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Overview

@ Introduction to the problem of hitting probabilities
@ Benchmark results in the Gaussian case
°

Conditions for non-Gaussian random fields

Our results for systems of stochastic heat and wave equations

Handling the critical dimension?
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Probabilistic potential theory

Fundamental problem in probabilistic potential theory

Let U = (U(x), x € R¥) be an R%valued continuous stochastic process.
Fix | C R¥, compact with positive Lebesgue measure.

The range of U over | is the random compact set

U(l) = {U(x), x € I}.
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Probabilistic potential theory

Fundamental problem in probabilistic potential theory

Let U = (U(x), x € R¥) be an R%valued continuous stochastic process.
Fix | C R¥, compact with positive Lebesgue measure.

The range of U over | is the random compact set

U(l) = {U(x), x € I}.

Question. For A ¢ RY, what are bounds on

PLU(I) N A % 0}?
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Probabilistic potential theory

Fundamental problem in probabilistic potential theory

Let U = (U(x), x € R¥) be an R%valued continuous stochastic process.
Fix | C R¥, compact with positive Lebesgue measure.

The range of U over | is the random compact set

U(l) = {U(x), x € I}.

Question. For A ¢ RY, what are bounds on

PLU(I) N A % 0}?

Hitting points. Fix z€ RY. Is P{3x € /: U(x) =z} > 07
Which sets A C R are polar: P{U(I)NA# 0} =07
What is the Hausdorff dimension of the range of U?

What is the Hausdorff dimension of level sets of U?
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The Brownian sheet
First example: the Brownian sheet

Let (W(x), x € R%) denote an k-parameter R%-valued Brownian sheet, that is,
a centered continuous Gaussian random field

W(x) = (WA(x),..., Wa(x))

with covariance

E[W(X y)]_HmIn beé(s,h I7J€{177d}7
=1
where x = (x1,...,xk) and y = (y1, ..., Yk)-
The case k = 1: Brownian motion B = (B(t), t € R}).

The case k > 1: multi-parameter extension of Brownian motion.
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The Brownian sheet
First example: the Brownian sheet

Let (W(x), x € R%) denote an k-parameter R%-valued Brownian sheet, that is,
a centered continuous Gaussian random field

W(x) = (Wi(x), ..., Wa(x))
with covariance
E[W(X y)]_HmIn beé(s,h I7J€{177d}7
=1

where x = (x1,...,xk) and y = (y1, ..., Yk)-

The case k = 1: Brownian motion B = (B(t), t € R}).
The case k > 1: multi-parameter extension of Brownian motion.

A few references: Orey & Pruitt (1973), R. Adler (1978), W. Kendall (1980),
J.B. Walsh (1986), D. & Walsh (1992), Khoshnevisan & Shi (1999)

D. Khoshnevisan, Multiparameter processes, Springer (2002).
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The Brownian sheet
A sample path of the Brownian sheet N =2, d =1

I
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The Brownian sheet
Hitting probabilities for the Brownian sheet

Let (W(x), x € R%) denote a k-parameter R%-valued Brownian sheet.

Theorem 1 (Khoshnevisan and Shi, 1999)
Fix M>0and0 < ay < by < oo ((=1,...,k). Let

| = [31,b1] X .- X [ak,bk] (C Rk).
There exists 0 < C < oo such that for all compact sets A C B(0, M) (C RY),

L

C Capy o (A) < P{W(I)N A # 0} < C Capy_5(A).

(see also results of F. Hirsch and S. Song (1991, 1995).
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Measuring the size of sets
Measuring the size of sets: capacity

Capacity. Capg(A) denotes the Bessel-Riesz capacity of A:

1
infuepay E(p)’

&) = [ | [ kolx = yu(aiu(ay)

Capﬁ(A) =

and
Ix|7# ifo<pB<d,
ka(x)={ In(k) ifB=0,
1 if 8 <0.
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Measuring the size of sets
Measuring the size of sets: capacity

Capacity. Capg(A) denotes the Bessel-Riesz capacity of A:

1
infuepay E(p)’

&) = [ | [ kolx = yu(aiu(ay)

Capﬁ(A) =

and
Ix|7# ifo<pB<d,
ka(x)={ In(k) ifB=0,
1 if 8 <0.

Examples. If A= {z}, then:

cons(tzN ={ 5 ¥aZ0
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Measuring the size of sets
Measuring the size of sets: capacity

Capacity. Capg(A) denotes the Bessel-Riesz capacity of A:

1

Capy(A) =
aP,B( ) infyeP(A) gﬁ(ﬂ)’

&) = [ | [ kolx = yu(aiu(ay)

and
Ix|7# ifo<pB<d,
ka(x)={ In(k) ifB=0,
1 if 8 <0.

Examples. If A= {z}, then:

cons(tzN ={ 5 ¥aZ0

If Ais a subspace of R with dimension £ € {1,...,d — 1}, then:

>0 ifB<d,
Capﬁ(A){ =0 iff>L
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Measuring the size of sets

Another measure of the size of sets: Hausdorff measure

For 8 > 0, the B-dimensional Hausdorff measure of A is defined by

Hp(A) = eirg+ inf Z(2r,-)ﬁ tAC U B(xi, ri), sg;l) ri<e
i=1 i=1 =

When 8 < 0, we define Hz(A) to be infinite.
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Measuring the size of sets

Another measure of the size of sets: Hausdorff measure

For 8 > 0, the B-dimensional Hausdorff measure of A is defined by

Hs(A) = lim inf 2r)P A C B(xi,ri), supri < .
S(A) = | I{Z() c UB(x.r). sup }

0t i=1 i=1
When 8 < 0, we define Hz(A) to be infinite.
Note. For 81 > B2 > 0,

Capg, (A) > 0= Hg, (A) > 0= Capg,(A) > 0.
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Measuring the size of sets

Another measure of the size of sets: Hausdorff measure

For 8 > 0, the B-dimensional Hausdorff measure of A is defined by

Hs(A) = lim inf 2r)P A C B(xi,ri), supri < .
S(A) = | I{Z() c UB(x.r). sup }

0t i=1 i=1
When 8 < 0, we define Hz(A) to be infinite.
Note. For 81 > B2 > 0,

Capg, (A) > 0= Hg, (A) > 0= Capg,(A) > 0.

Example. A= {z}

o iff<0
Hs({z})=4q 1 fB=0
0 if 3> 0.
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Measuring the size of sets

Another measure of the size of sets: Hausdorff measure

For 8 > 0, the B-dimensional Hausdorff measure of A is defined by

Hs(A) = lim inf 2r)P A C B(xi,ri), supri < .
S(A) = | I{Z() c UB(x.r). sup }

0t i=1 i=1
When 8 < 0, we define Hz(A) to be infinite.
Note. For 81 > B2 > 0,
Capﬁl(A) >0= Hg(A) >0= CapBZ(A) > 0.

Example. A= {z}

o iff<0
Hs({z})=4q 1 fB=0
0 if 3> 0.

Remark. For § =0,

Capo({z}) = 0 < Ho({z}) = 1.
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Other Gaussian processes

Anisotropic Gaussian fields (Xiao, 2008)

Let (V(x), x € R¥) be a centered continuous Gaussian random field with
values in RY with i.i.d. components: V(x) = (Vi(x),..., Va(x)). Set

o*(x,y) = E[(Va(x) = Va())’].

Let | be a “rectangle”. Assume the two conditions:
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Other Gaussian processes

Anisotropic Gaussian fields (Xiao, 2008)

Let (V(x), x € R¥) be a centered continuous Gaussian random field with
values in RY with i.i.d. components: V(x) = (Vi(x),..., Va(x)). Set

o*(x,y) = E[(Va(x) = Va())’].

Let | be a “rectangle”. Assume the two conditions:
(C1) There exists 0 < ¢ < oo and Hi, ..., Hx €]0,1[ such that for all x € I,

c g 02(07 x)< ¢

and for all x,y €/,
k
—1 2H; 2H
Y =yl <o (xy) < CZIXJ vl
j=1

(H; is the Holder exponent for coordinate j).
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Other Gaussian processes

Anisotropic Gaussian fields (Xiao, 2008)

Let (V(x), x € R¥) be a centered continuous Gaussian random field with
values in RY with i.i.d. components: V(x) = (Vi(x),..., Va(x)). Set

o*(x,y) = E[(Va(x) = Va())’].

Let | be a “rectangle”. Assume the two conditions:
(C1) There exists 0 < ¢ < oo and Hi, ..., Hx €]0,1[ such that for all x € I,

c g 02(07 x)< ¢

and for all x,y €/,
k
—1 2H; 2H
Y =yl <o (xy) < CZIXJ vl
j=1

(H; is the Holder exponent for coordinate j).

(C2) There is ¢ > 0 such that for all x,y €/,

Var(Vi(y) | Vi(x)) > CZ|XJ yil*
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Other Gaussian processes
Anisotropic Gaussian fields

Theorem 2 (Biermé, Lacaux & Xiao, 2007)
Fix M > 0. Set

1
Q:Zﬁj
j=1

Assume d > Q. Then there is 0 < C < oo such that for every compact set
A C B(0, M),

C™' Capy_o(A) < P{V(I)NA # B} < CHa—o(A).
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Other Gaussian processes
Anisotropic Gaussian fields

Theorem 2 (Biermé, Lacaux & Xiao, 2007)
Fix M > 0. Set

il
Q= Z "
Jj=1
Assume d > Q. Then there is 0 < C < oo such that for every compact set
A C B(0, M),
C™' Capy_o(A) < P{V(I)NA # B} < CHa—o(A).

Special case obtained by D., Khoshnevisan and E. Nualart (2007)
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Other Gaussian processes
Anisotropic Gaussian fields

Theorem 2 (Biermé, Lacaux & Xiao, 2007)
Fix M > 0. Set

1
Q:Zﬁj
j=1

Assume d > Q. Then there is 0 < C < oo such that for every compact set
A C B(0, M),

C™' Capy_o(A) < P{V(I)NA # B} < CHa—o(A).

Special case obtained by D., Khoshnevisan and E. Nualart (2007)

This results tells us what sort of inequality to aim for when we have a
non-Gaussian process and information about its Holder exponents.

Notice the Hausdorff measure appearing on the right-hand side.

Hitting probabilities for systems of stochastic partial differential equations: an Robert C. Dalang



Other Gaussian processes

Hitting points in the critical dimension

For the Brownian sheet W:
P{W(I) N A # 0} < C Capy_p(A).
If d = 2k and A = {z} (z € RY), then Capo(A) = 0, so
P{W(NA#0}=0

and therefore, points are polar.
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Other Gaussian processes

Hitting points in the critical dimension

For the Brownian sheet W:
P{W(I) N A # 0} < C Capy_5(A).
If d = 2k and A = {z} (z € RY), then Capo(A) = 0, so
PW(INA#D}=0
and therefore, points are polar.
For an anisotropic Gaussian random field V:
P{V(I)NA# 0} < CHg—q(A).

If d = Q and A = {z} (z € RY), then Ho(A) = 1, so polarity of points remains
unclear.

(This issue can be decided on a case-by-case basis for many Gaussian processes.)
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Upper bounds

Polarity of points in dimensions > the critical dimension

Case k =1, d > 3: let (B(t),t € R}) be a standard Brownian motion with
values in R®. Want to explain why it does not hit points.
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Upper bounds

Polarity of points in dimensions > the critical dimension
3: let (B(t),t € R}) be a standard Brownian motion with

Case k=1,d >
values in R®. Want to explain why it does not hit points

Explanation. Let tx = 1+ k272", Fix x € RY. Then

P{Et€[1,2]: B(t) = x} = P | |J{Bt € [te—1, t] : B(t) = x}

ZP{Et € [tee1, ta] : B(t) = x}
= [P{lIBy = x|l < n27"} + e(n)]

< (n27")? + e(n)
> < e(n)]

g [c(n27”)d + e(n)]
o Cnd2(2—d)n + 22ne(n)
—0 as n — +oo (because d > 3).

Robert C. Dalang
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Upper bounds

Hitting probabilities for non-Gaussian processes: upper bounds
Let U = {U(t,x), (t,x) € Ry x R} be an R%valued continuous process.

Theorem 3 (D. & Sanz-Solé: upper bound)

Let D C RY. Assume that:
(1) For any x € R¥, U(t, x) has a density p;x), and
sup sup pex(2) < C

() 1)
PP B (D@ is the 2-enlargement of D.)
(2) There exist 61,62 € 10,1] and a constant C such that, for any q € [1, o],
(£,%), (s,y) € (1 x ),

E (Ut x) = U(s, y)IIP) < C(I1e = s + lIx = y[12)".
Then for any n > 0, for every Borel set A C D,

51

P{v(l)NA# 0} < C’den 1 %(A)
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Upper bounds

Hitting probabilities for non-Gaussian processes: upper bounds
Let U = {U(t,x), (t,x) € Ry x R} be an R%valued continuous process.

Theorem 3 (D. & Sanz-Solé: upper bound)

Let D C RY. Assume that:
(1) For any x € R¥, U(t, x) has a density p;x), and

sup sup ()pu,x)(Z) £C
D) (t,x)e(Ix )t
PP B (D@ is the 2-enlargement of D.)
(2) There exist 61,62 € 10,1] and a constant C such that, for any q € [1, o],

(t,x),(s,y) € (I x )V,
E(I1U(t,x) = Uls, y)II%) < C(It =™ + x = y[IZ)°.

Then for any n > 0, for every Borel set A C D,

P{v(NNA#0}< CHy_ 1k (A).

51

Remarks. (a) Condition (2) is essentially a condition on Hdlder continuity.

(b) Condition (1) can often be obtained by using Malliavin calculus.

(c) Note that d — 7 appears in the upper bound, but this is otherwise similar to
the result of Biermé, Lacaux and Xiao (2007).
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Lower bounds

Non-polarity of points in dimensions < the critical dimension

Let (W(x), x € RX) be a k-parameter R?-valued Brownian sheet.
Want to show that for d < 2k, a point z € R? is not polar. Set | = [1,2].

P{Ixel: W(x)=2z}= LT?) P{W(I) N B(z,¢€) # 0}.

Define J. = /dx 1g(z,c)(W(x)). Then
I

E(J:))?
P{W(1)N B(z,€) # 0} > P{J- > 0} > %

Hitting probabilities for systems of stochastic partial differential equations: an Robert C. Dalang



Lower bounds

Non-polarity of points in dimensions < the critical dimension

Let (W(x), x € RX) be a k-parameter R?-valued Brownian sheet.
Want to show that for d < 2k, a point z € R? is not polar. Set | = [1,2].

P{Ixel: W(x)=2z}= LT?) P{W(I) N B(z,¢€) # 0}.

Define J. = /dx 1g(z,c)(W(x)). Then
I

E(J:))?
P{W(1)N B(z,€) # 0} > P{J- > 0} > %

Lower bound on E(J:):
E(Je) = /dx P{W(x) € B(z,2)} > /dx e inf pa(w) = ce.
1 i weEB(z,e)

Upper bound on E(J?):
EUR) = £ | [[ a1y (W0) [ o 16 (W)
- /Idx/Idy P{W(x) € B(z,¢), W(y) € B(z,¢)}.
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Lower bounds

Non-polarity of points in dimensions < the critical dimension

Let (W(x), x € RX) be a k-parameter R?-valued Brownian sheet.
Want to show that for d < 2k, a point z € R? is not polar. Set | = [1,2].

P{Ixel: W(x)=2z}= LT?) P{W(I) N B(z,¢€) # 0}.
Define J. = /dx 1g(z,c)(W(x)). Then
I

(E(J))?
E(2)

P{W(I) N B(z,¢) # 0} > P{J: >0} >
Lower bound on E(J:):
E(J)) = /dX P{W(x) € B(z,e)} > /dx e? inf px(w) = cel.
1 i weEB(z,e)

Upper bound on E(J?):
EUR) = £ | [[ a1y (W0) [ o 16 (W)
- /Idx/Idy P{W(x) € B(z,¢), W(y) € B(z,¢)}.

Need: (1) a lower bound on the probability density function of W(x);
(2) an upper bound on the joint probability density function of (W/(x), W(y)).
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Lower bounds

Hitting probabilities for non-Gaussian processes: lower bounds

Let U = {U(x), x € R*}, k € N*, be an R%valued continuous process.

Theorem 4 (D. & Sanz-Solé)

Fix N > 0, | C R* compact with positive Lebesgue measure, and assume:
(1) The density px of U(x) is continuous, bounded, and positive.

(2) For any x,y € | with x # y, (U(x), U(y)) has a density py,, w.r.t.
Lebesgue measure in R*?, and there exist v, € ]0, 0o such that for any
z1,22 € [—N, N]d

C lx—yl® .17
px,y(z1,22) < [ AL|
A2 2) S TR = 2]

where p > (v — k)% V 2. Then there exists ¢ > 0 such that for all Borel sets
AC[-N,N]9,
P{U(INNA#D} > c Capi(, 4(A).

Remark. The r.h.s. in (2) is not of Gaussian type. It is a weaker condition.

Hitting probabilities for systems of stochastic partial differential equations: an Robert C. Dalang



Systems of s.p.d.e.’s

Non-linear systems of stochastic p.d.e.’'s

Let L be a partial differential operator (e.g. L = 2 — A).

Let u(t,x) = (u*(t,x), ..., u’(t,x)) € R? be the solution of
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Systems of s.p.d.e.’s

Non-linear systems of stochastic p.d.e.’'s

Let L be a partial differential operator (e.g. L = 2 — A).

Let u(t,x) = (u*(t,x), ..., u’(t,x)) € R? be the solution of

Lu'(t,x) = b (u(t, X)) + 37 ony(u(e ) Wi(t, x),

Luf(tx) = b%(u(t,%) + S5l oai(u(t, X)) Wi(t, x),

telo, T], xeR~
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Systems of s.p.d.e.’s

Non-linear systems of stochastic p.d.e.’'s

Let L be a partial differential operator (e.g. L = 2 — A).

Let u(t,x) = (u*(t,x), ..., u’(t,x)) € R? be the solution of

Lu'(t,x) = b (u(t, X)) + 37 ony(u(e ) Wi(t, x),

Luf(tx) = b%(u(t,%) + S5l oai(u(t, X)) Wi(t, x),

telo, T], xeR~

Lipschitz non-linearities: b', oij: RY — R, i=1,...,d
Initial conditions: e.g. u(0,x) = wo(x) given.

W;(t, x): Gaussian noise.
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Systems of s.p.d.e.’s
Cases considered

Wave equation, k =1 (D. & E. Nualart, 2004):

&u &u

Lu'(t,x) = S (6X) = 55 (tx)
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Systems of s.p.d.e.’s
Cases considered

Wave equation, k =1 (D. & E. Nualart, 2004):
. ul 2 i
Lu (t,X): W(t,x)—ﬁ(t,x)

Heat equation, k = 1 (D., Khoshnevisan & E. Nualart, 2007, 2009)

o' &u'

Lu'(t,x) = E(t,x) — W(t,x)

W;(t, x) : space-time white noise

Robert C. Dalang
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Systems of s.p.d.e.’s
Cases considered

Wave equation, k =1 (D. & E. Nualart, 2004):

%’ o'
g ()~ gz ()

Lu'(t,x) =

Heat equation, k = 1 (D., Khoshnevisan & E. Nualart, 2007, 2009)

i 8Ui 62Ui
Lu'(t, x) = E(ta x) — W(t’ x)

W;(t, x) : space-time white noise

Heat equation, k > 1 (D., Khoshnevisan & E. Nualart, 2013)

Lu(t,x) = 24

o (t,x) — Au'(t,x)
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Systems of s.p.d.e.’s
Cases considered

Wave equation, k =1 (D. & E. Nualart, 2004):

82ui 2ui
g ()~ gz ()

Lu'(t,x) =

Heat equation, k = 1 (D., Khoshnevisan & E. Nualart, 2007, 2009)

i 8Ui 62Ui
Lu'(t, x) = E(ta x) — W(t’ x)

W;(t, x) : space-time white noise
Heat equation, k > 1 (D., Khoshnevisan & E. Nualart, 2013)

i

Lu'(t,x) = %L: (t,x) — Au'(t,x)

Wave equation, k € {1,2,3} (D. & Sanz-Solé, Memoirs AMS, 20147)
Lu'(t,x) = %—t‘;(t, x) — Ad'(t, x)

W(t, x): white in time, spatially homogeneous noise (covariance kernel ||x — y||=#)

Hitting probabilities for systems of stochastic partial differential equations: an

Robert C. Dalang



Systems of s.p.d.e.’s

The driving noise

The spatial dimension is k > 1 (x € R¥).

k = 1. Usually, W(t, x) is space-time white noise with values in RY:
W(t,x) = (Wi(t, x), ..., Wa(t,x))

with covariance

E [Wi(t, x)Wj(s, )] = 6(t — 5) 6(x — y) &j.
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Systems of s.p.d.e.’s

The driving noise

The spatial dimension is k > 1 (x € R¥).
k = 1. Usually, W(t, x) is space-time white noise with values in RY:

W(t,x) = (WA(t,x),..., Wa(t,x))
with covariance

E [Wi(t, x)Wj(s, )] = 6(t — 5) 6(x — y) &j.

k> 1. W(t,x) is spatially homogeneous Gaussian noise that is white in time:

W(t,x) = (Wi(t,x), ..., Wa(t,x))
with covariance of the form

E [Wi(t, x)Wj(s, )] = 6(t —s) lIx — y|I " 6,

where 0 < 3 < k and || - || is the Euclidean norm.
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Prerequisites

Preliminaries to discussing hitting probabilities
Upper bounds

o Existence (+ uniq.) of a random field solution (u(t, x)). Walsh (1986), ...
Condition 0 < 8 < (2 A k) is necessary and sufficient.
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Prerequisites

Preliminaries to discussing hitting probabilities
Upper bounds

o Existence (+ uniq.) of a random field solution (u(t, x)). Walsh (1986), ...
Condition 0 < 8 < (2 A k) is necessary and sufficient.

@ Moments of increments (Holder continuity), optimal exponents (!):

l[u(s,y) — u(t, x| < A(s,y: t,x)

Typically,
A(s,yit,x) = [t — s + x = y||™

v
kS

Heat equation, k=1: H; = %, Hy %; k>1: H < ﬂ, H, < =52

E

Wave equation, k=1: H; = H, = %; ke{1,2,3}: HH=Hx < 27
(D. & Sanz-Solé, MAMS (2009))
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Prerequisites

Preliminaries to discussing hitting probabilities
Upper bounds

o Existence (+ uniq.) of a random field solution (u(t, x)). Walsh (1986), ...
Condition 0 < 8 < (2 A k) is necessary and sufficient.

@ Moments of increments (Holder continuity), optimal exponents (!):

l[u(s,y) — u(t, x| < A(s,y: t,x)

Typically,
A(s,yit,x) = [t — s + x = y||™

v
kS

Heat equation, k=1: H; = %, Hy

%; k}l:Hl<ﬂ,H2<7

E

Wave equation, k=1: H; = H, = %; ke{1,2,3}: HH=Hx < 27
(D. & Sanz-Solé, MAMS (2009))

@ existence of a uniformly bounded density. Uses additional smoothness and
uniform ellipticity hypotheses on b and o and Malliavin calculus.
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Prerequisites

Preliminaries to discussing hitting probabilities
Upper bounds

o Existence (+ uniq.) of a random field solution (u(t, x)). Walsh (1986), ...
Condition 0 < 8 < (2 A k) is necessary and sufficient.

@ Moments of increments (Holder continuity), optimal exponents (!):

l[u(s,y) — u(t, x| < A(s,y: t,x)

Typically,
A(s,yit,x) = [t — s + x = y||™

v
kS

Heat equation, k=1: H; = %, Hy %; k>1: H < ﬂ, H, < =52

E

Wave equation, k=1: H; = H, = %; ke{1,2,3}: HH=Hx < 27
(D. & Sanz-Solé, MAMS (2009))

@ existence of a uniformly bounded density. Uses additional smoothness and
uniform ellipticity hypotheses on b and o and Malliavin calculus.

These three properties lead to an upper bound on hitting probabilities, in terms
of Hausdorff measure.
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Results
Upper bounds on hitting probabilities

moments of increments + uniformly bounded density
lead to the following upper bound on hitting probabilities:
P{u(l x )N A# 0} < ¢y Ha—g—n(A) (n>0)

where Q:Hil—i—l_,%.
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Results
Upper bounds on hitting probabilities

moments of increments + uniformly bounded density
lead to the following upper bound on hitting probabilities:
P{u(l x )N A# 0} < ¢y Ha—g—n(A) (n>0)

where Q:Hil—i—l_,%.

Corollary (Polarity of points)

For the systems of stochastic heat and wave equations, points are polar if
d> Q.
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Prerequisites

Preliminaries to discussing hitting probabilities
Lower bounds

@ Positivity of the density of u(t, x) [available in the literature]
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Prerequisites

Preliminaries to discussing hitting probabilities
Lower bounds

@ Positivity of the density of u(t, x) [available in the literature]

@ Upper bound on the density of (u(s,y), u(t, x)) (two-point density):

(As,yi 1, %) 17

Al
|21 = 22

ps,y;t,x(zl, 22) < [A(S,y, ta X)]*"/

Typically, v depends on d, and the best result would be with v = d (true
for Gaussian case b =0, o = Id).
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Prerequisites

Preliminaries to discussing hitting probabilities

Lower bounds

@ Positivity of the density of u(t, x) [available in the literature]
@ Upper bound on the density of (u(s,y), u(t, x)) (two-point density):

(As,yi 1, %) 17

itx ) < A ) vt7 - /\1
Ps.yitx(21,22) < [A(s, y; t,X)] 1 — 2|12

Typically, v depends on d, and the best result would be with v = d (true
for Gaussian case b =0, o = Id).

These two properties (obtained via Malliavin calculus) lead to a lower bound on
hitting probabilities:

P{u(l x J)MA# 0} > c Cap,,_o(A).
where Q = H% + HLZ (optimal if v = d)

Corollary (Non-polarity of points)

For the systems of stochastic heat and wave equations, points are not polar if v < Q.
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Results
Results for systems of non-linear equations

Wave equation, k = 1, space-time white noise (D. & E. Nualart, 2004):
vy=d, Hi=H, =1

21

P{u(l x J)yNMA# 0} > c Cap,_,(A)
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Results
Results for systems of non-linear equations

Wave equation, k = 1, space-time white noise (D. & E. Nualart, 2004):
y=d Hi=H, =1,

P{u(l x J)yNMA# 0} > c Cap,_,(A)

Heat equation, k = 1, space-time white noise (D., Khoshnevisan & E. Nualart,
2007, 2009) y=d+n(n>0), Hi=3% H =

21

P{u(l x )NA# 0} > ¢y Capy,,_6(A)
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Results
Results for systems of non-linear equations

Wave equation, k = 1, space-time white noise (D. & E. Nualart, 2004):

y=d Hi=H, =1,
P{u(l x J)yNMA# 0} > c Cap,_,(A)

Heat equation, k = 1, space-time white noise (D., Khoshnevisan & E. Nualart,

2007, 2009) y=d+n(n>0), Hi=3% H =

21

P{u(l x )NA# 0} > ¢y Capy,,_6(A)

Heat equation, k > 1, homog. noise 8 (D., Khoshnevisan & E. Nualart, 2013)
v=d+n(n>0), H =27 H =55,

P{u(I x )NA#D} > ¢, Capd+n7%(A)
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Results
Results for systems of non-linear equations

Wave equation, k = 1, space-time white noise (D. & E. Nualart, 2004):

y=d Hi=H, =1,
P{u(l x J)yNMA# 0} > c Cap,_,(A)

Heat equation, k = 1, space-time white noise (D., Khoshnevisan & E. Nualart,

2007, 2009) y=d+n(n>0), Hi=3% H =

21

P{u(l x )NA# 0} > ¢y Capy,,_6(A)

Heat equation, k > 1, homog. noise 8 (D., Khoshnevisan & E. Nualart, 2013)
v=d+n(n>0), H =27 H =55,

P{u(I x )NA#D} > ¢, Capd+n7%(A)

Wave equation, k € {1,2,3}, homog. noise 3 (D., Sanz-Solé, MAMS, 20147)
2
v=d+3%5 +n(n>0), Hi=H =52,

P{u(l x )NA# 0} > ¢y Cader% 2126 (A)

3tn—5-3
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The critical case

What about the critical dimension?

The previous results state that points are polar if d > Q, and are not polar if
d < Q, where Q = H% + HLZ What if Q is an integer and d = Q7?

Even in the Gaussian case, there is no general theory (but the answer is known
in various cases).
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The critical case

What about the critical dimension?

The previous results state that points are polar if d > Q, and are not polar if
d < Q, where Q = H% + HLZ What if Q is an integer and d = Q7?

Even in the Gaussian case, there is no general theory (but the answer is known
in various cases).

Mueller & Tribe (2002). Linear stochastic heat equation:
o' &y -
E(t7x)—W(t,x)_aW(t,x), t>0, x€eR,

but only in the case 0 = 1: the method does not apply to a deterministic
function o = o(t, x)!
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The critical case

What about the critical dimension?

The previous results state that points are polar if d > Q, and are not polar if
d < Q, where Q = H% + H% What if Q is an integer and d = Q7?

Even in the Gaussian case, there is no general theory (but the answer is known
in various cases).
Mueller & Tribe (2002). Linear stochastic heat equation:

ou' 9%’ -

—(t,x) — =—(t,x) = o W'(t, x), t>0, x €R,

L (60) — S5 (6x) =0 W(e, %)
but only in the case 0 = 1: the method does not apply to a deterministic
function o = o(t, x)!

A method of Talagrand (1995, 1998). Based a harmonic representation (of
fractional Brownian motion).

Ongoing project with C. Mueller & Y. Xiao.
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The critical case

A harmonic representation of the solution to the linear stochastic heat

equation in spatial dimension 1

Let WA(dT,d€) and Wh(dT, d€) be two independent real-valued space-time
white noises. Set

v(t,x) :/R/R(g“+72)*1[cos(gx)(cos(rt) — e~*") —sin(gx) sin(rt)] (1)
x (£2Wa(dT, d€) — TWa(dT, dE))
/ / (&% + 72)~Lfsin(€x)(cos(rt) — e~*€") — cos(€x) sin(rt)]
x (E2Wh(dT, d&) — W4 (dT, d€))
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The critical case

A harmonic representation of the solution to the linear stochastic heat

equation in spatial dimension 1

Let WA(dT,d€) and Wh(dT, d€) be two independent real-valued space-time
white noises. Set

v(t,x) :/R/R(g“+72)*1[cos(gx)(cos(rt) — e~*") —sin(gx) sin(rt)] (1)
x (£2Wa(dT, d€) — TWa(dT, dE))
/ / (&% + 72)~Lfsin(€x)(cos(rt) — e~*€") — cos(€x) sin(rt)]
x (E2Wh(dT, d&) — W4 (dT, d€))

Observations. ,

(1) v(0,x) =0 and ¥ — gxg is a space-time white noise.

(2) Such formulas can be obtained for many linear spde’s, and then
Talagrand’s method can be applied.

(3) Solution to non-linear spde’s can be (locally) approximated by
(conditionally) linear spde’s, so we expect to handle the critical dimensions for

many non-linear systems of spde's.
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