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A general class of Gaussian processes

@ Let B=(B(t),t € Ry) be a centered continuous Gaussian process in R
such that for some ¢ > 1, some continuous strictly increasing function
v:Ry — Ry withlimgy =0, and forall s, t € Ry,

T2 (1t — sl) < ElIB() — B(s)?] < 1421t~ s). 1)
@ We also assume that forall t € R,
VarB (t) = ~2 (1). (2)

@ We use the same notation B to designate a vector of d iid copies of the
scalar version of B.

@ Note that v does not define the law of B since distinct processes with
the same variance function v may satisfy (1).
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Examples |

@ Fractional Brownian motion with Hurst parameter H € (0, 1).
In this case, £ = 1 and v (t) = t".
@ Riemann-Liouville fractional Brownian motion with parameter H :

BRLH (1) = \/ﬁ/i (t— )2 W (s),

where W is a standard Brownian motion.
In this case, £ = 2 and ~ (t) = t".

@ Solutions to the fractional stochastic heat equation with additive noise
whose space behavior is of Riesz-kernel type :

du=3Bu+ W', >0, x e, u(0,x) =0,
with « € [0, d). The solution exists if and only if d < 4H + «.

In this case, ~(t) = t"— 7=
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Examples I

Volterra processes defined as
(1) = / (t—s)dW (s

where ~2 is of class C3(R; \ 0), limpy = 0, and +? is increasing and
concave (d~2/dr is non-increasing).

In this case, (1) and (2) hold with £ = 2 and ~.

Mocioalca and Viens’04 : Stochastic calculus with respect to B™.

Mocioalca and Viens’09 : Existence and uniqueness and space
regularity of the stochastic heat equation :

O = %Au—k WY, t>0, xe 8§

Nualart and Viens’'09 : Hitting probabilities for the stochastic heat
equation :

ou = %Au+ Wi, t>0, xe s
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Class of Gaussian processes B'"? satisfying (1) and (2) with, for every r
in a closed interval in [0, 1),

A1) = (1) = 1 log (1),

forsome 3 € R,H € (0,1).

When = 0, B"? shares the same hitting probabilities than fBm.
When 3 > 0, B"# is much more irregular than fBm.

When 3 < 0, B*# is much more regular than fBm.

In any case, B"# is a-Hélder continuous a.s. if o < H.

If g <—1/2, B"# is a.s. H-Hélder continuous, but not a-Holder
continuous a.s. if > H.

In any case, r — rlog®*# (1) is an a.s. modulus of continuity of B,
We also consider H=1,5>0,orH=0,8 < —1/2.
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@ Theorem 1 : If v is concave near the origin and +'(0+) = +oo, then for
all0 < a< band M > 0, there exists C(a, b, M, B) > 0 such that for any
Borel set A C [-M, M]?

CCk(A) < P(B([a, b]) N A # 2),

where Cx(A) denotes the capacity of the set A with respect to K

Ck(A) = [ /[ KX =) ) u(dy)}_1,

neP(A)
where P(A) denotes the set of probability measures with support in A,
and K is the potential kernel
b—a

K(x) = max {1;v (v ()} v(r)::/ ds/~ (s).

r

@ Remark : If v(r) = r*, then dH > 1 if and only if K(x) =< x4+ #.
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Sufficient condition for hitting points

Corollary 1 : If y is concave near the origin, v'(0+) = 400, and 1/~ is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/+? is integrable around zero if and only if the local time
Li(x) of the process B exists, is in L2(R?) for all t > 0 a.s. and

L(x) = / / e "t B geat.

See German and Horowitz’80.

Corollary 2 : If 1/+% is integrable at 0, then the process B hits points with
positive probability.

Remark : If y(r) = r, then dH < 1 if and only if 1/~49 is integrable
around zero.
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Proof of Theorem 1 : Two-point local nondeterminism

@ Hypothesis 1 : Forall 0 < a < b < oo, there exists ¢ > 0 and
co € (0,1/+/7), such that for all s, t € [a,b] with 0 < t — s < ¢,

(1) —(s) < coy(t — ).

@ Lemma 1 : Assume Hypothesis 1. Then for all 0 < a < b < oo, there
exists e > 0 and c¢(a, b, B) > 0 such that for all s, t € [a, b] with
[t —s| <e¢,
Var(B(1)|B(s)) > ¢7*(|t - s|).

@ Remark : If v is concave near the origin and v/(0+) = +oo, then the
conclusion holds for any ¢ (a, b) < v*(a) / (2¢ o (b)) and for some
¢ > 0 small enough.

@ Second moment argument similar as in Biermé, Lacaux and Xiao’'09.
See also Testard'86.
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@ Let Bin R satisfying (1) and (2).
@ Proposition 1 : Assume that there exists k, yo > 0 such that for all
x € [0, yo]

1/2
/O V)Y < ky(x). 3)

yy/log(1/y)

Then there exist constants L(v, o) and t(B) such that for all z € R and
forall a,bsuchthat0 <a< band b—a<t,

P(z € B(la.b])) < %v(bf a).

@ Example : Condition (3) is satisfied for vy 5, 8 € R, H € (0,1) and
B >0, H=1.Not satisfied for H =0, 8 < —1/2.

@ Lemma 2 : Define ind v := inf{a > 0 : v (x) = 0(x*)}. Assume ~ is
continuous and increasing, and ind v € (0, c0).
Then ~ satisfies condition (3).

@ Example :ind vy, = H for all 5 € R.
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Upper bound : probability hitting small balls

Let B in R? satisfying (1) and (2).

Proposition 2 : Under assumption (3), forall 0 < a < b < oo, with b — a
small enough, and for all z € RY and € > 0,

d
P(B([a, b])NB(z,¢) # 0) < <52m(b) (1 + F(1 )) + Lﬂy(b—a)) ,

72 (a) 12| v (a)

where x := P [infia ) B> v (b)], F (2) := 1 for z < v (b) and
F(z) :=1— e 2eun(+*(0)/2*) for 7 > ~ (b)
Note that x > 0 because B is Gaussian and a > 0.

Note that, since arctanh (x) is equivalent to x for x small, for large z,
1/F (2) is equivalent to 2%/ (2¢2 (b)).
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Proof of Proposition 2

@ [t suffices to prove the Proposition for B in R.
@ The event whose probability we need to estimate is

D= {B(la,bl) N B(z,2) # 0} = {se‘{;f,b] B(s)— 7| < }

= {o < nf B(s) - 2] ga} U{B(la,b]) > z} = Di U Da.

s€|a,b)

@ Observe that the random variable Z := infs¢(4 ) |B(S) — z| has an atom
at 0 and that Dy and D. are disjoint.

@ From Proposition 1, it suffices to show that
P(Di)=P(0<Z<¢e)<Ce

for the appropriate constant C.

@ To prove this, it would be sufficient to show that, Z has a bounded
density on (0, +00) — Malliavin calculus !
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Nourdin-Viens’09 criterion

Let X be a centered random variable in D':2. Define

+o00
Gy = / due™“E [ DX D! XY dr
0 Ry

]-'} (: (DX, —DL*1X>H)

where X denotes a random variable with the same law as X, but
constructed using a copy B of B such that Corr (B, BY) = e™".

Let gx (x) =E[Gx | X = X].
Then, since §DX = —LX, for every fin C" with bounded derivative,

ELXF(X)] = E [gx (X) 7' (X)]

Proposition 3 : Then supp(X) = [, 8], —o0 < a < 0 < 8 < +o0.
Assume there exists o’ € («a, 0) such that gx (x) > 0 for all x € [/, B).
Then X has a density p on [@/, 8), and for almost every z € [o/, B),

p(x)= fgg)(()'(]) exp (— /0 ) yay/9x (y)) :
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Application of Nourdin-Viens’09 criterion

@ Since Z is positive and B is continuous with a symmetric law, it suffices
to study the random variable Gx relative to

X = selgrf,b] (B(s)—2), —p, p:=E selgrf,b] (B(s)—2),|-

@ X is supported in [—u, +00) and belongs to D'+2. It is sufficient to prove
that for any x > —pu,
ax (x) > c.

@ Several computations led to

2 S .
ax (x) > 2 2(3) / du e “P {r{niﬁg B > zy/tanh (u/2)
0 a

> L@y
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Recall that vu,5 (r) := r'log” (1).
Ifd>1/H,forall0 < a< b< 1and M > 0, there exist constants
Ci, C» > 0 such that for any Borel set A C [-M, M]¢,

CiCi/.(A) < P(B"P([a,b]) N A # @) < CoH,(A),

where o(x) = x9~# log®/"(1/x).

If d = 1/H, 8 < 0, the upper bound still holds and ¢ (x) = log”/"(1/x).
If d = 1/H, 8 < 1/d, the lower bound holds with ¢(x) = log”/"~" (1/x).
Ifd=1/H, 8 > 1/d, the lower bound holds with ¢ = 1.

If d < 1/H < 400 the lower bound holds with ¢ = 1.

If H=1, 3 >0, d > 1, both bounds hold with ¢(x) = x?~"log”(1/x),
so that B does not hit points a.s.

If H=0, 3 < —1/2, the lower bound holds with ¢ = 1, so that B hits
points with positive probability.
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