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Overview

Introduction to the problem of hitting probabilities

Benchmark results in the Gaussian case

Conditions for non-Gaussian random fields

Our results for systems of stochastic heat and wave equations

Handling the critical dimension?
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Probabilistic potential theory

Fundamental problem in probabilistic potential theory

Let U = (U(x), x 2 Rk) be an Rd -valued continuous stochastic process.

Fix I ⇢ Rk , compact with positive Lebesgue measure.

The range of U over I is the random compact set

U(I ) = {U(x), x 2 I}.

Question. For A ⇢ Rd , what are bounds on

P{U(I ) \ A 6= ;}?

Hitting points. Fix z 2 Rd . Is P{9x 2 I : U(x) = z} > 0 ?

Which sets A ⇢ Rd are polar: P{U(I ) \ A 6= ;} = 0 ?

What is the Hausdor↵ dimension of the range of U?

What is the Hausdor↵ dimension of level sets of U?
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The Brownian sheet

First example: the Brownian sheet

Let (W (x), x 2 Rk
+) denote an k-parameter Rd -valued Brownian sheet, that is,

a centered continuous Gaussian random field

W (x) = (W1(x), . . . ,Wd(x))

with covariance

E [Wi (x)Wj(y)] =
kY

`=1

min(x`, y`)�i,j , i , j 2 {1, . . . , d},

where x = (x1, . . . , xk) and y = (y1, . . . , yk).

The case k = 1: Brownian motion B = (B(t), t 2 R+).

The case k > 1: multi-parameter extension of Brownian motion.

A few references: Orey & Pruitt (1973), R. Adler (1978), W. Kendall (1980),
J.B. Walsh (1986), D. & Walsh (1992), Khoshnevisan & Shi (1999)

D. Khoshnevisan, Multiparameter processes, Springer (2002).
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The Brownian sheet

A sample path of the Brownian sheet N = 2, d = 1
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The Brownian sheet

Hitting probabilities for the Brownian sheet

Let (W (x), x 2 Rk
+) denote a k-parameter Rd -valued Brownian sheet.

Theorem 1 (Khoshnevisan and Shi, 1999)

Fix M > 0 and 0 < a` < b` < 1 (` = 1, . . . , k). Let

I = [a1, b1]⇥ · · ·⇥ [ak , bk ] (⇢ Rk).

There exists 0 < C < 1 such that for all compact sets A ⇢ B(0,M) (⇢ Rd),

1
C

Capd�2k(A) 6 P{W (I ) \ A 6= ;} 6 C Capd�2k(A).

(see also results of F. Hirsch and S. Song (1991, 1995).
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Measuring the size of sets

Measuring the size of sets: capacity

Capacity. Cap�(A) denotes the Bessel-Riesz capacity of A:

Cap�(A) =
1

infµ2P(A) E�(µ)
,

E�(µ) =

Z

Rd

Z

Rd

k�(x � y)µ(dx)µ(dy)

and

k�(x) =

8
<

:

kxk�� if 0 < � < d ,
ln( 1

kxk ) if � = 0,

1 if � < 0.

Examples. If A = {z}, then:

Cap�({z}) =
⇢

1 if � < 0,
0 if � > 0.

If A is a subspace of Rd with dimension ` 2 {1, . . . , d � 1}, then:

Cap�(A)

⇢
> 0 if � < `,
= 0 if � > `.
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Measuring the size of sets

Another measure of the size of sets: Hausdor↵ measure

For � > 0, the �-dimensional Hausdor↵ measure of A is defined by

H�(A) = lim
✏!0+

inf

( 1X

i=1

(2ri )
� : A ✓

1[

i=1

B(xi , ri ), sup
i�1

ri 6 ✏

)
.

When � < 0, we define H�(A) to be infinite.

Note. For �1 > �2 > 0,

Cap�1
(A) > 0 ) H�1(A) > 0 ) Cap�2

(A) > 0.

Example. A = {z}

H�({z}) =
8
<

:

1 if � < 0
1 if � = 0
0 if � > 0.

Remark. For � = 0,

Cap0({z}) = 0 < H0({z}) = 1.
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Other Gaussian processes

Anisotropic Gaussian fields (Xiao, 2008)

Let (V (x), x 2 Rk) be a centered continuous Gaussian random field with
values in Rd with i.i.d. components: V (x) = (V1(x), . . . ,Vd(x)). Set

�2(x , y) = E [(V1(x)� V1(y))
2].

Let I be a “rectangle”. Assume the two conditions:
(C1) There exists 0 < c < 1 and H1, . . . ,Hk 2 ]0, 1[ such that for all x 2 I ,

c�1 6 �2(0, x) 6 c,

and for all x , y 2 I ,

c�1
kX

j=1

|xj � yj |2Hj 6 �2(x , y) 6 c
kX

j=1

|xj � yj |2Hj

(Hj is the Hölder exponent for coordinate j).

(C2) There is c > 0 such that for all x , y 2 I ,

Var(V1(y) | V1(x)) > c
kX

j=1

|xj � yj |2Hj .
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Other Gaussian processes

Anisotropic Gaussian fields

Theorem 2 (Biermé, Lacaux & Xiao, 2007)

Fix M > 0. Set

Q =
kX

j=1

1
Hj

.

Assume d > Q. Then there is 0 < C < 1 such that for every compact set
A ⇢ B(0,M),

C�1 Capd�Q(A) 6 P{V (I ) \ A 6= ;} 6 CHd�Q(A).

Special case obtained by D., Khoshnevisan and E. Nualart (2007)

This results tells us what sort of inequality to aim for when we have a
non-Gaussian process and information about its Hölder exponents.

Notice the Hausdor↵ measure appearing on the right-hand side.
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Notice the Hausdor↵ measure appearing on the right-hand side.

Hitting probabilities for systems of stochastic partial di↵erential equations: an overviewRobert C. Dalang 10 / 25



Other Gaussian processes

Anisotropic Gaussian fields
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Notice the Hausdor↵ measure appearing on the right-hand side.

Hitting probabilities for systems of stochastic partial di↵erential equations: an overviewRobert C. Dalang 10 / 25



Other Gaussian processes

Hitting points in the critical dimension

For the Brownian sheet W :

P{W (I ) \ A 6= ;} 6 C Capd�2k(A).

If d = 2k and A = {z} (z 2 Rd), then Cap0(A) = 0, so

P{W (I ) \ A 6= ;} = 0

and therefore, points are polar.

For an anisotropic Gaussian random field V :

P{V (I ) \ A 6= ;} 6 CHd�Q(A).

If d = Q and A = {z} (z 2 Rd), then H0(A) = 1, so polarity of points remains
unclear.

(This issue can be decided on a case-by-case basis for many Gaussian processes.)
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Upper bounds

Polarity of points in dimensions > the critical dimension

Case k = 1, d > 3: let (B(t), t 2 R+) be a standard Brownian motion with
values in R3. Want to explain why it does not hit points.
Explanation. Let tk = 1 + k2�2n. Fix x 2 Rd . Then

P{9t 2 [1, 2] : B(t) = x} = P

0

@
22n[

k=1

{9t 2 [tk�1, tk ] : B(t) = x}
1

A

6
22nX

k=1

P{9t 2 [tk�1, tk ] : B(t) = x}

=
22nX

k=1

⇥
P{kBtk � xk 6 n2�n}+ e(n)

⇤

6
22nX

k=1

h
c(n2�n)d + e(n)

i

= 22n
h
c(n2�n)d + e(n)

i

= cnd2(2�d)n + 22ne(n)

! 0 as n ! +1 (because d > 3).
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Upper bounds

Hitting probabilities for non-Gaussian processes: upper bounds

Let U = {U(t, x), (t, x) 2 R+ ⇥ Rk} be an Rd -valued continuous process.

Theorem 3 (D. & Sanz-Solé: upper bound)

Let D ⇢ Rd . Assume that:
(1) For any x 2 Rk , U(t, x) has a density p(t,x), and

sup
z2D(2)

sup
(t,x)2(I⇥J)(1)

p(t,x)(z)  C

(D(2) is the 2-enlargement of D.)

(2) There exist �1, �2 2 ]0, 1] and a constant C such that, for any q 2 [1,1[,
(t, x), (s, y) 2 (I ⇥ J)(1),

E (kU(t, x)� U(s, y))kq)  C(|t � s|�1 + kx � yk�2)q.
Then for any ⌘ > 0, for every Borel set A ⇢ D,

P {v(I ) \ A 6= ;}  CHd�⌘� 1
�1

� k
�2

(A).

Remarks. (a) Condition (2) is essentially a condition on Hölder continuity.
(b) Condition (1) can often be obtained by using Malliavin calculus.
(c) Note that d � ⌘ appears in the upper bound, but this is otherwise similar to
the result of Biermé, Lacaux and Xiao (2007).
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(b) Condition (1) can often be obtained by using Malliavin calculus.
(c) Note that d � ⌘ appears in the upper bound, but this is otherwise similar to
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Lower bounds

Non-polarity of points in dimensions < the critical dimension

Let (W (x), x 2 Rk
+) be a k-parameter Rd -valued Brownian sheet.

Want to show that for d < 2k, a point z 2 Rd is not polar. Set I = [1, 2]k .

P{9x 2 I : W (x) = z} = lim
"#0

P{W (I ) \ B(z, ") 6= ;}.

Define J" =

Z

I
dx 1B(z,")(W (x)). Then

P{W (I ) \ B(z, ") 6= ;} > P{J" > 0} > (E(J"))2

E(J2")
.

Lower bound on E(J"):

E(J") =

Z

I
dx P{W (x) 2 B(z, ")} >

Z

I
dx "d inf

w2B(z,")
px (w) = c "d .

Upper bound on E(J2"):

E(J2") = E

Z

I
dx 1B(z,")(W (x))

Z

I
dy 1B(z,")(W (y))

�

=

Z

I
dx

Z

I
dy P{W (x) 2 B(z, "), W (y) 2 B(z, ")}.

Need: (1) a lower bound on the probability density function of W (x);
(2) an upper bound on the joint probability density function of (W (x),W (y)).
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dx P{W (x) 2 B(z, ")} >

Z

I
dx "d inf

w2B(z,")
px (w) = c "d .

Upper bound on E(J2"):

E(J2") = E

Z

I
dx 1B(z,")(W (x))

Z

I
dy 1B(z,")(W (y))

�

=

Z

I
dx

Z

I
dy P{W (x) 2 B(z, "), W (y) 2 B(z, ")}.

Need: (1) a lower bound on the probability density function of W (x);
(2) an upper bound on the joint probability density function of (W (x),W (y)).
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Lower bounds
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Lower bounds

Hitting probabilities for non-Gaussian processes: lower bounds

Let U = {U(x), x 2 Rk}, k 2 N⇤, be an Rd -valued continuous process.

Theorem 4 (D. & Sanz-Solé)

Fix N > 0, I ⇢ Rk compact with positive Lebesgue measure, and assume:
(1) The density px of U(x) is continuous, bounded, and positive.
(2) For any x , y 2 I with x 6= y, (U(x),U(y)) has a density px,y w.r.t.
Lebesgue measure in R2d , and there exist �,↵ 2 ]0,1[ such that for any
z1, z2 2 [�N,N]d

px,y (z1, z2) 6 C

kx � yk�
kx � yk↵
kz1 � z2k ^ 1

�p

,

where p > (� � k) 2d↵ _ 2. Then there exists c > 0 such that for all Borel sets

A ⇢ [�N,N]d ,
P{U(I ) \ A 6= ;} � c Cap 1

↵ (��k)(A).

Remark. The r.h.s. in (2) is not of Gaussian type. It is a weaker condition.
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Systems of s.p.d.e.’s

Non-linear systems of stochastic p.d.e.’s

Let L be a partial di↵erential operator (e.g. L = @
@t ��).

Let u(t, x) = (u1(t, x), . . . , ud(t, x)) 2 Rd be the solution of
8
>><

>>:

Lu1(t, x) = b1(u(t, x)) +
Pd

j=1 �1,j(u(t, x))Ẇj(t, x),
...

Lud(t, x) = bd(u(t, x)) +
Pd

j=1 �d,j(u(t, x))Ẇj(t, x),

t 2 ]0,T ], x 2 Rk .

Lipschitz non-linearities: bi , �i,j : Rd ! R, i = 1, . . . , d

Initial conditions: e.g. u(0, x) = u0(x) given.

Ẇj(t, x): Gaussian noise.
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Systems of s.p.d.e.’s

Cases considered

Wave equation, k = 1 (D. & E. Nualart, 2004):

Lui (t, x) =
@2ui

@t2
(t, x)� @2ui

@x2
(t, x)

Heat equation, k = 1 (D., Khoshnevisan & E. Nualart, 2007, 2009)

Lui (t, x) =
@ui

@t
(t, x)� @2ui

@x2
(t, x)

Ẇj (t, x) : space-time white noise

Heat equation, k > 1 (D., Khoshnevisan & E. Nualart, 2013)

Lui (t, x) =
@ui

@t
(t, x)��ui (t, x)

Wave equation, k 2 {1, 2, 3} (D. & Sanz-Solé, Memoirs AMS, 2014?)

Lui (t, x) =
@2ui

@t2
(t, x)��ui (t, x)

Ẇj (t, x): white in time, spatially homogeneous noise (covariance kernel kx � yk��)
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Systems of s.p.d.e.’s

The driving noise

The spatial dimension is k > 1 (x 2 Rk).

k = 1. Usually, Ẇ (t, x) is space-time white noise with values in Rd :

Ẇ (t, x) = (Ẇ1(t, x), . . . , Ẇd(t, x))

with covariance

E [Ẇi (t, x)Ẇj(s, y)] = �(t � s) �(x � y) �ij .

k > 1. Ẇ (t, x) is spatially homogeneous Gaussian noise that is white in time:

Ẇ (t, x) = (Ẇ1(t, x), . . . , Ẇd(t, x))

with covariance of the form

E [Ẇi (t, x)Ẇj(s, y)] = �(t � s) kx � yk�� �ij ,

where 0 < � < k and k · k is the Euclidean norm.
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Prerequisites

Preliminaries to discussing hitting probabilities
Upper bounds

Existence (+ uniq.) of a random field solution (u(t, x)). Walsh (1986), ...

Condition 0 < � < (2 ^ k) is necessary and su�cient.

Moments of increments (Hölder continuity), optimal exponents (!):

ku(s, y)� u(t, x)kLp 6 �(s, y ; t, x)

Typically,
�(s, y ; t, x) = |t � s|H1 + kx � ykH2

Heat equation, k=1: H1 = 1
4 , H2 = 1

2 ; k > 1: H1 < 2��
4 , H2 < 2��

2

Wave equation, k=1: H1 = H2 = 1
2 ; k 2 {1, 2, 3}: H1 = H2 < 2��

2
(D. & Sanz-Solé, MAMS (2009))

existence of a uniformly bounded density. Uses additional smoothness and
uniform ellipticity hypotheses on b and � and Malliavin calculus.

These three properties lead to an upper bound on hitting probabilities, in terms
of Hausdor↵ measure.
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Moments of increments (Hölder continuity), optimal exponents (!):

ku(s, y)� u(t, x)kLp 6 �(s, y ; t, x)

Typically,
�(s, y ; t, x) = |t � s|H1 + kx � ykH2

Heat equation, k=1: H1 = 1
4 , H2 = 1

2 ; k > 1: H1 < 2��
4 , H2 < 2��

2

Wave equation, k=1: H1 = H2 = 1
2 ; k 2 {1, 2, 3}: H1 = H2 < 2��

2
(D. & Sanz-Solé, MAMS (2009))
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Results

Upper bounds on hitting probabilities

moments of increments + uniformly bounded density

lead to the following upper bound on hitting probabilities:

P{u(I ⇥ J) \ A 6= ;} 6 c⌘ Hd�Q�⌘(A) (⌘ > 0)

where Q = 1
H1

+ k
H2
.

Corollary (Polarity of points)

For the systems of stochastic heat and wave equations, points are polar if
d > Q.
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Prerequisites

Preliminaries to discussing hitting probabilities
Lower bounds

Positivity of the density of u(t, x) [available in the literature]

Upper bound on the density of (u(s, y), u(t, x)) (two-point density):

ps,y ;t,x(z1, z2) 6 [�(s, y ; t, x)]��


(�(s, y ; t, x))2

kz1 � z2k2 ^ 1

�p/2d

Typically, � depends on d , and the best result would be with � = d (true
for Gaussian case b ⌘ 0, � ⌘ Id).

These two properties (obtained via Malliavin calculus) lead to a lower bound on
hitting probabilities:

P{u(I ⇥ J) \ A 6= ;} � c Cap��Q(A).

where Q = 1
H1

+ k
H2
. (optimal if � = d)

Corollary (Non-polarity of points)

For the systems of stochastic heat and wave equations, points are not polar if � < Q.
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Results

Results for systems of non-linear equations

Wave equation, k = 1, space-time white noise (D. & E. Nualart, 2004):
� = d , H1 = H2 = 1

2 ,

P{u(I ⇥ J) \ A 6= ;} � c Capd�4(A)

Heat equation, k = 1, space-time white noise (D., Khoshnevisan & E. Nualart,
2007, 2009) � = d + ⌘ (⌘ > 0), H1 = 1

4 , H2 = 1
2 ,

P{u(I ⇥ J) \ A 6= ;} � c⌘ Capd+⌘�6(A)

Heat equation, k > 1, homog. noise � (D., Khoshnevisan & E. Nualart, 2013)
� = d + ⌘ (⌘ > 0), H1 =

2��
4 , H2 =

2��
2 ,

P{u(I ⇥ J) \ A 6= ;} � c⌘ Capd+⌘� 4+2k
2��

(A)

Wave equation, k 2 {1, 2, 3}, homog. noise � (D., Sanz-Solé, MAMS, 2014?)

� = d+ 4d2

2�� + ⌘ (⌘ > 0), H1 = H2 =
2��
2 ,

P{u(I ⇥ J) \ A 6= ;} � c⌘ Cap
d+ 4d2

2�� +⌘� 2+2k
2��

(A)
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4 , H2 =

2��
2 ,

P{u(I ⇥ J) \ A 6= ;} � c⌘ Capd+⌘� 4+2k
2��

(A)

Wave equation, k 2 {1, 2, 3}, homog. noise � (D., Sanz-Solé, MAMS, 2014?)

� = d+ 4d2

2�� + ⌘ (⌘ > 0), H1 = H2 =
2��
2 ,

P{u(I ⇥ J) \ A 6= ;} � c⌘ Cap
d+ 4d2

2�� +⌘� 2+2k
2��

(A)
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The critical case

What about the critical dimension?

The previous results state that points are polar if d > Q, and are not polar if
d < Q, where Q = 1

H1
+ k

H2
. What if Q is an integer and d = Q?

Even in the Gaussian case, there is no general theory (but the answer is known
in various cases).

Mueller & Tribe (2002). Linear stochastic heat equation:

@ui

@t
(t, x)� @2ui

@x2
(t, x) = � Ẇ i (t, x), t > 0, x 2 R,

but only in the case � ⌘ 1: the method does not apply to a deterministic
function � = �(t, x)!

A method of Talagrand (1995, 1998). Based a harmonic representation (of
fractional Brownian motion).

Ongoing project with C. Mueller & Y. Xiao.
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The critical case

A harmonic representation of the solution to the linear stochastic heat
equation in spatial dimension 1

Let W1(d⌧, d⇠) and W2(d⌧, d⇠) be two independent real-valued space-time
white noises. Set

v(t, x) =

Z

R

Z

R
(⇠4 + ⌧2)�1[cos(⇠x)(cos(⌧ t)� e�t⇠2 )� sin(⇠x) sin(⌧ t)] (1)

⇥ (⇠2W1(d⌧, d⇠)� ⌧W2(d⌧, d⇠))

+

Z

R

Z

R
(⇠4 + ⌧2)�1[sin(⇠x)(cos(⌧ t)� e�t⇠2 )� cos(⇠x) sin(⌧ t)]

⇥ (⇠2W2(d⌧, d⇠)� ⌧W1(d⌧, d⇠))

Observations.
(1) v(0, x) = 0 and @v

@t � @2v
@x2

is a space-time white noise.
(2) Such formulas can be obtained for many linear spde’s, and then
Talagrand’s method can be applied.
(3) Solution to non-linear spde’s can be (locally) approximated by
(conditionally) linear spde’s, so we expect to handle the critical dimensions for
many non-linear systems of spde’s.
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