STT 871-872 Preliminary Examination Wednesday, August 22, 2007, 1 - 6 pm

Instructions

- This examination is closed book. Every statement you make must be substantiated. You may do this either by quoting a theorem/result and verifying its applicability or by proving things directly. You may use one part of a problem to solve the other part, even if you are unable to solve the part being used.
- Solution of each problem should be started on the page of its statement. A complete solution of a problem will get a more favorable review than a partial solution.
- Be sure to put the number assigned to you on the right corner top of every page of your solution.
- Throughout, n is a known positive integer denoting the sample size, \mathbb{R} is the real line and \mathcal{B} is the Borel sigma field.

GOOD LUCK !!!

1. Let $\theta \in \{0, 1, 2, \dots\}$. Let X and Y be two independent r.v.'s with the following distributions:

$$P(X = \theta) = 1/2 = P(X = \theta + 1), \quad P(Y = \theta) = 1/2 = P(Y = \theta - 1).$$

- (a) Let $T_1 := X 1/2$, $T_2 = Y + 1/2$. Obtain a minimum variance unbiased estimator of θ among the class of estimators $aT_1 + bT_2$, $a \in \mathbb{R}, b \in \mathbb{R}$.
- (b) Prove or disprove: The family of the joint distributions of (X, Y) is complete. (8)
- 2. Let X_1, \dots, X_n , be a random sample of size $n \geq 1$ from the density

$$f_{\theta}(x) := \frac{\theta}{x^2}I(x>\theta), \ \theta=1,2,3,\cdots.$$

- (a) Prove that the MLE $\hat{\theta}$ of θ is a.s. consistent for θ .
- (b) Let the loss function be $L(\theta, \delta) = I(\delta \neq \theta)$, for any estimator δ . Prove or disprove: $\hat{\theta}$ is minimax under this loss function. (8)
- 3. Let X_1 and X_2 be two independent r.v.'s with X_i having $N(\theta_i, 1)$ distribution for some $\theta_i \in \mathbb{R}$, i = 1, 2. Let $\theta = (\theta_1, \theta_2)'$ and consider the problem of estimating θ_1 under the loss function $L(\theta, T) := (\theta_1 T)^2$, for any estimator T of θ_1 . Show that among the class of

(4)

estimators T for which $E_{\theta}L(\theta,T) < \infty$, $\forall \theta \in \mathbb{R}^2$, $\delta := \text{sign}(X_2)$ is an admissible estimator of θ_1 .

[Hint: Show that the estimator δ can not be beaten by any other estimator at both $\theta = (1, \theta_2)'$ and $\theta = (-1, \theta_2)'$ and for all $\theta_2 \in \mathbb{R}$.]

4. Let X and Y be independent r.v.'s, with

$$P(X = x) = p_1(1 - p_1)^x, \quad x = 0, 1, 2, \dots, \ 0 < p_1 < 1,$$

$$P(Y = y) = p_2(1 - p_2)^y, \quad y = 0, 1, 2, \dots, \ 0 < p_2 < 1.$$

Derive uniformly most powerful unbiased test of the hypothesis $H_0: p_1 = p_2$ against the alternative $H_1: p_2 > p_1$, in as much detail as possible. (12)

- 5. Let X_1, \dots, X_n be i.i.d. $N(\mu, 1)$ r.v.'s, $n\bar{X} := \sum_{i=1}^n X_i$, $n \geq 1$, and let Φ denote distribution function of N(0, 1) r.v. Consider the problem of testing $H_0: 0 \leq \mu \leq 3$ vs. the alternative $\mu > 3$.
- (a) Show that the test that rejects H_0 for large values of $n^{1/2}(\bar{X}-3)$ has p-value $\hat{p}:=\Phi(-n^{1/2}(\bar{X}-3))$. Determine the distribution of \hat{p} when $\mu=3$, for each n.
- (b) Let $a_n := n/(n+1)$. Suppose μ has a prior distribution N(0,1). Show that the posterior probability of H_0 is

$$\tilde{p} := \Phi\left(\frac{-n^{1/2}(a_n\bar{X} - 3)}{a_n}\right) - \Phi\left(\frac{-n^{1/2}a_n\bar{X}}{a_n}\right).$$

- (c) Determine the limiting distribution of \tilde{p} when $\mu = 3$.
- (d) Compute the limit of \tilde{p}/\hat{p} , in probability, as $n \to \infty$, when $\mu > 3$ is fixed and when $\mu = 3 + (a/\sqrt{n}), a > 0$.
- 6. Let (X,Y) be a bivariate random vector with distribution function H on \mathbb{R}^2 . Let F and G denote marginal distribution functions of X and Y, respectively. Assume $E|X|^2 + E|Y|^2 < \infty$. Let (X_i,Y_i) , i=1,2 be two independent copies of (X,Y).

(a) Show that
$$Cov(X, Y)$$
 exists and (2)

$$2Cov(X,Y) = E\{(X_1 - X_2)(Y_1 - Y_2)\}.$$

- (b) Show that $H(x,y) F(x)G(y) \ge 0$, for all $(x,y) \in \mathbb{R}^2$, implies that $Cov(X,Y) \ge 0$. (9)
- 7. Let x_i , $1 \le i \le n$, be known constants with $\sum_{i=1}^n (x_i \bar{x})^2 > 0$, $\bar{x} := \sum_{i=1}^n x_i/n$. Consider the observations $(Y_{i1}, Y_{i2}), i = 1, 2, \dots, n$, obtained from the linear regression model

$$Y_{i1} = \alpha_1 + \beta_1 x_i + \varepsilon_{i1}, \quad Y_{i2} = \alpha_2 + \beta_2 x_i + \varepsilon_{i2},$$

where ε_{ij} , $i = 1, 2, \dots, n$, j = 1, 2, are i.i.d. $N(0, \sigma^2)$ r.v.'s.

- (i) Derive the least squares test of the hypothesis that the two regression lines are equal, i.e., $H_0: \alpha_1 = \alpha_2$, $\beta_1 = \beta_2$, vs. the alternative that H_0 is not true, describing the null distribution of the test statistic obtained in the fullest possible detail. (6)
- (ii) For an $0 < \alpha < 1$, derive the Scheffe's 1α level confidence sets for the parameter vector $(\alpha_1 \alpha_2, \beta_1 \beta_2)$. (6)
- 8. Let m and k be known positive integer, Z_i , $i=1,2,\cdots,n$, be independent k-dimensional random vectors, and let A_1,\cdots,A_n be fixed $m\times k$ real matrices. Consider the group transformation $g_i(Z_i)=Z_i+b_i,\ i=1,\cdots,n$ with b_i 's $k\times 1$ vectors such that $\sum_{i=1}^n A_ib_i=0$.
- (a) Find a maximal invariant statistic under the above transformation group. (4)
- (b) Let f be a Lebesgue density on \mathbb{R} and

$$\mu := \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} := \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} \gamma \\ \theta \end{pmatrix}, \quad \gamma, \, \theta \in \mathbb{R}.$$

Suppose in part (a), k=2 and $Z_i:=(X_i,Y_i)'$ has the bivariate density

$$f(x-\mu_1)f(y-\mu_2), \quad \text{for some } \gamma, \theta \in \mathbb{R}, \text{ and } \forall (x,y) \in \mathbb{R}^2.$$

Let $0 < \alpha < 1$. Assume n > 1. Derive the most powerful invariant size α test of the hypothesis (10)

$$H_0: f(x) = rac{1}{\sqrt{2\pi}}e^{-x^2/2}, \; x \in \mathbb{R}, \quad ext{vs.} \quad H_1: f(x) = rac{1}{\pi}rac{1}{1+x^2}, \; x \in \mathbb{R},$$

under the condition that $A_i \equiv A$, $b_i \equiv b$ in the above transformation group. Also describe the null distribution of the test statistic obtained.