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The standard models for the description of anomalous subdiffusive transport

of particles are linear fractional equations. The question arises as to how

to extend these equations for the nonlinear case involving particles

interactions. The talk will be concerned with the structural instability of

fractional subdiffusive equations and nonlinear aggregation phenomenon.
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Anomalous subdiffusion: < X
2(t) >∼ t

µ 0 < µ < 1

Biology contains a wealth of subdiffusive phenomena:
• Transport of proteins and lipids on cell membranes (Saxton, Kusumi)

• Transport of signaling molecules in a neuron with spiny dendrites

.

Apart from fractional Brownian motion, the linear fractional equations are
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Anomalous subdiffusion: < X
2(t) >∼ t

µ 0 < µ < 1

• Subdiffusion is due to trapping inside dendritic spines

.

Non-Markovian behavior of particles performing random walk occurs when
particles are trapped during the random time with non-exponential
distribution.
Power law waiting time distribution

φ (t) ∼
1

t1+µ

with 0 < µ < 1 as t → ∞.
The mean waiting time is infinite.
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Subdiffusive Fractional Fokker-Planck (FFP) Equation

Let p(x , t) be the PDF for finding the particle in the interval (x , x + dx)
at time t, then

∂p

∂t
= −

∂
(

vµ(x)D
1−µ
t p

)

∂x
+
∂2

(

Dµ(x)D
1−µ
t p

)

∂x2
(1)

with the fractional diffusion Dµ(x) and drift vµ(x); µ < 1.

The Riemann-Liouville derivative D
1−µ
t is defined as

D
1−µ
t p (x , t) =

1

Γ(µ)

∂

∂t

∫

t

0

p (x , u) du

(t − u)1−µ
(2)

The difference between standard Fokker-Planck equation and FFP
equation is the rate of relaxation of

p (x , t) → pst(x)

.
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Fractional Fokker-Planck (FFP) equation

Subdiffusive fractional equations with constant µ in a bounded domain
[0, L] are not structurally stable with respect to the non-homogeneous
variations of parameter µ.

µ(x) = µ+ δν(x) (3)

0 Lx

µ
µ(x)

δν(x)

The space variations of the anomalous exponent lead to a drastic change
in asymptotic behavior of p(x , t) for large t.
S. Fedotov and S. Falconer, Phys. Rev. E, 85, 031132, 2012
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Monte Carlo simulations
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Figure : Long time limit of the solution to the system with µi = 0.5 for all i .
Gibbs-Boltzmann distribution is represented by the line.
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Figure : The parameters are µi = 0.5 for all i except i = 42 for which µ42 = 0.3.
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Anomalous chemotaxis and aggregation

Mean field density:

ρ (x , t) → δ(x − xM) as t → ∞. (4)

It means that all cells aggregate (very slow) into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation (S Fedotov, PRE 83, 021110
(2011)).
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Anomalous chemotaxis and aggregation

Mean field density:

ρ (x , t) → δ(x − xM) as t → ∞. (4)

It means that all cells aggregate (very slow) into a tiny region of space
forming high density system at the point x = xM. This phenomenon can
be referred to as anomalous aggregation (S Fedotov, PRE 83, 021110
(2011)).

Typical nonlinear effects:
1) quorum sensing phenomenon: biophysical processes in microorganisms
depend on the their local population density.
2) cellular adhesion which involves the interaction between neighbouring
cells
3) volume-filling effect which describes the dependence of cell motility on
the availability of space in a crowded environment .
P. Straka and S. Fedotov (2015), Transport equations for subdiffusion with
nonlinear particle interation, J. Theor. Biology 366, 71-83
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Kinetics of morphogen gradient formation

Random morphogen molecules movement. Molecules are produced at the
boundary x = 0 of infinite domain [0,∞) at the given constant rate g and
perform the classical random walk involving the symmetrical random
jumps of length a and the random residence time Tx between jumps.

∂ρ

∂t
= D

∂2ρ

∂x2
− θ(ρ)ρ, (5)

where θ(ρ) is the non-linear degradation rate.
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Self-enhanced degradation and subdiffusion of morphogens

Nonlinear reaction-subdiffusion equation for the mean density of
morphogen molecules:

∂ρ

∂t
= Dµ

∂2

∂x2

[

e−
∫
t

0 θ(ρ)dsD
1−µ
t

[

e
∫
t

0 θ(ρ)dsρ(x , t)
]]

− θ(ρ)ρ, (6)

where θ(ρ) is the ”self-enhanced degradation” rate.

NON-LINEAR CASE: Fedotov, Falconer, Phys. Rev. E (2014)

The degradation rate leads to the natural non-linear tempering of the
subdiffusion and, as a result, to the transition to a seemingly normal
diffusion regime. However, this may lead to a wrong conclusion in analyses
of experimental results on transient subdiffusion that the process is normal
for large times.
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Degradation enhanced diffusion

We find that in the subdiffusive case, a self-enhanced degradation of
morphogen leads directly to a degradation enhanced diffusion.

• The main result is that in the long time limit the gradient profile can be
found from the nonlinear stationary equation for which the diffusion
coefficient is a nonlinear function of the nonlinear reaction rate.

d2

dx2
(Dθ(ρst)ρst) = θ(ρst)ρst . (7)

where the diffusion coefficient Dθ is

Dθ(ρst) =
a2 [θ(ρst)]

1−µ

2τ0µ
. (8)

This unusual form of nonlinear diffusion coefficient is a result of the
interaction between subdiffusion and nonlinearity.

Fedotov, Korabel, Phys. Rev. E (2015)
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Self-organized anomaly (aggregation) of particles

performing nonlinear and non-Markovian random walk

We model the escape rate T as a decreasing function of the density ρ(x , t)

T(τ, ρ) =
µ (τ)

1 + Aρ(x , t)
, (9)

This nonlinear function describes the phenomenon of conspecific
attraction: the rate at which individuals emigrate from the point x is
reduced due to the presence of many conspecifics.

Michigan State University, 17 - 21 October 2016 12 / 20



Self-organized anomaly (aggregation) of particles

performing nonlinear and non-Markovian random walk

We model the escape rate T as a decreasing function of the density ρ(x , t)

T(τ, ρ) =
µ (τ)

1 + Aρ(x , t)
, (9)

This nonlinear function describes the phenomenon of conspecific
attraction: the rate at which individuals emigrate from the point x is
reduced due to the presence of many conspecifics.

The rate parameter µ (τ) is a decreasing function of the residence time
(negative aging):

µ (τ) =
µ0

τ0 + τ
, (10)

where µ0 and τ0 are positive parameters. This particular choice of the rate
parameter µ (τ) has been motivated by non-Markovian crowding: the
longer the living organisms stay in a particular site, the smaller becomes
the escape probability to another site.
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Self-organized anomaly

Let me remind you that self-organized criticality (SOC) is a property of a
dynamical system that has a critical point as an attractor. It displays the
spatio-temporal scale-invariance characteristic of the critical point of a
phase transition, but without the need to tune control parameters to
precise values.
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Self-organized anomaly

Let me remind you that self-organized criticality (SOC) is a property of a
dynamical system that has a critical point as an attractor. It displays the
spatio-temporal scale-invariance characteristic of the critical point of a
phase transition, but without the need to tune control parameters to
precise values.

What about self-organized anomaly ?

Can we set up the dynamical system for which the anomalous regime is
self-organized and arises spontaneously without the need for a heavy tailed
waiting time distribution with an infinite mean time from the inception?

We formulate a nonlinear and non-Markovian continuous time random
walk model. Instead of the waiting time probability density function (PDF)
we use the escape rate T(τ, ρ) that depends on the residence time τ and
the density of particles ρ.. Our intention is to take into account nonlinear
social crowding effects and non-Markovian negative aging.
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Nonlinear Escape Rate

We assume that the probability of escape due to the repulsive forces
during a small time interval ∆t is

α(ρ(x , t))∆t + o(∆t), (11)

where α(ρ) is the transition rate which is an increasing function of the
particles density ρ.
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Nonlinear Escape Rate

We assume that the probability of escape due to the repulsive forces
during a small time interval ∆t is

α(ρ(x , t))∆t + o(∆t), (11)

where α(ρ) is the transition rate which is an increasing function of the
particles density ρ.

The effective transition rate is the sum of two escape rates:

γ(x , τ) + α(ρ(x , t)), (12)

where the anomalous escape rate γ(x , τ) can be written in terms of the
PDF of residence time ψ(x , τ) and the survival probability
Ψ(x , τ) =

∫

∞

t
ψ(x , u)du as follows

γ(x , τ) =
ψ(x , τ)

Ψ(x , τ)
. (13)

Note that α(ρ(x , t)) can be considered as a death rate.
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Nonlinear Subdiffusive Fractional PDE

Nonlinear fractional Fokker-Planck equation

∂ρ

∂t
= −βa2

∂

∂x

[

∂U

∂x

(

e−Φ

τ0µ(x)
D

1−µ(x)
t [eΦρ] + α(ρ)ρ

)]

+ a2
∂2

∂x2

[

e−Φ

2τ0µ(x)
D

1−µ(x)
t [eΦρ] + α(ρ)ρ

]

, (14)

where

Φ (x , t) =

∫

t

0
α (ρ (x , s)) ds. (15)

This equation describes the transition from subdiffusive transport to
asymptotic normal advection-diffusion transport.

At lower values of Φ =
∫

t

0 α(ρ(x , s))ds, the early evolution is the
development of a single peak at the point of the minimum of µ(x).
(anomalous aggregation).
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Nonlinear Fokker-Planck equation

Incorporating the escape rate α (ρ) and the nonlinear tempering factor
e−Φ provide a regularization of anomalous aggregation.
In the long-time limit for sufficiently large Φ the density profile ρ (x , t)
must converge to a stationary solution of a nonlinear Fokker-Planck
equation

∂

∂x

[

2β
∂U

∂x
D (ρst) ρst(x)

]

=
∂2

∂x2
[D (ρst) ρst(x)] , (16)

where D (ρst(x)) is the nonlinear diffusion coefficient defined as

D (ρst(x)) =
a2 [α(ρst(x))]

1−µ(x)

2τ
µ(x)
0

.

S Fedotov, Phys. Rev. E 88, 032104 (2013)
Applications: (1) the problem of morphogen gradient formation, (2)
chemical reactions with subdiffusion;
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Transport in a Two-State System

• Switching between passive diffusion and active intracellular transport
(Bressloff, Newby, 2013);
• Virus trafficking (Brandenburg and Zhuang, 2007; Holcman, 2007).
Transport in crowded cytoplasm involves two states: slow diffusion and
ballistic movement along microtubules;
• Protein search for DNA binding site (Berg et al 1981, Mirny et al.,
2009). Transport involves 3-D diffusion and 1-D diffusion along DNA
• Transport in spiny dendrites(Santamaria, 2006):
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Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.

Michigan State University, 17 - 21 October 2016 19 / 20



Anomalous Transport and Nonlinear Reactions in

Two-State Systems

Two-state Markovian random process: we assume that the transition
probabilities γ1 and γ2 are constants.

Master equations for the mean density of particles in state 1 (mobile),
ρ1(x , t), and the density of particles in state 2 (immobile), ρ2(x , t), are

∂ρ1
∂t

= Lxρ1 − γ1ρ1 + γ2ρ2, (17)

∂ρ2
∂t

= −r2 (ρ2) ρ2 − γ2ρ2 + γ1ρ1, (18)

where the reaction rate r2 (ρ2) depends on the local density of particles ρ2.
Here Lx is the transport operator acting on x-coordinate.
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1
∂t

= Lxρ1 − i1(x , t) + i2(x , t), (19)

∂ρ2
∂t

= −r2 (ρ2) ρ2 − i2(x , t) + i1(x , t), (20)

where the densities i1(x , t) and i2(x , t) describe the exchange flux of
particles:
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Non-Markovian model for the transport and reactions of

particles in two-state systems

Nonlinear Master equations:

∂ρ1
∂t

= Lxρ1 − i1(x , t) + i2(x , t), (19)

∂ρ2
∂t

= −r2 (ρ2) ρ2 − i2(x , t) + i1(x , t), (20)

where the densities i1(x , t) and i2(x , t) describe the exchange flux of
particles:

i1(x , t) =

∫

t

0

∫

R

K1(t − t ′)p(x − z , t − t ′)ρ1(z , t
′)dzdt ′, (21)

i2(x , t) =

∫

t

0
K2(t − t ′)ρ2(x , t

′)e−
∫
t

t′
r2(ρ2(x ,s))dsdt ′, (22)

where Ki (t) is the memory kernel defined as K̃i (s) =
ψ̃i (s)

Ψ̃i (s)
.

Michigan State University, 17 - 21 October 2016 20 / 20



Single integro-differential wave equation for Lévy walk

We solved a long-standing problem of a derivation of the single
integro-differential wave equation for the probability density function of
the position of a classical one-dimensional Lévy walk:

∂2p

∂t2
− v2

∂2p

∂x2
+

∫

t

0

∫

V

K (τ)ϕ(u)

(

∂

∂t
− u

∂

∂x

)

×

p (x − uτ, t − τ) dudτ = 0, (23)

where v is a constant speed of walker, ϕ(u) is the velocity jump density:

ϕ(u) =
1

2
δ (u − v) +

1

2
δ (u + v) (24)

in the velocity space V . The standard memory kernel K (τ) is determined
by its Laplace transform K̂ (s) = ψ̂(s)/Ψ̂(s), where ψ̂(s) and Ψ̂(s) are the
Laplace transforms of the running time density ψ(τ) and the survival
function Ψ(τ).

Michigan State University, 17 - 21 October 2016 21 / 20



MANCHESTER ”ANOMALOUS” TEAM

.
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