Fractional PDEs and Integral Equations
Defined by Convolution with the Lévy Measure:
Multi-Scaling Diffusions and fBms

David Benson
Colorado School of Mines

Mark M. Meerschaert
Michigan State University

Yong Zhang
University of Alabama

Rina Schumer
Desert Research Institute
Supported by NSF grants DMS-0417869, EAR-9980489, DMS-0139943, DMS-0417972,

DMS-0539176, EAR-0749035, DMS-1025486, DMS-0803360, EAR-0823965,
USDOE BES grant DE-FG0207ER15841, NIH grant RO1-EB01207901

COLORADO MINES
EARTH ¢ ENERGY @ ENVIRONMENT O Of 38



Our esteemed organizer just minutes before his
forced introduction to ‘“fractional calculus.”
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Some of the original members of the ~ 2001 NSF-sponsored
“Fractional Calculus Project.”
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Outline

e An unabridged history of the science of contaminant
hydrology (5 min.)

e Anomalous diffusion, limit theorems, and multi-
dimensional fractional differential operators

e Inverses and (matrix) operator-scaling fractional
Brownian motion (os-fBm)
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Ideal Plume Behavior

Conservation of mass and an assumption of additive advective and
Fickian (Fourier) diffusive flux gives

a@—f =V .- (—vC+ DVQC)

for concentration C(z,t) with variable parameter fields of velocity
v(x) and diffusion strength D(x).

e ~ Gaussian Green function - restatement of Central Limit Theorem
e Solute “particles” experience all possible velocities

e Hydrologists love to measure and model v(x)

e Dispersion: velocity perturbations sort of a “black box”
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Classical ADE profile
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Gaussian density Green function with *variance” that grows linear
with time, and tails that drop off like e—%".
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Aquifer material-One of Nature’s extreme laboratories

\ y 2 IR

Highly (long-range) autocorrelated,
very high variance (VAR(In(K) > 20),
and ...
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Fractal (scale invariant)

Zoom in on any part: looks statistically similar to larger picture.
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Spatial (dimensional)
averaging:

In any small time step A¢, the
change in well concentration is
due to upstream contributions

Non-local
upscaled
transport Eq.
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Real Plumes (MADE site)
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Follows a space-time nonlocal model at the largest scale.
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Power-law leading edge

The Lévy motion’s a-stable density C(z,t) with o« = 1.1 gives a
good fit. The Brownian motion's ADE badly underestimates tail
concentrations.
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Tracer plume has heavy power law tails and spreads like tl/o et
the cat out of the bag:
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Spreads Faster than Diffusive...

but slower than ballistic (constant velocity).
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AND different rates in different directions.
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Rather than guess at governing equations, look at
the limit distributions

For “isotropically scaling” Markovian random walks, take a standard
heavy-tailed jump R, with P(R > r) ~r~1so that P(RY/® > r) ~ r—.
Then take independent unit vectors 6 with measure on the unit
sphere m(df). The random walk converges to Lévy motion Z(t)

t/dt] t/dt]
SN X, =Y RYY.0, = Z()
1=1

1=1

with characterisic function (Fourier transform of density function)

p(k.t) = exp [—t(z’k, v) + Dt / ((ik, 0))*m(d6)

(using FT p(k) = [ e“k:@)p(x)dx)
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From Lévy motion to Fractional Derivatives

The characteristic function of Lévy motion with 0 < a < 2

p(k,t) = exp [—t(z’k, v) + Dt / ((ik, 6))O‘m(d9)]

Solves the Cauchy equation

%’Z’ﬂ — [—(ik,v> + D/((z’k, 0>)O‘m(d9)] p(k,t),

which for now we will call the Fourier inverse transform

8p(awt, D_ . Vp(z,t) + DV p(z,t),
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A Brief Review of Well-Known Cases

p(k,t) = exp |~ t(ik, v) + Dt [ ((ik,0))*m(db)
1-Dimension: 6 = +1, m(+4+1) = p,m(—1) = g, then

p(k,t) = exp [—t(ik)v + Dt(p(ik)* 4+ q(—ik)?)]

D) — ko, 1) + DR + a(—ik) (k. 1
Invert FT:
Op(x,t) 3p(:v,t) D 1—a
R o () BN CE B (G

+q [ (€= )T p(g, Hde)

where convolution with the power law in forward and backward di-
rections define

Op(x,t) Op(x,t)

ot o ox

o~ o
+ D (p@ + q@(—az)a

) p(x,t)
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A Brief Review of Well-Known Cases, cont.

p(k,t) = exp | —t(ik, v) + Dt / ((ik,@))o‘m(de)]
1-Dimension, add symmetry (p =q = 1/2):
p(k,t) = exp [~t(ik)v + Dt(p(ik)* + q(—ik)*)]
p(k,t) = exp [—t(ik)v + Dt cos(ma/2)|k|*]

Op(x,t) _ Op(x,t) 0% (x, t))

—
Olx|

ot ox

+ D cos(ma/2) (

(The Riesz fractional derivative)

Note for x = = — vt the scaling property p(x,ct) = Cll/ap(cfja,t)
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1-D Green Function: Lévy densities

Jx.y)
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A Brief Review of Well-Known Cases, cont.

p(k, 1) = exp [—t(z’k, v) + Dt / ((ik, 9>)O‘m(d9)]

a = 2 (Brownian motion)

p(k,t) = exp

d
—t(ik,v) + Dt/ Z (kj@j)Qm(dQ)]
j=1

p(k,t) = exp [—t(z’k, v) + Dt(ik) A(ik)T }

where A; ; = [0;0;m(d#). This is a Brownian motion with mean drift
vt and covariance matrix 2DtA. Take the time derivative and invert
to get the governing equation for which the pdf of Brownian motion
is Green function:

4
8p(a? )= . Vp(,t) + VDAV p(,1),
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In General (for scalar order o) ...

The characteristic function of isotropically-scaling Lévy (incl. Brow-
nian) motion can be written

p(k,t) = exp[—ty (k)]
Where (k) is the Lévy measure. The motion has Cauchy Eq.

dp(k,t
WEL — y k.0
t
And Inverse transform (propagator)
Op(x, 1) _
o= F T e )lp(, )
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In General (isotropic scaling)...

The Lévy measure ¢(dr,df) is best described by a mixture of di-
rectional fractional derivatives. The first derivative of f(z) in the 0
direction is df (x + s8) /ds = dg(s)/ds and the scalar fractional deriva-
tive is then

1
M(—a)

D — X —l-a — "\
Fo(r) = (s e

A mixture of these according to the measure m(df) gives the (single-
order) multi-dimensional fractional derivative

o' _ 1 * 1«
Vi flx) = F(—a) /|9|:1/O r f(x —r0)dr m(do)

Which is a (radial) convolution with the Lévy measure

Ww(dr,dd) = ar 17m(do) /T (—c)
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Example 2-D Green Function: multi-stable
densities
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Motivation: Transport in Fractured Rock
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Reeves et al., Transport of conservative solutes in simulated fracture networks: 2. Ensemble
solute transport and the correspondence to operator-stable limit distributions, Water Resour.

Res., 2008.
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But I lied. Big jumps can be different in different

directions (i.e. fracture sets).

For “anisotropically scaling” Markovian random walks, take a stan-
dard heavy-tailed jump R, with P(R > r) ~ r—1. Rescale jumps by
growth rate matrix H so the jump size matrix RH has probabilities
that fall off like r—% in the ith eigendirection. Also take independent
unit vectors 6 with measure on the unit sphere m(df). The random
walk converges to operator-scaling Lévy motion Z(t)

[¢/dt] [¢/dt]
S X;= Y RP .0, = z(t)
i=1 i=1
with characteristic function (Fourier transform of density function)

p(k,t) = exp [—t{ik,v) + tk - Ak + Dty (k)]

where the operator-scaling Lévy measure now is primarily defined by
its matrix scale-invariance ¥ (cHk) = (k) (different power laws in
different directions).

OLORADO MINES
ECARTH‘ENERGYO ENVIRONMENT 22 Of 38



A simple example

Let H — [ Lo 1/‘;2 ] and m([1 0]) =m([0 1]) = 0.5, then
Ww(k) = 0.5(ik1)?! 4+ 0.5(2ko )2

Op(x,t) —05(»p 0“1 02
ot ‘ Ox&1 8y042

) p(z,t)

1 1
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oy = 1.6,y = 1.8 (Finite-difference and RW)

COLORADO MINES
EARTH @ ENERGY ¢ ENVIRONMENT 23 Of 38



Example operator-scaling Lévy densities (bottom)
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Schumer et al., Multiscaling fractional advection-dispersion equations and their solutions, Water

Resour. Res., 2003
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But what about the part that hydrologists love to

measure and simulate - v(x)?

Streamlines

Starting location
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Probably can only be done via random walks (see

great paper by Yong Zhang et al.)

PHYSICAL REVIEW E 74, 026706 (2006)

Random walk approximation of fractional-order multiscaling anomalous diffusion

Yong Zhang and David A. Benson
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA

Mark M. Meerschaert
Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA

Eric M. LaBolle
Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA

Hans-Peter Scheffler

Department of Mathematics, University of Siegen, Germany
(Received 30 May 2006; published 22 August 2006; publisher error corrected 25 August 2006)

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous
diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes
and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the
governing equation (also called the multiscaling fractional diffusion equation), based on fractional flux and
fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-
tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing
measure, using a streamline-projection technique. In this and other general cases, the random walk method is
the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the
flexibility, simplicity, and efficiency of the random walk method.

DOI: 10.1103/PhysRevE.74.026706 PACS number(s): 02.60.Cb, 05.40.Fb, 02.60.—x, 05.10.Gg

COLORADO MINES
EARTH ¢ ENERGY @ ENVIRONMENT 26 Of 38



Plume Simulation at the MADE site

Estimation of mixing measure m Particle tracking simulation of os-stable plume
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Zhang, Y., and D.A.Benson, Lagrangian simulation of multidimensional anomalous transport at

the MADE site, Geophys. Res. Lett., 2008.
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The Inverse Operator (Fractional Integration)

If the most general fractional derivative operator (for eigenvalues
0 < o; < 2) can be denoted by the diffusion equation for operator-
scaling Lévy motion

d t
WD _ podpia,n
dt
with FT
dp(k.t
WL — Dyhyph, o),

where 1) is defined only by its scale invariance w(cA_lk) = (1/c)v(k),
then there must be one or more inverse operator defined by ¢(k) =
[v(k)]~1, so that

p(k) = ¢ (k)o(k)p(k)
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Generalized Fractional Integration

Similar to the derivative model, an integral equation may take the
matrix-order form

g(z) = IAf(x) with orders 0 < a; < 2
defined by the convolution g(k) = ¢(k) f(k)

Example: Classical 1-D fractional Brownian motion USES
A=H+1/2,m(+1) =1

Bu(2) = [

T

(z — y)~1/2B(dy)

where B(dy) is white noise. Now ¢(k) = (ik)~H-1/2 = (4k)~4, and
¢(ct/ k) = (1/c)p(k)
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Constructing an isotropic d-dimensional fBm

By (@) = [ [lle -yl =42 — |ly|#=*/2] B(ay) (1)

with B(dy) the increment of a Brownian field (a Wiener process) and

Hurst index 0 < H < 1. Numerically, we start with the (divergent)
convolution

By (@) = [ |lz - yl"~/2B(ay)

(Formally a fractional-order integral)

Bp(z) = ) ¢(z —y)B(Ay)

oy = THAL—d24 ) )3
C(||x|| +1)F(H+1—-d/2) r(H+1-d/2)
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Solve using FFT:
By(z) < FFTYk|~H-9/2B(Ak)

Problem: It's obvious which way is vertical versus horizontal

Solution: Different H in different directions
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Operator-Scaling fBm

Now require different scaling (zooming) in different directions:

B,(Qz) £ HB,(x)

where Q) is a scaling matrix (can also contain rotations). Also require
that Tr(Q) = d. A simple example is Q = diag(q1,q>) and

CQ:[C(M 0 ]
0 (92

Now the only requirement of the convolution function ¢(x) is that

p(Qx) = M= 2(x)
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Example 2-D Convolution Kernel

H, = 0.9; H, = 0.3;m(0) = 0.8; m(x/2) = 0.2
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Effect of weights m(0): Hold scaling H isotropic
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Example: Effect of changing scaling A in one

direction

H, .=04 H,ery=0.7

vert

Hyopiz = 0.7

Plumes mix and slow down when Hiyqnsverse N SmMaller ...
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Conclusions (Future Directions?)
e Particle methods rock!
e Applied mathematicians hate them: nothing to prove!
e Almost always a Langevin equation to your goofy fractional PDE.

e Hydrologists need easy-to-use plug-and-play fractional simulator.
Nothing else will do.
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