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Function spaces
• 𝐶0 ≔ 𝐶0[0,1] denotes the closure in the sup norm of the space 

of continuous functions with compact support in 0,1 , with 
end point(s) excluded for Dirichlet boundary condition.

• 𝐿1 ≔ 𝐿1{0,1] is identified with the closed subspace of Borel
measures which consist of measures that possess a density.

Cauchy problem
We study FPDE on [0,1] as a Cauchy problem,

𝑑𝑓

𝑑𝑡
= 𝐴𝑓; 𝑓 0 = 𝑓0,

where 𝐴 is a fractional derivative operator on  𝐶0 or 𝐿1 and its 
domain 𝒟(𝐴) encode boundary conditions. 

Boundary conditions
The boundary conditions we consider are zero boundary 
conditions and 𝑓 ∈ 𝒟(𝐴) satisfies:
• Dirichlet (absorbing) boundary condition on the left if 

lim
𝑥↓0

𝑓 𝑥 = 0 and on the right if lim
𝑥↑1

𝑓 𝑥 = 0

• Neumann (no flux) boundary condition on the left if 
lim
𝑥↓0

𝐹𝑓 𝑥 = 0 and on the right if lim
𝑥↑1

𝐹𝑓(𝑥) where the 

fractional flux 𝐹 ∈ {𝐷𝑐
𝛼−1, 𝐷𝛼−1} and 𝐴𝑓 = 𝐷𝐹𝑓

Introduction
Several works develop numerical methods to solve space fractional 
PDEs on finite domain (FPDE) including variable coefficients. 
However, even in the constant coefficients case, only a few authors 
address the issue of well-posedness of FPDE, see Defterli et al1. 
Ervin and Roop2 showed well-posedness of FPDE with Dirichlet 
boundary conditions in the 𝐿2-setting. Du et al3 extended the 
theory to very general boundary conditions. 
In this work4 we formulate FPDE with physically meaningful 
boundary conditions, show well-posedness in 𝐿1 and 𝐶0 settings 
and compute numerical solutions in 𝐿1 setting. We only consider 
the following initial value problem for FPDE on the interval 0,1 ,

𝜕

𝜕𝑡
𝑢 𝑥, 𝑡 = 𝐴𝑢 𝑥, 𝑡 ; u x, 0 = 𝑢0(𝑥),

where the fractional derivative 𝐴 ∈ {𝐷𝑐
𝛼 , 𝐷𝛼} is defined below.

Well-posedness
In line with classical theory, we study the backward and forward 
equations on 𝐶0 and 𝐿1, respectively. Grünwald approximations are 
shown to generate positive, strongly continuous, contraction semigroups 
on 𝐶0 and 𝐿1. Further, we show that the fractional derivative operators 
are dissipative, densely defined and closed with dense range(𝐼 − 𝐴). 
Lumer-Phillips theorem5 implies that 𝐴 generate strongly continuous, 
contraction semigroups on 𝐶0 and 𝐿1. This implies that the Cauchy 
problems associated with operators 𝐴 and initial value 𝑓0 are well-
posed5, that is, the respective FPDE are well-posed.

Process convergence
For each 𝑓 ∈ 𝐶𝑜𝑟𝑒(𝐴) we show that there exists 𝑓𝑛 ∈ 𝐶0(and 𝐿1) such 
that 𝐺𝑛𝑓𝑛 → 𝐴𝑓 in the respective norms. Trotter-Kato theorem5 implies 
that the semigroups generated by 𝐺𝑛 converge to the semigroups 
generated by 𝐴. Convergence of Feller semigroups (on 𝐶0) further implies 
that the processes associated with Grünwald approximations converge to 
the Feller processes governed by the fractional derivative operators in 
the Skorokhod topology6 .

Time Evolution Plots
Each of the six figures below show time evolution plots of numerical solution to FPDE in 𝐿1-setting,

𝜕

𝜕𝑡
𝑢 𝑥, 𝑡 = 𝐴𝑢 𝑥, 𝑡 ; u x, 0 = 𝑢0(𝑥), 

where 𝐴 ∈ {𝐷𝑐
1.5, 𝐷1.5} with boundary conditions as indicated on the figures and 𝑢0 𝑥 = ቐ

25𝑥 − 7.5, 0.3 < 𝑥 ≤ 0.5
−25𝑥 + 7.5, 0.5 < 𝑥 < 0.7

0, otherwise
.

The numerical solutions were computed using (modified) Grünwald formula with 𝑛 = 1000 grid points along with MATLAB ode15s solver.

Domains of fractional derivative operators
Fractional derivative operators 𝐴 on 𝐶0 and 𝐿1 are defined for 𝐴 ∈
{𝐷𝑐

𝛼 , 𝐷𝛼}. Here we only list the domains of 𝐴 on 𝐿1. To highlight the 
boundary conditions, for example, fractional derivative operator 𝐷𝑐

𝛼

with left and right Dirichlet boundary conditions, we write (𝐷𝑐
𝛼 , 𝐷𝐷). 

• 𝒟 𝐷𝑐
𝛼 , 𝐷𝐷 = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − Γ 𝛼 𝐼𝛼𝑔 1 𝑝𝛼−1, 𝑔 ∈ 𝐿1}

• 𝒟(𝐷𝑐
𝛼 , 𝐷𝑁) = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − 𝐼𝑔 1 𝑝𝛼−1, 𝑔 ∈ 𝐿1}

• 𝒟 𝐷𝑐
𝛼 , 𝑁𝐷 = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − 𝐼𝛼𝑔 1 𝑝0, 𝑔 ∈ 𝐿1}

• 𝒟(𝐷𝑐
𝛼 , 𝑁𝑁) = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − 𝐼𝑔 1 𝑝𝛼 + 𝑐𝑝0, 𝑔 ∈ 𝐿1}

• 𝒟 𝐷𝛼 , 𝑁𝐷 = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − Γ 𝛼 − 1 𝐼𝛼𝑔 1 𝑝𝛼−2, 𝑔 ∈ 𝐿1}
• 𝒟(𝐷𝛼 , 𝑁𝑁) = {𝑓 ∈ 𝐿1: 𝑓 = 𝐼𝛼𝑔 − 𝐼𝑔 1 𝑝𝛼 + 𝑐𝑝𝛼−2, 𝑔 ∈ 𝐿1}

Note that there are only six different operators as 𝐷𝛼𝑓 = 𝐷𝑐
𝛼𝑓 when 

𝑓 0 = 0. The constant 𝑐 ∈ ℝ that appears above is free. 

Steady State Solutions
Note that 𝐷𝑐

𝛼𝑝0 = 𝟎 = 𝐷𝛼𝑝𝛼−2 and the steady state solutions for 
(𝐷𝑐

𝛼 , 𝑁𝑁) and (𝐷𝛼 , 𝑁𝑁) given below correspond to the functions, 
𝑝0 and 𝑝𝛼−2, that appear with the free constant 𝑐 in the respective 
domains given on the left. 

Future Research
• Non-zero boundary conditions
• Identify the limiting processes explicitly
• Boundary conditions for FPDE with two-sided fractional derivatives
• Boundary conditions for FPDE on finite domains in ℝ𝑑
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Grünwald Approximations
The well known Grünwald formula is modified to incorporate 
boundary conditions. As numerical solutions are computed on a 
finite number of grid points, the Grünwald formula can be written 
using the 𝑛 × 𝑛 matrix,

𝑀𝑛 = 𝑛𝛼

𝑏1
𝑙 1 0

𝑏2
𝑙 −𝛼 1

⋯
0 0
0 0

⋮ ⋱ ⋮
𝑏𝑛−1
𝑙 𝑔𝑛−1

𝛼 𝑔𝑛−2
𝛼

𝑏𝑛 𝑏𝑛−1
𝑟 𝑏𝑛−2

𝑟 ⋯
−𝛼 1
𝑏2
𝑟 𝑏1

𝑟

.

Viewing 𝑀𝑛 as a transition rate matrix of a (sub-)Markov process, the 
entries in first column and last row (𝑏∙

𝑙 , 𝑏∙
𝑟 , 𝑏𝑛) are used to 

incorporate the boundary conditions. Grünwald approximation 
operators 𝐺𝑛 on 𝐶0 and 𝐿1 are also constructed using the matrices 
𝑀𝑛 by way of continuous embedding.

Fractional derivatives

For convenience set 𝑝𝛽 𝑥 =
𝑥𝛽

Γ(𝛽+1)
for 0 ≤ 𝑥 ≤ 1 and 𝛽 > −1, 

with the understanding that  𝑥 ≠ 0 if −1 < 𝛽 < 0. 

For 𝑥 ∈ [0,1] define:
• Fractional integral of order 𝜐 > 0,

𝐼𝜐𝑓 𝑥 = 0׬
𝑥
𝑓 𝑠 𝑝𝜐−1 𝑥 − 𝑠 𝑑𝑠

• Riemann-Liouville fractional derivative of order 1 < 𝛼 < 2,

𝐷𝛼𝑓 𝑥 =
𝑑2

𝑑𝑥2
න
0

𝑥

𝑓 𝑠 𝑝1−𝛼 𝑥 − 𝑠 𝑑𝑠 ≔ 𝐷2𝐼2−𝛼𝑓(𝑥)

• First degree Caputo fractional derivative of order 1 < 𝛼 < 2,

𝐷𝑐
𝛼𝑓 𝑥 =

𝑑

𝑑𝑥
න
0

𝑥 𝑑

𝑑𝑠
𝑓 𝑠 𝑝1−𝛼 𝑥 − 𝑠 𝑑𝑠 ≔ 𝐷𝐼2−𝛼𝐷𝑓(𝑥)
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