Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review

L. Gawarecki

Kettering University

NSF/CBMS Conference Analysis of Stochastic Partial Differential Equations Based on joint work with V. Mandrekar, B. Rajeev, P. Richard

Outline

- SPDE's to Infinite Dimensional SDE's
- The Infinite Dimensional SDE
- Existence and Uniqueness Results
- Strong Solutions from Weak
- 5 Exponential Ultimate Boundedness

Infinite Dimensional DE's

Two fundamental problems:

• Peano theorem is invalid in infinite dimansional Banach spaces

Theorem (Peano)

For each continuous function $f: \mathbb{R} \times B \to B$ defined on some open set $V \subset \mathbb{R} \times B$ and for each point $(t_0, x_0) \in V$ the Cauchy problem

$$x'(t) = f(t, x(t)), \quad x(t_0) = x_0$$

has a solution which is defined on some neighborhood of t₀.

Theorem (Godunov, 1973)

Each Banach space in which Peano's theorem is true is finite dimensional.

• Appearence of unbounded operators in the equation $\Delta: W^{1,2} \to W^{1,2}$ (Sobolev space) is unbounded.

Most popular approaches:

- Semigroup solution, mild solution to a semiliner DE (Hille, DaPrato, Zabczyk).
- Solution in a multi-Hilbertian space, e.g. in a dual to a nuclear space (Itô, Kallianpur).
- Variational solution in Gelfand triplet (Agmon, Lions, Röckner).
- Solutions via Dirichlet forms (Albeverio, Osada (Itô Prize 2013))
- White noise apporach (Hida)
- Brownian sheet formulation (Walsh)
- Solutions in R^{∞} (Leha, Ritter)

4/46

Example (Abstract Cauchy Problem - Semilinear SDE)

One–dimensional Heat Equation,

$$\left\{ \begin{array}{ll} u_t(t,x) &= u_{xx}(t,x), \ t>0 \\ u(0,x) &= \varphi(x) \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} \frac{du(t)}{dt} &= \Delta u(t), \ t>0 \\ u(0) &= \varphi \in X \end{array} \right.$$

The Cauchy problem is equation is transformed to an abstract Cauchy problem in the Banach space X of bounded uniformly continuous functions. The differentiation is in the sense of the Banach space. Solution:

$$u(t,x)=(G(t)\varphi)(x).$$

where G(t) is the Gaussian semigroup on the Banach space X

$$(G(t)\varphi)(x) = \begin{cases} \frac{1}{(4\pi t)^{1/2}} \int_{\mathbb{R}} \exp\left\{-|x-y|^2/4t\right\} \varphi(y) \, dy, & t > 0 \\ \varphi(x), & t = 0. \end{cases}$$

Example (Fréchet nuclear space)

Neuronal Models

$$dX_t = -A^*X_t + B(X_t)dW_t$$

If $(H,\langle\cdot,\cdot\rangle_H)$ is a separable Hilbert space and A is an operator with a discrete spectrum, with eigenvalues and eigenvectors $\lambda_j>0$ and $h_j\in H$, such that $\sum\limits_{i=1}^{\infty}(1+\lambda_j)^{-2r_1}<\infty$ for some $r_1>0$, then

$$\Phi = \left\{ \phi \in H : \quad \sum_{j=1}^{\infty} (1 + \lambda_j)^{2r} \langle \phi, h_j \rangle_H^2 < \infty, \quad \forall r \ge 0 \right\}$$

is a Fréchet nuclear space, with $\{h_j\}\subset \Phi$ being a common orthogonal system.

• Let H_r , be the completion of Φ with respect to the Hilbertian norms $\|\cdot\|_r$ defined by the inner product

$$\langle f,g\rangle_{r}=\sum_{j=0}^{\infty}\left(1+\lambda_{j}\right)^{2r}\left\langle f,h_{j}\right\rangle _{H}\left\langle g,h_{j}\right\rangle _{H},\ \ f,g\in H.$$

$$\Phi' = \bigcup_{r>0} H_{-r}$$
, so that $\Phi \subset ... \subset H_r \subset ... \subset H \subset H_{-r} \subset ... \subset \Phi'$

- For $\mathcal{S}'(\mathbb{R})$, take $A = t^2 \frac{d^2}{dt^2} I$, $H = L_2(\mathbb{R})$ and h_j , Hermite functions.
- For $p \in \mathbb{R}$ let S_p , be the completion of S with respect to the Hilbertian norms $\|\cdot\|_p$ defined by the inner product

$$\langle f,g\rangle_p = \sum_{k=0}^{\infty} (2k+1)^{2p} \langle f,h_k\rangle_{L_2} \langle g,h_k\rangle_{L_2}, \ f,g\in\mathcal{S}.$$

Then
$$S = \bigcap_{p>0} S_p$$
 and $S' = \bigcup_{p>0} S_{-p}$. $A(S) \subset S$, $A^*(S') \subset S'$.

• Let H_r , be the completion of Φ with respect to the Hilbertian norms $\|\cdot\|_r$ defined by the inner product

$$\langle f,g\rangle_{r}=\sum_{j=0}^{\infty}\left(1+\lambda_{j}\right)^{2r}\left\langle f,h_{j}\right\rangle _{H}\left\langle g,h_{j}\right\rangle _{H},\ \ f,g\in H.$$

$$\Phi' = \bigcup_{r>0} H_{-r}$$
, so that $\Phi \subset ... \subset H_r \subset ... \subset H \subset H_{-r} \subset ... \subset \Phi'$

- For $\mathcal{S}^{'}(\mathbb{R})$, take $A=t^2-\frac{d^2}{dt^2}-I$, $H=L_2(\mathbb{R})$ and h_j , Hermite functions.
- For $p \in \mathbb{R}$ let S_p , be the completion of S with respect to the Hilbertian norms $\|\cdot\|_p$ defined by the inner product

$$\langle f,g\rangle_p = \sum_{k=0}^{\infty} (2k+1)^{2p} \langle f,h_k\rangle_{L_2} \langle g,h_k\rangle_{L_2}, \ f,g\in\mathcal{S}.$$

Then
$$S = \bigcap_{p>0} S_p$$
 and $S' = \bigcup_{p>0} S_{-p}$. $A(S) \subset S$, $A^*(S') \subset S'$.

• Let H_r , be the completion of Φ with respect to the Hilbertian norms $\|\cdot\|_r$ defined by the inner product

$$\langle f,g\rangle_{r}=\sum_{j=0}^{\infty}\left(1+\lambda_{j}\right)^{2r}\left\langle f,h_{j}\right\rangle _{H}\left\langle g,h_{j}\right\rangle _{H},\ \ f,g\in\mathcal{H}.$$

$$\Phi' = \bigcup_{r>0} H_{-r}$$
, so that $\Phi \subset ... \subset H_r \subset ... \subset H \subset H_{-r} \subset ... \subset \Phi'$

- For $\mathcal{S}'(\mathbb{R})$, take $A = t^2 \frac{d^2}{dt^2} I$, $H = L_2(\mathbb{R})$ and h_j , Hermite functions.
- For $p \in \mathbb{R}$ let S_p , be the completion of S with respect to the Hilbertian norms $\|\cdot\|_p$ defined by the inner product

$$\langle f,g\rangle_{p}=\sum_{k=0}^{\infty}\left(2k+1\right)^{2p}\left\langle f,h_{k}\right\rangle_{L_{2}}\left\langle g,h_{k}\right\rangle_{L_{2}},\ \ f,g\in\mathcal{S}.$$

Then
$$\mathcal{S} = \bigcap_{p>0} \mathcal{S}_p$$
 and $\mathcal{S}' = \bigcup_{p>0} \mathcal{S}_{-p}$. $A(\mathcal{S}) \subset \mathcal{S}$, $A^*(\mathcal{S}') \subset \mathcal{S}'$.

Example (Gelfand Triplet - Variational Solutions)

Diffusion Models

$$dX_t = AX(t) + B(X_t)dW_t$$

with
$$A:V=W_0^{1,2} o V^*=W_0^{-1,2}$$
 and $B:V o \mathcal{L}(\mathbb{R},H)=H=L^2$ by
$$Av = \alpha^2\frac{d^2v}{dx^2}+\beta\frac{dv}{dx}+\gamma v+g, \quad v\in V,$$

$$Bv = \sigma_1\frac{dv}{dx}+\sigma_2v, \quad v\in V.$$

where $H = L^2((-\infty,\infty))$, $V = W_0^{1,2}((-\infty,\infty))$, with the usual norms

$$||v||_{H} = \left(\int_{-\infty}^{+\infty} v^{2} dx\right)^{1/2}, \quad v \in H,$$

$$||v||_{V} = \left(\int_{-\infty}^{+\infty} \left(v^{2} + \left(\frac{dv}{dx}\right)^{2}\right) dx\right)^{1/2}, \quad v \in V.$$

Variational Method - Gelfand triplet,

$$V \hookrightarrow H \hookrightarrow V^*$$
,

 V, H, V^* are real separable Hilbert spaces, H is identified with its dual H^* . Embeddings are continuous, dense and compact (or Hilbert-Schmidt)

Semilinear SDE/SDE if A = 0

$$dX(t) = (A(X(t)) + F(t, X)) dt + B(t, X) dW_t$$
 Wiener $dX(t) = (A(X(s)) + F(s, X)) ds + \int_U B(s, X, u) q(ds, du)$ Poisson $X(0) = \xi_0 - \mathcal{F}_0$ meas.
$$A: \mathcal{D}(A) \subset H \rightarrow H \text{ generator of a } C_0\text{-semigroup}$$
 $F: [0, T] \times C([0, T], H) \rightarrow H$ $B: [0, T] \times C([0, T], H) \rightarrow \mathcal{L}_2(K_0, H)$ (Wiener)

 W_t is a K-valued Q-Wiener process, $q(ds du) = N(ds du) - ds \mu(du)$ is compensated Poisson random measure (cPrm).

 $B: [0,T] \times \mathcal{D}([0,T],H) \rightarrow L_2(U,H)$ (Poisson)

Semilinear SDE

Mild solution (if A = 0, strong or weak solution) in C([0, T], H) or $\mathcal{D}([0, T], H)$

$$X(t) = S(t)\xi_0 + \int_0^t S(t-s)F(s,X) dt + \int_0^t S(t-s)B(s,X) dW_s$$

$$X(t) = S(t)\xi_0 + \int_0^t S(t-s)F(s,X) dt + \int_0^t \int_U S(t-s)B(s,X,u) q(ds du)$$

Motivation for the Mild Solution

Inhomogeneous Initial Value Problem

$$\frac{du(t)}{dt} = Au(t) + f(t), \ t > 0 \ u(0) = x \in \mathcal{D}(A)$$

If u is a solution, then

$$\frac{dT(t-s)u(s)}{ds}=T(t-s)f(s)$$

and by integrating

$$u(t) = T(t)x + \int_0^t T(t-s)f(s) ds$$

Motivation for the Mild Solution

Stochastic Convolution

$$\int_0^t S(t-s)f(s)\,ds \text{ is replaced by } S\star\Phi(t)=\int_0^t S(t-s)\Phi(s)\,dW_s.$$

(see §5.3 D. Khoshnevisan Course notes and Theorem 3.1 in

Theorem

Assume that A is an infinitesimal generator of a C_0 –semigroup of operators S(t) on H, and W_t is a K–valued Q–Wiener process. (a) For $h \in \mathcal{D}(A^*)$, then

$$\langle X(t), h \rangle_H = \int_0^t \langle X(s), A^*h \rangle_H \, ds + \left\langle \int_0^t \Phi(s) \, dW_s, h \right\rangle_H, \quad \textit{P-a.s.}, \quad (2.1)$$

iff $X(t) = S \star \Phi(t)$. (b) If $\Phi \in \Lambda_2(K_Q, H)$, $\Phi(K_Q) \subset \mathcal{D}(A)$, and $A\Phi \in \Lambda_2(K_Q, H)$, then $S \star \Phi(t)$ is a strong solution.

Multi-Hilbertian (Fréchet nuclear) space SDE

$$dX(t) = F(t,X(t)) dt + B(t,X(t)) dW_t \text{ Wiener}$$

$$X(t) = \int_0^t F(s,X(s)) ds + \int_0^t \int_U B(s,X(s-),u) q(ds,du) \text{Poisson}$$

$$X(0) = \xi_0 - \mathcal{F}_0 \text{ meas}.$$

$$F: [0, T] \times \Phi' \rightarrow \Phi'$$

$$B: [0, T] \times \Phi' \rightarrow L(\Phi', \Phi') \text{(Wiener)}$$

$$B: [0, T] \times \Phi' \times U \rightarrow \Phi' \text{(Poisson)}$$

Solution, continuous or cadlag, is Φ' -valued, but found in H_{-p} , some p > 0.

$$\begin{split} \langle \phi, X(t) \rangle &= \langle \phi, \xi_0 \rangle + \int_0^t \langle \phi, F(s, X(s)) \rangle \, dt + \langle \phi, \int_0^t B(s, X(s)) \, dW_s \rangle \\ \langle \phi, X(t) \rangle &= \langle \phi, \xi_0 \rangle + \int_0^t \langle \phi, F(s, X) \rangle \, dt + \int_0^t B(s, X(s-), u) [\phi] \, q(du \, ds) \end{split}$$

Variational Method

Variational SDE

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

with the coefficients

$$A:[0,T]\times V o V^*$$
 and $B:[0,T]\times V o \mathcal{L}_2(K_Q,H)$

and an H-valued \mathcal{F}_0 -measurable initial condition $\xi_0 \in L^2(\Omega, H)$.

(W)
$$X(t) = \xi_0 + \int_0^t A(s, X(s)) ds + \int_0^t B(s, X(s)) dW_s$$
, *P*-a.s.

(P)
$$X(t) = \xi_0 + \int_0^t A(s, X(s)) ds + \int_0^t \int_U B(s, X(s-), u) q(ds du),$$

P-a.s

The integrants A and B are evaluated at a V-valued \mathcal{F}_t -measurable version of X(t) in $L^2([0,T]\times\Omega,V)$.

Solving the Equation

$$A, B$$

$$\uparrow$$

$$a^{n}, b^{n}$$

$$x \in \mathbb{R}^{n},$$

$$a^{n}(t, x)_{j} = \langle \phi_{j}, A(t, \sum_{k=1}^{n} x_{k} \phi_{k} \rangle_{j})$$

$$\uparrow$$

$$X$$
 weak soln. in C or $\mathcal{D}([0,T],V^*)$ \uparrow

 X^n weak soln. in C or $\mathcal{D}([0,T],\mathbb{R}^n)$

$$\mathbb{R}^n \hookrightarrow \mathbb{R}^n \hookrightarrow \mathbb{R}^n$$

 \uparrow

$$a^{n,l}, b^{n,l}, l \to \infty$$
 Lip. Approx.

 $X^{n,l}$ strong soln.

$$\uparrow$$
 in L^2

$$E \sup_{t} \left\| X^{n,l,k}(t) - X^{n,l}(t) \right\|_{\mathbb{R}^{n}}^{2}$$

$$X^{n,l,k}$$

Semilinear SDE/SDE when A = 0 - Coefficients

- (M) F and B are jointly measurable, and for every $0 \le t \le T$, they are measurable with respect to the product σ -field $\mathcal{F}_t \otimes \mathcal{C}_t$ on $\Omega \times C([0,T],H)$, where \mathcal{C}_t is a σ -field generated by cylinders with bases over [0,t].
- (JC) F and B are jointly continuous.
- (G-F-B) There exists a constant ℓ , such that $\forall x \in C([0, T], H)$

$$\|F(\omega,t,x)\|_{H}+\|B(\omega,t,x)\|_{\mathcal{L}_{2}(K_{Q},H)}\leq \ell\left(1+\sup_{0\leq s\leq T}\|x(s)\|_{H}\right),$$

for $\omega \in \Omega$, $0 \le t \le T$.

(A4) For all $x, y \in C([0, T], H)$, $\omega \in \Omega$, $0 \le t \le T$, there exists K > 0, such that

$$||F(\omega, t, x) - F(\omega, t, y)||_{H} + ||B(\omega, t, x) - B(\omega, t, y)||_{\mathcal{L}_{2}(K_{Q}, H)}$$

$$\leq \mathcal{K} \sup_{0 < s < T} ||x(s) - y(s)||_{H}.$$

Infinite Dimensional SDE (A = 0) - Solutions

- Lipschitz case strong solutions exist and are unique (Pickard)
- Continuous case Lipschitz Approximation

$$F_n(t,x) = \int \cdots \int F(t,(\gamma_n(\cdot,x_0,...,x_n),\underline{e}))$$
×smoothing kernel

Existence result for $dX(t) = F(t, X) dt + B(t, X) dW_t$

Theorem

Let H_{-1} be a real separable Hilbert space. Let the coefficients F, B of the SDE satisfy conditions (M), (JC), (G-F-B) on H_{-1} . Assume that there exists a Hilbert space H such that the embedding $J: H \hookrightarrow H_{-1}$ is a compact operator (failure of the Peano theorem) and that F, B restricted to H satisfy

$$F : [0,T] \times C([0,T],H) \to H,$$

$$B : [0,T] \times C([0,T],H) \to \mathcal{L}(K,H),$$

and the linear growth condition (G-F-B). Then the SDE has a weak solution $X(\cdot) \in C([0,T],H_{-1})$.

Smoothing Kernel

Let $\{e_n\}_{n=1}^{\infty}$ be an ONB in H. Denote

$$\begin{array}{rcl} f_n(t) & = & (\langle x(t), e_1 \rangle_H, \langle x(t), e_2 \rangle_H, \ldots, \langle x(t), e_n \rangle_H) \in R^n, \\ \Gamma_n(t) & = & f_n(kT/n) & \text{at } t = kT/n \text{ and linear otherwise}, \\ \gamma_n(t, x_0, \ldots, x_n) & = & x_k & \text{at } t = \frac{kT}{n} \text{ and linear otherwise, with } x_k \in R^n, \\ k & = 0, 1, \ldots, n. \end{array}$$

Let $g: R^n \to R$ be non-negative, vanishing for |x| > 1, possessing bounded derivative, and such that $\int_{R^n} g(x) dx = 1$. Let $\varepsilon_n \to 0$. We define

$$F_{n}(t,x) = \int \cdots \int F(t,(\gamma_{n}(\cdot,x_{0},...,x_{n}),\underline{e})) \times \exp\left\{-\frac{\varepsilon_{n}}{n}\sum_{k=0}^{n}x_{k}^{2}\right\} \prod_{k=0}^{n} \left(g\left(\frac{f_{n}(\frac{kT}{n}\wedge t)-x_{k}}{\varepsilon_{n}}\right)\frac{dx_{k}}{\varepsilon_{n}}\right)$$
(3.1)

Above, $(\gamma_n(\cdot, x_0, \dots, x_n), \underline{e}) = \gamma_n^1 e_1 + \dots + \gamma_n^n e_n$, where $\gamma_n^1, \dots, \gamma_n^n$ are the coordinates of the vector γ_n in R^n , and $x_k^2 = \sum_{i=1}^n (x_k^i)^2$, $dx_k = dx_k^1 \dots dx_k^n$.

Semilinear SDE ($A \neq 0$) - Solutions

- Lipschitz case strong solutions exist and are unique
- Continuous case Lipschitz Approximation

Theorem

Assume that A is an infinitesimal generator of a compact C_0 -semigroup S(t) (Peano) on a real separable Hilbert space H. Let the coefficients of the Semilinear SDE satisfy conditions (M), (JC), (G-F-B). Then the Semilinear SDE

$$dX(t) = (AX(t) + F(t, X)) dt + B(t, X) dW_t$$

has a martingale solution (i.e. weak mild solution).

Multi-Hilbertian Space; Coefficients are Differential Operators.

Consider an SDE

$$dX_t = L(X_t)dt + A(X_t)dB_t (3.2)$$

- For $1 \le i \le d$, let $\partial_i : \mathcal{S} \to \mathcal{S}$ be the differentiation operators. Then ∂_i extends in the usual manner as an operator $\partial_i : \mathcal{S}' \to \mathcal{S}'$. Let ∂_i^* denote the transpose of ∂_i . Then $\partial_i^* : \mathcal{S}' \to \mathcal{S}'$ is given by $\partial_i^* u = -\partial_i u$, $u \in \mathcal{S}'$.
- Define $A: \mathcal{S}' \to L(\mathbf{R}^d, \mathcal{S}')$ and $L: \mathcal{S}' \to \mathcal{S}'$ by

$$Au(x) = -\sum_{i=1}^{d} (\partial_i u) x_i$$

$$Lu = \frac{1}{2} \sum_{i=1}^{d} \partial_i^2 u,$$

with $u \in \mathcal{S}'$, $x = (x_1 \cdots x_d) \in \mathbf{R}^d$.

Multi-Hilbertian Space; Coefficients are Differential Operators.

Consider an SDE

$$dX_t = L(X_t)dt + A(X_t)dB_t (3.2)$$

- For $1 \le i \le d$, let $\partial_i : \mathcal{S} \to \mathcal{S}$ be the differentiation operators. Then ∂_i extends in the usual manner as an operator $\partial_i : \mathcal{S}' \to \mathcal{S}'$. Let ∂_i^* denote the transpose of ∂_i . Then $\partial_i^* : \mathcal{S}' \to \mathcal{S}'$ is given by $\partial_i^* u = -\partial_i u$, $u \in \mathcal{S}'$.
- Define $A: \mathcal{S}' \to L(\mathbf{R}^d, \mathcal{S}')$ and $L: \mathcal{S}' \to \mathcal{S}'$ by

$$Au(x) = -\sum_{i=1}^{d} (\partial_i u) x_i$$

$$Lu = \frac{1}{2} \sum_{i=1}^{d} \partial_i^2 u,$$

with $u \in \mathcal{S}'$, $x = (x_1 \cdots x_d) \in \mathbf{R}^d$.

Multi-Hilbertian Space; Coefficients are Differential Operators.

Consider an SDE

$$dX_t = L(X_t)dt + A(X_t)dB_t (3.2)$$

- For $1 \le i \le d$, let $\partial_i : \mathcal{S} \to \mathcal{S}$ be the differentiation operators. Then ∂_i extends in the usual manner as an operator $\partial_i : \mathcal{S}' \to \mathcal{S}'$. Let ∂_i^* denote the transpose of ∂_i . Then $\partial_i^* : \mathcal{S}' \to \mathcal{S}'$ is given by $\partial_i^* u = -\partial_i u$, $u \in \mathcal{S}'$.
- Define $A: \mathcal{S}' \to L\left(\mathbf{R}^d, \mathcal{S}'\right)$ and $L: \mathcal{S}' \to \mathcal{S}'$ by

$$Au(x) = -\sum_{i=1}^{d} (\partial_i u) x_i$$

$$Lu = \frac{1}{2} \sum_{i=1}^{d} \partial_i^2 u,$$

with $u \in \mathcal{S}'$, $x = (x_1 \cdots x_d) \in \mathbf{R}^d$.

Growth Properties of the Coefficients

• For a bounded linear operator $T \in L\left(\mathbb{R}^d, H_p\right)$, its Hilbert–Schmidt norm is calculated as $\|T\|_{HS(p)} = \left(\sum_{i=1}^d \|Te_i\|_p^2\right)^{1/2}$, where $\{e_i\}_{i=1}^d$ is the canonical basis in \mathbb{R}^d .

Proposition

For the differential operators ∂_i , A, and L defined above the following properties hold true:

(a) For any $p \ge q + 1/2$, and $1 \le i \le d$, $\partial_i : S_p \to S_q$ is continuous, and for $u \in S_p$,

$$\|\partial_i u\|_q \leq C_q \|u\|_p$$

where the constant C_q depends (only) on q.

(b) For any $p \ge q + 1$, and $u \in S_p$,

$$||Lu||_q \le D_q ||u||_p$$

 $||Au||_{HS(q)} \le D_q ||u||_p$

where the constant D_{α} depends (only) on q.

Growth Properties of the Coefficients

• For a bounded linear operator $T \in L\left(\mathbb{R}^d, H_p\right)$, its Hilbert–Schmidt norm is calculated as $\|T\|_{HS(p)} = \left(\sum_{i=1}^d \|Te_i\|_p^2\right)^{1/2}$, where $\{e_i\}_{i=1}^d$ is the canonical basis in \mathbb{R}^d .

Proposition

For the differential operators ∂_i , A, and L defined above the following properties hold true:

(a) For any $p \ge q + 1/2$, and $1 \le i \le d$, $\partial_i : S_p \to S_q$ is continuous, and for $u \in S_p$,

$$\|\partial_i u\|_q \leq C_q \|u\|_p$$

where the constant C_q depends (only) on q.

(b) For any $p \ge q + 1$, and $u \in S_p$,

$$||Lu||_q \le D_q ||u||_p$$

 $||Au||_{HS(q)} \le D_q ||u||_p$

where the constant D_a depends (only) on q.

Growth Properties of the Coefficients

• For a bounded linear operator $T \in L\left(\mathbb{R}^d, H_p\right)$, its Hilbert–Schmidt norm is calculated as $\|T\|_{HS(p)} = \left(\sum_{i=1}^d \|Te_i\|_p^2\right)^{1/2}$, where $\{e_i\}_{i=1}^d$ is the canonical basis in \mathbb{R}^d .

Proposition

For the differential operators ∂_i , A, and L defined above the following properties hold true:

(a) For any $p \ge q + 1/2$, and $1 \le i \le d$, $\partial_i : S_p \to S_q$ is continuous, and for $u \in S_p$,

$$\|\partial_i u\|_q \leq C_q \|u\|_p$$

where the constant C_q depends (only) on q.

(b) For any $p \ge q + 1$, and $u \in S_p$,

$$||Lu||_q \le D_q ||u||_p$$

 $||Au||_{HS(q)} \le D_q ||u||_p$,

where the constant D_a depends (only) on q.

Source of the Main Technical Problem

Why approximate solutions travel from space to space

Proof.

Part (b) follows from (a). Since $\partial_i^* = -\partial_i$, for $u \in S_p$, we have

$$\begin{split} \|\partial_{i}u\|_{q}^{2} &= \sum_{|k|=0}^{\infty} (2|k|+d)^{2q} \langle \partial_{i}u, h_{k} \rangle^{2} \\ &= \sum_{|k|=0}^{\infty} (2|k|+d)^{2q} \langle u, \partial_{i}h_{k} \rangle^{2} \\ &\leq 2^{2q} \sum_{|k|=0}^{\infty} (2|k|+d)^{2(q+\frac{1}{2})} \langle u, h_{k} \rangle^{2} \leq C_{q} \|u\|_{p}^{2}. \end{split}$$

using the recurrence relation

$$h'_{l}(x) = \sqrt{\frac{l}{2}}h_{l-1}(x) - \sqrt{\frac{l+1}{2}}h_{l+1}(x).$$

The Monotonicity Condition

What keeps things within one space

Theorem

$$2 \langle L(u-v), u-v \rangle_{p} + \|Au - Av\|_{HS(p)}^{2} \leq \theta \|u-v\|_{p}^{2},$$

holds true for $r \ge p + 1$, $u, v \in S_r$.

Equation Coefficients are Differential Operators

Operators

$$A(u)(h) = -\sum_{i=1}^{d} (\partial_{i}u)h_{i} \quad (A = -\nabla)$$

$$L(u) = \frac{1}{2}\sum_{i=1}^{d} \partial_{i}^{2}u \quad (L = \frac{1}{2}\triangle)$$

 $u \in \mathcal{S}'$, $h \in \mathbb{R}^d$, satisfy our conditions with $q \ge p + 1$.

The unique solution of

$$\begin{cases} dX_t = \frac{1}{2} \triangle X_t dt - \nabla X_t dB_t \\ X_0 = \phi \in \mathcal{S}_{-p} \end{cases}$$

is $\phi(\cdot + B_t)$. If $\phi = \delta_0$, then $X_t = \delta_{B_t}$.

Monotonicity holds true for more general differential operators

Equation Coefficients are Differential Operators

Operators

$$A(u)(h) = -\sum_{i=1}^{d} (\partial_{i}u)h_{i} \quad (A = -\nabla)$$

$$L(u) = \frac{1}{2}\sum_{i=1}^{d} \partial_{i}^{2}u \quad (L = \frac{1}{2}\triangle)$$

 $u \in \mathcal{S}'$, $h \in \mathbb{R}^d$, satisfy our conditions with $q \ge p + 1$.

The unique solution of

$$\begin{cases} dX_t = \frac{1}{2} \triangle X_t dt - \nabla X_t dB_t \\ X_0 = \phi \in \mathcal{S}_{-p} \end{cases}$$

is $\phi(\cdot + B_t)$. If $\phi = \delta_0$, then $X_t = \delta_{B_t}$.

Monotonicity holds true for more general differential operators

Equation Coefficients are Differential Operators

Operators

$$A(u)(h) = -\sum_{i=1}^{d} (\partial_i u) h_i \quad (A = -\nabla)$$

$$L(u) = \frac{1}{2} \sum_{i=1}^{d} \partial_i^2 u \quad (L = \frac{1}{2} \triangle)$$

 $u \in \mathcal{S}'$, $h \in \mathbb{R}^d$, satisfy our conditions with $q \ge p + 1$.

The unique solution of

$$\begin{cases} dX_t = \frac{1}{2} \triangle X_t dt - \nabla X_t dB_t \\ X_0 = \phi \in \mathcal{S}_{-p} \end{cases}$$

is $\phi(\cdot + B_t)$. If $\phi = \delta_0$, then $X_t = \delta_{B_t}$.

Monotonicity holds true for more general differential operators

Variational Method

On a tripple $V \hookrightarrow H \hookrightarrow V'$

This set–up arises in the study of SPDE's. Typical example is $H = L^2(\mathcal{O})$, $V = W^{1,2}$ –Sobolev space

 Together with other regularity assumptions, the following coercivity condition is imposed

$$2\langle Lu, u \rangle + \|Au\|_{HS(H)}^2 \le -\delta \|u\|_V^2 + \eta \|u\|_H^2$$

• This condition is violated in our case of differential operators! Let $X = S_{\frac{1}{2}}, X' = S_{-\frac{1}{2}}, H = L^2$. Then (X, H, X') is a normal triple with canonical bilinear form given by the L^2 inner product. Then for $\xi \in \mathcal{S} \subset X$

$$2\langle \xi, L\xi \rangle_0 + |A\xi|_{HS(0)}^2 + \delta \|\xi\|_{\frac{1}{2}}^2 = \delta \|\xi\|_{\frac{1}{2}}^2$$

which cannot be dominated by using the L^2 norm. Note that the equality $2\langle \xi, L\xi \rangle_0 = -|A\xi|^2_{HS(0)}$ follows from integration by parts.

Variational Method

On a tripple $V \hookrightarrow H \hookrightarrow V'$

This set–up arises in the study of SPDE's. Typical example is $H = L^2(\mathcal{O})$, $V = W^{1,2}$ –Sobolev space

 Together with other regularity assumptions, the following coercivity condition is imposed

$$2 \langle Lu, u \rangle + \|Au\|_{HS(H)}^2 \leq -\delta \|u\|_V^2 + \eta \|u\|_H^2$$

• This condition is violated in our case of differential operators! Let $X = S_{\frac{1}{2}}, X' = S_{-\frac{1}{2}}, H = L^2$. Then (X, H, X') is a normal triple with canonical bilinear form given by the L^2 inner product. Then for $\xi \in \mathcal{S} \subset X$,

$$2\langle \xi, L\xi \rangle_0 + |A\xi|_{HS(0)}^2 + \delta \|\xi\|_{\frac{1}{2}}^2 = \delta \|\xi\|_{\frac{1}{2}}^2$$

which cannot be dominated by using the L^2 norm. Note that the equality $2\langle \xi, L\xi \rangle_0 = -|A\xi|^2_{HS(0)}$ follows from integration by parts.

Existence of Weak Variational Solutions

Theorem

Let $V \hookrightarrow H \hookrightarrow V^*$ be a Gelfand triplet (Unbounded Operator)with compact inclusions. Let the coefficients A, B of Equation

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

satisfy conditions [JC], [G-A], [G-B], and [C]. Let the initial condition ξ_0 be an H–valued random variable satisfying [IC]. Then there exists a weak solution X(t) in C([0,T],H), such that

$$E\left(\sup_{0\leq t\leq T}\|X(t)\|_H^2\right)<\infty, \quad and \quad E\int_0^T\|X(t)\|_V^2\,dt<\infty.$$

Conditions

(JC) (Joint Continuity) The mappings are continuous

$$(t,v) \rightarrow A(t,v) \in V^*$$

 $(t,v) \rightarrow B(t,v)QB^*(t,v) \in \mathcal{L}_1(H)$

For some constant $\theta \geq 0$,

(G-A) (Growth on A - (Unbounded Operator))

$$||A(t,v)||_{V^*}^2 \le \theta \left(1 + ||v||_{H}^2\right), \ v \in V.$$

(G-B) (Growth on B)

$$\left\|B(t,v)\right\|_{\mathcal{L}_2(K_0,H)}^2 \leq \theta \left(1+\|v\|_H^2\right), \ v \in V.$$

Coercivity condition on A and B

(C) There exist constants $\alpha > 0$, $\gamma, \lambda \in \mathbb{R}$ such that for $v \in V$,

$$2\langle A(t,v),v\rangle + \|B(t,v)\|_{\mathcal{L}_2(K_O,H)}^2 \leq \lambda \|v\|_H^2 - \alpha \|v\|_V^2 + \gamma.$$

Initial condition

(IC) For some constant c_0 .

$$E\left\{\left\|\xi_{0}\right\|_{H}^{2}\left(\ln\left(3+\left\|\xi_{0}\right\|_{H}^{2}\right)\right)^{2}\right\} < c_{0},$$

Existence for Wiener noise (cPrm - similar)

Result on the existence of a weak solution.

Theorem

Let B_t^n be a standard Brownian motion in \mathbb{R}^n . There exists a weak solution to the following finite dimensional SDE,

$$dX(t) = a(t, X(t))dt + b(t, X(t)) dB_t^n,$$

with an \mathbb{R}^n -valued \mathcal{F}_0 -measurable initial condition ξ_0^n , if $a:[0,\infty]\times\mathbb{R}^n\to\mathbb{R}^n$, $b:[0,\infty]\times\mathbb{R}^n\to\mathbb{R}^n\otimes\mathbb{R}^n$ are continuous and satisfy the following growth condition

$$||b(t,x)||_{\mathcal{L}(\mathbb{R}^n)}^2 \leq K\left(1+||x||_{\mathbb{R}^n}^2\right)$$
$$\langle x,a(t,x)\rangle_{\mathbb{R}^n} \leq K\left(1+||x||_{\mathbb{R}^n}^2\right)$$

for t > 0 and $x \in \mathbb{R}^n$ and some constant K.

Approximation Problem

Lemma

The growth conditions [G-A] and [G-B] assumed for the coefficients A and B imply the following growth conditions on a^n and b^n ,

$$\|a^n(t,x)\|_{\mathbb{R}^n}^2 \le \theta_n \left(1 + \|x\|_{\mathbb{R}^n}^2\right), \ \theta_n \to \infty$$

(Unbounded Operator)

$$\operatorname{tr} \left(\sigma^n(t,x)\right) = \operatorname{tr} \left(b^n(t,x) \left(b^n(t,x)\right)^T\right) \leq \theta \left(1 + \|x\|_{\mathbb{R}^n}^2\right).$$

The coercivity condition [C] implies that for a large enough value of θ ,

$$2\left\langle a^{n}(t,x),x\right\rangle _{\mathbb{R}^{n}}+\operatorname{tr}\left(b^{n}(t,x)\left(b^{n}(t,x)\right)^{T}\right)\leq\theta\left(1+\|x\|_{\mathbb{R}^{n}}^{2}\right).$$

The constant θ_n depends on n, but θ does not.

Tightness in $C([0, T], V^*)$ - similar in $\mathcal{D}([0, T], V^*)$.

Theorem

Let the coefficients A, B of Equation

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

satisfy conditions [JC], [G-A], [G-B], and [C]. Consider the family of measures μ_*^n on $C([0,T],V^*)$, with support in C([0,T],H), defined by

$$\mu_*^n(Y) = \mu^n \left\{ x \in C([0,T],\mathbb{R}^n) : \sum_{i=1}^n x_i(t) \varphi_i \in Y \right\}; \quad Y \subset C([0,T],V^*),$$

where μ^n are distributions of finite dimensional solutions, φ_i , i=1,... is an ONB in H, consisting of elements from V.

If the embedding $H \hookrightarrow V^*$ is compact (H-S in \mathcal{D}). Then the family of measures $\{\mu_n^n\}_{n=1}^{\infty}$ is tight on $C([0,T],V^*)$ ($\mathcal{D}([0,T],V^*)$).

Tightness in $C([0, T], V^*)$ and $\mathcal{D}([0, T], V^*)$

Theorem

(Mitoma: $C([0,T],\mathcal{S}'), \mathcal{D}([0,T],\mathcal{S}')$). Let $V \hookrightarrow H \hookrightarrow V^*$ be Gelfand triplet with Hilbert–Schmidt embeddings. Given $\{\mu_n\}_{n=1}^{\infty}$ Borel probability measures on $C([0,T],V^*)$ ($\mathcal{D}([0,T],V^*)$), s.t.

- ② $\forall \varepsilon \exists M \forall n$

$$\mu_{n}\{f \in C([0, T], V^{*}) : \sup_{t} \|f(t)\|_{H} > M\} < \varepsilon$$

$$(\mu_{n}\{f \in \mathcal{D}([0, T], V^{*}) : \sup_{t} \|f(t)\|_{H} > M\} < \varepsilon)$$

then $\{\mu_n\}_{n=1}^{\infty}$ is tight on $C([0,T],V^*)$ ($\mathcal{D}([0,T],V^*)$).

Thus $\|a^n\|_H \to \infty$ is not a problem as we take one dimensional projections only, but the price is H–S embedding.

This can be improved in $C([0, T], V^*)$.

Coming back from V^* to H

By the Skorokhod theorem, $X_n \to X$ a.s. in $C([0, T], V^*)$. Consider

$$\alpha_H: V^* \to \mathbb{R}, \quad \alpha_H(u) = \sup \{\langle u, v \rangle, \ v \in V, \ \|v\|_H \le 1\}.$$

 $\alpha_H(u) = \|u\|_H$ if $u \in H$, and is lower semicontinuous as a sup of continuous functions. For $u \in V^* \setminus H$, $\alpha_H(u) = +\infty$ Thus, we can extend the norm $\|\cdot\|_H$ to a lower semicontinuous function on V^* .

By the Fatou lemma,

$$\begin{split} \int_{C([0,T],V^*)} \sup_{0 \leq t \leq T} \|x(t)\|_{H}^{2} \mu_{*}(dx) &= E\left(\sup_{0 \leq t \leq T} \|X(t)\|_{H}^{2}\right) \\ &\leq E \liminf_{n \to \infty} \left(\sup_{0 \leq t \leq T} \|X^{n}(t)\|_{H}^{2}\right) \\ &\leq \liminf_{n \to \infty} E\left(\sup_{0 \leq t \leq T} \|X^{n}(t)\|_{H}^{2}\right) \\ &= \liminf_{n \to \infty} \int_{C([0,T],V^*)} \sup_{0 \leq t \leq T} \|x(t)\|_{H}^{2} \mu_{*}^{n}(dx) < C. \end{split}$$

Coming back from H to V

Apply the Itô formula and Coercivity

$$\begin{split} E\|X^{n}(t)\|_{H}^{2} &= E\|\xi_{0}^{n}\|_{H}^{2} + 2E\int_{0}^{t}\langle a^{n}(s,X^{n}(s)),X^{n}(s)\rangle_{\mathbb{R}^{n}}\,ds \\ &+ E\int_{0}^{t}\operatorname{tr}\left(b^{n}(s,X^{n}(s))\left(b^{n}(s,X^{n})\right)^{T}\right)\,ds \\ &\leq E\|\xi_{0}\|_{H}^{2} + \lambda\int_{0}^{t}E\|X^{n}(s)\|_{H}^{2}\,ds - \alpha\int_{0}^{t}E\|X^{n}(s)\|_{V}^{2}\,ds + \gamma. \end{split}$$

Conclude that

$$\sup_n \int_0^T E \|X^n(t)\|_V^2 dt < \infty.$$

Extend the norm $\|\cdot\|_V$ to a lower semicontinuous function on V^*

$$\alpha_{V}(u) = \sup \{\langle u, v \rangle, \ v \in V, \ \|v\|_{V} \leq 1\},$$

since $\alpha_V(u) = \|u\|_V$ if $u \in V$, and for $u \in V^* \setminus V$, $\alpha_V(u) = +\infty$. By the Fatou lemma

$$\int_{C([0,T],V^*)} \int_0^T \|x(t)\|_V^2 dt \, \mu_*(dx) < \infty.$$

Characterization of the limit

$$M_t(x) = x(t) - x(0) - \int_0^t A(s, x(s)) ds,$$

is, in either case (Wiener, cPrm), a martingale. Three steps:

• Proving that M_t is a martingale by evaluating

$$\int (\langle M_t(x) - M_s(x), v \rangle g_s(x)) \ \mu_*(dx) = 0$$

for a bounded function g_s on $C([0, T], V^*)$, which is measurable with respect to the cylindrical σ -field generated by the cylinders with bases over [0, s],

- Finding its increasing process < M >_t
- Using Martingale Representation Theorem

First two steps use uniform integrability. Wiener - usually of $X_n^2(t)$, cPrm - more delicate.

Lions' Theorem (extension of)- *H*–continuous version:

Theorem

Let $X(0) \in L^2(\Omega, H)$, $Y \in L^2([0, T] \times \Omega, V^*)$, $Z \in L^2([0, T] \times \Omega, \mathcal{L}_2(K_Q, H))$ be both progressively measurable. Define a continuous V^* -valued process

$$X(t) = X(0) + \int_0^t Y(s) \, ds + \int_0^t Z(s) \, dW_s, \quad t \in [0, T].$$

If for its dt \otimes P-equivalence class \hat{X} we have $\hat{X} \in L^2([0,T] \times \Omega, V)$, then X is an H-valued continuous \mathcal{F}_t -adapted process,

$$E \sup_{t \in [0,T]} \|X(t)\|_H^2 < \infty$$

Pathwise Uniqueness

Definition

If for any two H-valued weak solutions (X_1, W) and (X_2, W) of Equation

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

defined on the same filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{0 \leq t \leq T}, P)$ and with the same Q-Wiener process W, such that $X_1(0) = X_2(0)$, P-a.s., we have that

$$P(X_1(t) = X_2(t), \ 0 \le t \le T) = 1,$$

then we say that this Equation has pathwise uniqueness property.

The weak monotonicity condition

(WM) There exists $c \in \mathbb{R}$, such that for all $u, v \in V$, $t \in [0, T]$,

$$2\langle u-v, A(t,u)-A(t,v)\rangle + \|B(t,u)-B(t,v)\|_{\mathcal{L}_2(K_0,H)}^2 \leq c\|u-v\|_H^2.$$

Weak monotonicity is crucial in proving uniqueness of weak and strong solutions. In addition, it allows to construct strong solutions in the absence of the compact embedding $V \hookrightarrow H$.

Theorem

Let the conditions [JC], [GB], [C], [IC] hold true and assume the weak monotonicity condition [WM] and

(G-A) (Growth on A)

$$||A(t,v)||_{V^*}^2 \le \theta (1+||v||_V^2), \ v \in V.$$

Then the solution to the variational SDE

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

is pathwise unique.

Proof.

Let X_1 , X_2 be two weak solutions, $Y(t) = X_1(t) - X_2(t)$, and denote its V-valued progressively measurable version by \bar{Y} . Applying the Itô formula and the monotonicity condition [WM] yields

$$\begin{split} e^{-\theta t} \| Y(t) \|_{H}^{2} &= -\theta \int_{0}^{t} e^{-\theta s} \| Y(s) \|_{H}^{2} ds \\ &+ \int_{0}^{t} e^{-\theta s} \Big(2 \left\langle \bar{Y}(s), A(s, X_{1}(s)) - A(s, X_{2}(s)) \right\rangle \\ &+ \| B(s, X_{1}(s)) - B(s, X_{2}(s)) \|_{\mathcal{L}_{2}(K_{Q}, H)}^{2} \Big) ds \\ &+ 2 \int_{0}^{t} e^{-\theta s} \left\langle Y_{s}, \left(B(s, X_{1}(s)) - B(s, X_{2}(s)) \right) dW_{s} \right\rangle_{H} \\ &< M_{t}, \end{split}$$

where M_t is a real–valued continuous local martingale represented by the stochastic integral above. The inequality above also shows that $M_t \ge 0$. Hence by the Doob maximal inequality, $M_t = 0$.

As a consequence of an infinite dimensional version of the result of Yamada and Watanabe we have the following corollary.

Corollary

Under conditions of the Existence Theorem and assuming [WM] (weak monotonicity), the variational SDE

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

has unique strong solution.

Yamada-Watanabe argument does not go through in general for cPrm, but works if \boldsymbol{U} is separable.

41 / 46

Exponential Ultimate Boundedness

Definition

We say that the variational solution of the variational SDE

$$dX(t) = A(t, X(t))dt + B(t, X(t)) dW_t$$

is exponentially ultimately bounded in the mean square sense (m.s.s.), if there exist positive constants c, β , M, such that

$$E \|X^{x}(t)\|_{H}^{2} \le c e^{-\beta t} \|x\|_{H}^{2} + M$$
, for all $x \in H$.

Theorem

The strong solution $\{X^x(t), t \ge 0\}$ of equation

$$\begin{cases} dX(t) = A(X(t)) dt + B(X(t)) dW_t \\ X(0) = x \in H \end{cases}$$

where A and B are in general non–linear mappings, is exponentially ultimately bounded in the m.s.s. if there exists a function $\Psi: H \to \mathbb{R}$ to which Itô's formula can be applied and, in addition, such that

- (1) $c_1 \|x\|_H^2 k_1 \le \Psi(x) \le c_2 \|x\|_H^2 + k_2$, for some positive constants c_1, c_2, k_1, k_2 and for all $x \in H$,
- (2) $\mathcal{L}\Psi(x) \leq -c_3\Psi(x) + k_3$, for some positive constants c_3 , k_3 and for all $x \in V$.

where

$$\mathcal{L}\Psi(u) = \langle \Psi'(u), \textit{A}(u) \rangle + \text{tr}\left(\Psi^{''}(u)\textit{B}(u)\textit{QB}^*(u)\right).$$

If A and B are linear and satisfy coercivity condition, the Lyapunov function can be written explicitly

$$\Psi_0(x) = \int_0^T \int_0^t E \|X_0^x(s)\|_V^2 \, ds \, dt,$$

for *T* large enough.

Our example SPDE,

$$\begin{cases} d_{t}u(t,x) &= \left(\alpha^{2} \frac{\partial^{2} u(t,x)}{\partial x^{2}} + \beta \frac{\partial u(t,x)}{\partial x} + \gamma u(t,x) + g(x)\right) dt \\ &+ \left(\sigma_{1} \frac{\partial u(t,x)}{\partial^{x}} + \sigma_{2} u(t,x)\right) dW_{t}, \end{cases}$$

$$u(0,x) &= \varphi(x) \in L^{2}\left((-\infty,\infty)\right) \cap L^{1}\left((-\infty,+\infty)\right),$$

• If $-2\alpha^2 + \sigma_1^2 < 0$, then the coercivity and weak monotonicity conditions hold true. The growth [G-B] holds and

$$||A(t, v)||_{V^*}^2 \le \theta \left(1 + ||v||_{V}^2\right), \ v \in V.$$

and that there exists a unique strong solution $u^{\varphi}(t)$ in $L^{2}(\Omega, C([0, T], H)) \cap L^{2}(\Omega \times [0, T], V)$. Then we can conclude that the solution is exponentially ultimately bounded in the m.s.s. by reducing the case to a liner equation (dropping g).

L. Gawarecki, V. Mandrekar.

Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations. Springer (2011).

