Regional Sensing & Actuation of Fractional Order Distributed Parameter Systems

YangQuan Chen, Ph.D., Director, MESA (Mechatronics, Embedded Systems and Automation) LAB
ME/EECS/SNRI/HSRI/UCSolar, School of Engineering, University of California, Merced
E: yqchen@ieee.org; or, yangquan.chen@ucmerced.edu
T: (209)228-4672; O: SE2-273; Lab: CAS Eng 820 (T: 228-4398)

October 21, 2016. Friday. 11am-12noon
A Workshop on Future Directions in Fractional Calculus Research and Applications, MSU, East Lansing, MI.
Thanks

- Mark! Congratulations!
- All invited lecturers! I learned a lot!
- You all for staying.
- Colors on MSU campus!
Two questions

• So what? / Why bother?
• What else I/you/we can do?
So what? / Why bother?

• Three answers
 – Complexity
 – Better than the best
 – xxx
Of what use is fractional calculus?

Fractional calculus can help physical, life and social scientists to understand problems that are otherwise too:

- Big
- Small
- Slow
- Fast
- Remote in time
- Remote in space
- Complex
- Dangerous or unethical

 (the bio- and social-spheres)
 (molecular structure, individuals)
 (macroevolution of species, societies..)
 (photosynthesis, phase transitions)
 (early extinctions, genetics, memory)
 (life at extremes, heterogeneity)
 (human brain, IoBT)
 (infectious agents, cyber fog)
Source:
https://www.flickr.com/photos/atheism_christian_apologetics/11078762214/in/photostream/

10/21/2016
Complex systems, phenomena, behaviors, …

Scale-Free, Heavy-Tailedness, Long Range Dependence, Long Memory …

Fractional order dynamic

Mittag-Leffler Law

Fractional calculus based models
New wisdom equipped with FC

• 道可道，非常道。------世间万物的运行规律是可以被描述的，但它们并非一成不变的。

Non-normal way:

Fractional Calculus!

Heavytailedness

by non-normal

be explained

could

The nature's rule (of complexity)
New wisdom equipped with FC

- 玄之又玄，众妙之门。了解这类对立统一体相互转变的规律，就是通向对世间万物理解的大门。

Non-normal way:

Fractional Calculus!
Heavytailedness

Root of long (algebraic) tail, or inverse power law

\[E_{\alpha,1}(-x^\alpha) \approx \begin{cases} 1-x^\alpha / \Gamma(1+\alpha) & x \to 0^+ \\ x^{-\alpha} / \Gamma(1-\alpha) & x \to \infty \end{cases} \]
New wisdom equipped with FC

• "God is in the detail”

• “The Devil is in the detail”
 – http://en.wikipedia.org/wiki/The_Devil_is_in_the_detail

• "God is in the tail”

• “The Devil is in the tail”
So what? / Why bother?

• Three answers
 – Complexity
 – Better than the best
 – xxx
Better than the best, “more optimal”

More Optimal Image Processing by Fractional Order Differentiation and Fractional Order Partial Differential Equations

Dali Chen, Dingyu Xue, YangQuan Chen

yqchen@ieee.org, ychen53@ucmerced.edu
ME/EECS/SNRI/UCSolar
MESA LAB, School of Engineering,
University of California, Merced, USA

xuedingyu@ise.neu.edu.cn,
chendali@ise.neu.edu.cn
Information Science and Engineering
Northeastern University
Shenyang 110004, P R China
So what? / Why bother?

- Three answers
 - Complexity
 - Better than the best
 - xxx
"Physics is like sex: sure, it may give some practical results, but that's not why we do it."

Richard Feynman
Outline (What else I can do?)

• Motivations
• Why Regional?
• Some recent results
• Future topics
What makes “measurement” so hard?

- For distributed parameter systems (DPS), the system dynamics evolves along time as well as spatial variables, usually governed by partial differential equations (PDEs) and usually it is required to discuss the modeling and control problems in terms of a specified domain.
- Additionally, for sensing and actuation, we also need to consider the cases of effective domains such as point-wise sensing/actuation, zone distributed sensing/actuation, and whole domain distributed sensing/actuation. Additionally, we can also consider sensors/actuator can be movable within the domain of interest.
Measurement – It is no longer as simple and straightforward as before any more!

WWWWWHH issues

- Why measure?
- What to measure?
- Who to measure
- Where to measure?
- When to measure?
- How to measure?
2x2x5x5 = 100 cases

<table>
<thead>
<tr>
<th>Mobile or static?</th>
<th>sensors</th>
<th>actuator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-wise</td>
<td>zone</td>
<td>Point-wise</td>
</tr>
<tr>
<td>Domain distributed</td>
<td>zone</td>
<td>Domain distributed</td>
</tr>
<tr>
<td>filament</td>
<td>Boundary</td>
<td>filament</td>
</tr>
<tr>
<td>Boundary</td>
<td></td>
<td>Boundary</td>
</tr>
</tbody>
</table>
x 2

x2: sensors and actuators are collocated or noncollocated

x 4

x4: communicating (sensor-to-sensor, actuator-to-actuator, sensor-to actuator, actuator-to-sensor).

Note: scanning an array of sensors/actuators is considered as “mobile”!

So, total cases: $2 \times 2 \times 5 \times 5 \times 2 \times 4 = 800$.

(Ph.D.s)
Example-1

For a simple room heater control system, we have

- one static point-wise sensor (thermostat)
- one static zonal actuator (heater).
- In this case, sensor and actuator are placed at different places, also known as "non-collocated".
DPS: distributed parameter systems

Features:

- Domain of interest
- Sensor configuration
- Sensor effective region
- Actuator configuration
- Actuator effective region
- Mobile or static
- Communicating or not
- Collocated or not

MAS-net Project:
Smart Sniffing and Spraying Problem
Sensors and actuators are all mobile

Credit: Drs. YangQuan Chen and Kevin L. Moore, 2002

Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems
WaterWatch?

- Water resources, Gates, flumes
- Weather, climate
- Demand
- Water rights
- Irrigation control
- Irrigators
- Geo-Domain
 - Human
 - Crops
 - Animals etc.
- UAVs
- Ground sensor pods

- Right time
- Right place
- Right amount

Credit: Dr. YangQuan Chen, 2005
Fractional Order Controls

- IO Controller + IO Plant
- FO Controller + IO Plant
- FO Controller + FO Plant
- IO Controller + FO Plant

10/21/2016 Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems
• Process is integer order or fractional order
• Controller is integer order or fractional order

x 4

• Controller is regional or not
• Observer is regional or not

800 \times 16 = 12,800 \text{ cases (PhDs)}
Strategy:
1) Form Voronoi tessellation
2) Move each robot to the mass centroid of its region
3) Spray neutralizing chemical in amount proportional to concentration in region
4 robots sprayers, one contaminant source

9 robots sprayers, two contaminant sources

81 robots sprayers, one contaminant source

4 robots sprayers, two contaminant sources (moving)
4 robots sprayers, one contaminant source, moving obstacle.

Normal potential field.

4 robots sprayers, one contaminant source, moving obstacle.

Fractional order potential field.

Can specify the “degree of danger” of the obstacle in potential field method.
My submission - “Computational” can be put in front of almost every thing

- Computational intelligence
- Computational material
- Computational neuron science
- Computational psychology
- Computational fluid dynamic
- Computational biology
- Computational chemistry
- Computational ecology
- Computational social science
- Computational virology
-
My submission - “Control” can be put after almost every thing

- Speed Control
- Diet Control
- Weight Control
- Emotion Control
- Arm Control
- Microclimate Control
- Machine Control
- Human Gait Control
- Blood-pressure Control
- Aging Control
- Evacuation Control/Traffic Control/Congestion Control
-
So, here comes CPS

Computational Thinking + Control Thinking

=> Cyber Physical Systems

Dr. Chen’s Definition of CPS:
Computational thinking and integration of computation around the physical dynamic systems form the Cyber-Physical Systems (CPS) where sensing, decision, actuation, computation, networking, and physical processes are mixed.
Common attributes of CPS’s

- Computational thinking, not just “computational doing”
- Integration of computation around the physical dynamic systems
- Sensing, decision, actuation, computation, networking, and physical processes are mixed.
- Bigger closed-loop picture
- Mostly infinite-dimensional spatial-temporal complex dynamic systems.
Cyber-Physical Systems

WaterWatch?

- More Real-time Water Management
 - At the right time
 - At the right place
 - With the right amount

Credit: Dr. YangQuan Chen, 2005
Water Treatment Lagoon

- UAS-enabled CPS to create biofuel from waste
- UASs provide accurate remote sensing data

Algal Bloom Tracking & Modeling

Agriculture in 2100s

- when no more synthetic fertilizers available
Outline (What else I can do?)

• Motivations
• Why Regional?
• Some recent results
• Future topics
“Physical”: Distributed Parameter Systems (DPSs)

DPSs are systems where the parameters and the variables depend both on time and the location. They include inputs and outputs which allow the system to communicate and interact with its environment (controls and measurements).

For example:

\[y_t(x, t) = -\triangle y(x, t) + u(x, t) \text{ in } \Omega \times [0, 1] \]

with initial and boundary conditions:

\[y(\eta, t) = 0 \text{ on } \partial \Omega \times [0, 1], \quad y(x, 0) = y_0(x) \in L^2(\Omega), \]

where \(u \) is a control depends on the number and the structure of actuators.

The measurements \(C : L^2(\Omega \times [0, 1]) \rightarrow Z \) is given by \(z(x, t) = Cy(x, t) \) according to the number and the structure of sensors.
Difficulties for classical investigation of CPSs

(1) For DPSs, the system evolves along time as well as spatial variables, usually governed by partial differential equations (PDEs).

(2) For sensors: It is not easy to make enough measurements—neither dangerously enough nor luxuriously enough.

(3) For actuators: It is not easy and not a good idea to control whole system. (waste time and cost consuming)

(4) Moreover, in the case of diffusion systems, in general, not all the states can be reached in the whole domain of interest.
Benefits of regional control and observation

(a) Occurs naturally;

(b) Allow for a reduction in the number of physical actuators/sensors;

(c) Help to reduce the computational requirements;

(d) Great help to study those non-controllable/non-observable system since it interests in knowledge of the states only in a critical sub-region of the system domain;

(e) To improve the degree of controllability/observability of the system only on a sub-region;

……..
Regional controllability

Let Ω be an open bounded subset of \mathbb{R}^n with smooth boundary $\partial \Omega$ and consider the following Riemann-Liouville type time fractional diffusion systems

\[
\begin{cases}
0D_t^{\alpha} z(t) + Az(t) = Bu(t), & t \in [0, b], \quad 0 < \alpha < 1, \\
\lim_{t \to 0^+} t^{1-\alpha} z(t) = z_0 \in L^2(\Omega),
\end{cases}
\]

(1)

\[
z(t) = t^{\alpha-1} K_\alpha(t)z_0 + \int_0^t (t-s)^{\alpha-1} K_\alpha(t-s)Bu(s)ds,
\]

(2)

Let $\omega \subseteq \Omega$ be a given region of positive Lebesgue measure and $z_b \in L^2(\omega)$ (the target function) be a given element. Consider now the restriction map

\[
p_\omega : L^2(\Omega) \to L^2(\omega),
\]

(3)

defined by $p_\omega z = z|_\omega$, is the projection operator on ω.

Definition 1

The system (1) is said to be regionally exactly (approximately) controllable in ω at time b if for any $z_b \in L^2(\omega)$, given $\varepsilon > 0$, there exists a control $u \in U$ such that

\[
p_\omega z(b, u) = z_b \left(\| p_\omega z(b, u) - z_b \| \leq \varepsilon \right).
\]

(4)
Lemma 3.1.1. For any given $f \in L^2(0,b;Z)$, $0 < \alpha < 1$, a function $v \in L^2(0,b;Z)$ is said to be a mild solution of the following system

$$
\begin{cases}
0D_t^\alpha v(t) + Av(t) = f(t), \ t \in [0,b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} v(t) = v_0 \in Z,
\end{cases}
$$

if it satisfies $v(t) = t^{\alpha-1} K_\alpha(t)v_0 + \int_0^t (t-s)^{\alpha-1} K_\alpha(t-s)f(s)ds$, where

$$K_\alpha(t) = \alpha \int_0^\infty \theta \phi_\alpha(\theta) \Phi(t^{\alpha} \theta)d\theta.$$

Here $\{\Phi(t)\}_{t \geq 0}$ is the strongly continuous semigroup generated by operator $-A$, $\phi_\alpha(\theta) = \frac{1}{\alpha} \theta^{-\frac{1}{\alpha}} - \frac{1}{\alpha} \psi_\alpha(\theta^{-\frac{1}{\alpha}})$ and ψ_α is a probability density function defined by

$$\psi_\alpha(\theta) = \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \theta^{-\alpha n-1} \frac{\Gamma(n\alpha+1)}{n!} \sin(n\pi\alpha), \ \theta > 0 \text{ such that}$$

$$\int_0^\infty \psi_\alpha(\theta)d\theta = 1 \text{ and } \int_0^\infty \theta^\nu \phi_\alpha(\theta)d\theta = \frac{\Gamma(1+\nu)}{\Gamma(1+\alpha\nu)}, \ \nu \geq 0.$$

Proof. Omitted.

Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems
Consider the following attainable set $D(t)$ in $L^2(\Omega)$:

$$D(t) = \left\{ d(t, \cdot) \in L^2(\Omega) : d(t, x) = \int_0^t (t - s)^{\alpha - 1} K_\alpha(t - s) Bu(s) ds \right\}$$

and we have

Lemma 2

For any given $b > 0$, the necessary and sufficient condition for the exact (approximate) controllability of the system (1) at time b is that

$$D(b) = L^2(\Omega) \bigg(\text{respectively, } \overline{D(b)} = L^2(\Omega) \bigg),$$

where $D(t)$ ($t > 0$) is a linear manifold and $\overline{D(b)}$ is the closure of $D(b)$.

By Lemma 2, it suffices to suppose that $z_0 = 0$ in the following discussion.
Why regional?

Consider the following example, which is not controllable on the whole domain but regionally controllable on \(\omega \).

\[
\begin{cases}
0 D_t^\alpha z(x, t) - \frac{\partial^2}{\partial x^2} z(x, t) = p[a_1, a_2] u(t) & \text{in } [0, 1] \times [0, b], \\
\lim_{t \to 0^+} l_t^{1-\alpha} z(x, t) = z_0(x) & \text{in } [0, 1], \\
z(0, t) = z(1, t) = 0 & \text{in } [0, b],
\end{cases}
\]

where \(0 < \alpha < 1 \), \(Bu = p[a_1, a_2] u \) and \(0 \leq a_1 \leq a_2 \leq 1 \). Moreover, since \(A = -\frac{\partial^2}{\partial x^2} \), from [Pazy(2012)], we get that \(\lambda_i = i^2 \pi^2 \), \(\xi_i(x) = \sqrt{2} \sin(i \pi x) \) are respectively, the eigenvalue and eigenfunction of \(A \). What’s more, we have

\[
(H^* z)(t) = (b - t)^{\alpha-1} \sum_{i=1}^{\infty} E_{\alpha, \alpha}(-\lambda_i(b - t)\alpha)(z, \xi_i)_{L^2(0,1)} \int_{a_1}^{a_2} \xi_i(x)dx.
\]

By \(\int_{a_1}^{a_2} \xi_i(x)dx = \frac{\sqrt{2}}{i \pi} \sin \frac{i \pi(a_1+a_2)}{2} \sin \frac{i \pi(a_2-a_1)}{2} \), we get that \(\overline{\text{Im}(H)} \neq L^2(\omega) \) when \(a_2 - a_1 \in \mathbb{Q} \). Then the system (5) is not controllable on \([0, 1]\).
Next, we show that there exists a sub-region $\omega \subseteq \Omega$ such that the system can be regionally controllable in ω at time b.

Without loss of generality, let $a_1 = 0$, $a_2 = 1/2$, $z_* = \xi_k, (k = 4j, j = 1, 2, 3, \ldots)$. Based on the argument above, z_* is not reachable on $\Omega = [0, 1]$. However, let $\omega = [1/4, 3/4]$, we see that

$$
(H^* p_\omega^* p_\omega z_*)(t) = \sum_{i \neq 4j} \frac{\sqrt{2} E_{\alpha, \alpha}(-\lambda_i(b-t)^\alpha)}{i\pi(b-t)^{1-\alpha}} \int_{1/4}^{3/4} \xi_i(x) \xi_{4j}(x) dx [1 - \cos(i\pi/2)]
$$

$\neq 0$.

Then z_* can be regionally controllable in $\omega = [1/4, 3/4]$ at time b.
Outline (What else I can do?)

• Motivations
• Why Regional?
• Some recent results
• Future topics
http://perso.univ-perp.fr/aej/index.html

Université de Perpignan

Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems
Professor Abdelhaq El Jai’s works

Why we made this collection of El Jai’s works?

- Professor Abdelhaq EL JAI’s papers on regional analysis of distributed parameter systems (DPS) are truly original and important. It is getting more and more important in this IoT (internet of things) and CPS (cyber-physical systems) age with cloud computing and big data movements. A dedicated conference was organized in his honor in 2014: http://cmacs2014.online.fr/

- My first reading of El Jai’s work was in 2002. In my 2004 SPIE paper on mobile actuator and sensor networks (MAS-net), we first cited El Jai’s work.

- Since 2014, with Fudong Ge, a visiting Ph.D. student from Donghua University, China, we started an exciting journey in exploring the regional analysis of fractional order DPS with DRONEMATH in mind (e.g. pest spreading in crop fields under drone remote sensing and cropdusting spraying control).
• Fudong Ge, YangQuan Chen and Chunhai Kou. “Regional Analysis of Time-Fractional Order Diffusion Processes” (Springer London, to appear Winter 2016 or Spring 2017) [draft book ready, 270 pages]
 – JMAA, FCAA, Automatica, IET CTA, IMA JMCI, IJC, IEEE/CAA JAS etc.
Preface ... 13

List of Figures .. 15

1 Introduction .. 17
 1.1 Cyber-Physical Systems and Distributed Parameter Systems .. 17
 1.1.1 Cyber-physical systems .. 17
 1.1.2 Distributed parameter systems .. 19
 1.2 New Challenges ... 22
 1.3 Continuous Time Random Walk and Fractional Dynamics Approach 23
 1.3.1 Continuous time random walk ... 23
 1.3.2 Fractional dynamics approach ... 24
 1.4 Regional Analysis via Actuators and Sensors ... 25
 1.4.1 Actuators .. 26
 1.4.2 Sensors .. 27
 1.4.3 Regional analysis and the emerging research opportunities .. 29

References ... 30
2 Preliminary Results

2.1 Special Functions and Their Properties

2.1.1 The Gamma function and its related special functions

2.1.2 The Mittag-Leffler functions and their properties

2.2 Fractional Calculus

2.2.1 Backgrounds

2.2.2 Riemann-Liouville fractional integrals

2.2.3 Riemann-Liouville fractional derivatives

2.2.3.1 Definition of Riemann-Liouville fractional derivatives

2.2.3.2 The law of exponents for Riemann-Liouville fractional derivatives

2.2.3.3 The Laplace transforms of Riemann-Liouville fractional integrals and derivatives

2.2.4 Caputo fractional derivatives

2.2.4.1 Definition of Caputo fractional derivatives

2.2.4.2 The law of exponents for Caputo fractional derivatives

2.2.4.3 The Laplace transforms of Caputo fractional derivatives

2.3 C_0—Semigroups

2.4 Hilbert Uniqueness Methods

References
3 Regional Controllability

3.1 Regional Controllability

3.1.1 Riemann-Liouville type time fractional diffusion systems

3.1.1.1 Problem statement

3.1.1.2 Regional strategic actuators

3.1.1.3 An approach for regional target control

3.1.1.4 Simulation example

3.1.2 Caputo type time fractional diffusion systems

3.1.2.1 Problem statement

3.1.2.2 Regional strategic actuators

3.1.2.3 An approach for regional target control

3.1.2.4 Examples

3.2 Regional Gradient Controllability

3.2.1 Riemann-Liouville type time fractional diffusion systems

3.2.1.1 Problem statement

3.2.1.2 Regional gradient strategic actuators

3.2.1.3 An approach for regional gradient target control

3.2.1.4 Examples

3.2.2 Caputo type time fractional diffusion systems

3.2.2.1 Problem statement

3.2.2.2 Regional gradient strategic actuators

3.2.2.3 An approach for regional gradient target control

3.2.2.4 An example

3.3 Regional Boundary Controllability

3.3.1 Riemann-Liouville type time fractional diffusion systems

3.3.1.1 Problem statement

3.3.1.2 Regional boundary strategic actuators

3.3.1.3 An approach for regional boundary target control

3.3.1.4 The connection between internal and boundary regional controllability

3.3.2 Caputo type time fractional diffusion systems

Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems
3.3.2.1 Problem statement .. 131
3.3.2.2 Regional boundary strategic actuators 132
3.3.2.3 An approach for regional boundary target control . 132
3.3.2.4 The connection between internal and boundary regional controllability 134

3.4 Notes and Remarks ... 134
References .. 135
Regional Observability

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Riemann-Liouville type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Regional strategic sensors</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>An approach for regional reconstruction</td>
</tr>
<tr>
<td>4.1.1.4</td>
<td>An example</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Caputo type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Regional strategic sensors</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>An approach for regional reconstruction</td>
</tr>
<tr>
<td>4.1.2.4</td>
<td>An example</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Riemann-Liouville type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Regional strategic sensors</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>An approach for regional gradient reconstruction</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Examples</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Caputo type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Regional strategic sensors</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>An approach for regional gradient reconstruction</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Examples</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Riemann-Liouville type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Regional boundary strategic sensors</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>An approach for regional boundary reconstruction</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Caputo type time fractional diffusion systems</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Problem statement</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Regional boundary strategic sensors</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>An approach for regional boundary reconstruction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Notes and Remarks</td>
</tr>
</tbody>
</table>

References
5 Regional Detection of Unknown Sources

5.1 Preliminary Results ... 197
 5.1.1 Sources .. 198
 5.1.2 Detection ... 199
5.2 Riemann-Liouville Type Time Fractional Diffusion Systems 200
 5.2.1 Problem statement .. 200
 5.2.2 Regional strategic sensors and regional spy sensors 200
 5.2.2.1 Regional strategic sensors 200
 5.2.2.2 Regional spy sensors 201
 5.2.2.3 The relationships between \(\omega \)—spy sensors and
 \(\omega \)—strategic sensors 202
 5.2.3 Reconstruction of a regionally detectable source 203
 5.2.4 An example .. 204
5.3 Caputo Type Time Fractional Diffusion Systems 205
 5.3.1 Problem statement .. 205
 5.3.2 Regional strategic sensors and regional spy sensors 206
 5.3.2.1 Regional strategic sensors 206
 5.3.2.2 Regional spy sensors 207
 5.3.2.3 The relationships between \(\omega \)—spy sensors and
 \(\omega \)—strategic sensors 208
 5.3.3 Reconstruction of a regionally detectable source 208
 5.3.4 An example .. 209
5.4 Notes and Remarks .. 210
References .. 210
6 Spreadability

6.1 The Basic Concepts of Spreadability

6.2 Riemann-Liouville Type Time Fractional Diffusion Systems
 6.2.1 Spreading control problem
 6.2.2 Weak spreadability
 6.2.3 Adaptive spreading control problems
 6.2.3.1 Problem formulation
 6.2.3.2 Solution of the adaptive spreading control problem

6.3 Caputo Type Time Fractional Diffusion Systems
 6.3.1 Spreading control problem
 6.3.2 Weak spreadability
 6.3.3 Adaptive spreading control problems
 6.3.3.1 Problem formulation
 6.3.3.2 Solution of the adaptive spreading control problem

6.4 Notes and Remarks

References
7 Regional Stability and Regional Stabilizability .. 225
 7.1 Introduction .. 225
 7.2 Regional Stability and Regional Stabilizability ... 226
 7.2.1 Caputo type time fractional diffusion systems .. 226
 7.2.1.1 Regional stability .. 226
 7.2.1.2 Regional stabilizability .. 229
 7.2.2 Riemann-Liouville type time fractional diffusion systems 234
 7.2.2.1 Regional stability .. 234
 7.2.2.2 Regional stabilizability .. 235
 7.3 Regional Boundary Stability and Regional Boundary Stabilizability 238
 7.3.1 Caputo type time fractional diffusion systems .. 238
 7.3.1.1 Regional boundary stability .. 238
 7.3.1.2 Regional boundary stabilizability ... 241
 7.3.2 Riemann-Liouville type time fractional diffusion systems 244
 7.3.2.1 Regional boundary stability .. 244
 7.3.2.2 Regional boundary stabilizability ... 245
 7.4 Notes and Remarks ... 246
References .. 246
8 Conclusions and Future Work ... 249
 8.1 Conclusions .. 249
 8.2 Several Generalized Systems and Their Related Potential Research Directions .. 250
 8.2.1 Several generalized systems ... 250
 8.2.1.1 Space fractional diffusion systems 251
 8.2.1.2 Space-time fractional diffusion systems 251
 8.2.1.3 Variable order and distributed order fractional diffusion systems .. 252
 8.2.1.4 Nonlinear fractional diffusion systems 252
 8.2.1.5 Fractional wave equations ... 253
 8.2.2 Related potential research opportunities 253
 8.2.2.1 Essential problems on fractional diffusion systems 253
 8.2.2.2 Topics related to actuators/sensors 254
 8.2.2.3 Rank conditions for fractional diffusion systems 254
 8.2.2.4 Communication topology influence 259
 8.2.2.5 Regional identifiability theory .. 259
 8.2.2.6 Regional trajectory planning and regional trajectory tracking .. 260

References ... 265

Index ... 269
Outline (What else I can do?)

- Motivations
- Why Regional?
- Some recent results
- Future topics
cyber

- Communication topology
- Communication induced uncertainties
physical

- Space fractional diffusion systems
- Space-time fractional diffusion systems
- Variable order and distributed order fractional diffusion systems
- Nonlinear fractional diffusion systems
systems

• How many actuators/sensors are sufficient when there exists communication among them and how to best configure them for the fractional diffusion control processes?

• The optimal positioning problem of the actuators/sensors;

• Given the desirable zone shape, is it possible to control or contain the fractional diffusion process with static/mobile actuators/sensors within the given zone?
reminder

• Process is integer order or fractional order
• Controller is integer order or fractional order

x 4

• Controller is regional or not
• Observer is regional or not

800x16 = 12,800 cases (PhDs)
Minds like parachutes function only when open
New research monographs

New robotics research from controlling crop dynamics to crowd dynamics ...

MAS-net to CPS to CHS: Robots as Sensors and Actuators

Figure: Stampede in Nigeria

Figure: Stampede in Shanghai
In the next a few years ...
UC Multi-campus Synergy on CIDERS
California Institute of Data-drone Engineering and Services

CIDERS in Scientific data-drones: platforms, operation, and certification

CIDERS in precision agriculture

CIDERS in environmental monitoring: water, fire, soil, dust, AQ ...

UCM, UCSC, UCB, UCSD, LLNL

UCM
UCD
UCSD

UCM
UCD
LBL
SNL
UCSD
Thank you for attending my talk!

For more information, check

http://mechatronics.ucmerced.edu/