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Abstract

Gene-environment (G×E) interaction plays a pivotal role in understanding the genetic basis

of complex disease. When environment factors are measured in a continuous scale, one can

assess the genetic sensitivity over different environmental conditions on a disease phenotype.

Motivated by the increasing awareness of the power of gene set based association analysis

over single variant based approach, we proposed an additive varying-coefficient model to

jointly model variants in a genetic system. The model allows us to examine how variants in

a set are mediated by one or multiple environment factors to affect a disease phenotype. We

approached the problem from a high dimensional variable selection perspective. In particu-

lar, we can select variants with varying, constant and zero coefficients, which correspond to

cases of G×E interaction, no G×E interaction and no genetic effect, respectively. The proce-

dure was implemented through a two stage iterative estimation algorithm via the Smoothly

Clipped Absolute Deviation (SCAD) penalty function. Under certain regularity conditions,

we established the consistency property in variable selection as well as effect separation of

the two stage iterative estimators, and showed the optimal convergence rates of the estimates

for varying effects. In addition, we showed that the estimate of non-zero constant coefficients

enjoy the oracle property. The utility of our procedure was demonstrated through simulation

studies and real data analysis.

Key words: Nonlinear gene-environment interaction; SCAD penalty; Local quadratic ap-

proximation; Varying-coefficient model
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1 Introduction

Human complex diseases are not only determined by genetic variants, but also affected by

the environmental factors, as well as the interplay between them. Gene expression changes

under different environmental conditions reveals the interaction between genes and environ-

ment. The expression changes are less likely due to the change of gene sequence itself, but

rather due to the structural changes such as DNA methylation or histone modification which

consequently play a regulatory rule to moderate gene expressions. Such epigenetic changes

has been increasing recognized as the epigenetic basis of gene-environment (G×E) interac-

tion (Liu et al. 2008; ). Identification of G×E interaction could shed novel insights into the

phenotypic plasticity of complex disease phenotypes (Feinberg 2004).

In a typical G×E interaction study, the environmental factor can be either discrete or

continuous. For example, smoking can be a discrete variable when evaluating the risk of

asthma. When environmental variables are measured in a continuous scale, a more clear

picture of the interaction can be assessed since the varying patterns of genetic effects re-

sponsive to environmental changes can be traced, leading to a better understanding of the

genetic heterogeneity under different environmental stimuli (Ma et al. 2011; Wu and Cui,

2013). As illustrated in Wu and Cui (2013), one can assess the nonlinear G×E interaction

when an environment factor is measured in a continuous scale. For example, individual obese

condition can be a factor when evaluating the risk of hypertension. One can assess the non-

linear effect of a genetic factor on the risk of hypertension considering the heterogeneity of

individual obese conditions in a population, leading to a better understanding of the disease

heterogeneity.

When assessing G×E interactions, investigators are predominantly focused on the single

variant based analysis, such as the parametric methods in Guo [1], semi-parametric methods

in Chatterjee et al [4] and Maity et al [5], and non-parametric methods in Ma et al [2] and Wu

and Cui [3]. Recently, there is a large wave of genetic association studies focusing on a set of

variants, namely the set-based association studies, for example, the gene-centric analysis in

Cui et al [6], the gene-set analysis in Schaid et al [9] and Efron and Tibshirani [8], and the

pathway-based analysis in Wang et al. (2007). By assessing the joint function of multiple
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variants in a set, one can obtain better interpretation of the disease signals and gain novel

insight into the disease etiology. Motivated by the set-based association studies, we propose

a set-based framework to investigate how variants in a gene-set mediated by one or multiple

environment factors to affect the disease responses. This framework could shed novel insight

into the elucidation of the regulation mechanism of a genetic set (e.g., a pathway), triggered

by environment factors.

In a typical set-based association study, the number of variants p within a genetic sys-

tem could be large, which makes the regular regression fail, especially when p is close or

larger than the sample size n. The problem can be approached from the perspective of

high dimensional variable selection. In this work, we extend our previous work on nonlinear

gene-environment interaction study from a single variant based analysis to a multiple variant

based analysis under a penalized regression framework. We include variants that belongs to

a particular gene-set or pathway which potentially interact with one or multiple environment

factors through an additive varying-coefficient model. We propose to select genetic variants

with coefficient functions that are varying, non-zero constant and zero which corresponds to

cases with G×E interactions, no G×E interactions and no genetic effects, respectively. Our

approach enjoys the power and merits of high-dimensional variable selection by simultane-

ously fitting all the variants in a genetic system into a regression model, therefore avoids the

limitation of multiple testing corrections, especially when the data dimension is large.

This paper is organized as follows. In Section 2, we describe the penalized least square

estimation procedure via B-spline basis expansion and Smoothly Clipped Absolute Devia-

tion (SCAD) penalty, as well as the computational algorithms. In Section 3, we present

the theoretical results including consistency in variable selection and show the optimal con-

vergence rates of the estimates of varying effect. We show that the estimates of non-zero

constant coefficients enjoy the oracle property, that is, the asymptotic distribution of the

non-zero constant coefficient function is the same as that when the true model is known in

priori. The merit of the proposed approaches is demonstrated through extensive simulation

studies in Section 4 and real data analysis in Section 5. The technical proofs are relegated

to Appendix.
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2 Statistical Method

2.1 Additive varying-coefficient model with SCAD penalty

Throughout this paper, we assume an environment variable (Z) is continuously measured

through which we can model the nonlinear interaction effect. Readers are referred to the

work of Ma et al. (2011) and Wu and Cui (2013) for the motivation of modeling nonlinear

interactions. Let (Xi, Yi, Zi), i = 1, . . . , n be independent and identically distributed (i.i.d.)

random vectors, then the varying coefficient (VC) model, proposed by Hastie and Tibshirani

[11], has the form

Yi =
d∑

j=0

βj(Zi)Xij + εi (1)

where Xij is the jth component of (d+1)-dimensional vector Xi with the first component Xi0

being 1, βj(·)’s are unknown varying-coefficient functions, Zi’s are the scalar index variable,

and εi is the random error such that E(ε|X,Z) = 0 and V ar(ε|X,Z) = σ2 < ∞. In the

model, we assume there are total d genetic variants which are moderated by a common

environment factor Z.

The smooth functions {βj(·)}dj=0 in (1) can be approximated by polynomial splines. With-

out loss of generality, suppose that Z ∈ [0, 1]. Let wk be a partition of the interval [0,1],

with kn uniform interior knots

wk = {0 = wk,0 < wk,1 < . . . < wk,kn < wk,kn+1 = 1}

Let Fn be a collection of functions on [0,1] satisfying: (1) the function is a polyno-

mial of degree p or less on subintervals Is = [wk,s, wk,s+1), s = 0, . . . , Nn − 1 and INn =

[wj,Nn , wj,Nn+1); and (2) the functions are p− 1 times continuous differentiable on [0,1]. Let

B̄(·) = {B̄jl(·)}
Lj

l=1 be a set of normalized B spline basis of Fn. Then for j = 0, . . . , d, the VC

functions can be approximated by basis functions βj(Z) ≈
∑Lj

l=1 γ̄jlB̄jl(Z), where Lj is the

number of basis functions in approximating the functions βj(Z). By changing of equivalent

basis, the basis expansion can be reexpressed as

βj(·) ≈
Lj∑
l=1

γjlBjl(·)
.
= γj1 + B̃T

j (·)γj,∗
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where the spline coefficient vector γj
.
= (γj,1,γ

T
j∗)

T , and B̃j(·) = (Bj2(·), . . . , BjLj
(·))T ; γj,1

and γj∗ correspond to the constant and varying part of the coefficient function, respectively.

We treat γj∗ as a group. If ∥γj∗∥2=0, then the jth predictor only has a non-zero constant

effect and moreover, if γj,1=0, then the predictor is redundant.

To carry out variable selection separating the varying, non-zero constant, and zero effects,

we minimize the penalized least square function,

Q(γ) =
1

n

n∑
i=1

[
Yi −

d∑
j=0

L∑
l=1

γjlXijBjl(Zi)

]2

+
d∑

j=1

pλ1(∥γj∗∥2)

+
d∑

j=1

pλ2(|γj1|)I(∥γj∗∥2 = 0)

(2)

where λ1 and λ2 are the penalization parameters, pλ(·) is the SCAD penalty function, defined

as

pλ(u) =


λu if 0 ≤ u ≤ λ

− (u2−2aλu+λ2)
2(a−1)

if λ < u ≤ aλ
(a+1)λ2

2
if u > aλ

(3)

In matrix notation, (2) can be reexpressed as,

Q(γ) =(Y −Uγ)T (Y −Uγ) + n
d∑

j=1

pλ1(∥γj∗∥2)

+ n
d∑

j=1

pλ2(|γj1|)I(∥γj∗∥2 = 0)

(4)

where Y = (Y1, . . . , Yn)
T , γ = (γT

0 , . . . ,γ
T
d )

T , andU = (UT
1 , . . . , U

T
n )

T with Ui = (Xi0B(Zi)
T ,

. . . , XidB(Zi)
T )T . The first penalty function in (2) is to separate the varying and constant

effects by penalizing the L2 norm of the varying part of the coefficient functions. The indi-

cator function in the 2nd penalty term helps to penalize the variables of the constant effects.

Both γj,1 and γj,∗ will be shrunk to zero if predictor Xj has no genetic effect.

2.2 Computational Algorithm

The SCAD penalty function is singular at the origin, and do not have continuous 2nd order

derivatives, therefore the regular gradient-based optimization cannot be applied. In this

section, we develop an iterative two-stage algorithm to minimize the penalized loss function
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using local quadratic approximation (LQA) to the SCAD penalty. Following Fan and Li

(2001) [15], in a neighbourhood of a given positive u0 ∈ R+,

pλ(u) ≈ pλ(u0) +
p
′

λ(u0)

2u0

(u2 − u2
0)

where p
′

λ(u) = λ{I(u 6 λ) + (aλ−u)+
(a−1)λ

I(u > λ)} for a=3.7 and u >0. Here we use a similar

quadratic approximation by substituting u with ∥γj∗∥2 and |γk1| in LQA, for k = 0, ..., d.

Therefore we have

pλ(∥γj∗∥2) ≈ pλ(∥γ0
j∗∥2) +

p
′

λ(∥γ0
j∗∥2)

2∥γ0
j∗∥2

(∥γj∗∥22 − ∥γ0
j∗∥22) (5)

and

pλ(|γj,1|) ≈ pλ(|γ0
j,1|) +

p
′

λ(|γ0
j,1|)

2|γ0
j,1|

(|γj,1|2 − |γ0
j,1|2) (6)

The sets of predictors with varying, non-zero constant, and zero effects are termed as V ,

C and Z respectively. Following Tang et al. (2012), we implement the iterative algorithm in

the following two-stage procedure. At stage 1, using the LQA (5) and dropping the irrelevant

constant terms, we minimize

Q1(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ1(γ0)γ (7)

where the initial spline vector γ0 is the unpenalized estimator,Ωλ1(γ0)=diag{Ω0,Ω1, . . . ,Ωd},

where Ω0 = 0L, Ωj =
{
0,

pTλ1(∥γ
0
j∗∥2)

∥γ0
j∗∥2

, . . . ,
pTλ1(∥γ

0
j∗∥2)

∥γ0
j∗∥2

}
L
for j = 1, . . . , d. Hence the estimator

can be iteratively obtained as

γ̂
(m)
VC =

{
UTU +

n

2
Ωλ1(γ̂

(m−1)
VC )

}−1

UTY (8)

Suppose that all the predictors are in V at the beginning. The jth predictor will be moved

to C if ∥γ̂VC
j∗ ∥2=0, otherwise it will stay in V .

At stage 2, using the LQA (6) and dropping the irrelevant constant terms, we minimize

the penalized loss only for the predictors in C:

Q2(γ) = (Y −Uγ)T (Y −Uγ) +
n

2
γTΩλ2(γ̂VC)γ (9)

whereΩλ2(γ̂VC)=diag{Ω0,Ω1, . . . ,Ωd} withΩ0 = 0L,Ωj =
{

pTλ2(|γ̂
VC
j,1 |)

|γ̂VC
j,1 |

I(∥γ̂VC
j∗ ∥L2 = 0), 0, . . . , 0

}
L
.

The estimator can be iteratively obtained as

γ̂
(m)
CZ =

{
UTU +

n

2
Ωλ2(γ̂

(m−1)
CZ )

}−1

UTY (10)
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If the jth predictor is in C, then it will be moved to Z if |γ̂CZ
k,1 |=0, otherwise it stays in C.

We can obtain the estimator γ̂ at convergence from the iterative procedure between the

above two stages, and the estimated coefficient function in (1) as β̂j(z) = BT (z)γ̂j. β̂j(z)

will be a varying function, non-zero constant and zero if γ̂j is in V, C and Z correspondingly.

2.3 Selection of tuning parameters

In this section, we choose the tuning parameters N ,p, λ1 and λ2 from a data driven procedure

where N is the number of interior knots uniformly spaced on [0,1]; p is the degree of the

spline basis. Here p and N control the smoothness of the coefficient functions, while λ1 and

λ2 determine the threshold for variable selection.

We adopt the Schwarz BIC criterion [16] to choose N and p. The range for N is

[max(⌊0.5n
1

(2p+3) ⌋, 1), ⌊1.5n
1

(2p+3) ⌋], where ⌊x⌋ denotes the integer part of x. The optimal

pair of N and p can be achieved via a two-dimensional grid search, according to the follow-

ing criterion:

BICN,p = log(RSSN,p) +
(N + p+ 1)

n
log(n)

where RSSN,p = (Y −Uγ̂)T (Y −Uγ̂)/n, γ̂ = (γ̂T
0 ,0

T , . . . ,0T )T . Conditional on the selected

N and p, λ1 is the minimizer of

BICλ1 = log(RSSλ1
) +

dfλ1

n
log(n)

where RSSλ1 = (Y − Uγ̂λ1)
T (Y − Uγ̂λ1)/n, γ̂λ1 is the minimizer of (7), and dfλ1 is the

effective degree of freedom, defined as the total number of predictors in V and C.

Conditional on γ̂λ1 , λ2 is the minimizer of

BICλ2 = log(RSSλ2
) +

dfλ2

n
log(n)

where RSSλ2 = (Y − Uγ̂λ2)
T (Y − Uγ̂λ2)/n, , γ̂λ2 is the minimizer of (8), and dfλ2 is the

effective degree of freedom, defined similarly as dfλ1 .

2.4 Asymptotic Results

Here we establish the asymptotic properties of the penalized least square estimators. Without

loss of generality, we assume there are v varying coefficients as βj(·) ≡ βj(z),j = 1, . . . , v,
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(c − v) non-zero constant coefficients as βj(·) ≡ βj > 0, j = v + 1, . . . , c, and (d − c) zero

coefficients as βj(·) ≡ 0, j = (c+1), . . . , d. Our asymptotic results are based on the following

assumptions.

(A1) Let Hr be the collection of all functions on the compact support [0,1] such that

the r1th order derivatives of the functions are Hölder of order b with r = r1 + r2, i.e.,

|hr1(z1) − hz1(z2)| ≤ C0|z1 − z2|r2 where 0 ≤ z1, z2 ≤ 1 and C0 is a finite positive constant.

Then βj(z) ∈ Hr, j = 0, 1, . . . , v, for some r ≥ 3
2
.

(A2) The density function of the index variable Z, f(z), is continuous and bounded away

from 0 and infinity on [0, 1], i.e., there exist finite positive constants C1 and C2 such that

C1 ≤ f(z) ≤ C2 for all z ∈ [0, 1].

(A3) Let λ0 ≤ . . . ≤ λd be the eigenvalues of E[XXT |Z = z]. Then λj (k = 0, . . . , d) are

uniformly bounded away from 0 and infinity in probability. In addition, the random design

vector are bounded in probability.

(A4) For wj, the partition of the compact interval [0,1] defined as {0 = wj,0 < wj,1 <

. . . < wj,kn < wj,kn+1 = 1}, j = 0, . . . , d, there exists finite positive constant C3 such that

max(wj,k+1 − wj,k, k = 0, . . . , kn)

min(wj,k+1 − wj,k, k = 0, . . . , kn)
≤ C3

(A5) The tuning parameters satisfy k
1
2
nmax{λ1, λ2} → 0 and n

1
2k−1

n min{λ1, λ2} → ∞.

(A6) maxj{|p
′′

λ1
(|γj∗|)| : γj∗ ̸= 0} → 0 as n → ∞ and maxj{|p

′′

λ2
(|γj1|)| : γj1 ̸= 0} → 0 as

n → ∞

(A7) lim infn→∞lim infθ→0+λ
−1
1 p

′

λ1
(θ) > 0 and lim infn→∞lim infθ→0+λ

−1
2 p

′

λ2
(θ) > 0

The above assumptions are commonly used in literature of polynomial splines and vari-

able selections. The assumption similar to (A1) could be found in Kim [17] and Tang et

al [13]. (A1) guarantees certain degrees of smoothness of the true coefficient function in

order to improve goodness of approximation. (A2) and (A3) are similar to those in Huang

et al [14, 18] and Wang et al [19]. (A4) suggests that the knot sequence is quasi-uniform on

[0,1], by Schumaker [12]. (A5-A7) are conditions on tuning parameters, of which (A5) could

be found in Tang et al [13]; (A6) and (A7) are similar to those in Fan and Li [15] and Wang

et al [19].

Theorem 1. Under the assumptions (A1-A7) and suppose kn = Op

(
n

1
2r+1

)
, then we
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have

(1) β̂j(z) are nonzero constant, j = v + 1, . . . , c and β̂j(z) = 0, j = c + 1, . . . , d, with

probability approaching 1;

(2) ∥β̂j − βj∥L2 = Op(n
−r

2r+1 ), j = 0, . . . , v.

The proof can be found in the Appendix. Denote β∗ = (βv+1, . . . , βc)
T as the vector

of true nonzero constant coefficients. The following theorem establishes the asymptotic

normality of the estimator.

Theorem 2. Under the assumptions (A1-A7) and suppose kn = Op(n
1

2r+1 ), then as

n → ∞,
√
n(β̂∗ − β∗)

d−−−−→ N(0, σ2Σ−1)

where Σ is defined in the Appendix.

3 Simulation

The performance of our proposed approach is demonstrated through extensive simulation

studies. We use the percentage of choosing the true model out of total R replicates, defined

as oracle percentage, to evaluate the accuracy of variable selection by identifying varying,

non-zero constant and zero effects. The precision of estimation is assessed by integrated

mean squared error (IMSE).

Let β̂
(r)
j be the estimator of a nonparametric function βj in the rth (1 6 r 6 R) replica-

tion, and {zm}
ngrid

m=1 be the grid points where β̂
(r)
j is evaluated. We use the integrated mean

squared error (IMSE) of β̂k(x), defined as

IMSE(β̂j(z)) =
1

R

R∑
r=1

1

ngrid

ngrid∑
m=1

{β̂(r)
k (zm)− βj(zm)}2,

to evaluate the estimation accuracy of coefficient βj, and the total integrated mean squared

error (IMSE) of all the d coefficients (TIMSE), defined as TIMSE=
∑d

j=1 β̂j(z), to evaluate

the overall estimation accuracy. Note that IMSE(β̂j) will be reduced to MSE(β̂j) when β̂j

is a constant. The percentage of correctly selecting true functions (defined as the selection

ratio) is used to evaluate the selection performance. Tang et al. (2012) proposed to use
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the adaptive LASSO penalty. We compare the performance of the SCAD penalty with the

ALASSO penalty in the simulation studies.

In example 1, we simulate data from the following VC model,

Yi = β0(Zi) +
d∑

j=1

βj(Zi)Xij + εi

where the index variable Zi ∼Unif(0,1), and the predictors Xi are generated from a multi-

variate normal distribution with mean 0 and Cov(Xj, Xj
′ ) = 0.5|j−j

′ | for 0 ≤ j, j
′ ≤ d. The

performance is evaluated under both d=10 and 50. We let the coefficients of Xj, j = 0, 1, 2

be of varying effects, Xj, j = 3, 4 be of non-zero constant effects, and the rest be zeros.

The random error εi were generated from a standard normal distribution and t distribu-

tion with 3 degrees of freedom respectively. The coefficients were set as: β0(z) = sin(2πz),

β1(z) = 2 − 3 cos{(6z − 5)π/3}, β2(z) = 3(2z − 1)3, β3(z) = 2, β4(z) = 2.5, and βj(z) = 0

for j > 4. The results are listed in Figure 1 and Table 1.

Figure 1 shows the selection ratio for predictors under different error distributions with

SCAD and ALASSO penalty, for the first 5 predictors and false positives for the rest pre-

dictors. The top panel denotes the result for d = 10 and the bottom panel for d = 50.

Under the N(0, 1) error, the performance of the SCAD and ALASSO penalization methods

performs very similarly. However, under the t(3) error scenario, the SCAD penalty is capa-

ble of correctly selecting true effect with high percentages, while maintaining a very small

percentages of choosing false positives, in comparison to the results by ALASSO penalty. In

addition, the SCAD penalty performs relatively stable when the data dimension increases.

The oracle percentage and parameter estimation results are summarized in Table 1. Here

We compute IMSEs for all predictors, including β4 and β5 to reflect the overall estimation

precision. When βj (j = 4, 5) is selected as non-zero constant, IMSE reduces to MSE. The

IMSEs will be calculated if βj (j = 4, 5) is incorrectly identified as varying effect. In all

the cases and under different error distributions, the SCAD approach demonstrates superior

performance over the ALASSO approach. The SCAD approach has better oracle percentage

and smaller IMSE and TIMSE compared to the ALASSO approach.

The above simulation considers continuous predictor variables to compare the perfor-

mance of the SCAD penalty with the ALASSO penalty. Since the paper deals with gene×environment
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Table 1: List of IMSE, TIMSE, and Oracle Percentage under N(0, 1) and t(3) error distri-
butions with SCAD and ALASSO penalty functions.

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

d=10 Oracle Perc. 0.972 0.82 1 0.92 0.315 1

IMSE

β0(u) 0.0214 0.0243 0.0216 0.0398 0.0448 0.1929

β1(u) 0.0902 0.0930 0.0951 0.1166 0.1254 0.3392

β2(u) 0.0365 0.1018 0.0431 0.0764 0.2211 0.5859

β3(u) 0.0122 0.2405 0.0032 0.0753 0.6248 0.1775

β4(u) 0.0045 0.0405 0.0031 0.0183 0.1713 0.1100

TIMSE 0.1648 0.5075 0.1661 0.3282 1.3000 0.4017

d=50 Oracle Perc. 0.945 0.635 1 0.8 0.012 1

IMSE

β0(u) 0.0221 0.0230 0.0219 0.0431 0.0612 0.0426

β1(u) 0.0878 0.0896 0.0927 0.1230 0.1477 0.1253

β2(u) 0.0404 0.0551 0.0428 0.1042 0.0969 0.0751

β3(u) 0.0478 0.0776 0.0027 0.1727 0.0771 0.0105

β4(u) 0.0101 0.0165 0.0029 0.0239 0.0608 0.0083

TIMSE 0.2086 0.2966 0.1631 0.5146 2.4926 0.2619
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Figure 1: The selection ratio under different error distributions for different coefficient functions.

interaction studies, in example 2 we simulate genetic predictors which are discrete in nature.

We consider a quantitative phenotypic measure Y and multiple genetic factors X from a

gene-set or pathway with the following additive VC model,

Yi = β0(Zi) +
d∑

j=1

βj(Zi)Xij + εi

where the SNP Xi was coded with 3 categories (1,0,-1) for genotypes (AA,Aa,aa) respec-

tively. We simulate the SNP genotype data based on the pairwise linkage disequilibrium(LD)

structure. Suppose the two risk alleles A and B of two adjacent SNPs have the minor allele

frequencies (MAFs) pA and pB, respectively, with LD denoted as δ. Then the frequencies of

four haplotypes can be expressed as pab = (1 − pA)(1 − pB) + δ, pAb = pA(1 − pB) − δ,

paB = (1 − pA)pB − δ, and pAB = pApB + δ. Assuming Hardy-Weinberg equilibrium,

the SNP genotype at locus 1 can be simulated assuming a multinomial distribution with

frequencies p2A, 2pA(1 − pA) and (1 − pA)
2 for genotypes AA, Aa, aa, respectively. We

can then simulate genotype for locus 2 based on the conditional probability. For example,
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P (BB|AA) = p2AB/pAA, P (Bb|AA) = pABpAb/pAA and P (bb|AA) = p2ab/pAA. So conditional

on genotype AA at locus 1, the genotype at locus 2 with the largest probability can be

generated. The advantage of this simulation is that we can control the pairwise LD struc-

ture between adjacent SNPs. We assumed pairwise correlation of r = 0.5 which leads to

δ = r
√

(pA(1 − pA)pB(1 − pB)). Detailed information about the simulation can be found

at Cui et al. (2008) [6]. The non-zero coefficient functions are assumed the same as those

given in example 1. We evaluate the performance under n = 500 with 500 replicates. Better

performance results for large samples (n > 500) are observed, hence are omitted to save

space.
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Figure 2: The selection ratio under different error distributions for different coefficient functions
when d = 10.

Figure 2 shows the selection ratio when d=10, under different combinations of MAF and

error distributions. The height of bars represent the selection percentage out of 500 replicates.

Under both error distributions, the SCAD penalty has higher percentage of choosing true

positive SNPs and lower percentages of choosing false positive SNPs in comparison to the

results by the ALASSO penalty. As MAF increases, both approaches lead to higher selection

ratios for true positive SNPs and lower selection ratios for false positive SNPs. The SCAD

13



10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
el

ec
tio

n 
R

at
io

,N
(0

,1
)

p=0.1

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p=0.3

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
p=0.5

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
el

ec
tio

n 
R

at
io

, t
(3

)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 

 
ALASSO
SCAD

Figure 3: The selection ratio under different error distributions for different coefficient functions
when d = 50.

penalty performs much better than the ALASSO penalty under the t(3) errors. A similar

pattern can be observed when d increases to 50 (Fig. 3). The ALASSO penalty gives

constantly high false positive selection ratios for those zero effects under the t(3) errors. The

results demonstrate the stable performance of the SCAD penalty, especially under the t(3)

errors.

Table 2 presents the oracle proportions and estimation results for d=10. We observe

superior performance of the SCAD penalty function over the ALASSO penalty with higher

oracle percentage, smaller IMSE for all the coefficient functions and smaller TIMSE under

different MAFs and error distributions. The performance of the ALASSO penalty is very

unstable under the t(3) error distribution. For example, the TIMSE for SCAD approach is

0.4072 compared to 1.8768 with the ALASSO method under pA = 0.5. A similar pattern can

be observed for the high dimensional case (d=50) in Table 3. Even the IMSE and TIMSE are

increased in all the cases, the SCAD penalty approach still performs better than the ALASSO
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method. As the MAF increases from 0.1 to 0.3, we observe sharply decreased IMSE and

TIMSE. Under the t(3) error distribution, the ALASSO penalty method barely select the

true model with extremely low oracle percentage. In summary, the SCAD penalty function

shows consistently better performance over the ALASSO penalty method and should be

recommended in real data analysis.

Table 2: List of IMSE, TIMSE, and Oracle Percentage under N(0, 1) and t(3) error distri-
butions with SCAD and ALASSO penalty functions when d = 10.

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

pA=0.1 Oracle Perc. 0.976 0.784 1 0.72 0.268 1

β0(u) 0.0863 0.1250 0.0891 0.3078 1.6608 0.2247

β1(u) 0.1611 0.1601 0.1667 0.3285 0.3947 0.3557

IMSE β2(u) 0.1264 0.1358 0.1238 0.4890 1.2776 0.2932

β3(u) 0.0270 0.1183 0.0192 1.3307 2.8155 0.0643

β4(u) 0.0191 0.0433 0.0174 0.2943 2.1633 0.0475

TIMSE 0.4205 0.6106 0.4162 2.9342 9.2044 0.9855

pA=0.3 Oracle Perc. 0.992 0.84 1 0.91 0.33 1

β0(u) 0.0268 0.0297 0.0273 0.0607 0.0975 0.0601

β1(u) 0.1071 0.1074 0.1174 0.1600 0.2065 0.1746

IMSE β2(u) 0.0561 0.0551 0.0637 0.1360 0.1373 0.1320

β3(u) 0.0086 0.0271 0.0084 0.1111 0.1216 0.0237

β4(u) 0.0066 0.0118 0.0065 0.0443 0.1125 0.0222

TIMSE 0.2007 0.2404 0.2233 0.5311 1.3069 0.4126

pA=0.5 Oracle Perc. 0.98 0.846 1 0.894 0.34 1

β0(u) 0.0213 0.0214 0.0214 0.0431 0.0485 0.0451

β1(u) 0.1044 0.1043 0.1106 0.1581 0.1721 0.1725

IMSE β2(u) 0.0497 0.0507 0.0604 0.1101 0.3270 0.1170

β3(u) 0.0077 0.0210 0.0077 0.0439 0.7984 0.0192

β4(u) 0.0063 0.0103 0.0063 0.0240 0.3082 0.0135

TIMSE 0.1895 0.2177 0.2065 0.4072 1.8768 0.3673
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Table 3: List of IMSE, TIMSE, and Oracle Percentage under N(0, 1) and t(3) error distri-
butions with SCAD and ALASSO penalty functions when d = 50.

N(0,1) error t(3) error

SCAD ALASSO Oracle SCAD ALASSO Oracle

pA=0.1 Oracle Perc. 0.908 0.542 1 0.435 0.025 1

β0(u) 0.1929 0.9911 0.0884 0.5687 1.2335 0.2209

β1(u) 0.2064 0.1988 0.1684 0.3851 0.3484 0.3340

IMSE β2(u) 0.5235 0.8382 0.1218 0.6934 0.4432 0.2614

β3(u) 2.0918 2.0345 0.0196 2.4522 0.7892 0.0484

β4(u) 0.3475 0.4798 0.0158 0.5996 0.4671 0.0445

TIMSE 3.3644 4.7239 0.4140 5.7021 8.9145 0.9092

pA=0.3 Oracle Perc. 0.986 0.642 1 0.745 0.06 1

β0(u) 0.0289 0.0732 0.0278 0.0860 0.1970 0.0599

β1(u) 0.1107 0.1124 0.1137 0.1858 0.1974 0.1742

IMSE β2(u) 0.0817 0.1834 0.0646 0.2205 0.1768 0.1301

β3(u) 0.1083 0.4072 0.0075 0.3865 0.2018 0.0254

β4(u) 0.0229 0.0748 0.0068 0.0840 0.1099 0.0220

TIMSE 0.3526 0.9334 0.2204 1.2288 3.3013 0.4117

pA=0.5 Oracle Perc. 0.988 0.706 1 0.8 0.07 1

β0(u) 0.0215 0.0232 0.0216 0.0450 0.0560 0.0434

β1(u) 0.1048 0.1073 0.1123 0.1551 0.1716 0.1608

IMSE β2(u) 0.0608 0.1269 0.0579 0.1754 0.1525 0.1085

β3(u) 0.0470 0.2846 0.0078 0.1681 0.1501 0.0167

β4(u) 0.0120 0.0444 0.0053 0.0480 0.0889 0.0190

TIMSE 0.2461 0.6426 0.2050 0.6492 2.8755 0.3484

4 Real Data Analysis

We applied the method to a real dataset from a study conducted at Department of Obstetrics

and Gynecology at Sotero del Rio Hospital in Puente Alto, Chile. The initial objective of

the study was to pinpoint genetic variants associated with a binary response indicating large

for gestational age (LGA) or small for gestational age (SGA) depending on new born babies’

weight and mothers’ gestational age. After data cleaning by removing SNPs with MAF less

than 0.05 or deviation from Hardy-Weinberg equilibrium, the dataset contains 1536 new

born babies with 189 genes covering 660 single nucleotide polymorphisms (SNPs).

Mother’s body mass index (MBMI), defined as mother’s body mass (kg) divided by the

square of their height (m2), is a measure for mothers’ body shape and obesity condition.
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The environment factor for a baby inside mother’s body is defined through the mother, such

as mother’s obesity condition (MBMI) or age. Due to the complicated interaction between

fetus’ genes and mother’s obesity level, the birth weight might be different for a fetus with the

same gene but under different environment conditions. The phenomenon of regular variation

in birth weight could be explained by corresponding genetic variants and how they respond

to mother’s obesity condition.

Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling

pathway is the main signaling mechanism for a broad range of cytokines and growth factors

in mammals [21]. Total 68 SNPs covering 24 genes in the data were extracted for this

pathway. We applied both the SCAD and ALASSO penalty method to the pathway. Using

the SCAD penalty approach, we selected one SNP (2069762) located in the exon region in

gene Interleukin 9 with constant effect. This means that the SNP is associated with birth

weight but is not sensitive to mother’s BMI condition. All the other SNPs have no effect

and the intercept term shows varying effect. The ALASSO penalty method only identified

the varying-coefficient intercept term and the others were all zero.

To further validate the result, we conducted the single SNP based analysis as shown in

Ma et al [2] by fitting the following model

Y = β0(X) + β1(X)G+ ε

We first tested H0 : β1(X) = β and obtained a p-value of 0.0913. This implies that the

coefficient is a constant. Then we fitted a partial linear model Y = β0(X) + βG+ ε without

G×E interaction, and tested H0 : β = 0 and obtained a p-value of 7.32×10−5, which gives

strong evidence of association of the SNP with birth weight. We did the same analysis for all

other SNPs in the same pathway and found no SNPs with p-value less than 0.001. The single

SNP-based analysis confirms the variable selection result by the SCAD penalty approach.

5 Discussion

The significance of G×E interactions in complex disease traits has stimulated waves of dis-

cussion. A diversity of statistical models have been proposed to assess the gene effect under

different environmental exposures, as reviewed in Cornelis et al [21]. The success of gene set
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based association analysis, as shown in Wang et al [10], Cui et al [6], Wu and Cui [7] and

Schaid et al [9], motivates us to propose a high dimensional variable selection approach to un-

derstand the mechanism of G×E interactions associated with complex diseases. We adopted

a penalized regression method within the VC model framework to investigate how multiple

variants within a genetic system are moderated by environmental factors to influence the

phenotypic response.

In a G×E study, people are typically interested in assessing variants which are sensitive to

environment changes and those that are not. We can determine if a particular genetic variant

is sensitive to environmental stimuli by examining the status of the coefficient function. We

can separate the varying-coefficients and constants through B spline basis expansions under

a penalized framework. The varying coefficients correspond to G×E effects and the constant

effects correspond to no interaction effects. Through another penalty function, we can further

shrink the constant effect into zero if the corresponding SNP has no genetic effect. A two-

stage iterative estimation procedure with double SCAD penalty functions was developed

following Tang et al. (2012) [13]. Asymptotic properties of the two-stage estimator were

established under suitable regularity conditions.

A comprehensive comparison between the SCAD and ALASSO penalty methods was

evaluated. Simulation studies show that the SCAD penalty function performs better than

the ALASSO penalty approach under various settings. In the simulations, the estimation ac-

curacy was evaluated via IMSE for varying coefficients and via MSE for constant coefficients.

In Tang et al [13], MSE was calculated for the predictors with non-zero constant coefficients

when the predictors are corrected identified. This does not reveal the error caused by failure

to classify the coefficient as non-zero constant. Thus, we suggest calculating IMSE for all

the predictors since IMSE reduces to MSE when the coefficient is a constant. This can lead

to a much more accurate assessment on the performance of different methods.

The current work only demonstrates the case with one environment factor. It is broadly

recognized that the etiology of many complex disease is less likely to be affected by one

environment factor, but is rather heterogeneous. When multiple environment factors are

measured, e.g., K1 are continuously distributed (denoted as Z1) and K2 are discrete (denoted
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as Z2), we can extend the current model to a more general case formulated as follows,

Y =
d∑

j=0

{
K1∑
k=1

βkj(Z1) +

K2∑
l=1

αljZ2

}
Xj + ε

This model is called the partial linear varying-coefficient model. The same estimation and

variable selection framework can be applied.

In this study, we implemented the estimation through the LQA method. It is well known

that LQA suffers from the efficiency loss caused by repeated factorizations of large matrices,

especially when the dimension of the predictors gets large. In this case, the LQA method

will greatly limit the power of the framework to dissect G×E interactions. An efficient

alternative is to use the group coordinate descent (GCD) approach. We will investigate this

in our future work to improve the computational efficiency.
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Appendix: Technical Proofs

Useful notations and lemmas

For convenience, the following notations are adopted :

Ȳ = E(Y |X, T ), γ̄ = (UTU)−1UT Ȳ , β̄ = Bγ̄

γ(v) = (γT
0 , . . . ,γ

T
v )

T , γ(c) = (γT
v+1, . . . ,γ

T
c )

T , γ(d) = (γT
v+1,1, . . . , γ

T
d,1)

T ,

γ̃(v) = (γ̃T
0 , . . . , γ̃

T
v )

T , γ̃(c) = (γ̃T
v+1, . . . , γ̃

T
c )

T , γ̃(d) = (γv+1,1, . . . , γd,1)
T ,

Gn = (B(z1), . . . , B(zn))(B(z1), . . . , B(zn)
T , ε = (ε1, . . . , εn)

T

Φn = n−1
∑n

i=1U(v)iU
T
(v)i, Ψn = n−1

∑n
i=1U(v)iU

T
(c)i, Λi = U(c)i −ΨT

nΦ
−1
n U(c)i

We first provide several lemmas to facilitate the proofs of Theorems 1 and 2.

Lemma 1. Under assumptions (A1-A3), there exists finite positive constants C1 and

C2 such that all the eigenvalues of (kn/n)Gn fall between C1 and C2, and therefore, Gn is

invertible.

Lemma 2. Under assumptions (A1-A3), for some finite constant C0, there exists γ̃ =

(γ̃T
0 , . . . , γ̃

T
d )

T satisfying

(1) ∥γ̃j∗∥L2 > C0, j = 0, . . . , v; γ̃j1 = βj, ∥γ̃j∗∥L2 = 0, j = v + 1, . . . , c; γ̃j = 0,

j = c+ 1, . . . , d

(2) supt∈[0,1]|βj(z)−B(z)T γ̃j| = Op(k
−r
n ), j = 0, . . . , d, where γ̃j = (γ̃j,1, γ̃

T
j∗)

T

(3) sup(t,x)∈[0,1]×Rd+1|XTβ(z)−U(X)
′
γ̃| = Op(k

−r
n )

Proofs of Theorem 1.

(A) Proof of Theorem 1(1), part 1

Here we first show β̂j(z) is constant for j = v + 1, . . . , d in probability, which amounts to

demonstrating ∥γ̂vc
j∗∥j = 0, j = v + 1, . . . , d with probability tending to 1, as n → ∞. For

Q1(γ) =
n∑

i=1

(
Yi −UT

i γ
)2

+ n
d∑

j=1

pλ1(∥γj∗∥) (B.1)

let αn = n− 1
2kn + an and γ̂vc = γ̃ + αnδ. We want to show that for any given ε > 0, there

exists a large constant C such that

P
{
inf∥δ∥=CQ1(γ̂

vc) ≥ Q1(γ̃)
}
≥ 1− ε (B.2)
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This suggests that with probability at least 1 − ε there exists a local minimum in the ball

{γ̃ + αnδ : ∥δ∥ ≤ C}. Hence, there exists a local minimizer such that ∥γ̂vc − γ̃∥ = Op(αn).

A direct computation yields

Dn(δ) = Q1(γ̂
vc)−Q1(γ̃)

= −2αnδ
n∑

i=1

[
εi +XT

1 r(zi)
]
UT

i + α2
nδ

2

n∑
i=1

UT
i Ui

+ n
d∑

j=1

[
pλ1(∥γ̂vc

j∗∥)− pλ1(∥γ̃j∗∥)
]

≡ ∆1 +∆2 +∆3

where rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d and r(z) = (r1(z), . . . , rd(z))
T . By the fact

E(εi|U , zi) = 0, we obtain that

1√
n

n∑
i=1

εiU
T
i δ = Op(∥δ∥)

Recall Lemma 1, then
1

n

n∑
i=1

XT
i r(zi)Uδ = Op(k

−r
n ∥δ∥)

Therefore

∆1 = Op(
√
nαn∥δ∥) +Op(nk

−r
n αn∥δ∥) = Op(nk

−r
n αn)∥δ∥

We can also show that ∆2 = Op(nα
2
n)∥δ∥2. Then, by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ∥δ∥ = C. It follows from Taylor expansion that

∆3 ≤ n
d∑

j=1

[
αnp

′

λ1(∥γ̃j∗∥)
γ̃j∗

∥γ̃j∗∥
∥δj∗∥+ α2

np
′′

λ2(∥γ̃j∗∥)∥δj∗∥2(1 + op(1))

]
≤ n

√
dαnfn∥δ∥+ bnα

2
n∥δ∥2

where fn = maxj{|γ̃j∗| : γ̃j∗ ̸= 0}. With assumption (A6), we can prove that ∆2 dominates

∆3 uniformly in ∥δ∥ = C. Therefore, (B.2) holds for sufficiently large C, and we have

∥γ̂vc − γ̃∥ = Op(αn).

In order to prove β̂j(z) = 0 for j = v+1, . . . , d in probability, it is sufficient to demonstrate

that γ̂vc
j∗ = 0, j = v + 1, . . . , d. It follows from the definition that when max(λ1, λ2) → 0,

an = 0 for large n. Then we need to show that with probability approaching 1 as n → ∞,
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for any γ̂vc satisfying ∥γ̂vc − γ̃∥ = Op(n
− 1

2kn) and some small εn = Cn− 1
2kn, we have

∂Q1(γ)

∂γj,∗
< 0, for − εn < γj,∗ < 0, j = v + 1, . . . , d

> 0, for 0 < γj,∗ < εn, j = v + 1, . . . , d

where γj,∗ denotes the individual component of γj∗. It can be shown that,

∂Q1(γ̂
vc)

∂γ̂vc
j,∗

= −2
n∑

i=1

Uij

[
Yi −UT

i γ̂
vc
]
+ np

′

λ1
(|γ̂j,∗|)sgn(γ̂j,∗)

= −2
n∑

i=1

Uij[εi +XT
i r(zi)]− 2

n∑
i=1

UijU
T
i [γ̃ − γ̂vc]

+ np
′

λ1
(|γ̂j,∗|)sgn(γ̂vc

j,∗)

= nλ1

[
Op(λ

−1
1 n

−r+1/2
2r+1 ) + λ−1

1 p
′

λ(|γ̂j,∗|)sgn(γ̂vc
j,∗)

]
By assumption (A5), λ−1

1 n
−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign of

the derivative is completely determined by that of γ̂vc
j,∗. Therefore, γ̂

vc, the minimizer of Q1,

is achieved at γ̂vc
j∗ = 0, j = v+1, . . . , d. This completes the proof of Theorem 1(1), part 1. �

(B) Proof of Theorem 1(1), part 2

Next we establish the consistency of the varying coefficient estimators. Let αn = n− 1
2kn+an,

γ̂(v) = γ̃(v) + αnδv, γ̂(d) = γ̃(d) + αnδd, and δ = (δT
v , δ

T
d )

T

Q2(γ(v),γ(d)) =
n∑

i=1

(
Yi −UT

(v)iγ(v) −UT
(d)iγ(d)

)2
+ n

d∑
j=v+1

pλ2(|γj,1|) (B.3)

We need to show that for any given ε > 0, there exists a large constant Cε such that

P
{
inf∥δ∥=CQ2(γ̂(v), γ̂(d)) ≥ Q2(γ̃(v), γ̃(d))

}
≥ 1− ε (B.4)

which implies that with probability at least 1 − ε there exists a local minimum in the ball

{γ̃(v) + αnδv : ∥δv∥ ≤ C} and {γ̃(d) + αnδd : ∥δd∥ ≤ C}, respectively. Therefore, there exists
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local minimizers such that ∥γ̂(v) − γ̃(v)∥ = Op(αn) and ∥γ̂(d) − γ̃(d)∥ = Op(αn). We have

Dn(δv, δd) = Q2(γ̂(v), γ̂(d))−Q2(γ̃(v), γ̃(d))

= −2αn

n∑
i=1

[
εi +XT

1 R(Zi)
] [

UT
(v)iδ(v) +UT

(d)iδ(d)
]

+ α2
n

n∑
i=1

[
UT

(v)iδ(v) +UT
(d)iδ(d)

]2
+ n

d∑
j=v+1

[pλ2(|γ̂j,1|)− pλ2(|γ̃j,1)|]

≡ ∆1 +∆2 +∆3

where r(z) = (r1(z), . . . , rd(z))
T and rj(z) = B(z)T γ̃j − βj(z), j = 1, . . . , d. Since E(εi|U(v),

U(d), zi) = 0, we have

1√
n

n∑
i=1

εi[U
T
(v)iδ(v) +UT

(d)iδ(d)] = Op(∥δ∥) (B.5)

With Lemma 1 we can show

1

n

n∑
i=1

XT
i r(zi)

[
UT

(v)iδ(v) +UT
(d)iδ(d)

]
= Op

(
k−r
n ∥δ∥

)
Combine the above two equations, we can obtain that

∆1 = Op(n
1
2αn∥δ∥) +Op(nk

−r
n αn∥δ∥) = Op(nk

−r
n αn)∥δ∥

Since ∆2 = Op(nα
2
n)∥δ∥2, it is easy to show that by choosing a sufficiently large C, ∆1 is

dominated by ∆2 uniformly in ∥δ∥ = C. By Taylor expansion,

∆3 ≤ n
d∑

j=v+1

[
αnp

′

λ2(|γ̃j,1|)sgn(γ̃j,1)|δdj|+ α2
np

′′

λ2(|γ̃j,1|)δ2dj(1 + o(1))
]

≤ (p− v)
1
2nαnfn∥δ∥+ bnα

2
n∥δ∥2

where fn = maxj{|γ̃j,1| : γ̃j,1 ̸= 0}. Recall assumption A6, then it follows that, by choosing

an enough large C, ∆2 dominates ∆1 uniformly in ∥δ∥ = C. Consequently (B.4) holds for

sufficiently large C, and we have ∥γ̂v − γ̃v∥ = Op(αn) and ∥γ̂d − γ̃d∥ = Op(αn). By the

definition of γcz, we have γ̂cz
(d) − γ̃(d) = Op(αn). Then for j = 0, . . . , d

∥β̂j(zi)− βj(z)∥2 =
∫ 1

0

[
β̂j(z)− βj(z)

]2
dt

≤
∫ 1

0

[
B(z)T γ̂cz

j (z)−B(z)T γ̃j + rj(z)
]2
dt

=
2

n
(γ̂cz

j − γ̃j)
TGn(γ̂

cz
j − γ̃j) + 2

∫ 1

0

rj(z)
2dt

= ∆1 +∆2
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Recall Lemma 1, 2 and kn = Op

(
n

1
2r+1

)
, we can demonstrate that ∆1 = Op (k

−1
n α2

n), ∆2 =

Op (k
−2r
n ). ∆1 is dominated by ∆2, thus we finish the proof of Theorem 1(1). �

(C) Proof of Theorem 1(2)

To show β̂j(z) = 0 for j = c + 1, . . . , d, it is sufficient to demonstrate that γ̂cz
j,1 = 0, since

the constancy of βj(z), j = v + 1, . . . , d was already established in (A). It follows from the

definition that when max(λ1, λ2) → 0, an = 0 for large n. Then we need to prove that

with probability approaching 1 as n → ∞, for any γ̂(v) and γ̂(d) satisfying ∥γ̂(v) − γ̃(v)∥ =

Op(n
− 1

2kn), and ∥γ̂(d) − γ̃(d)∥ = Op(n
− 1

2kn), as well as some small εn = Cn− 1
2kn, we have

∂Q2(γ(v),γ(d))

∂γj,1
< 0, for − εn < γj,1 < 0, j = c+ 1, . . . , d

> 0, for 0 < γj,1 < εn, j = c+ 1, . . . , d

We can prove that

∂Q2(γ̂(v), γ̂(d))

∂γ̂j,1
= −2

n∑
i=1

U(d)ij

[
Yi −UT

(v)iγ̂(v) −UT
(d)iγ̂(d)

]
+ np

′

λ(|γ̂j,1|)sgn(γ̂j,1)

= −2
n∑

i=1

U(d)ij

[
εi +XT

i r(zi)
]
− 2

n∑
i=1

U(d)ijU
T
(v)i [γ̃v − γ̂v]

− 2
n∑

i=1

U(d)ijU
T
(d)i [γ̃d − γ̂d] + np

′

λ(|γ̂j,1|)sgn(γ̂j,1)

= nλ2

[
Op

(
λ−1
2 n

−r+1/2
2r+1

)
+ λ−1

2 p
′

λ(|γ̂j,1|)sgn(γ̂j,1)
]

By assumption (A5), λ−1
2 n

−r+1/2
2r+1 → 0. Then it follows from assumption (A7) that the sign

of the derivative is completely determined by that of γ̂j,1. Therefore, γ̂cz, the minimizer of

Q2, is achieved at γ̂cz
j,1 = 0, j = c+ 1, . . . , d. This completes the proof of Theorem 1(2). �

Proofs of Theorem 2.

In Theorem 1, we showed that both γ̂j∗ = 0, j = v + 1, . . . , c and γ̂j = 0, j = c + 1, . . . , d,

hold in probability. Then Q2 reduces to

Q2(γ(v),γ(d)) =
n∑

i=1

(
Yi −UT

(v)iγ(v) −UT
(c)iγ(c)

)2
+ n

c∑
j=v+1

pλ2(|γj,1|)

≡ Q2(γ(v),γ(c))

(B.6)
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Since (γ̂(v), γ̂(c)) is the minimal value of Q2(γ(v),γ(c)), we obtain

∂Q2(γ̂(v), γ̂(c))

∂γ̂(v)

= −2
n∑

i=1

U(v)i

[
Yi −UT

(v)iγ̂(v) −UT
(d)iγ̂(d)

]
= 0

∂Q2(γ̂(v), γ̂(c))

∂γ̂(c)

= −2
n∑

i=1

U(c)i

[
Yi −UT

(v)iγ̂(v) −UT
(c)iγ̂(c)

]
+ n

c∑
j=v+1

p
′

λ2(|γ̂j,1|)sgn(γ̂j,1) = 0

(B.7)

By applying Taylor expansion on p
′

λ2(|γ̂j,1|) in (B.7), we have

p
′

λ2(|γ̂j,1|) = p
′

λ2(|γj,1|) + p
′′

λ2(|γj,1|)(γ̂j,1 − γj,1)[1 + op(1)]

By the fact that p
′

λ2(|γ̂j,1|) = 0 as λ2 → 0, and p
′′

λ2(|γj,1|) = op(1) from the assumption, it

follows that
∑c

j=v+1 p
′

λ2(|γ̂j,1|)sgn(γ̂j,1) = op(γ̂j,1 − γj,1) = op(γ̂(c) − γ(c)). Consequently, we

have
1

n

n∑
i=1

U(c)i

[
Yi −UT

(v)iγ̂(v) −UT
(c)iγ̂(c)

]
+ op(γ̂(c) − γ(c)) = 0

Following similar lines of arguments in Theorem 1, we can show

1

n

n∑
i=1

U(c)i

[
εi +XT

i r(zi) +UT
(v)i(γ(v) − γ̂(v)) +UT

(c)i(γ(c) − γ̂(c))
]
+ op(γ̂(c) − γ(c)) = 0 (B.8)

Meanwhile, a straightforward calculation yields

1

n

n∑
i=1

U(v)i

[
εi +XT

i r(ui) +UT
(v)i(γ(v) − γ̂(v)) +UT

(c)i(γ(c) − γ̂(c))
]
= 0 (B.9)

Recall the definition of Φn and Ψn, (B.9) is equivalent to

γ̂(v) − γ(v) = Φ−1
n

{
1

n

n∑
i=1

U(v)i

[
εi +XT

i r(zi)
]
+Ψn[γ(c) − γ̂(c)]

}
(B.10)

Plugging (B.10) into (B.8) results in

1

n

n∑
i=1

U(c)i

{
εi +XT

i r(zi)−UT
(v)iΦ

−1
n

1

n

n∑
i=1

U(v)i

[
εi +XT

i r(zi)
]}

=
1

n

n∑
i=1

U(c)i

[
U(c)i −ΨT

nΦ
−1
n U(v)i

]T
(γ̂(c) − γ(c)) + op(γ̂(c) − γ(c))

(B.11)
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Together with the facts that

1

n

n∑
i=1

ΨT
nΦ

−1
n U(v)i

[
εi +XT

i r(zi)−UT
(v)iΦ

−1
n

1

n

n∑
j=1

U(v)k[εk +XT
k r(tk)]

]
= 0

and
1

n

n∑
i=1

ΨT
nΦ

−1
n U(v)i

[
UT

(c)i −ΨT
nΦ

−1
n U(v)i

]T
= 0

and recall the definition of Λi, a direct computation from (B.11) leads to[
1

n

n∑
i=1

ΛiΛ
T
i + op(1)

]
√
n(γ(c) − γ̂(c)) =

1√
n

n∑
i=1

Λiεi +
1√
n

n∑
i=1

ΛiX
T
i r(zi)

+
1√
n

n∑
i=1

ΛiU
T
(v)iΦ

−1
n

1

n

n∑
j=1

U(v)k

[
εk +XT

k r(tk)
]

= ∆1 +∆2 +∆3

It follows from law of large numbers that

1

n

n∑
i=1

ΛiΛ
T
i

p−−−−→ Σ

where Σ = E
(
U(c)U

T
(c)

)
− E

{
E(ΨT

n |T )E(Φn|T )−1E(Ψn|T )
}
. Consequently,

∆2
d−−−−→ N(0, σ2Σ)

follows from central limit theorem. Because Xi is bounded and ∥r(z)∥ = op(1), we have

∆2 = op(1). Besides,
∑n

i=1 ΛiU
T
(v)i=0 implies that ∆3 = 0. Therefore, by Slutsky theorem,

we complete the proof of Theorem 2. �
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