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A general class of Gaussian processes

Let B = (B(t), t 2 R+) be a centered continuous Gaussian process in R
such that for some ` � 1, some continuous strictly increasing function
� : R+ ! R+ with lim0 � = 0, and for all s, t 2 R+,

1
`
�2(|t � s|)  E[|B(t)� B(s)|2]  `�2(|t � s|). (1)

We also assume that for all t 2 R+,

VarB (t) = �2 (t) . (2)

We use the same notation B to designate a vector of d iid copies of the
scalar version of B.

Note that � does not define the law of B since distinct processes with
the same variance function � may satisfy (1).
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Examples I

Fractional Brownian motion with Hurst parameter H 2 (0, 1).
In this case, ` = 1 and � (t) = tH .

Riemann-Liouville fractional Brownian motion with parameter H :

BRL,H (t) :=
p

2H
Z t

0
(t � s)H�1/2 dW (s) ,

where W is a standard Brownian motion.
In this case, ` = 2 and � (t) = tH .

Solutions to the fractional stochastic heat equation with additive noise
whose space behavior is of Riesz-kernel type :

@t u =
1
2
�u + Ẇ H,↵, t � 0, x 2 Rd , u(0, x) = 0,

with ↵ 2 [0, d). The solution exists if and only if d < 4H + ↵.

In this case, �(t) = tH� d�↵
4 .
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Examples II

Volterra processes defined as

B� (t) :=
Z t

0

s

✓

d�2

dt

◆

(t � s)dW (s) ,

where �2 is of class C2(R+ \ 0), lim0 � = 0, and �2 is increasing and
concave (d�2/dr is non-increasing).
In this case, (1) and (2) hold with ` = 2 and �.

Mocioalca and Viens’04 : Stochastic calculus with respect to B� .

Mocioalca and Viens’09 : Existence and uniqueness and space
regularity of the stochastic heat equation :

@t u =
1
2
�u + Ẇ � , t � 0, x 2 S1.

Nualart and Viens’09 : Hitting probabilities for the stochastic heat
equation :

@t u =
1
2
�u + Ẇ H , t � 0, x 2 S1.
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Examples III

Class of Gaussian processes BH,� satisfying (1) and (2) with, for every r
in a closed interval in [0, 1),

�(r) = �H,� (r) := rH log�(
1
r
),

for some � 2 R,H 2 (0, 1).

When � = 0, BH,0 shares the same hitting probabilities than fBm.

When � > 0, BH,� is much more irregular than fBm.

When � < 0, BH,� is much more regular than fBm.

In any case, BH,� is ↵-Hölder continuous a.s. if ↵ < H.

If � < �1/2, BH,� is a.s. H-Hölder continuous, but not ↵-Hölder
continuous a.s. if ↵ > H.

In any case, r ! rH log�+ 1
2
� 1

r

�

is an a.s. modulus of continuity of BH,� .

We also consider H = 1,� > 0, or H = 0,� < �1/2.
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In any case, BH,� is ↵-Hölder continuous a.s. if ↵ < H.
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Hitting probabilities : lower bound

Let B in Rd satisfying (1) and (2).

Theorem 1 : If � is concave near the origin and �0(0+) = +1, then for
all 0 < a < b and M > 0, there exists C(a, b,M,B) > 0 such that for any
Borel set A ⇢ [�M,M]d

CC
K

(A)  P(B([a, b]) \ A 6= ?),

where C
K

(A) denotes the capacity of the set A with respect to K

C
K

(A) :=


inf
µ2P(A)

ZZ

Rd⇥Rd
K(|x � y |)µ(dx)µ(dy)

��1

,

where P(A) denotes the set of probability measures with support in A,
and K is the potential kernel

K(x) := max
n

1; v
⇣

��1 (x)
⌘o

, v (r) :=
Z b�a

r
ds/�d (s) .

Remark : If �(r) = rH , then dH > 1 if and only if K(x) ⇣ x�d+ 1
H .
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Sufficient condition for hitting points

Corollary 1 : If � is concave near the origin, �0(0+) = +1, and 1/�d is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/�d is integrable around zero if and only if the local time
Lt(x) of the process B exists, is in L2(Rd) for all t � 0 a.s. and

Lt(x) =
1

(2⇡)d

Z b

a

Z

Rd
e�i⇠·x ei⇠·B(t)d⇠dt .

See German and Horowitz’80.

Corollary 2 : If 1/�d is integrable at 0, then the process B hits points with
positive probability.

Remark : If �(r) = rH , then dH < 1 if and only if 1/�d is integrable
around zero.



Sufficient condition for hitting points

Corollary 1 : If � is concave near the origin, �0(0+) = +1, and 1/�d is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/�d is integrable around zero if and only if the local time
Lt(x) of the process B exists, is in L2(Rd) for all t � 0 a.s. and

Lt(x) =
1

(2⇡)d

Z b

a

Z

Rd
e�i⇠·x ei⇠·B(t)d⇠dt .

See German and Horowitz’80.

Corollary 2 : If 1/�d is integrable at 0, then the process B hits points with
positive probability.

Remark : If �(r) = rH , then dH < 1 if and only if 1/�d is integrable
around zero.



Sufficient condition for hitting points

Corollary 1 : If � is concave near the origin, �0(0+) = +1, and 1/�d is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/�d is integrable around zero if and only if the local time
Lt(x) of the process B exists, is in L2(Rd) for all t � 0 a.s. and

Lt(x) =
1

(2⇡)d

Z b

a

Z

Rd
e�i⇠·x ei⇠·B(t)d⇠dt .

See German and Horowitz’80.

Corollary 2 : If 1/�d is integrable at 0, then the process B hits points with
positive probability.

Remark : If �(r) = rH , then dH < 1 if and only if 1/�d is integrable
around zero.



Sufficient condition for hitting points

Corollary 1 : If � is concave near the origin, �0(0+) = +1, and 1/�d is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/�d is integrable around zero if and only if the local time
Lt(x) of the process B exists, is in L2(Rd) for all t � 0 a.s. and

Lt(x) =
1

(2⇡)d

Z b

a

Z

Rd
e�i⇠·x ei⇠·B(t)d⇠dt .

See German and Horowitz’80.

Corollary 2 : If 1/�d is integrable at 0, then the process B hits points with
positive probability.

Remark : If �(r) = rH , then dH < 1 if and only if 1/�d is integrable
around zero.



Sufficient condition for hitting points

Corollary 1 : If � is concave near the origin, �0(0+) = +1, and 1/�d is
integrable at 0, then the process B hits points with positive probability.

Theorem 2 : 1/�d is integrable around zero if and only if the local time
Lt(x) of the process B exists, is in L2(Rd) for all t � 0 a.s. and

Lt(x) =
1

(2⇡)d

Z b

a

Z

Rd
e�i⇠·x ei⇠·B(t)d⇠dt .

See German and Horowitz’80.

Corollary 2 : If 1/�d is integrable at 0, then the process B hits points with
positive probability.

Remark : If �(r) = rH , then dH < 1 if and only if 1/�d is integrable
around zero.



Proof of Theorem 1 : Two-point local nondeterminism

Hypothesis 1 : For all 0 < a < b < 1, there exists " > 0 and
c0 2 (0, 1/

p
`), such that for all s, t 2 [a, b] with 0 < t � s  ",

�(t)� �(s)  c0�(t � s).

Lemma 1 : Assume Hypothesis 1. Then for all 0 < a < b < 1, there
exists " > 0 and c(a, b,B) > 0 such that for all s, t 2 [a, b] with
|t � s|  ",

Var(B(t)|B(s)) � c�2(|t � s|).

Remark : If � is concave near the origin and �0(0+) = +1, then the
conclusion holds for any c (a, b) < �4 (a) /

�

2` �4 (b)
�

and for some
" > 0 small enough.

Second moment argument similar as in Biermé, Lacaux and Xiao’09.
See also Testard’86.
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Second moment argument similar as in Biermé, Lacaux and Xiao’09.
See also Testard’86.



Upper bound : probability hitting points in dim 1

Let B in R satisfying (1) and (2).

Proposition 1 : Assume that there exists k , y0 > 0 such that for all
x 2 [0, y0]

Z 1/2

0
� (xy)

dy
y
p

log (1/y)
 k� (x) . (3)

Then there exist constants L(�, y0) and t0(B) such that for all z 2 R and
for all a, b such that 0 < a < b and b � a  t0,

P(z 2 B ([a, b]))  L
p
`

� (a)
� (b � a) .

Example : Condition (3) is satisfied for �H,� , � 2 R, H 2 (0, 1) and
� � 0, H = 1. Not satisfied for H = 0, � < �1/2.

Lemma 2 : Define ind � := inf {↵ > 0 : � (x) = o (x↵)}. Assume � is
continuous and increasing, and ind � 2 (0,1).
Then � satisfies condition (3).

Example : ind �H,� = H for all � 2 R.



Upper bound : probability hitting points in dim 1

Let B in R satisfying (1) and (2).

Proposition 1 : Assume that there exists k , y0 > 0 such that for all
x 2 [0, y0]

Z 1/2

0
� (xy)

dy
y
p

log (1/y)
 k� (x) . (3)

Then there exist constants L(�, y0) and t0(B) such that for all z 2 R and
for all a, b such that 0 < a < b and b � a  t0,

P(z 2 B ([a, b]))  L
p
`

� (a)
� (b � a) .

Example : Condition (3) is satisfied for �H,� , � 2 R, H 2 (0, 1) and
� � 0, H = 1. Not satisfied for H = 0, � < �1/2.

Lemma 2 : Define ind � := inf {↵ > 0 : � (x) = o (x↵)}. Assume � is
continuous and increasing, and ind � 2 (0,1).
Then � satisfies condition (3).

Example : ind �H,� = H for all � 2 R.



Upper bound : probability hitting points in dim 1

Let B in R satisfying (1) and (2).

Proposition 1 : Assume that there exists k , y0 > 0 such that for all
x 2 [0, y0]

Z 1/2

0
� (xy)

dy
y
p

log (1/y)
 k� (x) . (3)

Then there exist constants L(�, y0) and t0(B) such that for all z 2 R and
for all a, b such that 0 < a < b and b � a  t0,

P(z 2 B ([a, b]))  L
p
`

� (a)
� (b � a) .

Example : Condition (3) is satisfied for �H,� , � 2 R, H 2 (0, 1) and
� � 0, H = 1. Not satisfied for H = 0, � < �1/2.

Lemma 2 : Define ind � := inf {↵ > 0 : � (x) = o (x↵)}. Assume � is
continuous and increasing, and ind � 2 (0,1).
Then � satisfies condition (3).

Example : ind �H,� = H for all � 2 R.



Upper bound : probability hitting points in dim 1

Let B in R satisfying (1) and (2).

Proposition 1 : Assume that there exists k , y0 > 0 such that for all
x 2 [0, y0]

Z 1/2

0
� (xy)

dy
y
p

log (1/y)
 k� (x) . (3)

Then there exist constants L(�, y0) and t0(B) such that for all z 2 R and
for all a, b such that 0 < a < b and b � a  t0,

P(z 2 B ([a, b]))  L
p
`

� (a)
� (b � a) .

Example : Condition (3) is satisfied for �H,� , � 2 R, H 2 (0, 1) and
� � 0, H = 1. Not satisfied for H = 0, � < �1/2.

Lemma 2 : Define ind � := inf {↵ > 0 : � (x) = o (x↵)}. Assume � is
continuous and increasing, and ind � 2 (0,1).
Then � satisfies condition (3).

Example : ind �H,� = H for all � 2 R.



Upper bound : probability hitting points in dim 1

Let B in R satisfying (1) and (2).

Proposition 1 : Assume that there exists k , y0 > 0 such that for all
x 2 [0, y0]

Z 1/2

0
� (xy)

dy
y
p

log (1/y)
 k� (x) . (3)

Then there exist constants L(�, y0) and t0(B) such that for all z 2 R and
for all a, b such that 0 < a < b and b � a  t0,

P(z 2 B ([a, b]))  L
p
`

� (a)
� (b � a) .

Example : Condition (3) is satisfied for �H,� , � 2 R, H 2 (0, 1) and
� � 0, H = 1. Not satisfied for H = 0, � < �1/2.

Lemma 2 : Define ind � := inf {↵ > 0 : � (x) = o (x↵)}. Assume � is
continuous and increasing, and ind � 2 (0,1).
Then � satisfies condition (3).

Example : ind �H,� = H for all � 2 R.



Upper bound : probability hitting small balls

Let B in Rd satisfying (1) and (2).

Proposition 2 : Under assumption (3), for all 0 < a < b < 1, with b � a
small enough, and for all z 2 Rd and ✏ > 0,

P(B([a, b])\B(z , ") 6= ;) 
 

"
2� (b)
�2 (a)

✓

1 +
1

F (|z|)
◆

+
L
p
`

� (a)
� (b � a)

!d

,

where  := P

⇥

inf[a,b] B > � (b)
⇤

, F (z) := 1 for z  � (b) and
F (z) := 1 � e�2arctanh(�2(b)/z2) for z > � (b)

Note that  > 0 because B is Gaussian and a > 0.

Note that, since arctanh (x) is equivalent to x for x small, for large z,
1/F (z) is equivalent to z2/

�

2�2 (b)
�

.
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Proof of Proposition 2

It suffices to prove the Proposition for B in R.

The event whose probability we need to estimate is

D := {B([a, b]) \ B(z , ") 6= ;} =

⇢

inf
s2[a,b]

|B (s)� z|  "

�

=

⇢

0 < inf
s2[a,b]

|B (s)� z|  "

�

[ {B ([a, b]) 3 z} =: D1 [ D2.

Observe that the random variable Z := infs2[a,b] |B (s)� z| has an atom
at 0 and that D1 and D2 are disjoint.

From Proposition 1, it suffices to show that

P (D1) = P (0 < Z  ")  C"

for the appropriate constant C.

To prove this, it would be sufficient to show that, Z has a bounded
density on (0,+1) �! Malliavin calculus !
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Nourdin-Viens’09 criterion

Let X be a centered random variable in D1,2. Define

GX :=

Z +1

0
due�u

E

"

Z

R+

Dr X D(u)
r X (u)dr

�

�

�

�

�

F
#

⇣

= hDX ,�DL�1X iH

⌘

where X (u) denotes a random variable with the same law as X , but
constructed using a copy Bu of B such that Corr (B,Bu) = e�u .

Let gX (x) = E [GX | X = x ].

Then, since �DX = �LX , for every f in C1 with bounded derivative,

E [Xf (X )] = E

⇥

gX (X ) f 0 (X )
⇤

.

Proposition 3 : Then supp(X ) = [↵,�], �1  ↵ < 0 < �  +1.
Assume there exists ↵0 2 (↵, 0) such that gX (x) > 0 for all x 2 [↵0,�).
Then X has a density ⇢ on [↵0,�), and for almost every z 2 [↵0,�),

⇢ (x) =
E [|X |]
2gX (x)

exp
✓

�
Z x

0
ydy/gX (y)

◆

.
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Application of Nourdin-Viens’09 criterion

Since Z is positive and B is continuous with a symmetric law, it suffices
to study the random variable GX relative to

X := inf
s2[a,b]

(B (s)� z)+ � µ, µ := E



inf
s2[a,b]

(B (s)� z)+

�

.

X is supported in [�µ,+1) and belongs to D1,2. It is sufficient to prove
that for any x > �µ,

gX (x) � c.

Several computations led to

gX (x) � �2 (a)
2

Z 1

0
du e�u

P̃



min
[a,b]

B̃ > z
p

tanh (u/2)
�

� �2 (a)
2

F (z).
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Hitting probabilities : upper bound

Theorem 3 : Assume that

the function '(s) = sd/��1(s) is right-continuous and
non-decreasing near 0 with lim0+ ' = 0 ;
� satisfies the condition (3).

Then for all 0 < a < b < 1, any M > 0, there exists a constant
C(a, b,B,M) > 0 such that for any Borel set A ⇢ [�M,M]d ,

P(B([a, b]) \ A 6= ?)  CH'(A).

Recall Theorem 1 : CC
K

(A)  P(B([a, b]) \ A 6= ?)

K(x) := max
n

1; v
⇣

��1 (x)
⌘o

, v (r) :=
Z b�a

r
ds/�d (s) .

Proposition 4 : If limr!0
r�0(r)
�(r) exists, then

K ⇣ 1/' () d > 1/ lim
r!0

r�0 (r)
� (r)

.
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Necessary condition to hit points

Lemma 3 : Assume that � (r) = o(r 1/d) near 0, that '(s) := sd/��1(s)
is non-decreasing near 0 and Condition (3) holds.
Then almost surely, B does not hit points.

Recall Corollary 2 : If 1/�d is integrable at 0, then the process B hits
points with positive probability.

Example : Let H 2 (0, 1).

1 If d < 1/H, or if d = 1/H and � > 1/d , then any process BH,� hits
points with positive probability.

2 If d > 1/H or if d = 1/H and � < 0, then any process BH,� a.s.
does not hit points.
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Recall that �H,� (r) := rH log�( 1
r ).
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If H = 0, � < �1/2, the lower bound holds with ' = 1, so that B hits
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