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NONSINGULAR GROUP ACTIONS AND STATIONARY SaS
RANDOM FIELDS

PARTHANIL ROY

ABSTRACT. This paper deals with measurable stationary symmetric stable
random fields indexed by R% and their relationship with the ergodic theory
of nonsingular R%_actions. Based on the phenomenal work of M),
we establish extensions of some structure results of stationary Sa.S processes
to SaS fields. Depending on the ergodic theoretical nature of the underlying
action, we observe different behaviors of the extremes of the field.

1. INTRODUCTION

X = {X;}iepa is called a symmetric a-stable (SaS) random field if for all
c1,¢a,...,c € Rand tq,ta,...,t € RY, Z]f: c;j Xy, follows a symmetric a-stable
distribution. See i M) for more information on Sa.S
distributions and processes. In this paper we will further assume that {X;},cpa is
measurable and stationary with « € (0, 2).

The Hopf decomposition of nonsingular flows (see (1997)) gives rise
to a useful decomposition of stationary Sa.S processes into two independent com-
ponents; see (@) For a general d > 1, M) established
a similar decomposition of SaS random fields. We show the connection between
this work and the conservative-dissipative decomposition of nonsingular R%-actions.
This connection with ergodic theory enables us to study the rate of growth of the
partial maxima {M,},;~o of the random field X; as ¢ runs over a d-dimensional

hypercube with an edge length 7 increasing to infinity. This is a strai%htforward

extension of the one-dimensional version of this result available in
(2004H). See [Samorodnitsky (2004d) and [Roy and Samorodnitskyl (2008) for the
discrete parameter case.

This paper is organized as follows. In Section[2l we develop the theory of nonsin-
gular R%-actions based on (1997) and Kolodynski an iniski (2003).
We extend some of the structure results of stationary Sa.S processes available in
(1995) to the d > 1 case in Section B and use these results in Section H to
compute the rate of growth of the partial maxima M., of the field as 7 increases to
infinity.
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2. NONSINGULAR R9-ACTIONS

In this section we present the theory of nonsingular R%-actions in parallel to the

corresponding discrete-parameter results discussed in Section 2 in[Roy and Samorodnitskyl

m) Most of the notions discussed in this section can be found in [Aaronsor
(1997) and Krengel (1985).

Let {¢:}scre be a nonsingular R-action on a o-finite standard measure space
(S, S, p). This means that {¢:},;cpe is a collection of measurable transformations

¢t : S — S such that

(i) ¢o(s) =s forall s € S,

(i) Poiu(8) = Py 0 dy(s) for all s € S, u,v € RY,

(iii) (s,u) — ¢y (s) is measurable map,

(iv) g~ po ¢yt for all t € RE.
Define lattices I'), := 1 £74 C R? for all n > 0. The following result is a partial
extension of Corollary 1 6.5 in [Aaronson (m to nonsingular R%actions.

Proposition 2.1. Conservative (resp. dissipative) parts of the actions {¢;}ier,,
n >0, are all equal modulo .

Proof. Let C,, be the conservative part of {¢;}ier, for all n > 0 and A be the

Lebesgue measure on R?. By Theorem A.1 in [Kolodynski and Rosinski (2003),

there exists a strictly positive measurable function (¢, s) +— w;(s) defined on R% x S,
such that for all t € R¢,

d
wi(s) = 2
for p-almost all s € S, and for all t,h € R? and for all s € S
(2.1) Wein(s) = wh(s)we(¢n(s)).
Let, for all n > 0, F, := [0, 5~1), where 0 = (0,0,...,0), 1 = (1,1,...,1) € R?
and for all u = (v, u® ... uw@) v = (W @ . v@) e R [u,0) = {z €

R : u® < 20) < 0@ foralli = 1,2,...,d}. Taking h € L*(S,p), h > 0, and
using (2.1)), we get, for all s € S and for all n > 0,

/Rd ho gy(s)wi()A(dt) = > / h o ¢y ii(s)wyre(s)A(dt)

yely,

- Z hn o ¢7(5)w7(5)5

RASIED
where hy,(s) := [, ho ¢i(s)wi(s)A(dt) € L*(S, p) by Fubini’s theorem. Hence, by

Corollary 2.4 in [Roy and Samorodnitskyl 42098 we get that for all n > 0,
C, = {s es: / ho ¢r(s)we(s)N(dt) = oo} modulo g,
Rd

which completes the proof. O

Motivated by Proposition 2] we define the conservative (resp. dissipative)
part of {¢;};ere to be Co (resp. Dy := S\ Cp). Then from the proof of Propo-
sition 2,11 we get the following continuous parameter analogue of Corollary 2.4 in

n morodnitsky (2008).
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Corollary 2.2. For any h € L*(S,u), h > 0, the conservative part of {¢;}icpa is
given by

C= {s €s: ho ¢i(s)w(s)A(dt) = oo} modulo p,
Rd

where w(s) is as above.

Remark 2.3. Note that Theorem A.1 in [Kolodyiiski and Rosiniski (2003) takes

care of the measurability issues regarding the Radon Nikodym derivatives very
nicely.

As in the discrete case, the action {¢;} is called conservative if S = C and
dissipative if S = D. Recall that nonsingular group actions {¢ };cpae and {9 };epa,
defined on standard measure spaces (S,S, u) and (T,7,v) resp., are equivalent if
there is a Borel isomorphism ® : S — T such that v ~ g0 ®~! and for each ¢t € R?,

Yro® =>oqg,

p-almost surely. In light of Corollary[2.2] we can rephrase Theorem 2.2 in [Rosinski
) to obtain Krengel’s structure theorem (see [Krengel (1969)) for dissipative
nonsingular R%-actions.

Corollary 2.4 (Rosinski (2000)). Let {¢:} be a nonsingular Re-action on a o-
finite standard measure space (S, S, ). Then {¢:} is dissipative if and only if it is

equivalent to the R¥-action vy (w, s) := (w,t +s) defined on (W x R?, 7@ \), where
(W, W, 1) is some o-finite standard measure space and X\ is the Lebesque measure
on R%,

3. STRUCTURE OF STATIONARY SaS RANDOM FIELDS

Suppose X = { X, };cpa is a stationary measurable Sa.S random field, 0 < o < 2.
Every measurable minimal representation (this exists by Theorem 2.2 in
(I@%,)) of X is of the from

X, < /ft(s)M(ds), t e RY
S

where
dpo ¢y

1/«
(3.1) i) =elo) (P2 0)) o6

for all t € RY and s € S, M is an Sa.S random measure on some standard Borel
space (S, 8) with o-finite control measure i, f € L¥(S, 1), {¢+};era is a nonsingular
Re-action on (S, i) and {c¢;};cpe is a measurable cocycle for {¢;} taking values in
{—1,+1}, i.e, (t,5) = c;(s) is a jointly measurable map R? x S — {—1, +1E such
that for all u,v € R, cu_H,(sg = ¢y(s)cy QSU(S)) for p-a.a. s € S; see
(1995) for the d = 1 case and ) for a general d.

Conversely, { X;} defined as above is a stationary measurable Sa.S random field.
Without loss of generality we can assume that the family {f;} in (3]) satisfies the
full support assumption

(3.2) Support { f; : t € Rd} =S

and take the Radon-Nikodym derivative in (B to be equal to w(s) defined in
Section [ by virtue of Theorem A.1 in [Kolodynski an iniski (2003). We first
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establish that any measurable stationary random field indexed by R¢ is continu-
ous in probability. The corresponding one-dimensional result was established by
ili ) using a result of [Cohn (1972).

Proposition 3.1. Suppose X = {X;}icra be a measurable stationary random field.

Then X is continuous in probability, i.e., for every ty € RY, X, 2, X+, whenever
t —%to.

Proof. Using a truncation argument we can assume without loss of generality that
| Xoll2 < oo where ||- |2 denotes the L?-norm. Define {¢;},cpa to be the shift action
on the path-space € given by ¢:(w)(s) = w(s +¢) for all w € Q. By measurability
and stationarity of X, {¢;} is an R%action which preserves the induced probability
measure. Using Banach’s theorem for Polish groups (see Banach (@ p. 20) it
follows that ¢ — X; is L2-continuous (see Section 1.6 in [Aaronsorl m)), which
implies the result. 0

As in the discrete parameter case, we say that a measurable stationary S«a.S ran-
dom field {X; };cpa is generated by a nonsingular R%-action {¢;} on (S, i) if it has an
integral representation of the form (B.I)) satisfying (3.2). The following result, which
is the continuous parameter analogue of Proposition 3.1 in Bgm&mgrgdnnﬁkj
M), yields that the classes of measurable stationary Sa.S random fields gener-
ated by conservative and dissipative actions are disjoint. The corresponding one-
dimensional result is available in Theorem 4.1 of @)

Proposition 3.2. Suppose {X;}icpa is a measurable stationary SaS random field
generated by a nonsingular R%-action {¢;} on (S, u) and {f;} is given by (Z1). Let
C and D be the conservative and dissipative parts of {¢:}. Then we have

C—{ses: /R 1£2()[“A(dt) = o0}
and
D={scS: /R 1£2()[“A(dE) < oo}

modulo pv. In particular, if a stationary SaS random field { X, }icra is generated by
a conservative (dissipative, resp.) R%-action, then in any other integral representa-
tion of {X;} of the form (31) satisfying (32), the R¥-action must be conservative
(dissipative, resp.).

Proof. Let

W)= 3 o [ 1A,

YEZS Yo

where s € S,a, > 0 for all v € Z¢ and > eza@y = 1. Clearly h € LY(S, 1) and
h > 0 almost surely. By (ZI)) and the translation invariance of A,

Z h0¢5(8)w5(5):/ | fe(s)|*A(dt)

Bezd
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for all s € S. Hence, by Corollary 2.4 in [Roy and Samorodnitsky (2008), we get
C=C= {s €es: Z ho¢g(s)ws(s) = oo}

Bezd

~[ses: /R ()" Adt) = o0} modulo .

This completes the proof of the first part.
The second part follows by an argument parallel to the one in the proof of

Theorem 4.1 in (1995). O

The following corollary is the continuous parameter analogue of Corollary 3.2

of [Roy and Samorodnitsksl dm: The corresponding one-dimensional result is

available in Corollary 4.2 of ) and the same proof works in the d-
dimensional case.

Corollary 3.3. The measurable stationary SaS random field {X;},cpa s gener-
ated by a conservative (dissipative, resp.) R-action if and only if for any (equiva-
lently, some) measurable representation { fi},epa of { Xt} satisfying (Z2), the inte-
gral oo |fe(s)|“dN(t) is infinite (finite, resp) p-almost surely.

Recall that Surgailis et all (1993) defined X to be a stable mixed moving average
if

d

(3.3) X 4 {/Wde Flot+ s)M(dv,ds)}teRd ,

where f € LYW x R v ® A), A is the Lebesgue measure on R?, v is a o-finite
measure on a standard Borel space (W, ), and the control measure p of M equals
v ® A. The following result gives three equivalent characterizations of stationary
SasS random fields generated by dissipative actions.

Theorem 3.4. Suppose {X;}cpa is a measurable stationary SaS random field.
Then the following are equivalent:

(1) {X:} is generated by a dissipative R%-action.

(2) For any measurable representation {f;} of {X:} we have,

/]Rd [fe(8)]Y < o0 for p-a.a. s.

(3) {X:} is a mized moving average.
(4) {Xi}tier, is a mized moving average for some (all) n > 1.

Proof. (1) and (2) are equivalent by Corollary B3] (2) and (3) are equivalent by
Theorem 2.1 of (2000). (1) and (4) are equivalent by Theorem 3.3 in

Roy and Samorodnitskyl (2008) and Proposition 211 O

Therefore, in order to verify that X is a mixed moving average, it is enough to ver-
ify it on a discrete skeleton (e.g., { X+ },cza) of the random field. Theorem B4l allows
us to describe the decomposition of a stationary SaS random field given in Theorem

3.7 of (M) in terms of the ergodic-theoretical properties of nonsingu-
lar R%actions generating the field. See Corollary 3.4 in nd Samorodnitsk

) for the corresponding discrete parameter result.
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Corollary 3.5. A stationary SaS random field X has a unique in law decomposi-
tion

(3.4) X, L x¢+ xP

where X€ and XP are two independent stationary SaS random fields such that XP
is a mized moving average, and X is generated by a conservative action.

4. A NOTE ON THE EXTREME VALUES

The extreme values of {X;} are expected to grow at a slower rate if {X;}

is generated by a conservative action because of longer memory; see, for exam-

le, [Samorodnitskyl (2004a), [Samorodnitskyt (20044) and Bgyjnd_Samgmdnmkyl

). This can be formally proved provided X = {X;},cpa is assumed to be lo-

cally bounded apart from being stationary and measurable. If further X is separable
then

(4.1) M, = sup |Xs|, 7>0,

0<s<71
is a well-defined finite-valued stochastic process. Here u = (u™), ... u(®) < v =
(M. o @) means v < v for alli = 1,2,...,d and 1 := (1,1,...,1), 0 :=
(0,0, ...,0).

Since X is stationary and measurable, it is continuous in probability by Propo-

sition Bl Therefore, as in the one-dimensional case in [Samorodnitskyl (2004b),
taking its separable version the above maxima process can be defined by

M. = sup | X4, 7>0,
s€[0, 71]NI

where T' := |y T = Up; 529 and [u,0] == {s € R?: u < s < v}. This will

avoid the usual measurability problems of the uncountable maximum (@I]). The
next result is the continuous parameter extension of Theorem 4.3 in/Roy and Samorodnitsky

M) It follows by the exact same argument as in the one-dimensional version

of this result (Theorem 2.2 in [Samorodnitsky (20045)) based on Theorem B4l and
Corollary B3l

Theorem 4.1. Let X = {X;};cra be a stationary, locally bounded SaS random
field, where 0 < a0 < 2.

(i) Suppose that X is not generated by a conservative action (i.e. the component
XP in generated by the dissipative part is nonzero). Then

— M, = CYKxZ,
7-d/oz

ko= ([ (g(v))“u(dw)l/a,

g(v) :==sup|f(v,s)], veW,
sel’

as T — oo, where

with

for any representation of XP in the mized moving average form (33), Cq is the

stable tail constant (see (1.2.9) in|Samorodnitsky and Taqql (1994)) and Z,, is the

standard Fréchet-type extreme value random variable with distribution

—a

P(Zo<z)=e¢*



NONSINGULAR GROUP ACTIONS AND STATIONARY SaS RANDOM FIELDS 7
for z > 0.

(ii) Suppose that X is generated by a conservative R%-action. Then

1 P
mMT—>O

as T — o0. Furthermore, defining

1/«
by = (/ sup Ift(S)Iau(d8)> ,
S te0,71]nT

we have that {c; "M, : 7 >0} is not tight for any positive c; = o(b;). If, for
some 6 >0 and ¢ > 0,

(4.2) by >cr?  for all T large enough,

then {bT_lMT T > 0} is tight. Finally, for 7 > 0, let n; be a probability measure
on (S,S) with

dn; _
—(s)=0b;% sup |fi(s)|*
dM( ) te[o,ﬂ]mr| ()

for all s € S and let UJ(T), 7 = 1,2 be independent S-valued random variables with
common law n,. Suppose that [{.2) holds and for any e > 0,

P<f0r somet € [0,71]NT,

1 (U)]
£ (U)]
SUPyefo,r1]nr [JulV;

(4.3) >e,j—1,2)—>0
as T — oo. Then

1
M = cleg,

T

as T — 0o. A sufficient condition for [I-3) is lim, o, 7-%%b, = co.

Theorem [T gives the exact rate of growth of the maxima only when the underly-
ing group action is not conservative. In the conservative case, the exact rate depends
on the group action as well as on the kernel (see the examples in

(2004a), |Samorodnitsky (2004H) and [Roy and Samorodnitskyl (2008)). For in-
stance, by an obvious extension of Example 6.1 in [Roy and Samorodnitskyl (2008)
to the continous parameter case, it can be observed that the maxima can grow both
polynomially as well as logarithmically and it can even converge to a nonextreme
value limit after proper normalization.

In the discrete parameter case, depending on the group theoritic properties of the
underlying action, a better estimate of this rate is given in [Roy and Samorodnitsksl
(2008); see also Roy (2007H). This connection with abelian group theory is still
an open problem in the continuous parameter case and hence needs to be investi-
gated. Two more open problems related to this work are extensions of the results

of ISamorodnitskyl (2005) and [Roy (20074) to the d-dimensional case.
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