## Preliminary Examination: STT 871-872, Wednesday, August 24, 2005, 1:00pm - 6:00 pm, A506 Wells Hall

- 1. Let  $X_1, \dots, X_n$  be i.i.d. from a distribution with Lebesgue p.d.f.  $f(x, \theta) = e^{-(x-\theta)}$  for  $\theta < x < \infty$  and  $f(x, \theta) = 0$  otherwise, where  $\theta \in \mathbb{R}$ .
  - (a) Show that  $T_n = X_{(1)} \frac{1}{n}$  is the UMVUE (uniformly minimum variance unbiased estimator) of  $\theta$ , where  $X_{(1)}$  is the minimum order statistic. (7 points)
  - (b) Show that the inequality  $\operatorname{var}(T_n) \geq 1/(n E[\frac{\partial}{\partial \theta} \log e^{-(X-\theta)}]^2)$  does not hold for any  $\theta \in \mathbb{R}$  and n > 1. (4 points)
  - (c) Explain if the result in (b) conflicts with the Cramé-Rao lower bound. (4 points)
- 2. Suppose that one observes 6 independent normal r.v.'s  $Y_i$ ,  $i = 1, \dots, 6$ , with a common variance and the means given as follows:

$$E(Y_1) = E(Y_2) = \mu_1, E(Y_3) = E(Y_4) = \mu_2, E(Y_5) = E(Y_6) = \mu_1 + \mu_2$$

- (a) What is the best linear unbiased estimator of  $\mu_1 \mu_2$ . (5 points)
- (b) Describe a  $100(1-\alpha)\%$  confidence interval for  $\mu_1 \mu_2$  in as much detail as possible for an  $0 < \alpha < 1$ . (5 points)
- 3. Let X have  $N(\theta, 1)$  distribution for some  $\theta \in \mathbb{R}$  and let  $0 < \alpha < 1$ . Suppose one observes only Y = |X|. Let  $f_{\theta}$  denote the Lebesgue density of Y.
  - (a) Show that  $f_{\theta}(y)/f_0(y)$  is strictly increasing in y > 0 for all  $\theta \neq 0$ . (5 points)
  - (b) Show that the UMP size  $\alpha$  test of  $H_0: \theta = 0$  v.s.  $H_1: \theta \neq 0$  is  $T(Y) = I(Y > y_{\alpha})$ , where  $y_{\alpha}$  is the  $(1 \alpha)$ th quantile of the null distribution of Y. (5 points)
- 4. Let X be a random sample of size 1 from the uniform  $(\theta 1/2, \theta + 1/2)$  distribution for some  $\theta \in \mathbb{R}$ .
  - (a) Show that X is minimal sufficient but not complete. (6 points)
  - (b) Show that X is an unbiased estimator but not a UMVUE of  $\theta$ . (4 points)
- 5. Let  $X_1, \dots, X_n$  and  $Y_1, \dots, Y_n$  be two independent samples from  $E(0, \mu)$  (Lebesgue p.d.f.  $f(t, \mu) = \frac{1}{\mu}e^{-t/\mu}$ , t > 0,  $\mu > 0$ ) and  $E(0, \lambda)$  respectively. Suppose that we observe only  $Z_i = \min\{X_i, Y_i\}$  and  $\Delta_i = I(X_i \geq Y_i)$ ,  $i = 1, \dots, n$ .
  - (a) Show that  $Z_i$  and  $\Delta_i$  are independent with distributions  $E(0, \frac{\mu\lambda}{\mu+\lambda})$  and Binomial  $(1, \frac{\mu}{\mu+\lambda})$  respectively, for every  $i = 1, \dots, n$ . (5 points)
  - (b) Show that  $(\hat{\mu}, \hat{\lambda}) = \left(\frac{\sum_{i=1}^{n} Z_i}{n \sum_{i=1}^{n} \Delta_i}, \frac{\sum_{i=1}^{n} Z_i}{\sum_{i=1}^{n} \Delta_i}\right)$  is the MLE (maximum likelihood estimator) of  $(\mu, \lambda)$ . (5 points)
  - (c) Show that  $\sqrt{n}(\hat{\mu} \mu) \xrightarrow{d} N(0, \sigma^2)$  and determine  $\sigma^2$ . (5 points)
- 6. Let X be a random sample of size 1 from a distribution with Lebesgue density f. Consider the problem of testing  $H_0: f = f_0$  v.s.  $H_1: f = f_1$ , where  $f_0(x) = e^{-x}I(x > 0)$ ,  $f_1(x) = \frac{1}{2}e^{-(x-1)/2}I(x > 1)$ .

- (a) Find the most power test of size exactly equal to  $\alpha = e^{-1}$ . (5 points)
- (b) Show that the test above is admissible under the usual 0-1 loss (i.e., other size  $\alpha$  test is no better than this one in terms of risk). (5 points)
- 7. Suppose that  $X_1, \dots, X_n$  are i.i.d. from  $N(0, \sigma^2)$  with  $\sigma^2 > 0$  unknown.
  - (a) Show that the MLE of  $\sigma^2$  is inadmissible for the squared error loss:  $L(\cdot, \sigma^2) = (\cdot \sigma^2)^2$ . (Hint:  $E(\chi^2(m)) = m$ ,  $var(\chi^2(m)) = 2m$ .) (4 points)
  - (b) Find, under the loss function  $L(\cdot, \sigma^2) = (\cdot \sigma^2)^2/\sigma^4$ , an admissible estimator of  $\sigma^2$  that is the unique minimax estimator. (6 points)
  - (c) Suppose that  $f(x, \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}I(x>0)$ , with  $\alpha$  and  $\beta$  both positive and known, is the Lebesgue density of the prior for  $\omega = 1/(2\sigma^2)$ . Find the Bayes estimator of  $\sigma^2$  under the squared error loss. (5 points)
- 8. Let  $\mathcal{F}$  be a collection of distribution functions on  $\mathbb{R}$  and  $\delta_x \in \mathcal{F}$  be the point mass distribution function at a point  $x \in \mathbb{R}$ . Let  $T(\cdot)$  be a functional defined on  $\mathcal{F}$ . The influence function (IF) of T(G),  $G \in \mathcal{F}$ , at x is defined as (if it exists)

$$IF(x;T(G)) = \lim_{t \to 0} \frac{T((1-t)G + t\delta_x) - T(G)}{t}$$

where the limit is taken over those  $t \in (0,1)$  for which  $(1-t)G + t\delta_x \in \mathcal{F}$ .

Let  $\mathcal{D} = \{c(G_1 - G_2) : c \in \mathbb{R}, G_n \in \mathcal{F}, n = 1, 2\}$  and  $\rho$  be a distance on  $\mathcal{F}$ . The functional T is said to be  $\rho$ -Fréchet differentiable at  $G \in \mathcal{F}$  if there is a linear functional  $T_G$  on  $\mathcal{D}$  such that for any sequence  $\{G_j\}, j \geq 1$ , in  $\mathcal{F}$  and  $\rho(G_j, G) \to 0$  as  $j \to \infty$ ,

$$T(G_j) - T(G) - T_G(G_j - G) = o(\rho(G_j, G)), \text{ as } j \to \infty.$$

For  $0 < \alpha < \beta < 1$ , define

$$L(H) = \frac{1}{\beta - \alpha} \int y I(\alpha < H(y) \le \beta) dH(y), \quad H \in \mathcal{F}.$$

Now fix an  $F \in \mathcal{F}$ .

- (a) Show that IF(x; L(F)) is bounded in  $x \in \mathbb{R}$  and E[IF(X; L(F))] = 0 for r.v. X with distribution F. (4 points)
- (b) Show that L is  $\rho_{\infty}$ -Fréchet differentiable at F, where  $\rho_{\infty}$  is defined as:  $\rho_{\infty}(G_1, G_2) = \sup_{x \in \mathbb{R}} |G_1(x) G_2(x)|$ . (6 points)
- (c) Now let  $F(x) = F_0(x \theta)$  for a fixed  $\theta \in \mathbb{R}$  with  $F_0$  symmetric about 0 and having a density  $f_0 > 0$  and let  $\beta = 1 \alpha$  in the above set up. Let  $F_n$  denote the empirical distribution function of a random sample of size n from F and  $F_n \in \mathcal{F}$  for every  $n \geq 1$ . Show that  $\sqrt{n}(L(F_n) \theta) \xrightarrow{d} N(0, \sigma_\alpha^2)$  and determine  $\sigma_\alpha^2$ . (5 points)