∈ R3

(i)
∫
|z|≤2T

|f (z+w)−f (z)|
|z| dz ≤ C|w |γ

(ii)
∫
|z|≤2T

|f (z+w)+f (z−w)−2f (z)|
|z| dz ≤ C|w |γ′ .

Set κ1 = min(γ, γ
′

2 ). Then for any bounded rectangle I ⊂ R3

and p ≥ 2, there exists a constant C such that

E |u(t , x)− u(t , y)|p ≤ C|x − y |κ1p

for all t ∈ [0,T ] and x , y ∈ I.
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Hölder continuity in time

Main ingredient:

The scaling property G(t ,dx) = t−2G(1, t−1dx) allows us to
transform an increment like G(t − s,dx) into an increment in
the space variable.
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Assumptions:

(iii) For some ν ∈ (0,1],
∫
|z|≤h

f (z)
|z| dz ≤ Chν .

(iv) If σ is the uniform measure in S2, for some ρ1 ∈ (0,1]∫ T

0

∫
S2

∫
S2
|f (s(ξ + η) + h(ξ + η))− f (s(ξ + η) + hη)|

×sσ(dξ)σ(dη)ds ≤ Chρ1 .

(v) For some ρ2 ∈ (0,2]∫ T

0

∫
S2

∫
S2
|f (s(ξ + η) + h(ξ + η))− f (s(ξ + η) + hξ)

−f (s(ξ + η) + hη) + f (s(ξ + η))|s2σ(dξ)σ(dη)ds ≤ Chρ2 .
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Theorem
Assume conditions (iii) to (v). Suppose also that for some
κ1 ∈ [0,1], for all p ≥ 2 and for all x , y ∈ I, I bounded rectangle
of R3,

E |u(t , x)− u(t , y)|p ≤ C|x − y |pκ1 .

Set κ2 = min(ν+1
2 , ρ1+κ1

2 , ρ2
2 ).

Then for any bounded rectangle I ⊂ R3 and p ≥ 2, there exists
a constant C such that

E |u(t , x)− u(s, x)|p ≤ C|t − s|κ2p

for all t ∈ [0,T ] and x , y ∈ I.
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Hölder continuity in space using Fourier transform

Theorem
Assume that for some γ ∈ (0,1]

(i’) The Fourier transform of the measure |ζ|2γµ(dζ) is a
nonnegative locally integrable function

(ii’) ∫
R3

µ(dζ)

1 + |ζ|2−2γ <∞. (3)

Then for any bounded rectangle I ⊂ R3 and p ≥ 2, there exists
a constant C such that

E |u(t , y)− u(t , x)|p ≤ C|x − y |pγ

for all t ∈ [0,T ] and x , y ∈ I.
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Main ingredients of the proof:
Consider the term

Q =

∫ t

0

∫
R3

∫
R3

G(t − s,dξ)G(t − s,dη)

×(f (η − ξ + w)− f (η − ξ))Σk
x (s, ξ)Σk

x ,y (s, η)ds;

where w = x1 − x2 and

Σx (s, ξ) = σ (s, x − ξ,u(s, x − ξ))

Σx ,y (s, ξ) = σ (s, x − ξ,u(s, x − ξ))− σ (s, y − ξ,u(s, y − ξ)) .
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Using the Fourier transform

Q =

∫ t

0
ds
∫
R3
F
(
Σk

x (s, ·)G(t − s)
)

(ζ)

×F
(

Σk
x ,y (s, ·)G(t − s)

)
(ζ)(e−iw ·ζ − 1)µ(dζ).

By the estimate |e−iw ·ζ − 1| ≤ |w |γ |ζ|γ for every 0 < γ ≤ 1,
and Cauchy-Schwartz inequality, we need to control

Q1 = |w |2γ
∫ t

0
ds
∫
R3

∣∣∣F (Σk
x (s, ·)G(t − s)

)
(ζ)
∣∣∣2 |ζ|2γµ(dζ)

= w |2γ
∫ t

0
ds
∫
R3

dηg(η)

×
(

Σk
x (s, ·)G(t − s)

)
∗
(

˜Σk
x (s, ·)G(t − s)

)
(η),

where g is the Fourier transform of ζ|2γµ(dζ).
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Because g ≥ 0 and using again the Fourier transform and
the integrability condition (ii’) yields

E |Q1|
q
2 ≤ C1|w |2γ

×
∫ t

0
ds
(∫

R3
dηg(η)G(t − s) ∗G(t − s)(η)

) q
2

≤ C2|w |2γ .
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Examples

Riesz kernel :
f (x) = |x |−β, 0 < β.

Condtion (2) holds is 0 < β < 2.
Then µ(dξ) = C|ξ|−3+βdξ satisfies (3) for any γ ∈ (0, 2−β

2 ).
We have

F
(
|ξ|2γµ(dξ)

)
(x) = F(|ξ|−3+β+2γ)(x) = C|x |−(β+2γ)

which is a nonnegative function for 0 < γ < 2−β
2 .

f satisfies conditions (iii), (iv) and (v) with ν = 2− β,
0 < ρ1 < min(2− β,1) and 0 < ρ2 < 2− β.

As a consequence the solution if locally Hölder continuous in
space and time of order 2−β

2 .
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Bessel kernel :

f (x) =

∫ ∞
0

w
α−5

2 e−we−
|x|2
4w dw , α > 0.

f satisfies (2) if α > 1.
f satisfies (i), (ii), (iii), (iv) and (v), for any
γ, ρ1, ν < min(α− 1,1) and γ′, ρ2 < min(α− 1,2).

As a consequence the solution if locally Hölder continuous in
space and time of order α−1

2 ∧ 1.
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Fractional kernel :
Let Ẇ (t , x) be a fractional Brownian noise with Hurst
parameters H1,H2,H3 ∈ (1/2,1).

Ẇ (t , x) is the formal partial derivative ∂4W
∂t∂x1∂x2∂x3

(t , x),
where W (t , x) is a centered Gaussian field with covariance

E [W (s, x)W (t , y)] = (s ∧ t)
3∏

i=1

Ri(xi , yi),

where

Ri(u, v) =
1
2

(
|u|2Hi + |v |2Hi − |u − v |2Hi

)
.

This example corresponds to the covariance function

f (x) = CH |x1|2H1−2|x2|2H2−2|x3|2H3−2.
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f satisfies (2) if H1 + H2 + H3 > 2.

Set
κ = H1 + H2 + H3 − 2 > 0.

Then, for any κi < min(Hi − 1
2 , κ), i = 1,2,3, if

κ0 = κ1 ∧ κ2 ∧ κ3, we obtain for t , s ∈ [0,T ] and |x |, |y | ≤ M,

|u(t , x)−u(s, y)| ≤ KM(|x1−y1|κ1+|x2−y2|κ2+|x3−y3|κ3+|s−t |κ0),

for some random variable KM depending on the κi ’s.
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In the case of an additive noise, we have

c1|x − y |2κ ≤ E |u(t , x)− u(t , y)|2 ≤ c2|x − y |2κ

and

d1|s − t |2κ ≤ E |u(t , x)− u(s, x)|2 ≤ c2|s − t |2κ

for any s, t ∈ [0,T ] and x , y in a bounded rectangle.
Then we can take κi < κ for all i = 0,1,2,3 and the
exponent κ is optimal.
Question: Are the additional conditions κi < Hi − 1

2 due to
the nonlinearity or to the limitation of the method?
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