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Heterogeneous large-scale data

Big Data Big Data Landscape
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the talk is not (yet) on “really big data”

but we will take advantage of heterogeneity
often arising with large-scale data where
i.i.d./homogeneity assumption is not appropriate



Two seemingly different problems

1. prediction in heterogeneous environments
2. causal inference = intervention analysis



Two seemingly different problems

1. prediction in heterogeneous environments
2. causal inference = intervention analysis

but they are very closely related!



1. Prediction in heterogeneous environments
data from different known observed
environments/experimental conditions/sub-populations e € £:

(X%, Y®)~F® ec€&
with response variables Y€ and predictor variables X¢

examples:
e data from 10 different countries
e data from economic scenarios (from different “time blocks”)

immigration in the UK
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consider “all possible” but
mostly non-observed environments F O &

observed
examples for F:

¢ 10 countries and many other than the 10 countries
e the presence and the unseen future with new scenarios

immigration in the UK

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

“*the unseen future
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problem:
predict Y given X such that the prediction works well (is
“robust”) for “all possible” environments e € F

based on data from much fewer environments from £
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problem:

predict Y given X such that the prediction works well (is
“robust”) for “all possible” environments e € F

based on data from much fewer environments from £

we need a model, of course! (one which is good/“justifiable”)

and we will illustrate “validated” examples from genomics
with respect to predicting values in new unseen environments



2. causal inference = intervention analysis

in genomics (for yeast or plants):
if we would make an intervention at a single (or many) gene(s),
what would be its (their) effect on a response of interest?

want to infer/predict such effects without actually doing the
intervention

e.g. from observational data (cf. Pearl; Spirtes, Scheines & Glymour)
(from observations of a “steady-state system”)

or from observational and interventional (heterogeneous) data
~» want to predict unseen interventions



2. causal inference = intervention analysis

in genomics (for yeast or plants):
if we would make an intervention at a single (or many) gene(s),
what would be its (their) effect on a response of interest?

want to infer/predict such effects without actually doing the
intervention

e.g. from observational data (cf. Pearl; Spirtes, Scheines & Glymour)
(from observations of a “steady-state system”)

or from observational and interventional (heterogeneous) data
~» want to predict unseen interventions

we need a model, of course! (one which is good/“justifiable”)



Example: Policy making

James Heckman: Nobel Prize Economics 2000

e.g.:
“Pritzker Consortium on Early Childhood Development identifies when and how child intervention programs can be
most influential”

~ predict what happens if child would be assigned to an educational program “X” for which we have no data

THE CHILDREN'S INITIATIVE




Example: Flowering of Arabidopsis Thaliana

phenotype/response variable of interest:
Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21'326 genes

goal: based on observational/interventional data,
predict the effect of knocking-out a new single gene on the
response variable Y

and we can validate the prediction by doing randomized
follow-up experiments afterwards
(Stekhoven, Moraes, Sveinbjérnsson, Hennig, Maathuis & PB, 2012)



in both
» prediction in heterogeneous environments
» causal inference
~ prediction for new unseen scenarios/environments

~ “equivalence” of problems!



REG ON

validated with follow-up {on
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REG ON

because: for

p
Y = Zﬁ/X(/) +e€
j=1

Bj measures effect of XU) on Y when
keeping all other variables {X(*); k £ j} fixed

but when doing an intervention at a gene ~» some/many other
genes might change as well and cannot be kept fixed



Causality, Graphical and Structural equation models
late 1980s: Pearl; Spirtes, Glymour, Scheines; Dawid; Lauritzen;. ..

© i‘é:'

» direct causal variables for Y: the parental variables of Y

“definition” of causality:

» total causal effect of XU) on Y:
intervention or “treatment” effect of X¥) on Y
do(XY = x): the effect on Y when setting XU = x

~» sum up directed paths (“edge weights”) from X% to Y



variables Xy, ..., Xpy1 (Xpy1 = Y is the response of interest)

directed acyclic graph (DAG) D° encoding the true underlying
causal influence diagram

structural equation model (SEM):

(P“DO j),j:1,...,p—|—1,

£1,...,€p+1 independent
eg.linear X« > BiXc+eg, j=1,....p+1
kepaDO(j)

causal variables for Y = X, 1: S® = {k; k € papo(Y)}



severe issues of identifiability !

given distribution(s) generating the data: typically cannot
identify the true DAG D° and the parental set S°
examples:

(X, Y) ~ N2(0, %)
& MY XA ©

X causes Y Y causes X

An equivalence class can be uniguely represented by a completed
partially directed acyclic graph (CPDAG)

CPDAG DAG 1 DAG2 DAGS3 G
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agenda for estimation: based on observ. or observ./interv. data
(Chickering, 2002; Shimizu, 2005; Kalisch & PB, 2007;...)
1. estimate the Markov equivalence class of DAGs
severe issues of identifiability !

2. derive causal variables: the ones which are causal in all
DAGs from; derive bounds for causal effects (Maathuis,
Kalisch & PB, 2009)



drawbacks:
» rather unstable and “doesn’t really work”
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#INTERVENTION PREDICTIONS

| : invariant prediction method
: invariant prediction with some hidden variables

» no confidence statements

» is tailored for very specidifc interventions (experimental
conditions) only



goals:

1. construction of confidence statements for causal var. S°
(without knowing the structure of the underlying graph)

2. deal with “unspecified” heterogeneous/interv. data
N—_———

general




goals:

1. construction of confidence statements for causal var. S°
(without knowing the structure of the underlying graph)

2. deal with “unspecified” heterogeneous/interv. data
N—_———

general

NOT or AVOIDING
— graphical model fitting
— potential outcome models

~» Neyman’s master thesis 1923!



Causal inference using invariant prediction

Peters, PB and Meinshausen (2016)

a main message:

causal structure/components remain the same
for different sub-populations



Causal inference using invariant prediction

Peters, PB and Meinshausen (2016)
a main message:

causal structure/components remain the same
for different sub-populations

while the non-causal components can change across
sub-populations

thus:
~ look for “stability” of structures among
different sub-populations



Heterogeneous data

(X®, Y®)~F° ec &
~—

space of observed experimental conditions

example 1: £ = {1,2} encoding observational (1) and all
potentially unspecific interventional data (2)

example 2: £ = {1,2} encoding observational data (1) and
(repeated) data from one specific intervention (2)

example 3: £ ={1,2,3} ...or& ={1,2,3,...,26} ...

do not need data from carefully
designed (randomized) experiments



Invariance Assumption (w.r.t. £)
there exists S* C {1,..., p} such that:

L(Y®|XE.) is invariant across e € £

for linear model setting:
there exists a vector y* with supp(7*) = S* = {j; 7j # 0}
such that:

Vee&: Y = X" +¢%, e L XS
€€ ~ F. the same for all e
X€ has an arbitrary distribution, different across e



Invariance Assumption (w.r.t. £)
there exists S* C {1,..., p} such that:

L(Y®|XE.) is invariant across e € £

for linear model setting:
there exists a vector y* with supp(7*) = S* = {j; 7j # 0}
such that:
Vee & Y = X" +¢%, e L XS
€€ ~ F. the same for all e
X€ has an arbitrary distribution, different across e

~*, S* is interesting in its own right!

namely the parameter and structure which remain invariant
across experimental settings, or across heterogeneous groups



Invariance Assumption w.r.t. F

where F D £
~~
much larger

now: the set S* and corresponding regression parameter v* are
for a much larger class of environments than what we observe!

N

~*, S* is even more interesting in its own right!

since it says something about unseen new environments!



Link to causality
Invariance Assumption w.r.t. any space of environments G:

there exists S* such that £(Y®|Xg.) is invariant across e € G



Link to causality
Invariance Assumption w.r.t. any space of environments G:

there exists S* such that £(Y®|Xg.) is invariant across e € G

Proposition (Peters, PB & Meinshausen, 2016)
Assume structrual equation model (SEM)

Xi < £ (Xoa1), €1),
Xo 13 (Xpu(z), €2),
Y + fy(XpJ(y )
Assume that G does not affect the structural equation for Y:
e.g. linear SEM: Y®¢ « Byk Xg+ &5
9 Z DYk, Ak Y
kepa(Y) ve ~F.Yeeg
Then: S° = pa(Y) satisfies the Invariance Assumption w.r.t. G
N —

causal var.

cantake G = £, G = F = all environments, ...



the causal variables lead to invariance f conditional distr)
w.r.t. “all” possible environments



the causal variables lead to invariance i condgitionai distr)
w.r.t. “all” possible environments

the Proposition has been known for a long time in causality
(Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; ... Dawid and Didelez, 2010)

causal structure (parental variables) = invariance

the new thing (surprisingly!) will be the reverse relation:

causal structure (parental variables) < invariance



invariance — an important mathematical and scientific concept

QX




recap: main assumptions implying that
the causal variables lead to invariance

» a structural equation model
» & (or F O €) does not affect structural equation for Y

this assumption holds for example for:
» do-intervention (Pearl) at variables different than Y

udea Pearl

K
[

» noise (or “soft”) intervention (Eberhardt & Scheines, 2007)
at variables different than Y



Invariance Assumption : plausible to hold with real data

two-dimensional conditional distributions of observational (blue)
and interventional (orange) data
(no intervention at displayed variables X, Y)

seemingly .
no invariance
of conditional d. ¥
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A procedure for inferring S°: population case

require and exploit the Invariance Assumption (w.r.t. &)
L(Y®|XS.) the same across e € £
for linear model: consider hypothesis

Hos(€) :  there exists v with supp(y) = S and

there exists F. suchthatvVee & :

Y€ = Xy 4 ¢ % L Xg, €® ~ F. the same for all e
i.e. Hy s(&€) holds « Invariance Assumption holds for set S

and there might be many such S...



identifiable causal variables/predictors under &:

is defined as the set S(&), where

S€) =\ S; Hy.s(€) holds }

Invariance Assumption holds for S

the intersection of all sets S where Inv. Ass. holds



identifiable causal variables/predictors under &:

is defined as the set S(&), where

S€) =\ S; Hy.s(€) holds }

Invariance Assumption holds for S

the intersection of all sets S where Inv. Ass. holds
for any S* satisfying the Invariance Assumption we have:
S(E)Cc S

and this is key to obtain confidence statements for identifiable
causal variables



we have by definition:

S(E) M as&E N

with
» more interventions
» more “heterogeneity”
» more “diversity in complex data”
we can identify more causal variables



question: when is S(&) = S° ?

answer not of primary importance
(see later)



Theorem (Peters, PB and Meinshausen, 2016)

S(€) = 8% = (parental set of Y in the causal DAG)

if there is:
» a single do-intervention for each variable other than Y and |€| = p
> a single noise intervention for each variable other than Y and |£| = p
> a simultaneous noise intervention and |£| = 2

the conditions can be relaxed such that it is not necessary to intervene at all
the variables



Statistical confidence sets for causal predictors

“the finite sample version of S(&) = (g{S; Hy s(€) is true}”

for“any” S C {1,...,p}:
test whether H, s(€) is accepted or rejected

S(&) = ("){Ho,s accepted at level a}
s



for Hy s(&):
test constancy of regression param. and of residual error distr.
across ee€ &

weaken this Hy s(€):
test constancy of regression param. and of standard deviation
of residual error across e € £

known since a long time how to do this:
assume Gaussian errors )
~ an exact test with an F-distribution under Hy 5(€)



5(&) = ({{Fo,s accepted at level o}
s

for some significance level 0 < o < 1
no multiple testing adjustment is needed!

method is called: ICP = Invariant Causal Prediction



5(&) = ({{Fo,s accepted at level o}
s

for some significance level 0 < o < 1
no multiple testing adjustment is needed!

method is called: ICP = Invariant Causal Prediction

going through all sets S?



going through all sets S? in the worst case: yes

1. start with S = : if Ho y(€) accepted — S(€) =0

2. consider small sets S of cardinality 1,2,. ..
and construct corresponding intersections S with
previously considered accepted sets S (Hp s(£) accepted)

for S with Hj s accepted :
Sﬁ — Sm NS

if intersection S, =0 = S(&) =0
if not:

discard all S with S D S,

and continue with the remaining sets

3. for large p:
restrict search space by variables from Lasso regression;
need a faithfulness assumption (and sparsity and assumptions
on X¢ for justification)



Theorem (Peters, PB and Meinshausen, 2016)

assume: linear model, Gaussian errors
£ does not affect structural equation for Y

Then:

P[5(€) € 8% > 1 — o : confidence w.r.t. true causal var.

“on the safe side” (conservative)



Theorem (Peters, PB and Meinshausen, 2016)

assume: linear model, Gaussian errors
£ does not affect structural equation for Y

Then:

P[5(£) € 8% > 1 — o : confidence w.r.t. true causal var.

“on the safe side” (conservative)

we do not need to care about identifiability: if the effect is not
identifiable, the method will not wrongly claim an effect



“the first” result on

frequentist statistical confidence for potentially non-identifiable
causal predictors when structure is unknown

(route via graphical modeling for confidence sets seems awkward)

leading to (hopefully) more
reliable causal inferential statements



how do we know whether
£ is not affecting structural equation for Y?



how do we know whether
£ is not affecting structural equation for Y?

if £ does affect structural equation for Y

a4
“robustness” of our procedure

— no causal statements
— no false positives
— conservative, but on the safe side



Empirical results: simulations
100 different scenarios, 1000 data sets per scenario:

€] = 2, Nops = Nintery € {100, ...,500}, p € {5,...,40}
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Single gene deletion experiments in yeast

p =6170 genes
response of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
response of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of unseen/new single gene deletions on
all other genes
that is: make predictions for

new observations from new probability distributions



collaborators:

Frank Holstege, Patrick Kemmeren et al. (Utrecht)

data from modern technology

Kemmeren,

..., and Holstege (Cell, 2014)




Kemmeren et al. (2014):
genome-wide mRNA expressions in yeast: p = 6170 genes

> nops = 160 “observational” samples of wild-types

> niny = 1479 “interventional” samples
each of them corresponds to a single gene deletion strain

for our method: we use |£| = 2 (observational and
interventional data)

training-test data splitting:
e training set: all observational and 2/3 of interventional data
o test set: other 1/3 of gene deletion interventions
predicted effects of these interventions are validated
e repeat this for the three blocks of interventional test data

multiplicity adjustment:
since ICP is used 6170 times (once for every response var.) we
use coverage 1 — «/6170 with o = 0.05



Results for inferring causal variables

8 genes are significant (« = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)

not many findings...
but we use a stringent criterion with Bonferroni corrected
«/6170 = 0.05/6170 to control the familywise error rate

and ICP might be conservative (as discussed before)



8 genes are significant (o« = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)

SIE = the observed response value associated to an
intervention is in the 1%- or 99% tail of the observational data

interventional test data point o interventional test data point
(intervention on gene 5954) (intervention on gene 3672)

oo g O -
§ el 3
% T % of @€
[0 Q [O]
>
£ =
>
5 ? =
2 Lo
3
& -
I!I) i
5 4 3 2 4 1 3 2 4 0 1 2
ACTIVITY GENE 5954 ACTIVITY GENE 3672

~» a very stringent conservative definition of a true positive
intervention effect



8 genes are significant (o = 0.05 level) causal variables

method | invar.pred. | GIES | PC-IDA | marg.corr. | rand.guess.

no. true pos.
(out of 8)

*: quantiles for selecting true positives among 7 random draws
2 (95%), 3 (99%)

~» our invariant prediction method has most power !
and it should exhibit control against false positive selections



PERFECT
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interval)

# STRONG INTERVENTION EFFECTS

# INTERVENTION PREDICTIONS

| : invariant prediction method
H: invariant prediction with some hidden variables



Validation (Meinshausen, Hauser, Mooij, Peters, Versteeg & PB, 2016)
with intervention experiments: strong intervention effect (SIE)
with yeastgenome . org database: scores A-F

rank cause effect SE A B C D E F
1 YMR104C YMR103C v

2 YPL273W YMR321C v

3 YCLO40W YCLO42W v

4 YLLO19C YLLO20C v

5 YMR186W YPL240C v v v vV v
6 YDRO74W YBR126C v v v v v Y
7 YMR173W  YMR173W-A

8 YGR162W YGR264C

9 YOR027W YJL077C v

10 YJL115W YLR170C
11 YOR153W YDRO11W v v
12 YLR270W YLR345W
13 YOR153W YBLOOSW
14 YJL141C YNR007C
15 YALO59W YPL211W
16 YLR263W YKLO98W
17 YGR271C-A  YDR339C
18 YLLO19C YGR130C
19 YCLO40W YML100W
20 YMR310C YOR224C

SIE: correctly predicting a strong intervention effect which is in
the 1%- or 99% tail of the observational data



Robustness

remember:

» if model is not correct exhibiting e.g. nonlinearities
~ loss of power, but controlling false positives is still OK

» if Invariance Assumption does not hold
~ loss of power, but controlling false positives is still OK

» hidden variables
~ the method might pick up ancestors of Y

s TN
rH)
/
/\»/\
N

e.g. X2 which still exhibits a total intervention/causal effect
(and hence is interesting for the gene perturbation
experiments)




Flow cytometry data (Sachs et al., 2005)

» p = 11 abundances of chemical reagents

» 8 different environments (not “well-defined” interventions)
(one of them observational; 7 different reagents added)

» each environment contains ne ~ 700 — 1’000 samples

goal:
recover network of causal relations (linear SEM)

approach: “pairwise” invariant causal prediction
(one variable the response Y'; the other 10 the covariates X;
do this 11 times with every variable once the response)



blue edges: only invariant causal prediction approach (ICP)
red: only ICP allowing hidden variables and feedback
purple: both ICP with and without hidden variables

solid: all relations that have been reported in literature
broken: new findings not reported in the literature

~» reasonable consensus with existing results

but no real ground-truth available
serves as an illustration that we can work with “vaguely defined
interventions”



Concluding thoughts

generalize Invariance Assumption and statistical testing to
nonparametric/nonlinear models
in particular also additive models

Vec&: Y= f*(XS*) e, e~ F., 1 Xs-
Veec&: Y= f(X)+e° ®~F., e L Xs
jeS*

the statistical significance testing becomes more difficult
improved identifiability with nonlinear SEMs (Mooij et al., 2009)



provocative next step:
how about using “Big Data” when £ is unknown?

MY BIG DATA
GGE!

IS BIGGER
THAN YOURS!

that is: learn £ from data

~» partition £ to maximize the number of confident detections
(wrong partitions will not destroy type | error control)
e need to adjust for searching for best partition
e much easier for (time-ordered) data
~» some kind of change point/segmentation problem
(work in progress by Pfister & PB)



further issues:

» feedback loops in causal influence diagram
(Rothenh&usler, Heinze, Peters & Meinshausen, 2015)

» hidden variables
(Rothenhéusler, Heinze, Peters & Meinshausen, 2015)
» dynamic processes (with applications in economics,
finance, neuroscience,...)



causal components remain the same for
different sub-populations or experimental settings

~» useful for

» causal inference with confidence statements
(as illustrated in this talk)

» prediction in heterogeneous environments (in progress)

~» exploit the power of heterogeneity in complex data!



Thank you!

Software
R-package: pcalg

(Kalisch, Machler, Colombo, Maathuis & PB, 2010-2015)

R-package: InvariantCausalPrediction (Meinshausen, 2014)
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