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Infinite Dimensional DE’s

Two fundamental problems:
Peano theorem is invalid in infinite dimansional Banach spaces

Theorem (Peano)
For each continuous function f : R× B → B defined on some open set
V ⊂ R× B and for each point (t0, x0) ∈ V the Cauchy problem

x ′(t) = f (t , x(t)), x(t0) = x0

has a solution which is defined on some neighborhood of t0.

Theorem (Godunov, 1973)
Each Banach space in which Peano’s theorem is true is finite dimensional.

Appearence of unbounded operators in the equation ∆ : W 1,2 →W 1,2

(Sobolev space) is unbounded.
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SPDE’s to Infinite Dimensional SDE’s

Most popular approaches:
Semigroup solution, mild solution to a semiliner DE (Hille, DaPrato,
Zabczyk).
Solution in a multi-Hilbertian space, e.g. in a dual to a nuclear space (Itô,
Kallianpur).
Variational solution in Gelfand triplet (Agmon, Lions, Röckner).
Solutions via Dirichlet forms (Albeverio, Osada (Itô Prize 2013))
White noise apporach (Hida)
Brownian sheet formulation (Walsh)
Solutions in R∞ (Leha, Ritter)
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(S)PDE’s to Infinite Dimensional (S)DE’s
Example (Abstract Cauchy Problem - Semilinear SDE)

One–dimensional Heat Equation,{
ut (t , x) = uxx (t , x), t > 0
u(0, x) = ϕ(x)

⇒
{ du(t)

dt = ∆u(t), t > 0
u(0) = ϕ ∈ X

The Cauchy problem is equation is transformed to an abstract Cauchy
problem in the Banach space X of bounded uniformly continuous functions.
The differentiation is in the sense of the Banach space.
Solution:

u(t , x) = (G(t)ϕ) (x).

where G(t) is the Gaussian semigroup on the Banach space X

(G(t)ϕ) (x) =


1

(4πt)1/2

∫
R

exp
{
−|x − y |2/4t

}
ϕ(y) dy , t > 0

ϕ(x), t = 0.
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SPDE’s to Infinite Dimensional SDE’s

Example (Fréchet nuclear space)
Neuronal Models

dXt = −A∗Xt + B(Xt )dWt

If
(
H, 〈·, ·〉H

)
is a separable Hilbert space and A is an operator with a discrete

spectrum, with eigenvalues and eigenvectors λj > 0 and hj ∈ H, such that
∞∑
j=1

(1 + λj )
−2r1 <∞ for some r1 > 0, then

Φ =
{
φ ∈ H :

∞∑
j=1

(1 + λj )
2r 〈φ,hj〉2H <∞, ∀r ≥ 0

}
is a Fréchet nuclear space, with {hj} ⊂ Φ being a common orthogonal system.
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SPDE’s to Infinite Dimensional SDE’s
Let Hr , be the completion of Φ with respect to the Hilbertian norms ‖ · ‖r
defined by the inner product

〈f ,g〉r =
∞∑
j=0

(1 + λj )
2r 〈f ,hj〉H 〈g,hj〉H , f ,g ∈ H.

Φ′ =
⋃
r>0

H−r , so that Φ ⊂ ... ⊂ Hr ⊂ ... ⊂ H ⊂ H−r ⊂ ... ⊂ Φ′

For S ′(R), take A = t2 − d2

dt2 − I, H = L2(R) and hj , Hermite functions.
For p ∈ R let Sp, be the completion of S with respect to the Hilbertian
norms ‖ · ‖p defined by the inner product

〈f ,g〉p =
∞∑

k=0

(2k + 1)2p 〈f ,hk 〉L2
〈g,hk 〉L2

, f ,g ∈ S.

Then S =
⋂
p>0

Sp and S ′ =
⋃
p>0

S−p. A(S) ⊂ S, A∗(S ′) ⊂ S ′.
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Example (Gelfand Triplet - Variational Solutions)

Diffusion Models

dXt = AX (t) + B(Xt )dWt

with A : V = W 1,2
0 → V ∗ = W−1,2

0 and B : V → L(R,H) = H = L2 by

Av = α2 d2v
dx2 + β

dv
dx

+ γv + g, v ∈ V ,

Bv = σ1
dv
dx

+ σ2v , v ∈ V .

where H = L2 ((−∞,∞)), V = W 1,2
0 ((−∞,∞)), with the usual norms

‖v‖H =
(∫ +∞

−∞
v2 dx

)1/2
, v ∈ H,

‖v‖V =
(∫ +∞

−∞

(
v2 +

(dv
dx

)2)
dx
)1/2

, v ∈ V .

L. Gawarecki ( Kettering University ) Solutions to Infinitely Dimensional SDE’s August 19-23, 2013 8 / 46



SPDE’s to Infinite Dimensional SDE’s

Variational Method - Gelfand triplet,

V ↪→ H ↪→ V ∗,

V ,H,V ∗ are real separable Hilbert spaces, H is identified with its dual H∗.
Embeddings are continuous, dense and compact (or Hilbert-Schmidt)
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Semilinear SDE/SDE if A = 0

dX (t) = (A(X (t)) + F (t ,X )) dt + B(t ,X ) dWt Wiener

dX (t) = (A(X (s)) + F (s,X )) ds +

∫
U

B(s,X ,u) q(ds,du)Poisson

X (0) = ξ0 −F0 meas.

A : D(A) ⊂ H → H generator of a C0–semigroup
F : [0,T ]× C([0,T ],H) → H
B : [0,T ]× C([0,T ],H) → L2(KQ ,H)( Wiener)
B : [0,T ]×D([0,T ],H) → L2(U,H)( Poisson)

Wt is a K –valued Q–Wiener process, q(ds du) = N(ds du)− ds µ(du) is
compensated Poisson random measure (cPrm).
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Semilinear SDE

Mild solution (if A = 0, strong or weak solution) in
C([0,T ],H) or D([0,T ],H)

X (t) = S(t)ξ0 +

∫ t

0
S(t − s)F (s,X ) dt +

∫ t

0
S(t − s)B(s,X ) dWs

X (t) = S(t)ξ0 +

∫ t

0
S(t − s)F (s,X ) dt

+

∫ t

0

∫
U

S(t − s)B(s,X ,u) q(ds du)
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Motivation for the Mild Solution

Inhomogeneous Initial Value Problem

du(t)
dt

= Au(t) + f (t), t > 0 u(0) = x ∈ D(A)

If u is a solution, then

dT (t − s)u(s)

ds
= T (t − s)f (s)

and by integrating

u(t) = T (t)x +

∫ t

0
T (t − s)f (s) ds
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Motivation for the Mild Solution

Stochastic Convolution∫ t

0
S(t − s)f (s) ds is replaced by S ? Φ(t) =

∫ t

0
S(t − s)Φ(s) dWs.

(see §5.3 D. Khoshnevisan Course notes and Theorem 3.1 in

Theorem

Assume that A is an infinitesimal generator of a C0–semigroup of operators
S(t) on H, and Wt is a K –valued Q–Wiener process. (a) For h ∈ D(A∗), then

〈X (t),h〉H =

∫ t

0
〈X (s),A∗h〉H ds +

〈∫ t

0
Φ(s) dWs,h

〉
H

, P–a.s., (2.1)

iff X (t) = S ? Φ(t). (b) If Φ ∈ Λ2(KQ ,H), Φ(KQ) ⊂ D(A), and AΦ ∈ Λ2(KQ ,H),
then S ? Φ(t) is a strong solution.

L. Gawarecki ( Kettering University ) Solutions to Infinitely Dimensional SDE’s August 19-23, 2013 13 / 46



Multi–Hilbertian (Fréchet nuclear) space SDE

dX (t) = F (t ,X (t))) dt + B(t ,X (t)) dWt Wiener

X (t) =

∫ t

0
F (s,X (s))) ds +

∫ t

0

∫
U

B(s,X (s−),u) q(ds,du)Poisson

X (0) = ξ0 −−F0 meas.

F : [0,T ]× Φ′ → Φ′

B : [0,T ]× Φ′ → L(Φ′,Φ′)( Wiener)
B : [0,T ]× Φ′ × U → Φ′( Poisson)

Solution, continuous or cadlag, is Φ′–valued, but found in H−p, some p > 0.

〈φ,X (t)〉 = 〈φ, ξ0〉+

∫ t

0
〈φ,F (s,X (s))〉dt + 〈φ,

∫ t

0
B(s,X (s)) dWs〉

〈φ,X (t)〉 = 〈φ, ξ0〉+

∫ t

0
〈φ,F (s,X )〉dt +

∫ t

0
B(s,X (s−),u)[φ] q(du ds)
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Variational Method

Variational SDE

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

with the coefficients

A : [0,T ]× V → V ∗ and B : [0,T ]× V → L2(KQ ,H)

and an H–valued F0–measurable initial condition ξ0 ∈ L2(Ω,H).

(W) X (t) = ξ0 +

∫ t

0
A(s,X (s)) ds +

∫ t

0
B(s,X (s)) dWs, P–a.s.

(P) X (t) = ξ0 +

∫ t

0
A(s,X (s)) ds +

∫ t

0

∫
U

B(s,X (s−),u) q(ds du),

P–a.s
The integrants A and B are evaluated at a V–valued Ft–measurable version
of X (t) in L2([0,T ]× Ω,V ).
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Solving the Equation

A,B Martingale Rep. Thm. X weak soln. in
Characterize the Lim. C or D([0,T ],V ∗)

↑ V ↪→ H ↪→ V ∗ ⇑

an,bn X n weak soln. in
x ∈ Rn, C or D([0,T ],Rn)

an(t , x)j = 〈φi ,A(t ,
n∑

k=1

xkφk 〉j

↑ Rn ↪→ Rn ↪→ Rn ⇑

an,l ,bn,l , l →∞ Lip. Approx. X n,l strong soln.

↑ in L2

E supt

∥∥X n,l,k (t)− X n,l (t)
∥∥2
Rn Pickard X n,l,k
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Semilinear SDE/SDE when A = 0 - Coefficients
(M) F and B are jointly measurable, and for every 0 ≤ t ≤ T , they are

measurable with respect to the product σ–field Ft ⊗ Ct on
Ω × C([0,T ],H), where Ct is a σ–field generated by cylinders with
bases over [0, t ].

(JC) F and B are jointly continuous.
(G-F-B) There exists a constant `, such that ∀x ∈ C([0,T ],H)

‖F (ω, t , x)‖H + ‖B(ω, t , x)‖L2(KQ ,H) ≤ `

(
1 + sup

0≤s≤T
‖x(s)‖H

)
,

for ω ∈ Ω, 0 ≤ t ≤ T .
(A4) For all x , y ∈ C([0,T ],H), ω ∈ Ω, 0 ≤ t ≤ T , there exists K > 0, such

that

‖F (ω, t , x)− F (ω, t , y)‖H + ‖B(ω, t , x)− B(ω, t , y)‖L2(KQ ,H)

≤ K sup
0≤s≤T

‖x(s)− y(s)‖H .
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Infinite Dimensional SDE (A = 0) - Solutions
Lipschitz case - strong solutions exist and are unique (Pickard)
Continuous case - Lipschitz Approximation

Fn(t , x) =

∫
· · ·
∫

F (t , (γn(·, x0, ..., xn),e))

×smoothing kernel

Existence result for dX (t) = F (t ,X )) dt + B(t ,X ) dWt

Theorem
Let H−1 be a real separable Hilbert space. Let the coefficients F , B of the
SDE satisfy conditions (M), (JC), (G-F-B) on H−1. Assume that there exists a
Hilbert space H such that the embedding J : H ↪→ H−1 is a compact operator
(failure of the Peano theorem) and that F , B restricted to H satisfy

F : [0,T ]× C([0,T ],H)→ H,
B : [0,T ]× C([0,T ],H)→ L(K ,H),

and the linear growth condition (G-F-B). Then the SDE has a weak solution
X (·) ∈ C([0,T ],H−1).
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Smoothing Kernel
Let {en}∞n=1 be an ONB in H. Denote

fn(t) = (〈x(t),e1〉H , 〈x(t),e2〉H , . . . , 〈x(t),en〉H) ∈ Rn,

Γn(t) = fn(kT/n) at t = kT/n and linear otherwise,

γn(t , x0, . . . , xn) = xk at t =
kT
n

and linear otherwise, with xk ∈ Rn,

k = 0,1, ...,n.

Let g : Rn → R be non-negative, vanishing for |x | > 1, possessing bounded

derivative, and such that
∫

Rn
g(x)dx = 1. Let εn → 0. We define

Fn(t , x) =
∫
·· ·
∫

F (t , (γn(·, x0, ..., xn),e))

×exp

{
−εn

n

n∑
k=0

x2
k

}
n∏

k=0

(
g

(
fn( kT

n ∧ t)− xk

εn

)
dxk

εn

)
(3.1)

Above, (γn(·, x0, . . . , xn),e) = γ1
ne1 + . . .+ γn

nen, where γ1
n , . . . , γ

n
n are the

coordinates of the vector γn in Rn, and x2
k =

∑n
i=1(x i

k )2, dxk = dx1
k . . . dxn

k .
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Semilinear SDE (A 6= 0) - Solutions

Lipschitz case - strong solutions exist and are unique
Continuous case - Lipschitz Approximation

Theorem

Assume that A is an infinitesimal generator of a compact C0–semigroup S(t)
(Peano) on a real separable Hilbert space H. Let the coefficients of the
Semilinear SDE satisfy conditions (M), (JC), (G-F-B). Then the Semilinear
SDE

dX (t) = (AX (t) + F (t ,X )) dt + B(t ,X ) dWt

has a martingale solution (i.e. weak mild solution).
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Multi-Hilbertian Space; Coefficients are Differential
Operators.

Consider an SDE

dXt = L(Xt )dt + A(Xt )dBt (3.2)

For 1 ≤ i ≤ d , let ∂i : S → S be the differentiation operators. Then ∂i
extends in the usual manner as an operator ∂i : S ′ → S ′. Let ∂∗i denote
the transpose of ∂i . Then ∂∗i : S ′ → S ′ is given by ∂∗i u = −∂iu, u ∈ S ′.
Define A : S ′ → L

(
Rd ,S ′

)
and L : S ′ → S ′ by

Au(x) = −
d∑

i=1

(∂iu)xi

Lu =
1
2

d∑
i=1

∂2
i u,

with u ∈ S ′, x = (x1 · · · xd ) ∈ Rd .
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Growth Properties of the Coefficients
For a bounded linear operator T ∈ L

(
Rd ,Hp

)
, its Hilbert–Schmidt norm is

calculated as ‖T‖HS(p) =
(∑d

i=1 ‖Tei‖2
p
)1/2, where {ei}d

i=1 is the canonical
basis in Rd .

Proposition

For the differential operators ∂i , A, and L defined above the following
properties hold true:
(a) For any p ≥ q + 1/2, and 1 ≤ i ≤ d, ∂i : Sp → Sq is continuous, and for

u ∈ Sp,
‖∂iu‖q ≤ Cq‖u‖p,

where the constant Cq depends (only) on q.
(b) For any p ≥ q + 1, and u ∈ Sp,

‖Lu‖q ≤ Dq‖u‖p

‖Au‖HS(q) ≤ Dq‖u‖p,

where the constant Dq depends (only) on q.
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Source of the Main Technical Problem
Why approximate solutions travel from space to space

Proof.
Part (b) follows from (a). Since ∂∗i = −∂i , for u ∈ Sp, we have

‖∂iu‖2
q =

∞∑
|k|=0

(2|k |+ d)2q 〈∂iu,hk 〉2

=
∞∑
|k|=0

(2|k |+ d)2q 〈u, ∂ihk 〉2

≤ 22q
∞∑
|k|=0

(2|k |+ d)2(q+ 1
2 ) 〈u,hk 〉2 ≤ Cq‖u‖2

p.

using the recurrence relation

h′l (x) =

√
l
2

hl−1(x)−
√

l + 1
2

hl+1(x).
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The Monotonicity Condition
What keeps things within one space

Theorem

2 〈L(u − v),u − v〉p + ‖Au − Av‖2
HS(p) ≤ θ‖u − v‖2

p,

holds true for r ≥ p + 1, u, v ∈ Sr .

L. Gawarecki ( Kettering University ) Solutions to Infinitely Dimensional SDE’s August 19-23, 2013 24 / 46



Equation Coefficients are Differential Operators

Operators

A(u)(h) = −
d∑

i=1

(∂iu)hi (A = −5)

L(u) =
1
2

d∑
i=1

∂2
i u (L =

1
2
4)

u ∈ S ′ , h ∈ Rd , satisfy our conditions with q ≥ p + 1.
The unique solution of{

dXt = 1
2 4 Xtdt −5Xt dBt

X0 = φ ∈ S−p

is φ(·+ Bt ). If φ = δ0, then Xt = δBt .
Monotonicity holds true for more general differential operators
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Variational Method
On a tripple V ↪→ H ↪→ V

′

This set–up arises in the study of SPDE’s. Typical example is H = L2(O),
V = W 1,2–Sobolev space

Together with other regularity assumptions, the following coercivity
condition is imposed

2 〈Lu,u〉+ ‖Au‖2
HS(H) ≤ −δ‖u‖

2
V + η‖u‖2

H

This condition is violated in our case of differential operators!
Let X = S 1

2
, X ′ = S− 1

2
, H = L2. Then (X ,H,X ′) is a normal triple with

canonical bilinear form given by the L2 inner product. Then for ξ ∈ S ⊂ X ,

2〈ξ,Lξ〉0 + |Aξ|2HS(0) + δ‖ξ‖2
1
2

= δ‖ξ‖2
1
2

which cannot be dominated by using the L2 norm. Note that the equality
2〈ξ,Lξ〉0 = −|Aξ|2HS(0) follows from integration by parts.
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Existence of Weak Variational Solutions

Theorem

Let V ↪→ H ↪→ V ∗ be a Gelfand triplet (Unbounded Operator)with compact
inclusions. Let the coefficients A, B of Equation

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

satisfy conditions [JC], [G-A], [G-B], and [C]. Let the initial condition ξ0 be an
H–valued random variable satisfying [IC]. Then there exists a weak solution
X (t) in C([0,T ],H), such that

E

(
sup

0≤t≤T
‖X (t)‖2

H

)
<∞, and E

∫ T

0
‖X (t)‖2

V dt <∞.
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Conditions

(JC) (Joint Continuity) The mappings are continuous

(t , v) → A(t , v) ∈ V ∗

(t , v) → B(t , v)QB∗(t , v) ∈ L1(H)

For some constant θ ≥ 0,
(G-A) (Growth on A - (Unbounded Operator))

‖A(t , v)‖2
V∗ ≤ θ

(
1 + ‖v‖2

H
)
, v ∈ V .

(G-B) (Growth on B)

‖B(t , v)‖2
L2(KQ ,H) ≤ θ

(
1 + ‖v‖2

H
)
, v ∈ V .
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Coercivity condition on A and B
(C) There exist constants α > 0, γ, λ ∈ R such that for v ∈ V ,

2〈A(t , v), v〉+ ‖B(t , v)‖2
L2(KQ ,H) ≤ λ‖v‖

2
H − α‖v‖2

V + γ.

Initial condition
(IC) For some constant c0.

E
{
‖ξ0‖2

H

(
ln
(

3 + ‖ξ0‖2
H

))2
}
< c0,
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Existence for Wiener noise (cPrm - similar)

Result on the existence of a weak solution.

Theorem
Let Bn

t be a standard Brownian motion in Rn. There exists a weak solution to
the following finite dimensional SDE,

dX (t) = a(t ,X (t))dt + b(t ,X (t)) dBn
t ,

with an Rn–valued F0–measurable initial condition ξn
0 , if a : [0,∞]× Rn → Rn,

b : [0,∞]× Rn → Rn ⊗ Rn are continuous and satisfy the following growth
condition

‖b(t , x)‖2
L(Rn) ≤ K

(
1 + ‖x‖2

Rn

)
〈x ,a(t , x)〉Rn ≤ K

(
1 + ‖x‖2

Rn

)
for t ≥ 0 and x ∈ Rn and some constant K .
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Approximation Problem

Lemma

The growth conditions [G-A] and [G-B] assumed for the coefficients A and B
imply the following growth conditions on an and bn,

‖an(t , x)‖2
Rn ≤ θn

(
1 + ‖x‖2

Rn

)
, θn →∞

(Unbounded Operator)

tr (σn(t , x)) = tr
(

bn(t , x) (bn(t , x))
T
)
≤ θ

(
1 + ‖x‖2

Rn

)
.

The coercivity condition [C] implies that for a large enough value of θ,

2 〈an(t , x), x〉Rn + tr
(

bn(t , x) (bn(t , x))
T
)
≤ θ

(
1 + ‖x‖2

Rn

)
.

The constant θn depends on n, but θ does not.
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Tightness in C([0,T ],V ∗) - similar in D([0,T ],V ∗).

Theorem

Let the coefficients A, B of Equation

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

satisfy conditions [JC], [G-A], [G-B], and [C]. Consider the family of measures
µn
∗ on C([0,T ],V ∗), with support in C([0,T ],H), defined by

µn
∗(Y ) = µn

{
x ∈ C([0,T ],Rn) :

n∑
i=1

xi (t)ϕi ∈ Y

}
; Y ⊂ C([0,T ],V ∗),

where µn are distributions of finite dimensional solutions, ϕi , i = 1, ... is an
ONB in H, consisting of elements from V.
If the embedding H ↪→ V ∗ is compact (H-S in D). Then the family of
measures {µn

∗}
∞
n=1 is tight on C([0,T ],V ∗) (D([0,T ],V ∗)).
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Tightness in C([0,T ],V ∗) and D([0,T ],V ∗)

Theorem

(Mitoma: C([0,T ],S ′),D([0,T ],S ′)). Let V ↪→ H ↪→ V ∗ be Gelfand triplet with
Hilbert–Schmidt embeddings. Given {µn}∞n=1 Borel probability measures on
C([0,T ],V ∗) (D([0,T ],V ∗) ), s.t.

1 {µn ◦ π−1
V }∞n=1 is tight on C([0,T ],R) (D([0,T ],R) )

2 ∀ε ∃M ∀n

µn{f ∈ C([0,T ],V ∗) : sup
t
‖f (t)‖H > M} < ε

(µn{f ∈ D([0,T ],V ∗) : sup
t
‖f (t)‖H > M} < ε)

then {µn}∞n=1 is tight on C([0,T ],V ∗) (D([0,T ],V ∗) ).

Thus ‖an‖H →∞ is not a problem as we take one dimensional projections
only, but the price is H–S embedding.
This can be improved in C([0,T ],V ∗).
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Coming back from V ∗ to H
By the Skorokhod theorem, Xn → X a.s. in C([0,T ],V ∗). Consider

αH : V ∗ → R, αH(u) = sup {〈u, v〉, v ∈ V , ‖v‖H ≤ 1} .

αH(u) = ‖u‖H if u ∈ H, and is lower semicontinuous as a sup of continuous
functions. For u ∈ V ∗ \ H, αH(u) = +∞ Thus, we can extend the norm ‖ · ‖H
to a lower semicontinuous function on V ∗.
By the Fatou lemma,∫

C([0,T ],V∗)
sup

0≤t≤T
‖x(t)‖2

H µ∗(dx) = E

(
sup

0≤t≤T
‖X (t)‖2

H

)

≤ E lim inf
n→∞

(
sup

0≤t≤T
‖X n(t)‖2

H

)

≤ lim inf
n→∞

E

(
sup

0≤t≤T
‖X n(t)‖2

H

)

= lim inf
n→∞

∫
C([0,T ],V∗)

sup
0≤t≤T

‖x(t)‖2
H µ

n
∗(dx) < C.
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Coming back from H to V
Apply the Itô formula and Coercivity

E‖X n(t)‖2
H = E‖ξn

0‖2
H + 2E

∫ t

0
〈an(s,X n(s)),X n(s)〉Rn ds

+E
∫ t

0
tr
(

bn(s,X n(s)) (bn(s,X n))
T
)

ds

≤ E‖ξ0‖2
H + λ

∫ t

0
E‖X n(s)‖2

H ds − α
∫ t

0
E‖X n(s)‖2

V ds + γ.

Conclude that

sup
n

∫ T

0
E‖X n(t)‖2

V dt <∞.

Extend the norm ‖ · ‖V to a lower semicontinuous function on V ∗

αV (u) = sup {〈u, v〉, v ∈ V , ‖v‖V ≤ 1} ,

since αV (u) = ‖u‖V if u ∈ V , and for u ∈ V ∗ \ V , αV (u) = +∞. By the Fatou
lemma ∫

C([0,T ],V∗)

∫ T

0
‖x(t)‖2

V dt µ∗(dx) <∞.
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Characterization of the limit

Mt (x) = x(t)− x(0)−
∫ t

0
A(s, x(s)) ds,

is, in either case (Wiener, cPrm), a martingale. Three steps:
Proving that Mt is a martingale by evaluating∫

(〈Mt (x)−Ms(x), v〉gs(x)) µ∗(dx) = 0

for a bounded function gs on C([0,T ],V ∗), which is measurable with
respect to the cylindrical σ–field generated by the cylinders with bases
over [0, s],
Finding its increasing process < M >t

Using Martingale Representation Theorem
First two steps use uniform integrability. Wiener - usually of X 2

n (t), cPrm -
more delicate.
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Lions’ Theorem (extension of)- H–continuous version:

Theorem

Let X (0) ∈ L2(Ω,H), Y ∈ L2([0,T ]×Ω,V ∗), Z ∈ L2([0,T ]×Ω,L2(KQ ,H)) be
both progressively measurable. Define a continuous V ∗–valued process

X (t) = X (0) +

∫ t

0
Y (s) ds +

∫ t

0
Z (s) dWs, t ∈ [0,T ].

If for its dt ⊗ P–equivalence class X̂ we have X̂ ∈ L2([0,T ]×Ω,V ), then X is
an H–valued continuous Ft–adapted process,

E sup
t∈[0,T ]

‖X (t)‖2
H <∞
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Pathwise Uniqueness

Definition

If for any two H–valued weak solutions (X1,W ) and (X2,W ) of Equation

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

defined on the same filtered probability space (Ω,F , {Ft}0≤t≤T ,P) and with
the same Q–Wiener process W , such that X1(0) = X2(0), P–a.s., we have
that

P (X1(t) = X2(t), 0 ≤ t ≤ T ) = 1,

then we say that this Equation has pathwise uniqueness property.
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The weak monotonicity condition
(WM) There exists c ∈ R, such that for all u, v ∈ V , t ∈ [0,T ],

2〈u − v ,A(t ,u)− A(t , v)〉+ ‖B(t ,u)− B(t , v)‖2
L2(KQ ,H) ≤ c‖u − v‖2

H .

Weak monotonicity is crucial in proving uniqueness of weak and strong
solutions. In addition, it allows to construct strong solutions in the absence of
the compact embedding V ↪→ H.

Theorem

Let the conditions [JC], [GB], [C], [IC] hold true and assume the weak
monotonicity condition [WM] and

(G-A) (Growth on A)

‖A(t , v)‖2
V∗ ≤ θ

(
1 + ‖v‖2

V
)
, v ∈ V .

Then the solution to the variational SDE

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

is pathwise unique.
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Proof.
Let X1, X2 be two weak solutions, Y (t) = X1(t)− X2(t), and denote its
V–valued progressively measurable version by Ȳ . Applying the Itô formula
and the monotonicity condition [WM] yields

e−θt‖Y (t)‖2
H = −θ

∫ t

0
e−θs‖Y (s)‖2

H ds

+

∫ t

0
e−θs

(
2
〈
Ȳ (s),A(s,X1(s))− A(s,X2(s))

〉
+ ‖B(s,X1(s))− B(s,X2(s))‖2

L2(KQ ,H)

)
ds

+2
∫ t

0
e−θs 〈Ys, (B(s,X1(s))− B(s,X2(s))) dWs〉H

≤ Mt ,

where Mt is a real–valued continuous local martingale represented by the
stochastic integral above. The inequality above also shows that Mt ≥ 0.
Hence by the Doob maximal inequality, Mt = 0.
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As a consequence of an infinite dimensional version of the result of Yamada
and Watanabe we have the following corollary.

Corollary
Under conditions of the Existence Theorem and assuming [WM] (weak
monotonicity), the variational SDE

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

has unique strong solution.

Yamada-Watanabe argument does not go through in general for cPrm, but
works if U is separable.
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Exponential Ultimate Boundedness

Definition
We say that the variational solution of the variational SDE

dX (t) = A(t ,X (t))dt + B(t ,X (t)) dWt

is exponentially ultimately bounded in the mean square sense (m.s.s.), if there
exist positive constants c, β, M, such that

E ‖X x (t)‖2
H ≤ c e−βt‖x‖2

H + M, for all x ∈ H.
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Theorem

The strong solution {X x (t), t ≥ 0} of equation dX (t) = A (X (t)) dt + B (X (t)) dWt

X (0) = x ∈ H

where A and B are in general non–linear mappings, is exponentially ultimately
bounded in the m.s.s. if there exists a function Ψ : H → R to which Itô’s
formula can be applied and, in addition, such that
(1) c1‖x‖2

H − k1 ≤ Ψ(x) ≤ c2‖x‖2
H + k2, for some positive constants

c1, c2, k1, k2 and for all x ∈ H,
(2) LΨ(x) ≤ −c3Ψ(x) + k3, for some positive constants c3, k3 and for all

x ∈ V.
where

LΨ(u) = 〈Ψ′(u),A(u)〉+ tr
(

Ψ
′′

(u)B(u)QB∗(u)
)
.
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If A and B are linear and satisfy coercivity condition, the Lyapunov function
can be written explicitly

Ψ0(x) =

∫ T

0

∫ t

0
E ‖X x

0 (s)‖2
V ds dt ,

for T large enough.
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Our example SPDE,

dtu(t , x) =

(
α2 ∂

2u(t , x)

∂x2 + β
∂u(t , x)

∂x
+ γu(t , x) + g(x)

)
dt

+

(
σ1
∂u(t , x)

∂x + σ2u(t , x)

)
dWt ,

u(0, x) = ϕ(x) ∈ L2 ((−∞,∞)) ∩ L1 ((−∞,+∞)) ,

If −2α2 + σ2
1 < 0, then the coercivity and weak monotonicity conditions

hold true. The growth [G-B] holds and

‖A(t , v)‖2
V∗ ≤ θ

(
1 + ‖v‖2

V
)
, v ∈ V .

and that there exists a unique strong solution uϕ(t) in
L2 (Ω,C([0,T ],H)) ∩ L2(Ω× [0,T ],V ). Then we can conclude that the
solution is exponentially ultimately bounded in the m.s.s. by reducing the
case to a liner equation (dropping g).
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