Preliminary Exam: Probability

9:00 am to 2:00 pm, August 25, 2006

Problem 1. Assume that triangular array $\{X_{n,k}: k=1,...,n\}$ is independent for each n=1,...

(a) Prove: $\max_{1 \le k \le n} \{ |X_{n,k}| \} \xrightarrow[n \to \infty]{} 0$ in probability **if and only if**

$$\sum_{k=1}^{n} P(|X_{n,k}| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0, \ \forall \varepsilon > 0.$$

Hint: $1 > e^{-x} > 1 - x$, x > 0.

(b) Let $\{X_k, k=1,...\}$ be independent and identically distributed with

$$\frac{P(|X| > x)}{x^{-\alpha}} \xrightarrow[x \to \infty]{} C \text{ with } 0 < C < \infty \text{ for some } \alpha > 0. \text{ Let } \{a_n\} \text{ be a}$$

positive sequence. Prove: $\frac{\max\{|X_k|\}}{n^{1/\alpha}a_n} \xrightarrow[n\to\infty]{} 0 \text{ in probability if and only}$ if $a_n\to\infty$.

(c) Let $\{X_k, k=1,...\}$ be independent and identically distributed with

$$X_k \sim N(0,1)$$
. Find the minimal $\beta > 0$ so that $\frac{\max_{1 \le k \le n} \{ |\frac{1}{X_k}| \}}{n^{\beta + \varepsilon}} \xrightarrow[n \to \infty]{} 0$ in probability, for each $\varepsilon > 0$.

Problem 2. Let X be a random variable with $P(X \ge x) = x^{-\alpha}$, $x \ge 1$ for some $\alpha > 0$ (so $X \ge 1$ a.s.).

- (a) Calculate the function $f(y, \alpha) = E(X^2; X \le y), \alpha > 0, y > 0$.
- (b) For each $\alpha > 0$ find $\lim_{y \to \infty} \frac{y^2 P(X \ge y)}{f(y, \alpha)}$
- (c) Find an example of a sequence of **positive** random variables, $\{X_k, k=1,...\}$, so that the following 2 requirements both hold.

- (i) For each $\alpha > 0$ there exist an integer $K_{\alpha} > 0$ so that $E[(X_k)^{\alpha}] = \infty$, $k > K_{\alpha}$
- (ii) $\{X_k\}$ converges in probability to 0.

Problem 3. In what follows a characteristic function (c.f.) of a random variable X is denoted by $\varphi_X(t)$.

(a) Prove that for every T > 0:

(i)
$$\frac{1}{T} \int_{-T}^{T} \varphi_X(t) dt = 2 \cdot E(\frac{\sin(TX)}{TX})$$

(ii)
$$E(1 - \frac{\sin(TX)}{TX}) \ge \frac{1}{2}P(|X| \ge \frac{2}{T})$$

Let $\{X_k, k=1,...\}$ be a sequence of random variables. For parts (b) and (c) assume that $\lim_{k\to\infty} \varphi_{X_k}(t)$ exists for |t|<1. Denote the limit by g(t) (observe that g(t) is defined only on |t|<1.)

(b) Prove that for every M > 2 we have

$$M \cdot \int_{-2/M}^{2/M} [1 - g(t)] dt \ge \limsup_{k \to \infty} \{ P(|X_k| \ge M) \}$$

- (c) Assume also that: $\lim_{t\to 0} g(t) = 1$.
- (i) Use part (b) to show that $\forall \varepsilon > 0 \ \exists M > 0$ so that $\sup_{k} \{P(|X_k| \ge M)\} \le \varepsilon$. (i.e. : $\{X_k\}$ is *tight*).
- (ii) Use (c)(i) to show that there exists a random variable Y whose c.f. $\varphi_Y(t)$ is an extension of g(t) (i.e. $\varphi_Y(t) = g(t)$, |t| < 1.)

Problem 4. Let $\{D_n, F_n; n=1,...\}$ be a sequence of L^2 martingale differences, namely $\{D_n\}$ are random variables and $\{F_n\}$ are σ – algebras, $D_n \in F_n, \ F_n \subset F_{n+1}, \ \mathrm{E}_{F_n}(D_{n+1}) = 0$ and $\mathrm{E}(D_n^2) < \infty$. We denote $X_n \equiv \sum_{k=1}^n D_k$, $A_n \equiv \sum_{k=1}^n \mathrm{E}_{F_{k-1}}(D_k^2)$ (F_0 is a trivial σ – algebra) and $A_\infty \equiv \lim_n A_n$ (can be ∞).

- (a) Is $N_C = \inf\{n: A_{n+1} > C\}$, C > 0 a stopping time? Prove or give a counter example.
- (b) Does $\lim_{n} X_{n \wedge N_C}$ exists a.s. for each C > 0? Prove or disprove.
- (c) (i) Does $\lim_{n} X_n$ exists a.s. on $\bigcup_{C>0} \{N_C = \infty\}$? Explain.
- (ii) What is the relationship between the events $\bigcup_{C>0} \{N_C = \infty\}$ and $\{A_\infty = \infty\}$?

Problem 5. Here we use the setup and notations of problem 4.

- (a) Let $b_n \uparrow \infty$. Prove that on the event $\left\{\sum_{k=1}^{\infty} \mathbb{E}_{F_{k-1}} \left(\frac{D_k^2}{b_k^2}\right) < \infty\right\}$ we have $\frac{X_n}{b_n} \xrightarrow[n \to \infty]{} 0$, a.s.
- (b) Prove that $\sum_{k=2}^{\infty} E_{F_{k-1}} (\frac{D_k^2}{A_k^2}) \le \int_{A_1}^{\infty} \frac{dt}{t^2}$, a.s.
- (c) Prove (i) Assume $E(D_1^2) > 0$. Prove that $\sum_{k=1}^{\infty} \frac{D_k}{A_k}$ converges a.s.
 - (ii) $\frac{X_n}{A_n} \xrightarrow[n \to \infty]{} 0$, a.s. on the event $\{A_\infty = \infty\}$
 - (iii) $\frac{X_n}{A_n}$ converges a.s.

Problem 6. $\{X_n\}$ is called Uniformly Integrable (UI) if $\sup E(|X_n|\cdot 1_{\{|X_n|>M\}}) \xrightarrow[M\to\infty]{} 0$.

- (a) Prove: $\{X_n\}$ is UI if and only if
- (i) $\sup_{n} E(|X_n|) < \infty$, and

ĺ

- (ii) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{so that} \ P(A) < \delta \Rightarrow \sup_{n} E(|X_n|; A) \le \varepsilon$
- (b) Give an example of a sequence $\{X_n\}$ that is not UI but at the same time the following 3 requirements hold: (i) $X_n \xrightarrow[n \to \infty]{} 0$, a.s.,

(ii)
$$E(X_n) \xrightarrow[n \to \infty]{} 0$$
, (iii) $\sup_n E(|X_n|) < \infty$.

- (c) Give an example of a sequence $\{X_n\}$ so that (i) $\{X_n\}$ is UI
- (ii) $X_n \xrightarrow[n \to \infty]{} 0$, a.s. (iii) There exist a σ -algebra F so that $E_F(X_n)$ doesn't converge a.s.

Problem 7. Let $\{X_k, k=1,...\}$ be independent and identically distributed with **symmetric** distribution. Let $a_0=0$, $a_n \uparrow \infty$ and denote $Y_n \equiv X_n \cdot 1_{\{|X_n| \le a_n\}}$. Assume

- (i) There is C > 0 so that $\sum_{n=m}^{\infty} a_n^{-2} \le C \cdot m \cdot a_m^{-2}$, $\forall m \ge 1$, and
- (ii) $\sum_{n=1}^{\infty} P(|X_1| \ge a_n) < \infty$
- (a) Prove: $\sum_{n=1}^{\infty} \frac{E(Y_n^2)}{a_n^2} < \infty$. Hint: $E(Y_n^2) = \sum_{m=1}^n E(X_m^2; a_{m-1} < |X_m| \le a_m)$, etc.
- (b) Prove: $\frac{\sum_{k=1}^{n} X_{k}}{a_{n}} \xrightarrow[n \to \infty]{} 0, \text{ a.s.}$

(c) Assume $E|X_1|^p < \infty$, 1 . Show by using part (b) that

$$\frac{\sum_{k=1}^{n} X_k}{n^{1/p}} \xrightarrow[n \to \infty]{} 0, \text{ a.s.}$$

Problem 8. Let $\{B(t)\}$ denote standard Brownian motion.

(a) (i) Prove that
$$\frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-z^2/2} dz \le \frac{1}{2} \cdot e^{-x^2/2}, \ x > 0$$
 (Hint: use $z = x + y$).

Remark: in the book the upper bound is $\frac{e^{-x^2/2}}{x}$ which is worse for x < 2.

- (ii) Use the inequality in (i) to present a function f(t, x) so that $P(\max_{0 < u < t} | B_u | > x) \le f(t, x), x > 0.$
- (b) Prove that $E \max_{0 \le u \le t} B_u^2 \le 2 \cdot t$.
- (c) Let $\Delta_n = \max\{\Delta_{m,n}: 1 \le m \le 2^n\}$ where

$$\Delta_{m,n} = \max\{|B(t) - B(\frac{m-1}{2^n})\}: \frac{m-1}{2^n} \le t < \frac{m}{2^n}\}.$$
 Prove: There is $C < \infty$ so that

$$\Delta_n \leq C \cdot \sqrt{n \cdot 2^{-n}}, \ n \geq N(\omega)$$