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ing and model ambiguity under a financial market which contains a pair of
mispriced stocks. We assume that the dynamics of the pair satisfies a “cointe-
grated system” advanced by Liu and Timmermann in a 2013 manuscript. The
investor hopes to exploit the temporary mispricing by using a portfolio strat-
egy under a utility function framework. Furthermore, she is ambiguity-averse
and has a specific preference for model ambiguity robustness. The explicit so-
lution for such a robust optimal strategy, and its value function, are derived.
We analyze these robust strategies with mispricing in two cases: observed and
unobserved mean-reverting (MR) stochastic risk premium. We show that the
mispricing and model ambiguity have completely distinct impacts on the ro-
bust optimal portfolio selection, by comparing the utility losses. We also find
that the ambiguity-averse investor (AAI) who ignores the mispricing or the
model ambiguity, suffers a substantially larger utility loss if the risk premium
is unobserved, compared to when it is observed.
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1 Introduction

Theoretically, in a market without friction, two assets P1(t) and P2(t) with
identical or nearly identical contingent claim values at a fixed future date
should be traded at the same price or close to the same price during the trad-
ing period. Real markets are not frictionless. Hence there can exist remark-
able price differences between certain pairs of assets, a phenomenon known
as “mispricing”. One can find vivid examples of mispricing in certain Chinese
corporations traded on both Chinese stock exchanges as shares ‘A’ and Hong
Kong stock exchanges as shares ‘H’: major examples include Bank of China,
and Agricultural Bank of China. Another example is the pair of assets Shell
and Royal-Dutch; derivatives on this pair of identical assets trade at signifi-
cantly different prices despite being contingent claims on the same underlying
asset, see Froot and Dabora (1999) for an empirical analysis.

By convention, one can consider that the higher-priced asset is (relatively)
overpriced and the lower-priced one is (relatively) underpriced, even if only one
price deviates from the normal price level of the asset. A common strategy for
taking advantage of this kind of mispricing is to argue that at some (possibly
predetermined) point in the future, the prices of the mispriced pair should
coincide, and therefore it is wise to adopt “long-short” (LS) strategies. Such
strategies take positions of equal size but opposite signs either in portfolio
weight or in number of shares, see Shleifer and Vishny (1997), Mitchell and
Pulvino (2001), Liu and longstaff (2004) and Jurek and Yang (2007) for LS-
strategies work.

Although LS strategies are widely used in both industry and academia,
they are designed to exploit long-term arbitrage opportunities, but ignore the
exploration of temporary diversification benefits. To exploit mispricing opti-
mally, Liu and Timmermann (2013) placed it under the portfolio maximization
framework, and then derived optimal strategy for the investor. In their find-
ings, the optimal strategy is not always of LS type.

On the other hand, a growing body of knowledge in academia is coming
to grip with the notorious fact that portfolio optimization based on utility
maximization is too sensitive to misspecification of drift components, consid-
ering how difficult estimating or calibrating these mean rates of return can be.
Uncertainty on the mean rates of return of risky assets in stochastic models is
a principal aspect of the so-called model ambiguity problem. It has significant
impact on any quantitative method based on such models, and the exploita-
tion of mispricing should be no stranger to this difficulty. The ambiguity-averse
investor (AAI) should adjust her decision rules to guard against some adverse
scenarios when facing model ambiguity. Rather than consider that the am-
biguous parameters are in some bounded set with no information about their
veracity, the AAI may instead think of alternative models as being close or
distant to the estimated model, considering that the model given by her es-
timation or calibration technique is the only reference model, even if it con-
tains some misspecification errors. Based on this, Anderson et al. (2000) and
Hansen and Sargent (2001) pioneered a framework with model ambiguity or
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model misspecification for allowing the investor to consider a level of ambi-
guity aversion, i.e., a quantitative way of saying how confident she is in the
reference model. Maenhout (2004, 2006) proposed a “homothetic robustness”
assumption, and then derived an analytical optimal strategy for the portfolio
optimization problem. Furthermore, he introduced a methodology to examine
whether the homothetic robustness assumption is an empirically appropriate
way of ambiguity aversion.

The phenomenon of so-called stochastic risk premium, often captured via
mean-reverting (MR) models, which can be interpreted as non-stationarity of
returns to some extent, and is often referred to as providing time-varying in-
vestment opportunities, is an important feature of stock price series, which is
abundantly documented in the empirical literature on real market, see Chapter
20 in Cochrane (2001) and Rapach and Zhou (2013). Recently numerous pa-
pers studied the robust optimal strategy under both “ homothetic robustness”
and time-varying investment opportunities, see Maenhout (2006), Liu (2010),
Branger et al. (2013), Munk and Rubtsov (2013) and Yi et al. (2013) to refer
to only a few. Maenhout (2006) and Liu (2010) assumed that MR risk premi-
um could be observed by the investor, which hardly holds in realistic markets.
Branger et al. (2013) assumed that the stochastic risk premium consists of
an observed part and an unobserved part estimated via a Bayesian learning
method. In this paper, we focus on the combination of two time-varying s-
tochastic factors, the pricing error and stochastic risk premium. We consider
both the case when the risk premium process is observed, and the more real-
istic case where it is unobserved. Our methodology in the case of unobserved
risk premium includes use of classical linear stochastic filtering, (Liptser and
Shiryaev (2001) can be consulted for this method), which can be understood
as a sequential Bayesian framework with explicit time-adaptive posteriors.

Notice that mispricing in a financial market plays a completely differen-
t role from model ambiguity. Mispricing can be observed by comparing the
prices of a stock pair; but an investor does not know the real distance between
the reference model and the true model. In addition, model ambiguity has a
remarkable impact on the optimal strategy of the investor trying to exploit
market mispricing. We will show that the optimal strategy is dependent on
the liquidity parameters for stocks which are very difficult to estimate. Thus, a
wise investor should consider ambiguity on the mispricing model when making
decisions about investing in the mispriced assets. This is the task we investi-
gate in this paper.

We will set up the model ambiguity along the line of Anderson et al. (2000)
and Maenhout (2004). Our work uses Maenhout’s “homothetic robustness” as-
sumption to obtain solutions analytically. Specifically, we generate a financial
market with pricing error modeled by a “cointegrated system”, and propose a
portfolio optimization problem under the CRRA utility framework to quantify
precisely the performance of the strategy for the investor. Using the stochastic
dynamic programming approach, we derive the explicit solution for a robust
optimal strategy under market mispricing. Furthermore, our market’s risk pre-
mium is of MR type. The robust optimal strategies under an observed risk
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premium and an unobserved risk premium are derived. To analyze the effects
of mispricing and of model ambiguity on the portfolio selection, we calculate
the utility losses which one would incur if one ignored model ambiguity, and
if one ignored the investment opportunities afforded by mispricing. Adequate
detection-error probabilities are used, and our analysis is based on empir-
ical data, calibrating parameters from both Chinese and Hong Kong stock
exchanges, under both cases of observed and unobserved MR risk premium.
Comparing to the previous literature, we think this paper has the following
two principal contributions:

(i) It is the first paper to consider model ambiguity for a market with mispric-
ing. Liu and Timmermann (2013) abandoned the LS strategy and derived
a non-LS strategy to exploit diversification benefits under the utility func-
tion framework. We follow this setup and investigate the effect of model
ambiguity robustness on the optimal strategy. We find that model am-
biguity does not always decrease the portfolio’s absolute positions in the
stocks; this is unlike other general settings with model ambiguity, even if
the total market risk exposure is diminished by using a methodology which
incorporates model-ambiguity robustness.

(ii) We investigate the impacts of introducing MR risk premium on mispricing
and model ambiguity. Liu and Timmermann (2013) indicated that when
one chooses identical liquidities for the stocks in the pair, the optimal
strategy remains an LS strategy. However, that result does not extend to
MR risk premium for the stock pair. Moreover, stochastic risk premium is
an exogenous factor of the stock-price dynamics rather than an endogenous
factor (like a pricing error). We find that the importance of mispricing and
ambiguity are much more significant under the (realistic) unobserved case,
than under the (idealized) observed case; this points to the importance of
including both effects in practical applications.

The rest of this paper is organized as follows. The financial market model
with mispriced stocks is described in Section 2. In Section 3, a robust problem
for an AAI with CRRA utility is presented and solved under the market with
mispricing and constant risk premium. Section 4 investigates the robust opti-
mal strategies under observed and unobserved MR stochastic risk premium.
Section 5 provides empirical examples and discusses the utility losses for ig-
noring mispricing and ignoring ambiguity. Section 6 concludes. The Appendix
contains mathematical proofs.

2 Economy and assumptions

We consider a continuous-time financial market with the following assump-
tions: the investor can trade continuously in time, and trading in the market
involves no extra costs or taxes. Let (Ω,F , P ) be a complete probability space
with filtration {Ft}t∈[0,T ] generated by four standard one-dimension Browni-
an motions {Zm(t)}, {Z(t)}, {Z1(t)} and {Z2(t)}, which are all independent,
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and let a positive finite constant T be the maturity. Any decision made at time
t is based on Ft, i.e., the information available until time t. T − t represents
the horizon at time t (time to maturity).

Assume for the moment that the price of the risk-free asset P0 is given by

dP0(t) = rP0(t)dt, P0(0) = p0, (1)

where constant r > 0 is the interest rate, and the price of the risky asset Pm

representing the market index has the following diffusive dynamics,

dPm(t)

Pm(t)
= (r + µm)dt+ σmdZm(t), Pm(0) = pm, (2)

where the risk-premium µm and the market volatility σm are both constants.
To introduce mispricing as in Liu and Timmermann (2013), we consider a

stock pair, which should have similar contingent claims, despite a remarkable
price difference in the market. The pair of price processes (P1(t), P2(t)) evolves
according to the following system of stochastic differential equations

dP1(t)

P1(t)
= (r + βµm)dt+ βσmdZm(t) + σdZ(t)+bdZ1(t)− λ1X(t)dt, (3)

P1(0) = p1,

dP2(t)

P2(t)
= (r + βµm)dt+ βσmdZm(t) + σdZ(t)+bdZ2(t) + λ2X(t)dt, (4)

P2(0) = p2,

where β, b, λ1 and λ2 are constant. The part βσmdZm(t) describes the system-
atic risk of the market, while σdZ(t)+ bdZi(t), i = 1, 2 correspond the idiosyn-
cratic risks, where σdZ(t) is the common idiosyncratic part and bdZi(t) is the
individual risk for each stock of the pair. λiX(t)dt represents the mispricing
effect, where X(t) = lnP1(t) − lnP2(t) is the pricing error between the two
stocks. The constants λi, i = 1, 2 govern the liquidities of the two stocks, see
details in Remark 1. According to Itô’s formula, the dynamics of X(t) satisfies
the following equation

dX(t) = −(λ1 + λ2)X(t)dt+ bdZ1(t)− bdZ2(t), X(0) = X0. (5)

To capture the features of mispricing, we assume λ1 + λ2 > 0. Equation (5)
is an MR process with zero long-term mean: the mean-reverting effect comes
from the fact that a positive X(t) would tend to pull X down to zero while a
negativeX(t) has the tendency to pushX back up to zero. The time until mean
reversion is a random (uncertain) stopping time. These features reasonably
capture the properties of financial markets.

Remark 1
(i) Since we assume that λ1 + λ2 > 0, hence λ1 and λ2 cannot be zero at the
same time. It is important to avoid the case of λ1 = 0 and λ2 = 0, since this
would represent a pair with the same expected return rate but higher risk than
the market index.
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(ii) The constants λi, i = 1, 2 govern the liquidities of two stocks, the situation
λ1 = λ2 is an approximation for equally liquid stocks, see Section 2.1 in Liu
and Timmermann (2013).

3 Robust problem with mispricing

An investor is allowed to invest in the risk-free asset and the market index,
as well as in two stocks with mispricing. We assume the investor’s decisions
never influence the asset prices during the trading process (small investor, no
market impact). Denote the portfolio weight on the market index by πm(t) and
(π1(t), π2(t)) as the weigths of the pair allocated in two stocks. The dynamics
of wealth process can be derived as

dW (t)

W (t)
= {µm [πm(t) + β(π1(t) + π2(t))]− π1(t)λ1X(t) + π2(t)λ2X(t) + r} dt

+ σm [πm(t) + β(π1(t) + π2(t))] dZm(t) + σ [π1(t) + π2(t)] dZ(t)

+ π1(t)bdZ1(t) + π2(t)bdZ2(t), W (0) = W0. (6)

We assume that the investor’s aim is to maximize her expected utility. In
the previous literature, the investor is assumed to be an ambiguity-neutral
investor (ANI), who pays no heed to model ambiguity, having full confidence
in the reference model obtained by statistical estimation or calibration. The
ANI maximizes the expected value of the utility function at the maturity T as

max
π∈Π

EP
0

[
W (T )1−γ

1− γ

]
, (7)

where EP
t [·] = EP [· | Ft] stands for the conditional expectation under a

fixed probability measure P , γ ∈ [0, 1)
∪
(1,+∞) represents the absolute risk-

aversion coefficient and Π is the set of admissible strategies (see Definition 1).
To incorporate model ambiguity, we believe that the investor does not have
full confidence in the reference model and hopes to take other possible alterna-
tive models into account. Following the methodology proposed in Anderson et
al. (2003), we assume that the probability measure P represents the investor’s
reference probability model, which is presumably estimated with significant
errors or misspecification. Hence she is skeptical about this reference model.
The alternative models which she hopes to consider are represented as proba-
bility measures Q equivalent to P (meaning that they share the same sets of
measure 0 as P ); she may, in principle, consider all Q in the set of probability
measures Q defined by

Q := {Q|Q ∼ P}. (8)

The celebrated Girsanov theorem provides the investor a solid mathemati-
cal framework to choose among all the Q’s, by expliciting the relation between
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P and any given Q. For each Q ∈ Q there exists progressively measurable
process φ(t) = (hm(t), h(t), h1(t), h2(t)) such that

dQ

dP
= ν(T ),

where

ν(t) = exp

{∫ t

0

φ(s)dZ(s)− 1

2

∫ t

0

∥φ(s)∥2ds
}

(9)

is a P -martingale with dZ(t) = (dZm(t), dZ(t), dZ1(t), dZ2(t))
T and ∥φ(t)∥2 =

h2
m(t) + h2(t) + h2

1(t) + h2
2(t). The reference Karatzas and Shreve (1988) can

be consulted for this theorem.
Normally we would assume that φ(t) satisfies the so-called Novikov con-

dition to ensure the martingale property for ν(t). In this paper, for technical
reason to ensure Theorem 1 (Verification Theorem), we simply assume that
φ(t) = (hm(t), h(t), h1(t), h2(t)) satisfies the linear growth condition1 with re-
spect to the pricing error X. Under this assumption, ν(t) is a P -martingale
with filtration {Ft}t∈(0,T ). This result is derived in Lemma 2 in Honda and
Kamimura (2011), also see Lemma 4.1.1 in Bensoussan (1992). It may seem
that the linear growth condition is a restrictive assumption, i.e. restricting Q
and thus constraining decisions artifically. However, we will see that the linear
growth condition is actually not a restriction in terms of the AAI’s decision,
since we will find that the alternative model the AAI chooses is actually built
on a φ∗(t) which satisfies the linear growth condition. Also recall that, by Gir-
sanov’s theorem, under a fixed Q ∈ Q with its drift process φ = (hm, h, h1, h2),
the four processes defined by

dZQ
m(t) =dZm(t)− hm(t)dt, dZQ(t) = dZ(t)− h(t)dt,

dZQ
1 (t) =dZ1(t)− h1(t)dt, dZQ

2 (t) = dZ2(t)− h2(t)dt.

are Brownian motions.
We assume that the AAI attains robustness by guarding against a worst-

case scenario Q∗ ∈ Q and wishes to decide on a robust strategy π∗ when facing
the worst-case scenario. The worst-case scenario and the robust strategy will
be determined in the following way: fixing an admissible strategy π first, we
propose a measure Q∗(π) ∈ Q which provides the smallest utility (worst-case
model when strategy π is fixed). Based on Girsanov’s theorem, φ(t) can induce
an alternative model Q(π), and the worst-case model Q∗(π) under π can be
determined by minimizing over φ∗(t). Note that this minimization defines
Q∗(·) as a function from the set of admissible strategies into Q. Then, we
maximize the AAI’s utility over all admissible strategies π, which gives us the
maximized worst-case value function, attained at a specific optimal strategy
π∗. Finally, we say that our worst-case model Q∗ is the one corresponding
to π∗, namely Q∗ = Q∗(π∗) by a slight abuse of notation which confuses the
function Q∗(·) and its value at π∗.

1 A function h : [0, T ] × Rk → Rl is said to satisfy the linear growth condition to x if
∥h(t, x)∥ ≤ K(1 + ∥x∥) for some K > 0.
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By transferring Brownian motions, the dynamics of the wealth process (6)
under an alternative model Q computes as

dW (t)

W (t)
=
[
µmπf − π1(t)λ1X(t) + π2(t)λ2X(t) + r + hmσmπf + σ(π1 + π2)h

+ π1bh1 + π2bh2

]
dt+ σmπfdZ

Q
m(t) + σ [π1(t) + π2(t)] dZ

Q(t) (10)

+ π1(t)bdZ
Q
1 (t) + π2(t)bdZ

Q
2 (t), W (0) = W0,

with πf = πm(t)+β(π1(t)+π2(t)). Meanwhile, the dynamics of the mispricing
error under Q can be given by

dX(t) = [−(λ1 + λ2)X(t) + bh1 − bh2] dt+ bdZQ
1 (t)− bdZQ

2 (t), X(0) = X0.
(11)

Consequently, we can define the set of the admissible strategies related to our
problem as follow.

Definition 1 A trading strategy π(t) = {(πm(t), π1(t), π2(t)) : t ∈ [0, T ]} and
an ambiguity control φ(t) are said to be admissible, if
(i) ∀t ∈ [0, T ], φ(t) satisfies the linear growth condition with respect to pricing
error X,
(ii) ∀(W0, X0) ∈ R+ × R, the corresponding stochastic differential equation
(10) has a pathwise unique solution Wπ(t),

(iii) the progressively measurable π satisfies EQ(π)
[∫ T

0
|Wπ(t)|4dt

]
< ∞ and

the linear growth condition with respect to X.
Denote by Π the set of all admissible strategies and H the set of all admissible
ambiguity controls .

Note that the set of admissible strategies Π on page 6 would be a special
case in Definition 1 with φ(t) = 0.

On the other hand, the investor recognizes that P is an approximation of
the true model and thinks the alternative models should not deviate too much
from the reference model. Therefore, one should use the distance between the
alternative model and the reference model to penalize the utility. Combining
all the above analysis, we adjust the original problem (7) to a robust control
problem inspired by Anderson et al. (2000) and Hanson and Sargent (2001)
for the AAI as follows,

sup
π∈Π

inf
Q∈Q

EQ

{
W (T )1−γ

1− γ
+

∫ T

0

1

ϕ(s)
R(s)ds

}
, (12)

where ϕ(t) stands for a preference parameter for ambiguity aversion, which
measures the degree of suspicion in the reference model P at time t, and R(t)
measures the relative entropy between P and Q. Define R(t) := 1

2∥φ(t)∥
2

following Hansen and Sargent (2001), then EQ
[∫ T

0
R(s)ds

]
measures the dis-

crepancy between P and Q (also see, e.g., Dupuis and Ellis (1997)). With this
specification, penalties are incurred for alternative models when they deviate
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from the reference model. Choosing this penalty in the optimization problem
(12) allows one to be able to find an interior point minimizer, i.e. a robust
optimal strategy, even if the parameter ranges are unbounded.

In the case ϕ ≡ 0, the investor is entirely convinced that the true model is
the reference model P , any deviation from P will be penalized by 1

ϕR. Thus,

R ≡ 0 must be satisfied to guarantee 1
ϕR ≡ 0 and problem (12) reverts to

problem (7), where no model ambiguity is allowed, as it should. At the other
extreme, if ϕ ≡ ∞, the investor has no information about the true model.
Since the term 1

ϕR vanishes, the scenario will degenerate to an ill-posed robust
problem due to the unbounded parameters.

We solve the robust problem (12) by dynamic programming. Define the
value function J corresponding to problem (12) as

J(t, w, x) = sup
π∈Π

inf
Q∈Q

EQ
t,w,x

{
W (T )1−γ

1− γ
+

∫ T

0

1

ϕ(s)
R(s)ds

}
, (13)

where EQ
t,w,x[·] = EQ[· | W (t) = w,X(t) = x]. To obtain the analytical solution

for problem (12), we use the “homothetic robustness” assumption proposed by
Maenhout (2004, 2006), and set up the preference parameter ϕ as the function
of the state variables (t, w, x) given by

ϕ(t) =
u

(1− γ)J(t, w, x)
, (14)

where u ≥ 0 is the individual ambiguity-aversion level. The specific form of
ϕ(t) in (14) gaurantees that the ambiguity penalty remains positive and has the
so-called “homotheticity” property, which means that it remains independent
of the wealth w. This has an advantage over using a constant ϕ: Maenhout
(2004) indicated that the model ambiguity robustness would vanish as the
wealth increases if ϕ is constant, which is unrealistic. The structure (14) im-
poses the desired homotheticity property as robustness will no longer wear
off as wealth rises. Moreover, although scaling by some alternative function
of wealth could work as well (such as W 1−γ), the specific form chosen here
is especially convenient analytically, and as stated in Maenhout (2004), one
would expect the same effects of model ambiguity robustness with alternative
functions including factors like W 1−γ ; more details can be found in Maenhout
(2004), pages 959-961.

By penalizing the alternative models via the term R(s)
ϕ(s) , the AAI is allowed

to consider all alternative model drifts, and the “worst-case” Q∗ is a specific
model which deviates from the reference model P . By looking at the relative
entropy measure R, we show how much we are willing to say that P is mis-
specified. A numerical example for the graph of R is provided in Figure 1. The
interpretation here is not that we are computing the level of misspecification
in our model, but rather that we are willing to admit that there is a certain
amount of misspecification in P . Thus, the entropy R between P and Q∗,
which will increase with the ambiguity-aversion level u (see Figure 1), is our
allowable level of misspecification.
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Fig. 1 Fixing T − t = 1, R can be computed under the following benchmark-parameter val-
ues for China Citic Bank: X = 0.2, b = 0.3115, µm = 0.1597, λ1 = −0.2595, λ2 = 0.4580, κ =
0.9494, σ = 0.2687, r = 0.02, γ = 4.

According to the principle of dynamic programming, the robust Hamilton-
Jacobi-Bellmann (HJB) equation established by Anderson et al. (2000) to
express the value function (13), can be derived as:

sup
π∈Π

inf
φ∈H

{
Jt + wJw(µmπf − π1λ1x+ π2λ2x+ r + hmσmπf + σ(π1 + π2)h

+ π1bh1 + π2bh2) +
1

2
w2Jww

(
σ2
mπf

2 + σ2(π1 + π2)
2

+(π2
1 + π2

2)b
2
)
+ b2wJwx(π1 − π2) + Jx [−(λ1 + λ2)x

+bh1 − bh2] + Jxxb
2 +

(1− γ)J

u

(
1

2
∥φ∥2

)}
= 0,

(15)

with the boundary condition J(T,w, x) = W 1−γ

1−γ and the subscripts of J denot-
ing partial derivatives. In Appendix A, the following proposition is established,
which solves (15) analytically.

Proposition 1 In the market with mispricing described by (1)-(4), the value
function of the AAI with CRRA utility defined by (13) is given by

J(t, w, x) =
w1−γ

1− γ
exp(G(t) +

1

2
N(t)x2), (16)

where G(t) and N(t) are time-dependent functions as

G(t) =(1− γ)

(
r +

µ2
m

2γσ2
m

)
(T − t)

+
b2

A
ln

(
2k2 exp ((k1 + k2)(T − t)/2)

2k2 + (k1 + k2) (exp (k2(T − t))− 1)

)
, (17)

N(t) =
exp(k2(T − t))− 1

2k2 + (k1 + k2)(exp(k2(T − t))− 1)
k3, (18)
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and an optimal strategy π = (πm, π1, π2) for the AAI can be given by

π∗
m =

µm

Γσ2
m

+ x
β(λ1 − λ2)

Γ (2σ2 + b2)
, (19)

π∗
1 =

x

(2σ2 + b2)b2Γ

(
−(b2 + σ2)λ1 − σ2λ2 + Γ1b

2(2σ2 + b2)N(t)
)
, (20)

π∗
2 =

x

(2σ2 + b2)b2Γ

(
(b2 + σ2)λ2 + σ2λ1 − Γ1b

2(2σ2 + b2)N(t)
)
, (21)

where

k1 = −B, k2 =
√

B2 − 4AC, k3 = 2C, Γ = γ + u, Γ1 =
1− Γ

1− γ
;

A =
2b2(1− Γ )

Γ (1− γ)
, B = −2(λ1 + λ2)

Γ
,

C =
(1− γ)

[
(λ2

1 + λ2
2)(σ

2 + b2) + 2λ1λ2σ
2
]

Γb2(2σ2 + b2)
.

The verification theorem (i.e. proving that the solution of the HJB equation is
indeed the value function in (13)) is omitted here since we will provide one in
Section 4 for a more complicated situation with an MR risk premium, which
contains the verification result in this situation. Notice that

πs := π∗
1 + π∗

2 = x
λ2 − λ1

(2σ2 + b2)Γ
(22)

is the total investment weight in the stocks. The optimal strategy is not an
LS strategy unless x = 0 or λ1 = λ2, which implies that the optimal strategy
could be an LS strategy only if the difference between two stocks is eliminated
or two stocks have the same market liquidity.

As a general rule in the setting of model ambiguity (see Maenhout (2004,
2006) and Liu (2010)), model ambiguity should lead to a decrease in risk expo-
sures. In our situation, this does holds, provided we interpret the risk exposures
as containing two parts: the market index π∗

m and the total investment in the
stocks πs.

2

Now we analyze the weights in the two stocks with mispricing. Without
loss of generality, we assume that X(t) > 0 implying P1(t) > P2(t). A surpris-
ing result discovered by Liu and Timmermann (2013) is that the short-term
ANI should take a short position in both stocks when λ2 < 0 and a long po-
sition in both stocks when λ1 < 0, which indicates that the short-term ANI
acts myopically to exploit the divergence: see Section 4.3 in Liu and Timmer-
mann (2013). When we focus on the combination of the model ambiguity and
mispricing, one can see that the optimal portfolio allocation in the stocks for
short-term AAI is also myopic, i.e., the ambiguity aversion would not change
the long or short position for the AAI. Furthermore, inserting the specific form

2 Changes for each stock will be analyzed in Section 4 for a more complex and realistic
situation with an MR risk premium.
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for N(t) from (18), we find that the “observationally equivalent” property (i.e.,
Proposition 2 in Maenhout (2006)) is still in effect in the optimal portfolio in
stocks for the AAI. Specifically we have the following proposition.

Proposition 2 The optimal strategy for an ANI under CRRA utility function
with risk-aversion coefficient Γ := u+γ is the same as the optimal strategy for
an AAI with ambiguity-aversion level u under CRRA utility with risk-aversion
coefficient γ.

4 Robust optimal portfolio with mispricing and mean-reverting
risk premium

In this section, a more realistic market is considered with mispricing: two stocks
with an MR risk premium. We show below that even if the two stocks, have
the same liquidity, the optimal strategy cannot be of LS type under stochastic
MR risk premium. To simplify the model, and to focus on the two mispriced
stocks, investing in the market index is not allowed in this section. Specifically,
the dynamics of two stocks with mispricing and MR risk premium are

dP1(t)

P1(t)
= (r̃ + a(t))dt+ σdZ(t) + bdZ1(t)− λ1X(t)dt, P1(0) = p1, (23)

dP2(t)

P2(t)
= (r̃ + a(t))dt+ σdZ(t) + bdZ2(t) + λ2X(t)dt, P2(0) = p2, (24)

where the premium for the common risk part σdZ(t) is the MR process a(t)
whose dynamics are given by

da(t) = κ(θ − a(t))dt+ σadZa(t), a(0) = a0, (25)

with positive constants: κ, θ, σa and Brownian motion Za(t) independent of
{Ft}3. Notice the stochastic systemic risk premium σmdZm(t) is incorporated
into the common risk part σdZ(t) and r̃ = r+βµm. Beyond the mathematics,
the introduction of a(t) cannot be seen as a simple extension from a one-
dimensional X(t) to two dimensions, even though a(t) satisfies MR dynamics
similarly to the pricing error X(t). Indeed X(t) can be directly computed from
the prices of mispriced stocks while a(t) is an exogenous economic factor which
is independent of the stock dynamics (23)-(24). Although many papers assume
that the stochastic risk premium is completely observed, this is a theoretical
construct; it is far from realistic to make this assumption in the practice of
finance. Thus in following subsections, we will investigate the optimal strate-
gies for two situations: observed or unobserved risk premium. We choose to
preserve the case of observed MR in our study, for the purpose of comparing
it with the unobserved case, and for didactic purposes.

3 This independence assumption is only for expositional simplicity. Allowing for correla-
tions is a straightforward extension.
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4.1 Optimal strategy with observed risk premium

In this subsection, we assume a(t) can be completely observed by the AAI. We
apply a methodology simlar to that of Section 3 to derive the explicit optimal
strategy for the AAI. Under an alternative model Q, a new Brownian motion
ZQ
a can be defined as

dZQ
a (t) = dZa(t)− ha(t)dt. (26)

Therefore, the wealth process is given by

dW (t)

W (t)
=
[
X(t)(λ2π2 − λ1π1) + r̃ + (a(t) + σh)(π1 + π2) + π1bh1 + π2bh2

]
dt

(27)

+ σ [π1(t) + π2(t)] dZ
Q(t) + π1(t)bdZ

Q
1 (t) + π2(t)bdZ

Q
2 (t), W (0) = W0.

The dynamics of the pricing error X(t) can be shown to be

dX(t) = [−(λ1 + λ2)X(t) + bh1 − bh2] dt+ bdZQ
1 (t)− bdZQ

2 (t), X(0) = X0,
(28)

while (25) can be modified to

da(t) = [κ(θ − a(t)) + haσa] dt+ σadZ
Q
a (t), a(0) = a0. (29)

We keep using the notation Π and H to represent the sets of admissible s-
trategies and controls. Notice the definition of admissible strategy is parallel to
Definition 1, where the control φ(t) is redefined as φ = (h(t), h1(t), h2(t), ha(t))
and the linear growth condition is extended to the pair (X, a). The AAI’s ob-
jective is still given by (12), where now the market model contains an observed
MR risk premium. Then the HJB equation can be derived as:

sup
π∈Π

inf
φ∈H

{
Jt + wJw [(λ2π2 − λ1π1)x+ r̃ + (a+ σh)(π1 + π2) + π1bh1 + π2bh2]

+
1

2
w2Jww

(
σ2(π1 + π2)

2 + (π2
1 + π2

2)b
2
)
+ b2wJwx(π1 − π2)

+ Jxxb
2 +

1

2
Jaaσ

2
a + Jx (−(λ1 + λ2)x+ bh1 − bh2)

+ Ja (κ(θ − a) + haσa) +
(1− γ)J

u

(
1

2
∥φ∥2

)}
= 0.

(30)

We provide the following verification theorem for problem (12) under the MR
risk premium environment.

Theorem 1 Suppose there exists a function G(y) ∈ C1,2(S) with S = [0, T ]×
R×R, and a control (π, φ) ∈ Π ×H such that
(i) the equality in (30) turns to “≥” with π∗ for all ϕ ∈ H for all y ∈ S;
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(ii) the equality in (30) turns to “≤” with φ∗ for all π ∈ Π for all y ∈ S;
(iii) equation (30) holds with π∗ and φ∗ for all y ∈ S.
Then G is the value function for problem (12) and (π∗, φ∗) is an optimal
control.

Proof Wemay try to adapt the standard verification theorem provided by The-
orem 3.2 in Mataramvura and Øksendal (2008); this would mean ignoring a
uniform integrability condition for the function G(y) and a convergence condi-

tion for the intertemporal discrepancy between two measures:
∫ T

0
1

ϕ(s)R(s)ds.

However, the proof method in Honda and Kamimura (2010) can be used to
avoid the verification of these two conditions. We omit the details. Notice that
the linear growth condition ensures that the stochastic process formed as ν in
(9) is a martingale, which is the key reason for being able to circumvent the
two conditions in Mataramvura and Øksendal (2008).

By searching for a typical ansatz, we derive a closed-form solution to HJB
(30), which will be provided in the Appendix A. We obtain the following result.

Proposition 3 In the market with mispricing and an observed MR risk pre-
mium described by (29), the value function of the AAI has the structure

J(t, w, x, a) =
w1−γ

1− γ
exp

(
1

2
A1(t)a

2 +A2(t)a+A0(t) +
1

2
B1(t)x

2 +B3(t)ax

)
.

(31)
where A0, A1, A2, B1 and B3 are functions of t which satisfy a system of
ODEs (70)-(74) in Appendix B. An optimal strategy π = (π1, π2) for the AAI
is given by

π∗
1(t) =

(
λ2 − λ1

2(2σ2 + b2)Γ
− λ1 + λ2

2Γb2
+

Γ1B1(t)

Γ

)
x(t)

+

(
1

(2σ2 + b2)Γ
+

Γ1B3(t)

Γ

)
a(t), (32)

π∗
2(t) =

(
λ2 − λ1

2(2σ2 + b2)Γ
+

λ1 + λ2

2Γb2
− Γ1B1(t)

Γ

)
x(t)

+

(
1

(2σ2 + b2)Γ
− Γ1B3(t)

Γ

)
a(t), (33)

where

Γ = γ + u, Γ1 =
1− Γ

1− γ
.

The optimal strategy on stocks can be divided into two components for
each stock. For example, for π1, the first component is

πx
1 (t) =

(
λ2 − λ1

2(2σ2 + b2)Γ
− λ1 + λ2

2Γb2
+

Γ1B1(t)

Γ

)
x(t).



Dynamic portfolio selection with mispricing and model ambiguity 15

It reflects the exploration of mispricing corresponding the robust optimal s-
trategy derived in (20) in the case of a risk premium with no stochasticity. A
related analysis can be found in Section 3. The second component for π1 is

πa
1 (t) =

(
1

(2σ2 + b2)Γ
+

Γ1B3(t)

Γ

)
a(t).

This hedges the stochastic risk premium, linearly in a. This term could be
called the “demand for hedging the risk premium”, or “MR demand”. It dis-
appears and the robust optimal strategy (32) degenerates to (20) if a is i-
dentically zero. As stated in Chacko and Viceira (2005), this demand itself
can be separated into two parts: the myopic demand a(t)/[(2σ2 + b2)Γ ], and
intertemporal demand Γ1B3(t)a(t)/Γ for hedging the stochasticity of the risk
premium. For further detail on myopic and intertemporal demands, see Liu
and Pan (2003) and Chacko and Viceira (2005).

Although the two stocks share the same MR risk premium, the total in-
vestment weight in the stocks with mispricing and stochastic risk premium
is not zero even if two stocks have the same liquidity. Specifically, combining
(32) and (33), the total investment in stocks can be computed as

πs = π∗
1(t) + π∗

2(t) =
λ2 − λ1

(2σ2 + b2)Γ
x(t) +

2a(t)

(2σ2 + b2)Γ
, (34)

which implies, even with λ1 = λ2 = λ, that the robust optimal strategy is
not an LS strategy. This conclusion is consistent with the analysis on the
structure of demand in the last paragraph above: the AAI should demand
that a greater proportion of the total investment be devoted to hedge the time-
varying investment opportunity if a(t) is positive. Interestingly, the only part
of the total investment in stocks which is independent of investment horizon
T − t is the myopic demand. Additionally, the risk exposure of the investment
in stocks decreases w.r.t. the ambiguity-aversion level u (as it should), since it
is inversely proportional to Γ = γ + u.

4.2 Optimal strategy with unobserved risk premium

In a realistic market, the risk premium is unobserved and the investor can
only learn about it from observing realized stock prices. Bayesian learning is
a convenient framework for extracting information about a latent continuous-
space process via observations. In our linear situation, the density of the un-
observed risk premium process conditional on the observed prices is Gaussian,
and is given dynamically in time by classical stochastic (Kalman-Bucy) filter-
ing. Specifically, the mean â and variance of this Gaussian conditional law are
deterministic functions of time; the mean solves a linear ordinary differential
equation depending on the observations, and the variance solves a non-linear
(Ricatti) equation which is observation-independent, see Kalman and Bucy
(1961). To simplify our presentation, as proposed for instance in Branger et
al. (2013), we will assume that the variance has already reached its steady
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state η; this variance indeed converges to this value, and thus it is sufficient to
assume that the stock price data has been available for sufficiently long past
period.

Then applying Theorem 12.7 in Liptser and Shiryaev (2001), the filtered
model of our MR risk premium dynamics (25) is stationary and the entire
market has the following dynamics which depend on three Brownian motions,
and in which the mean value â can be considered as a state variable process:

dP1(t)

P1(t)
= (r̃ + â(t))dt+ σdẐ(t) + bdẐ1(t)− λ1X(t)dt, (35)

dP2(t)

P2(t)
= (r̃ + â(t))dt+ σdẐ(t) + bdẐ2(t) + λ2X(t)dt, (36)

dâ(t) = κ(θ − â(t))dt+ η
(
KdẐ +K1dẐ1 +K2dẐ2

)
, (37)

where the variance of the filtered process (which coincides with the variance
of the estimation error) is

η =

(
κ+

√
κ2 +

2σ2
a

b2 + σ2

)
(b2 + σ2), (38)

and

K =
σ

b2 + σ2

(
1 +

1− ρ

ρ1

)
, K1 =

b

b2 + σ2
, K2 =

(1− ρ)b

ρ1(b2 + σ2)
, (39)

with (ρ, ρ1) =
(

σ2

b2+σ2 ,
√

b2

b2+σ2

)
. Here, the so-called innovations processes

Ẑ(t), Ẑ1(t), Ẑ2(t) are three independent standard Brownian motions under
P . They can be related to the original noises and the unobserved process a by
the formulas

dẐ(t) =
σ

σ2 + b2
(a(t)− â(t))dt+ dZ(t), (40)

dẐ1(t) =
b

σ2 + b2
(a(t)− â(t))dt+ dZ1(t), (41)

dẐ2(t) =
b

σ2 + b2
(a(t)− â(t))dt+ dZ2(t). (42)

The filtered model (35)-(37) above is, in the sense of least squares, the
best estimate available to the investor given the observed information and
the benchmark model. The AAI may still be skeptical about the estimated
risk premium, and hopes to use robustness on the filtered model itself. Thus,
the AAI will find the robust optimal strategy under objective (12) over the
admissible strategy parallel to Definition 1, where φ(t) is redefined as φ =
(h(t), h1(t), h2(t)) and the linear growth condition is extended to (X, â). Using
a Girsanov shift and the dynamic programming approach to derive a robust
optimal strategy under unobserved risk premium, which will be provided in
the Appendix C, we achieve the following proposition
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Proposition 4 In the market with mispricing and an unobserved MR risk
premium learned from the Kalman-Bucy filter, the value function of the AAI
has the structure

J(t, w, x, â) =
w1−γ

1− γ
exp

(
1

2
Â1(t)â

2 + Â2(t)â+ Â0(t)

+
1

2
B̂1(t)x

2 + B̂2(t)x+ B̂3(t)âx

)
,

(43)

where Â0, Â1, Â2, B̂1, B̂2 and B̂3 are functions of t which satisfy the ODE
system (82)-(87) in Appendix C. An optimal strategy π = (π1, π2) for the AAI
can be given by

π∗
1(t) =

â(t)

(2σ2 + b2)Γ
+

(λ2 − λ1)x(t)

2(2σ2 + b2)Γ
− (λ1 + λ2)x(t)

2Γb2

+
[B̂1(t)x(t) + B̂2(t) + B̂3â(t)]Γ1

Γ

+
η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]Γ1

(2σ2 + b2)Γ
,

(44)

π∗
2(t) =

â(t)

(2σ2 + b2)Γ
+

(λ2 − λ1)x(t)

2(2σ2 + b2)Γ
+

(λ1 + λ2)x(t)

2Γb2

− [B̂1(t)x(t) + B̂2(t) + B̂3â(t)]Γ1

Γ

+
η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]Γ1

(2σ2 + b2)Γ
,

(45)

where Γ = γ + u and Γ1 = (1− Γ )/(1− γ) and η is given by (38).

Comparing to the robust optimal strategy under observed risk premium which
is provided by (32)-(33), we separate π1 into three components. The first com-
ponent

πmpc
1 =

â

(2σ2 + b2)Γ
+

(λ2 − λ1)x(t)

2(2σ2 + b2)Γ
− (λ1 + λ2)x(t)

2Γb2
(46)

stands for the myopic demand independent of horizon T − t. The second com-
ponent

πinter
1 =

[B̂1(t)x(t) + B̂2(t) + B̂3â(t)]Γ1

Γ
(47)

corresponds the intertemporal demand which hedges the stochastic changes of
investment environment and pricing error. These first and second components
are parallel to the decomposition of the robust optimal strategy given in (32)
for the case of observed risk premium. The novelty in the case of unobserved
a is the third component

πuobv
1 =

η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]Γ1

(2σ2 + b2)Γ
(48)
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which hedges changes in the unobserved risk premium a(t). It will vanish if
the AAI can obtain absolutely accurate observation of a, i.e. if η = 0. The
total investment in stocks is the sum of π∗

1 and π∗
2 , which computes as

πs =
2â(t)

(2σ2 + b2)Γ
+

(λ2 − λ1)x(t)

(2σ2 + b2)Γ
+

2η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]Γ1

(2σ2 + b2)Γ
.

(49)
We will verify in practice that |πs| is a decreasing function of the ambiguity-
aversion level u, which implies that the model-ambiguity robustness diminishes
the AAI’s exposure to market risk.

5 Numerical examples

In this section, we investigate the quantitative effects of mispricing and model
ambiguity on the optimal strategy and value function under unobserved risk
premium, by examining some numerical examples. Moreover, to show the dif-
ference between mispricing and model ambiguity, we compare the utility loss
caused by each feature individually.

To connect the empirical data and our theoretical results, we calibrate our
parameters to a pair of Chinese bank stocks traded simultaneously as A-shares
on the Shanghai stock exchange and as H-shares in Hong Kong. Both shares
have the same dividend and voting rights. Consequently any differences in
prices when converting these shares into the same currency can be labeled as
mispricing, and thus are candidates for our cointegrated model setup.

Table 1 Cointegration estimates for pairs of Chinese Bank A and H shares

Stock r̃ λ1 λ2 σ b κ θ σa

CCB 0.1817 -0.2595 0.4850 0.2687 0.3115 0.9494 0.0132 0.0372
ABC 0.1597 0.8726 -0.6682 0.1601 0.2106 0.4448 0.0112 0.0308
ICBC 0.1817 -0.2595 0.4850 0.2687 0.3115 0.9494 0.0132 0.0372
BC 0.2303 -0.2979 0.4110 0.2051 0.2543 0.9723 0.0404 0.0357

We estimate the parameters for 4 Chinese bank stocks traded in both Chi-
na A shares and Hong Kong H shares. CCB, ABC, ICBC and BC stands for
China Citic Bank (sample period: Apr. 2007-Feb. 2013), Agricultural Bank of
China (Jul. 2010-Feb. 2013), Industrial and Commercial Bank of China (Oct.
2006-Feb. 2013) and Bank of China (Jul. 2006-Feb. 2013), respectively. The
detailed calculations leading to our statistical methodology (maximum likeli-
hood estimation (MLE)) are in Appendix E. In the remainder of this section,
without loss of generality, we focus on the parameters for CCB with a neg-
ative λ1 and a positive λ2. According to (35)-(36), with a positive pricing
error X, the overpriced price tends to increase but the underpriced price will
increase even more since we assumed positivity of λ1 + λ2, thus ensuring sta-
bility (non-explosion) of the MR dynamics in (5), including the existence of a
limiting stationary distribution for X(t).



Dynamic portfolio selection with mispricing and model ambiguity 19

The AAI may have limited confidence on these estimated values, especially
for the drifts parameters. One validation measure that would be helpful for
her to gauge how accurate the estimations might be, is the set of the esti-
mators’ standard errors in a controlled experiment. To compute these, we use
a simulation. Assuming the true parameters are r̃ = 0.15, λ1 = λ2 = 0.5,
σ = b = 0.3, κ = 0.7, θ = 0, σa = 0.5 and a0 = 0, we simulate 10000 sample
paths of P1(t) and P2(t) using the Euler-Maruyama scheme, see Maruyama
(1955), where the time step ∆t = 5 minutes, then we estimate the parameters
of the mispricing model by MLE using data observed at various frequencies.
The standard errors of the estimated parameters are shown here.

Table 2 Standard Error of Parameter Estimation

Frequency Period r̃ λ1 λ2 σ b κ θ σa a0
15 mins 1 month 0.6269 0.3128 0.3066 0.0183 0.0117 0.1605 0.2296 0.0225 0.2706
30 mins 1 month 0.6776 0.3443 0.3375 0.0259 0.0165 0.1617 0.2321 0.0224 0.2969
1 hour 1 month 0.7005 0.3958 0.3872 0.0372 0.0232 0.1612 0.2347 0.0224 0.3136
2 hours 1 month 0.7114 0.4642 0.4552 0.0536 0.0327 0.1645 0.2457 0.0223 0.3233
daily 1 month 0.7181 0.5389 0.5283 0.0791 0.0456 0.1710 0.2729 0.0229 0.3339
daily 3 months 0.5547 0.4982 0.5024 0.0432 0.0266 0.1649 0.2975 0.0213 0.2865
daily 6 months 0.4442 0.4826 0.4743 0.0306 0.0191 0.1608 0.3080 0.0201 0.2879
daily 1 year 0.3412 0.4294 0.4115 0.0213 0.0135 0.1572 0.2965 0.0197 0.2833
daily 2 years 0.2808 0.3582 0.3496 0.0149 0.0095 0.1589 0.2570 0.0228 0.2620

Using 1 month of daily data as the benchmark, we can see slight improve-
ments in the standard errors of λ1 and λ2 as the observation frequency in-
creases from once a day to once every 15 minutes, and also as the length of
the period increases from 1 year to 2 years. Even though λ1 and λ2 appear
in the drift, they affect both mean and variance of the likelihood function.
Surprisingly, the estimation of r̃ also benefits slightly from the high frequency
data due to the improvement in λ1 and λ2. However, even under the rather
high frequency of one data every 15 minutes, the errors for r̃, λ1, λ2, κ and
θ are quite substantial. This shows that the AAI is correct to be suspicious
of the precision of the estimated drift parameters: to be safe, she will want to
use a method which is robust against this model ambiguity.

5.1 Detection-error probabilities

To obtain reasonable numerical applications in practice, we should decide up-
on an adequate value for the AAI’s ambiguity-aversion level in our model.
Following the principle and methodology proposed by Anderson et al. (2003)
and Maenhout (2006), the ambiguity-aversion level u in (14) should be cho-
sen such that the alternative model describing the worst-case scenario seems
sufficiently similar to the reference model for the AAI with that u. To make
this idea quantitative, one selects u in such a way that the AAI be capable of
mistaking one model for the other with sufficiently high probability. Anderson
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et al. (2003) recommend that this “detection-error probability” be larger than
10%.

We follow the methodology proposed by Maenhout (2006) for comparing

P and Q∗. Denote ξ1,t and ξ2,t the logs of the Radon-Nikodym derivatives dQ∗

dP

and dP
dQ∗ respectively. They compute as

ξ1,t = log

[
dQ∗

dP

]
=

∫ t

0

φ∗(s) · dZ− 1

2

∫ t

0

∥φ∗(s)∥2ds, (50)

ξ2,t = log

[
dP

dQ∗

]
= −

∫ t

0

φ∗(s) · dZ+
1

2

∫ t

0

∥φ∗(s)∥2ds (51)

with dZ(t) = (dZa(t), dZ(t), dZ1(t), dZ2(t))
T and φ∗(s) = (h∗

a, h
∗, h∗

1, h
∗
2) given

by (69) in Appendix B for observed risk premium and dZ(t) = (dẐ3(t), dẐ4(t))
T

and φ∗(s) = (h∗
1, h

∗
2) given by (80)-(81) in Appendix C for unobserved risk pre-

mium. According to Maenhout (2006), the probability of mistaking P for Q∗

or vice-versa is defined as

ξN (u) =
1

2
Pr(ξ1,N > 0|P,F0) +

1

2
Pr(ξ2,N > 0|Q∗,F0). (52)

As mentioned above, Anderson et al. (2003) advocate choosing a value of u such
that ξN (u) is no less than 10%. Based on the parameters in Table 1 for CCB,
we can derive the worst-case scenario Q∗ given by (69) for the observed case
and (80)-(81) for the unobserved case. As stated in Maenhout (2006), Fourier
inversion can then be introduced to compute the detection-error probabilities
for various values of u and γ, which are summarized in the table below.

Table 3 Detection-error probabilities

observed unobserved
u 1 2 3 10 1 2 3 10

γ = 2 0.375 0.324 0.286 0.124 0.452 0.398 0.334 0.297
γ = 4 0.412 0.382 0.323 0.282 0.475 0.423 0.387 0.321
γ = 20 0.487 0.423 0.365 0.284 0.554 0.523 0.489 0.427

As we can see from Table 3, where we used N = 6 years to coincide with
the maximal length of CCB data available to us, any choice of the pair u, γ
with our set of benchmark parameters leads to cases where investigating our
model’s ambiguity robustness is legitimate and even desirable.

5.2 Robust optimal strategy

In this subsection, we focus on the impacts of the pricing error X and model
ambiguity on the robust optimal strategy (44)-(45). Notice that an AAI with
ambiguity-averse level u = 0 turns into an ANI, see the explanation for the
extreme situation on Page 9. We omit the analysis of the impact of different
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pairs (λ1, λ2) on the optimal strategy, which Liu and Timmermann (2013)
emphasized. Maenhout (2004, 2006) showed that model ambiguity can be re-
garded as another aspect of risk, which decreases exposures to risky assets.
Figure 2 shows various effects of model ambiguity on the optimal strategy
and the total investment in stocks as a function of the pricing error X. We
fix horizon T − t = 3 and let the pricing error X vary from zero to 20%. If
we look at the total investment in stocks from Figure 2(b), a familiar result
for model ambiguity holds: the risk exposure of the AAI in the whole market
decreases as the ambiguity-aversion level u increases. On the other hand, by
delving into the detail of the portfolio, Figure 2(a) discloses an interesting re-
sult which cannot be predicted from a standard model-ambiguity setting: with
larger pricing error X, the absolute positions of π∗

1 and π∗
2 decrease when the

ambiguity-aversion level u increases, but when the pricing error X is smaller,
higher ambiguity aversion increases the absolute position in each stock.
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Fig. 2 The impacts of mispricing on optimal strategies

To examine the aforementioned distinction between how ambiguity aver-
sion affects risk exposure depending on the pricing error X, we hold X at 0.2,
and at 0.02, and the estimated risk premium â at the mean θ = 0.0132. Figure
3(a) graphs the risk exposure for various ambiguity levels as a function of the
horizon T − t, for X = 0.2: it diminishes as the ambiguity-aversion increasing,
for all horizons. However, Figure 3(b) for X = 0.02 shows that the opposite
holds for the long-horizon investor. We investigate an explanation for this by
analyzing the components of the robust optimal strategy. From the discussion
on Page 17, the robust optimal strategy in stocks can be divided to three
components: πmpc, πinter and πuobv. Figure 4 examines the changes of each
components caused by model ambiguity. Under the case X = 0.2, Figures 4(a)
and 4(b) show that the risk exposures for all three components of π∗

1 or π∗
2 de-

crease with the model ambiguity, which explains the result in Figure 3(a). For
X = 0.02, considering π1 as an example, πmpc

1 and πuobv
1 remain unchanged

compared to the case of X = 0.2, but the absolute value of πinter
1 increases

w.r.t. the ambiguity-aversion level; since it dominates the other two compo-
nents, this explains the inverse impact of ambiguity on the optimal strategy
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with long horizon. However, the intertemporal components of the two stocks
will cancel each other out when one looks at the total investment in stocks,
which explains why one still gets the regular result of decreasing risk exposure
for the whole market when ambiguity aversion increases.
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Fig. 3 The impacts of model ambiguity on optimal strategies

On the other hand, for positive pricing error X and negative λ1, (meaning
that stock 1 is overpriced and tends to increase, but stock 2 will increase faster
to ensure asymptotic stability), although the myopic investment demands a
positive position in stock 1 due to the negative λ1, the intertemporal demand in
stock 1 is negative because of the positive pricing error, and will dominate the
other demands for long-horizon investment. This coincides with the intuition
that the position in the overpriced stock should be negative and the position
in the underpriced stock should be positive in the long-horizon investment.

5.3 Utility losses

When the investor applies a non-optimal strategy, a loss of utility will be in-
curred. Given a specific strategy α, we can define the suboptimal value function
under α as

Jα(t, w, x) = inf
Q∈Q

EQ
t,W,V

{
Wα(T )1−γ

1− γ
+

∫ T

0

1

ϕα(s)
R(s)ds

}
, (53)

where Wα(T ), ϕα(s) are the terminal wealth and a specific preference param-
eter under strategy α. Furthermore, following Branger et al. (2013), we define
the wealth-equivalent utility loss under this specific strategy α as

Lα(t) := 1−
(
Jα

J

) 1
1−γ

, (54)

where J is the value functions given by (31) or (43) for observed or unobserved
risk premium.
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Fig. 4 The impacts of model ambiguity on components of optimal strategies

In this subsection, we quantify the impacts of mispricing and model am-
biguity on utility loss. First in the case of the observed risk premium, if the
AAI ignores mispricing in the financial market and behaves like an investor in
a market without mispricing error x(t), according to (32)-(33), she will follow
the specific strategy πIM = (πIM

1 , πIM
2 ) given by

πIM (t) =

((
1

(2σ2 + b2)Γ
+

Γ1B3(t)

Γ

)
a(t),

(
1

(2σ2 + b2)Γ
− Γ1B3(t)

Γ

)
a(t)

)
.

(55)

Writing JIM instead of JπIM

to lighten notation (and similarly elsewhere),
consistent with (14), we assume that

ϕIM (t) =
u

(1− γ)JIM (t, w, x)
. (56)

With the above setup, JIM has the following structure

JIM (t, w, x, a) =
w1−γ

1− γ
exp

(
1

2
AIM

1 (t)a2 +AIM
2 (t)a+AIM

0 (t)

+
1

2
BIM

1 (t)x2 +BIM
3 (t)ax

)
,

(57)

where AIM
1 (t), AIM

2 (t), AIM
0 (t), BIM

1 (t) and BIM
3 (t) satisfy an ODE system

(88)-(92) in Appendix D. With this closed-form expression for JIM , the utility
loss LIM (t) can be obtained via direct calculation.
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The quantitative impacts of ignoring model ambiguity are entirely distinct
from those of ignoring mispricing. Model ambiguity is a sentiment factor for
the AAI instead of an objective factor in the market such as mispricing. Even
if the AAI understands mispricing well, if she insists unwisely to invest like an
ANI by ignoring model ambiguity, significant utility losses will be incurred: this
is equivalent to inserting u = 0 into (32)-(33), yielding the optimal strategy
(πIA

1 , πIA
2 ) for an ANI as

πIA
1 (t) =

(
λ2 − λ1

2(2σ2 + b2)γ
− λ1 + λ2

2γb2
+

B1(t)

γ

)
x(t)

+

(
1

(2σ2 + b2)γ
+

B3(t)

γ

)
a(t), (58)

πIA
2 (t) =

(
λ2 − λ1

2(2σ2 + b2)γ
+

λ1 + λ2

2γb2
− B1(t)

γ

)
x(t)

+

(
1

(2σ2 + b2)γ
− B3(t)

γ

)
a(t), (59)

The corresponding utility loss LIA(t) is obtained explicitly from its corre-
sponding value function JIA(t, w, x, a) which computes as

JIA(t, w, x, a) =
w1−γ

1− γ
exp

(
1

2
AIA

1 (t)a2 +AIA
2 (t)a+AIA

0 (t)

+
1

2
BIA

1 (t)x2 +BIA
3 (t)ax

) (60)

where the functions AIA
1 , AIA

2 , AIA
0 , BIA

1 and BIA
3 satisfy the system of ODEs

(93)-(97) given in Appendix D.

Next we consider the situation of unobserved risk premium, where all rel-
evant quantities are expressed using the state variable â(t) rather than a(t).
Again, after some effort, all expressions can be given explicitly. If the AAI
invests in the pair of stocks as if the market had no mispricing, based on
(44)-(45), her strategy is given by

πUIM
1 (t) =

â

(2σ2 + b2)Γ
+

[B̂2(t) + B̂3â(t)]Γ1

Γ
+

η[Â1(t)â(t) + Â2(t)]Γ1

(2σ2 + b2)Γ
,

(61)

πUIM
2 (t) =

â

(2σ2 + b2)Γ
− [B̂2(t) + B̂3â(t)]Γ1

Γ
+

η[Â1(t)â(t) + Â2(t)]Γ1

(2σ2 + b2)Γ
.

(62)
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and the corresponding value function JUIM is

JUIM (t, w, x, â) =
w1−γ

1− γ
exp

(
1

2
ÂUIM

1 (t)â2 + ÂUIM
2 (t)â+ ÂUIM

0 (t)

+
1

2
B̂UIM

1 (t)x2 + B̂UIM
2 (t)x+ B̂UIM

3 (t)âx

)
,

(63)

with functions ÂUIM
1 , ÂUIM

2 , ÂUIM
0 , B̂UIM

1 , B̂UIM
2 and B̂UIM

3 satisfying the
system of ODEs (98)-(103) given in Appendix D. If she ignores model ambi-
guity and acts like an ANI, the strategy computes as

πUIA
1 (t) =

â

(2σ2 + b2)γ
+

(λ2 − λ1)x(t)

2(2σ2 + b2)γ
− (λ1 + λ2)x(t)

2γb2

+
[B̂1(t)x(t) + B̂2(t) + B̂3â(t)]

γ

+
η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]

(2σ2 + b2)γ
,

(64)

πUIA
2 (t) =

â

(2σ2 + b2)γ
+

(λ2 − λ1)x(t)

2(2σ2 + b2)γ
+

(λ1 + λ2)x(t)

2γb2

− [B̂1(t)x(t) + B̂2(t) + B̂3â(t)]

γ

+
η[Â1(t)â(t) + Â2(t) + B̂3(t)x(t)]

(2σ2 + b2)γ
,

(65)

with the corresponding value function JUIM given by

JUIA(t, w, x, â) =
w1−γ

1− γ
exp

(
1

2
ÂUIA

1 (t)â2 + ÂUIA
2 (t)â+ ÂUIA

0 (t)

+
1

2
B̂UIA

1 (t)x2 + B̂UIA
2 (t)x+ B̂UIA

3 (t)âx

)
,

(66)

where ÂUIA
1 , ÂUIA

2 , ÂUIA
0 , B̂UIA

1 , B̂UIA
2 and B̂UIA

3 satisfy a system of ODEs
(104)-(109) given in Appendix D. The utility loss functions LIA, LUIM and
LUIA are then given via definition (54).

We illustrate these utility losses quantitatively in Figure 5, under various
ambiguity-aversion levels, as functions of time to maturity, by holding the
market states as X(t) = 0.2, â(t) = a(t) = 0.0132. Figure 5(a) and Figure
5(b) show that when one ignores mispricing, the utility loss decreases as the
investor becomes more ambiguity-averse; this is consistent with the intuition
that ambiguity forces the risk exposure downward, so the AAI will reduce
the level of exploration of the pricing error. Figure 5(c) and Figure 5(d) show
that when one ignores ambiguity, the utility loss increases w.r.t. the ambiguity-
aversion level; thus for more conservative investors, acting as an ANI will suffer
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Fig. 5 Utility Losses

more utility loss. In fact, these results are consistent with Figure 2(b) which
discloses that risk exposure decreases w.r.t. the ambiguity-aversion level and
increases w.r.t. the pricing error.

A comparison between the observed and unobserved cases shows that the
utility loss, whether by ignoring mispring or ambiguity, is larger for unobserved
risk premium than when the risk-premium is observed; the difference is quite
large for longer investment horizons (see T − t = 3). This result implies an
important recommendation for practitioners: in the realistic situation where
risk premia cannot be observed directly, investors should be quite wary of
ignoring either mispricing or ambiguity, to avoid significant impacts on their
bottom line.

6 Conclusions

In this paper, we investigated optimal strategies for an AAI in a market with
mispricing. The prices of a stock pair follow a “cointegrated system” proposed
by Liu and Timmermann (2013). At the same time, the AAI may lack ful-
l confidence in the model describing the economy, and chooses to consider
a “homethetic robust” utility maximization problem in order to model her
aversion to ambiguity. Furthermore, we have considered the realistic situa-
tion where the AAI can invest in a time-varying financial environment, where
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specifically the risk premium model is of stochastic mean-reverting (MR) type,
and is not necessarily observed.

Under the above assumptions, we derived the explicit robust optimal s-
trategies and corresponding value functions, starting with the case without
stochastic risk premium. For the case with MR stochastic risk premium, we al-
lowed two situations: observed risk premium and unobserved risk premium. By
analyzing the impacts of mispricing and model ambiguity on optimal strategies
and utility losses, the main findings are as follows: (i) Although model ambi-
guity does not always reduce the absolute value of the position in each stock,
it does decrease the overall market exposure, consistent with Maenhout (2004,
2006). (ii) Unlike the result in Liu and Timmermann (2013), under stochastic
risk premium, the optimal strategy for the AAI is not a Long-Short strategy
even if stock liquidities are identical. (iii) The comparisons of utility losses show
that mispricing and model ambiguity are not substitutes for one another. Util-
ity loss by ignoring mispricing decreases w.r.t. ambiguity-aversion level while
utility loss by ignoring ambiguity increases w.r.t. ambiguity-aversion level. (iv)
Ignoring either source of error is highly unrecommended for longer investment
horizons under the realistic situation of unobserved MR risk premium.
Acknowledgement: This research is supported by National Science Founda-
tion of China under Grant (No. 71201173), Humanity and Social Science Foun-
dation of Ministry of Education of China (No. 12YJCZH267), Distinguished
Young Talents in Higher Education of Guangdong of China (2012WYM-001)
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Appendix A

The proof of Proposition 1 and 2: To solve problem (13), we conjecture the
corresponding value function has the structure (16). Inserting this structure
into the HJB equation (15), by the first-order conditions, the functions h∗

m,
h∗, h∗

1 and h∗
2 which realize the minimum in (15) are given by

h∗
m = −uσmπf , h∗ = −(π1 + π2)uσ,

h∗
1 = −bπ1u−Nxbu/(1− γ), h∗

2 = Nxbu/(1− γ)− bπ2u.

Substituting the above expressions for h∗
m, h∗, h∗

1 and h∗
2 into equation (15), by

first-order conditions, we can achieve the expression for the optimal strategy
π∗ shown in (19)-(21). Plugging π∗ into (15) implies(

1

2(1− γ)
Nt +

1− γ − u

(γ + u)(1− γ)2
b2N2 − λ1 + λ2

(1− γ)(γ + u)
N

+
(b2 + σ2)(λ2

1 + λ2
2) + 2σ2λ1λ2

2(γ + u)b2(2σ2 + b2)

)
x2 +

(
1

1− γ
Gt +

b2N

1− γ
+

µ2
m

2(γ + u)σ2
m

+ r

)
= 0



28 Bo Yi et al.

The above equation is ensured if the following equations are satisfied:

1

2(1− γ)
Nt +

1− γ − u

(γ + u)(1− γ)2
b2N2 − λ1 + λ2

(1− γ)(γ + u)
N

+
(b2 + σ2)(λ2

1 + λ2
2) + 2σ2λ1λ2

2(γ + u)b2(2σ2 + b2)
= 0, (67)

1

1− γ
Gt +

b2N

1− γ
+

µ2
m

2(γ + u)σ2
m

+ r = 0. (68)

One can easily verify that expressions (17) and (18) are the solutions to the
above two equations respectively. Moreover, inserting the specific expressions
for k1, k2 and k3 to (18), γ would be eliminated in expressions (20) and (21),
which implies Proposition 3.3.

Appendix B

The proof of Proposition 3: To solve the HJB equation (30), we conjecture
the solution has the structure (31). Inserting (31) to (30), by the first-order
condition, we acquire

h∗ = −(π1 + π2)uσ,

h∗
a = − σau

1− γ
(A1a+A2 +B3x),

h∗
1 = −bπ1u− (B1x+B3a)bu/(1− γ),

h∗
2 = (B1x+B3a)bu/(1− γ)− bπ2u.

(69)

Parallel to the proof of Proposition 3.2, we substitute the above expressions
in the HJB equation (30). By the first-order condition, calculation yields an
optimal strategy π∗ = (π∗

1 , π
∗
2) shown in (32)-(33). Plugging the optimal strat-

egy into (30), the right side of equation (30) becomes an affine function of a2,
a, x2 and ax. The equation has to be satisfied for all values of a and x, which
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leads to the following system of ODEs:

A1t+
4(1− γ)

Γ (2σ2 + b2)
− Γ (1− γ)

[
4σ2

Γ 2(2σ2 + b2)2
+ b2

(
1

Γ (2σ2 + b2)
− Γ1B3

Γ

)2

+ b2
(

1

Γ (2σ2 + b2)
+

Γ1B3

Γ

)2
]
+ (1− γ)

4b2Γ 2
1B

2
3

Γ
(70)

+ 2b2B2
3Γ1 + σ2

aA
2
1Γ1 − 2κA1 = 0,

A2t+σ2
aΓ1A1A2 + κ(A1θ −A2) = 0, (71)

A0t+(1− γ)r̃ + b2B1 +
1

2
σ2
aΓ1A

2
2 +

1

2
σ2
aA1 + κA2θ = 0, (72)

B1t+(1− γ)

[
(λ2 − λ1)

2

Γ (2σ2 + b2)
+

(λ1 + λ2)
2

Γb2
− 2Γ1B1(λ1 + λ2)

Γ
− σ2(λ2 − λ1)

2

Γ (2σ2 + b2)2

− Γb2

((
λ2 − λ1

2Γ (2σ2 + b2)
− λ1 + λ2

2Γb2
+

Γ1B1

Γ

)2

(73)

+

(
λ2 − λ1

2Γ (2σ2 + b2)
+

λ1 + λ2

2Γb2
− Γ1B1

Γ

)2
)

+ 2Γ1B1
2Γ1B1 − (λ1 + λ2)

Γb2

]
+ 2b2Γ1B

2
1 + σ2

aΓ1B
2
3 − 2(λ1 + λ2)B1 = 0,

B3t+(1− γ)

{
λ2 − λ1

Γ (2σ2 + b2)
− Γ1B3(λ1 + λ2)

Γ
+

λ2 − λ1

Γ (2σ2 + b2)
− 2σ2(λ2 − λ1)

Γ (2σ2 + b2)2

− b2
[

2(λ2 − λ1)

Γ (2σ2 + b2)2
+ 4Γ1B3

(
λ1 + λ2

2Γb2
− Γ1B1

Γ

)]
+ b2Γ1

(
4Γ1B1B3

Γ
− (λ1 + λ2)B3

Γb2

)}
(74)

+ 2Γ1b
2B1B3 + σ2

aΓ1A1B3 − (λ1 + λ2)B3 − κB3 = 0,

with terminal conditions A1(T ) = A2(T ) = A0(T ) = B1(T ) = B3(T ) = 0.

Appendix C

The proof of Proposition 4: To simplify the calculation, we define a new
Brownian motion Ẑ3 under P as

dẐ3 =
σ√

σ2 + b2
dẐ(t) +

b√
σ2 + b2

dẐ1(t). (75)
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Using standard Gaussian linear regression, the filtered model can be rewritten
as

dP1(t)

P1(t)
= (r̃ + â(t)− λ1X(t))dt+ σ̂dẐ3(t), (76)

dP2(t)

P2(t)
= (r̃ + â(t) + λ2X(t))dt+ ρσ̂dẐ3(t) +

√
1− ρ2σ̂dẐ4(t), (77)

dâ(t) = κ(θ − â(t))dt+ η

(
1

σ̂
dẐ3(t) +

1− ρ

ρ1σ̂
dẐ4(t)

)
, (78)

where Ẑ4 is a Brownian motion under P independent of Ẑ3 and σ̂ =
√
σ2 + b2,

η is given by (38) and (ρ, ρ1) =
(

σ2

b2+σ2 ,
√

b2

b2+σ2

)
. Based on Girsanov’s theo-

rem, we define a new Brownian motions under Q as

dẐQ
3 (t) = dẐ3(t)− h1(t)dt, dẐQ

4 (t) = dẐ4(t)− h2(t)dt.

Applying the dynamic programming principle, the robust HJB equation for
the filtered model can be derived as:

sup
π∈Π

inf
φ∈H

{
Jt + wJw [r̃ + (λ2π2 − λ1π1)x+ â(π1 + π2) + h1σ̂(π1 + ρπ2) + h2π2ρ1σ̂]

+ Jx (−(λ1 + λ2)x(t) + h1σ̂(1− ρ)− h2ρ1σ̂) + Jâ

(
κ(θ − â) + h1

η

σ̂
+ h2

η(1− ρ)

ρ1σ̂

)
+

1

2
w2Jwwσ̂

2(π2
1 + π2

2 + 2ρπ1π2) + wJwxσ̂(1− ρ)(π1 − π2) + η(π1 + π2)Jwâ

+ Jxxσ̂
2(1− ρ) +

η2(1− ρ)

ρ21σ̂
2

Jââ +
(1− γ)J

2u

(
h2
1 + h2

2

)}
= 0.

(79)

Substituting the conjecture of the value function (43) into (79), the first-order
condition yields

h∗
1 =− ηu

(1− γ)σ̂
(Â1â+ Â2 + B̂3x)− σ̂(π1 + ρπ2)u (80)

− σ̂(1− ρ)u

1− γ
(B̂1x+ B̂2 + B̂3â),

h∗
2 =− ηu(1− ρ)

(1− γ)σ̂ρ1
(Â1â+ Â2 + B̂3x)− σ̂ρ1π2u (81)

+
ρ1σ̂u

1− γ
(B̂1x+ B̂2 + B̂3â),

and an optimal strategy shown in (44)-(45). Plugging these into (30), it turns
out that our conjecture (43) indeed solves the HJB equation if the functions
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satisfy the following ODE system:

Â1t+
2(1 + ηΓ1Â1)

2

σ̂2(1 + ρ)Γ
(1− γ)− 2κÂ1 + 2σ̂2(1− ρ)(1− γ)

Γ 2
1

Γ
B̂2

3 + 2σ̂2Γ1(1− ρ)B̂2
3

+
2(1− ρ)η2Γ1

ρ21σ̂
2

Â2
1 = 0, (82)

Â2t+κθÂ1 − κÂ2 + 2(1− ρ)(1− γ)σ̂2Γ
2
1

Γ
B̂2B̂3 + 2ηΓ1(1− γ)

Â2 + ηΓ1Â1Â2

σ̂2(1 + ρ)Γ

+2σ̂2(1− ρ)Γ1B̂2B̂3 +
2(1− ρ)η2Γ1

ρ21σ̂
2

Â1Â2 = 0, (83)

Â0t+r̃(1− γ) + κθÂ2 + σ̂2(1− ρ)
Γ 2
1

Γ
B̂2

2 + (1− γ)
(ηΓ1Â2)

2

σ̂2(1 + ρ)Γ
+ B̂2

2 σ̂
2Γ1(1− ρ)

+σ̂2(1− ρ)B̂1 +
(1− ρ)η2Γ1

ρ21σ̂
2

Â2
2 +

η2(1− ρ)

ρ21σ̂
2

Â1 = 0, (84)

B̂1t+
(λ2 − λ1)

2

2σ̂2(1 + ρ)Γ
(1− γ) +

(λ1 + λ2)
2

2σ̂2(1− ρ)Γ
(1− γ) +

2σ̂2(1− ρ)Γ 2
1 B̂

2
1

Γ
(1− γ)

−2Γ1B̂1(λ1 + λ2)

Γ
(1− γ) +

2η2Γ 2
1 B̂

2
3

σ̂2(1 + ρ)Γ
(1− γ) + 2σ̂2Γ1(1− ρ)B̂2

1

+2Γ1
(1− ρ)η2

ρ21σ̂
2

B̂2
3 = 0, (85)

B̂2t−(λ1 + λ2) + κθB̂3 + 2σ̂2(1− γ)(1− ρ)
Γ 2
1

Γ
B̂1B̂2 − (λ1 + λ2)(1− γ)

Γ1

Γ
B̂2

+(1− γ)
2η2Γ 2

1 Â2B̂3

σ̂2(1 + ρ)Γ
+ 2σ̂2(1− ρ)Γ1B̂1B̂2 +

2(1− ρ)η2Γ1

ρ21σ̂
2

Â2B̂3

+(1− γ)
ηΓ1(λ2 − λ1)

σ̂2(1 + ρ)Γ
Â2 = 0, (86)

B̂3t−κB̂3 + 2(1− γ)(1− ρ)σ̂2Γ
2
1

Γ
B̂1B̂3 − (1− γ)(λ1 + λ2)

Γ1

Γ
B̂3

+(1− γ)(1 + ηΓ1Â1)
λ2 − λ1

σ̂2(1 + ρ)Γ
+ (1− γ)

2η2Γ 2
1 Â1B̂3 + 2ηΓ1B̂3

σ̂2(1 + ρ)Γ

+2σ̂2(1− ρ)Γ1B̂1B̂3 +
2(1− ρ)η2Γ1

ρ21σ̂
2

Â1B̂3 = 0, (87)

with terminal conditions Â1(T ) = Â2(T ) = Â0(T ) = B̂1(T ) = B̂2(T ) =
B̂3(T ) = 0.

Appendix D

This section details the calculation of the four value functions under the strate-
gies πIM , πIA, πUIM , πUIA in Section 5.3. We conjecture that the structures
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of value functions JIM and JIA are given by (57) and (60) for the observed
case and (63) and (66) for unobserved case. Set πIM as an example, we hope to
solve for the value function JIM under the given strategy for ignoring mispric-
ing πIM . Inserting (55), (69) and (57) into HJB equation (30), we repeat the
variables separation method similarly to Appendix B. The following system of
ODEs can be derived for (57):

(
AIM

1

)
t
+

4(1− γ)

Γ (2σ2 + b2)
− Γ (1− γ)

[
4σ2

Γ 2(2σ2 + b2)2
+ b2

(
1

Γ (2σ2 + b2)
− Γ1B3

Γ

)2

+ b2
(

1

Γ (2σ2 + b2)
+

Γ1B3

Γ

)2
]
+ (1− γ)

2b2Γ 2
1B3

(
BIM

3

)
Γ

(88)

+ 2b2
(
BIM

3

)2
Γ1 + σ2

a

(
AIM

1

)2
Γ1 − 2κ

(
AIM

1

)
= 0,(

AIM
2

)
t
+ σ2

aΓ1

(
AIM

1

) (
AIM

2

)
+ κ

[(
AIM

1

)
θ −

(
AIM

2

)]
= 0, (89)(

AIM
0

)
t
+ (1− γ)r̃ + b2

(
BIM

1

)
+

1

2
σ2
aΓ1

(
AIM

2

)2
+

1

2
σ2
a

(
AIM

1

)
+ κθ

(
AIM

2

)
= 0,

(90)(
BIM

1

)
t
+ 2b2Γ1

(
BIM

1

)2
+ σ2

aΓ1

(
BIM

3

)2 − 2(λ1 + λ2)
(
BIM

1

)
= 0, (91)(

BIM
3

)
t
+ (1− γ)

{
λ2 − λ1

Γ (2σ2 + b2)
− Γ1B3(λ1 + λ2)

Γ
+

2b2Γ1

(
BIM

1

)
B3

Γ

}
+ 2Γ1b

2
(
BIM

1

) (
BIM

3

)
+ σ2

aΓ1

(
AIM

1

) (
BIM

3

)
− (λ1 + λ2)

(
BIM

3

)
− κ

(
BIM

3

)
= 0, (92)

with terminal conditionsAIM
1 (T ) = AIM

2 (T ) = AIM
0 (T ) = BIM

1 (T ) = BIM
3 (T ) =

0 and A1, A2, A3, B1 and B3 satisfy (70)-(74). Similarly, given the strategy
πIA, we obtain the following system of ODEs for the functions used in JIA in
(60).

(
AIA

1

)
t
+

4(1− γ)

γ(2σ2 + b2)
− Γ (1− γ)

[
4σ2

γ2(2σ2 + b2)2
+ b2

(
1

γ(2σ2 + b2)
− γ1B3

γ

)2

+ b2
(

1

γ(2σ2 + b2)
+

B3

γ

)2
]
+ (1− γ)

4b2Γ 2
1B3

(
BIA

3

)
Γ

+ 2b2
(
BIA

3

)2
Γ1 + σ2

a

(
AIA

1

)2
Γ1 − 2κ

(
AIA

1

)
= 0, (93)(

AIA
2

)
t
+ σ2

aΓ1

(
AIA

1

) (
AIA

2

)
+ κ

[(
AIA

1

)
θ −

(
AIA

2

)]
= 0, (94)(

AIA
0

)
t
+ (1− γ)r̃ + b2

(
BIA

1

)
+

1

2
σ2
aΓ1

(
AIA

2

)2
+

1

2
σ2
a

(
AIA

1

)
+ κθ

(
AIA

2

)
= 0,

(95)
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(
BIA

1

)
t
+ (1− γ)

{
(λ2 − λ1)

2

γ(2σ2 + b2)
+

(λ1 + λ2)
2

γb2
− 2B1(λ1 + λ2)

γ
− σ2(λ2 − λ1)

2

γ(2σ2 + b2)2

− Γb2

[(
λ2 − λ1

2γ(2σ2 + b2)
− λ1 + λ2

2γb2
+

Γ1B1

γ

)2

+

(
λ2 − λ1

2γ(2σ2 + b2)
+

λ1 + λ2

2γb2
− Γ1B1

γ

)2
]

(96)

+ 2Γ1

(
BIA

1

) 2Γ1B1 − (λ1 + λ2)

γb2

}
+ 2b2Γ1

(
BIA

1

)2
+ σ2

aΓ1

(
BIA

3

)2 − 2(λ1 + λ2)
(
BIA

1

)
= 0,(

BIA
3

)
t
+ (1− γ)

{
λ2 − λ1

γ(2σ2 + b2)
− B3(λ1 + λ2)

γ
+

λ2 − λ1

γ(2σ2 + b2)
− 2σ2(λ2 − λ1)

γ(2σ2 + b2)2

− b2Γ

[
2(λ2 − λ1)

γ(2σ2 + b2)2
+

4B3

γ

(
λ1 + λ2

2γb2
− Γ1B1

γ

)]
+b2Γ1

(
2Γ1B1

(
BIA

3

)
+ 2Γ1B3

(
BIA

1

)
γ

− (λ1 + λ2)B3

γb2

)}
(97)

+ 2Γ1b
2
(
BIA

1

) (
BIA

3

)
+ σ2

aΓ1

(
AIA

1

) (
BIA

3

)
− (λ1 + λ2)

(
BIA

3

)
− κ

(
BIA

3

)
= 0,

with terminal conditionsAIA
1 (T ) = AIA

2 (T ) = AIA
0 (T ) = BIA

1 (T ) = BIA
3 (T ) =

0 and A1, A2, A3, B1 and B3 satisfy (70)-(74). In the unobserved case, given
the strategy πUIM , the system of ODEs needed to express the function JUIM

in (63) is

(
ÂUIM

1

)
t
+

4(1 + ηΓ1Â1)

σ̂2(1 + ρ)Γ
(1− γ) + 4ηΓ1

(
ÂUIM

1

) (1 + ηΓ1Â1)

σ̂2(1 + ρ)Γ
(1− γ)

+ 2σ̂2(1− ρ)(1− γ)
Γ 2
1

Γ
B̂3

(
B̂UIM

3

)
+ 2σ̂2Γ1(1− ρ)

(
B̂UIM

3

)2
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIM

1

)2
− σ̂2Γ

( (1 + ηΓ1Â1)

σ̂2(1 + ρ)Γ

)2

(1 + ρ)

+

(
B̂3Γ1

Γ

)2

(1− ρ)− 2κ
(
ÂUIM

1

) = 0,

(98)
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ÂUIM

2

)
t
+ (1− γ)

2ηÂ2Γ1

σ̂2(1 + ρ)Γ
+ κθ

(
ÂUIM

1

)
− κ

(
ÂUIM

2

)
+ 2(1− ρ)(1− γ)σ̂2Γ

2
1

Γ

[(
B̂UIM

2

)
B̂3 +

(
B̂UIM

3

)
B̂2

]
+ 2η(1− γ)

Γ1

Γ

[
1 + ηÂ1Γ1

σ̂2(1 + ρ)

(
ÂUIM

2

)
+

2ηΓ1Â2

σ̂2(1 + ρ)

(
ÂUIM

1

)]

+ 2σ̂2(1− ρ)Γ1

(
B̂UIM

2

)(
B̂UIM

3

)
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIM

1

)(
ÂUIM

2

)
− 2(1 + ηΓ1Â1)ηÂ2Γ1

σ̂2(1 + ρ)Γ
− 2(1− ρ)σ̂2 B̂2B̂3Γ

2
1

Γ
= 0,

(99)(
ÂUIM

0

)
t
+ r̃(1− γ) + κθ

(
ÂUIM

2

)
+ σ̂2(1− ρ)

Γ 2
1

Γ
B̂2B̂

UIM
2

+ σ̂2(1− ρ)
(
B̂UIM

1

)
+

(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIM

2

)2
+

η2(1− ρ)

ρ21σ̂
2

(
ÂUIM

1

)
+ σ̂2Γ1(1− ρ)

(
B̂UIM

2

)2
+ (1− γ)

2η2Γ 2
1 Â2

σ̂2(1 + ρ)Γ
ÂUIM

2

− σ̂2Γ

( Â2ηΓ1

σ̂2(1 + ρ)Γ

)2

+

(
B̂2Γ1

Γ

)2

(1− ρ)

 = 0,

(100)

(
B̂UIM

1

)
t
+ 2σ̂2Γ1(1− ρ)

(
B̂UIM

1

)2
+ 2Γ1

(1− ρ)η2

ρ21σ̂
2

(
B̂UIM

3

)2
= 0, (101)(

B̂UIM
2

)
t
− (λ1 + λ2) + κθ

(
B̂UIM

3

)
+ 2σ̂2(1− γ)(1− ρ)

Γ 2
1

Γ

(
B̂UIM

1

)
B̂2

− (λ1 + λ2)(1− γ)
Γ1

Γ
B̂2 + (1− γ)

2η2Γ 2
1

(
ÂUIM

2

)(
B̂UIM

3

)
σ̂2(1 + ρ)Γ

+ 2σ̂2(1− ρ)Γ1

(
B̂UIM

1

)(
B̂UIM

2

)
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIM

2

)(
B̂UIM

3

)
+ (1− γ)

ηΓ1(λ2 − λ1)

σ̂2(1 + ρ)Γ
Â2 = 0, (102)

(
B̂UIM

3

)
t
−κ
(
B̂UIM

3

)
+ 2(1− γ)(1− ρ)σ̂2Γ

2
1

Γ

(
B̂UIM

1

)
B̂3 − (1− γ)(λ1 + λ2)

Γ1

Γ
B̂3

+ (1− γ)(1 + ηΓ1Â1)
λ2 − λ1

σ̂2(1 + ρ)Γ
+ (1− γ)

2η2Γ 2
1 Â1 + 2ηΓ1

σ̂2(1 + ρ)Γ

(
B̂UIM

3

)
+ 2σ̂2(1− ρ)Γ1

(
B̂UIM

1

)(
B̂UIM

3

)
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIM

1

)(
B̂UIM

3

)
= 0,

(103)



Dynamic portfolio selection with mispricing and model ambiguity 35

with terminal conditions ÂUIM
1 (T ) = ÂUIM

2 (T ) = ÂUIM
0 (T ) = B̂UIM

1 (T ) =
B̂UIM

2 (T ) = B̂UIM
3 (T ) = 0 and Â1, Â2, Â3, B̂1, B̂2 and B̂3 satisfy (82)-(87).

Finally, again in the unobserved case, given the strategy πUIA, the functions
needed to express JUIA in (66) solve the following system of ODEs:

(
ÂUIA

1

)
t
+

4(1 + ηÂ1)

σ̂2(1 + ρ)γ
(1− γ) + 4ηΓ1

(
ÂUIA

1

) (1 + ηÂ1)

σ̂2(1 + ρ)γ
(1− γ)− 2κ

(
ÂUIA

1

)
+ 2σ̂2(1− ρ)(1− γ)

Γ1

γ
B̂3

(
B̂UIA

3

)
+ 2σ̂2Γ1(1− ρ)

(
B̂UIA

3

)2
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIA

1

)2
− σ̂2Γ

( (1 + ηÂ1)

σ̂2(1 + ρ)γ

)2

(1 + ρ)

+

(
B̂3

γ

)2

(1− ρ)

 = 0,

(104)

(
ÂUIA

2

)
t
+ (1− γ)

2ηÂ2

σ̂2(1 + ρ)γ
+ κθ

(
ÂUIA

1

)
− κ

(
ÂUIA

2

)
+ 2(1− ρ)(1− γ)σ̂2Γ1

γ

[(
B̂UIA

2

)
B̂3 +

(
B̂UIA

3

)
B̂2

]
+ 2η(1− γ)

Γ1

γ

[
1 + ηÂ1

σ̂2(1 + ρ)

(
ÂUIA

2

)
+

2η Â2

σ̂2(1 + ρ)

(
ÂUIA

1

)]

+ 2σ̂2(1− ρ)Γ1

(
B̂UIA

2

)(
B̂UIA

3

)
+

2(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIA

1

)(
ÂUIA

2

)
− 2(1 + ηÂ1)ηÂ2Γ

σ̂2(1 + ρ)γ2
− 2(1− ρ)σ̂2 B̂2B̂3Γ

γ2
= 0,

(105)

(
ÂUIA

0

)
t
+ r̃(1− γ) + κθ

(
ÂUIA

2

)
+ σ̂2(1− ρ)

Γ1

γ
B̂2B̂

UIA
2 + (1− γ)

2η2Γ1Â2

σ̂2(1 + ρ)γ
ÂUIA

2

+ σ̂2(1− ρ)
(
B̂UIA

1

)
+

(1− ρ)η2Γ1

ρ21σ̂
2

(
ÂUIA

2

)2
+

η2(1− ρ)

ρ21σ̂
2

(
ÂUIA

1

)
+ σ̂2Γ1(1− ρ)

(
B̂UIA

2

)2
− σ̂2Γ

( Â2η

σ̂2(1 + ρ)γ

)2

+

(
B̂2

γ

)2

(1− ρ)

 = 0,

(106)
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(
B̂UIA

1

)
t
+ 2(1− γ)

[
η(λ2 − λ1)B̂3

σ̂2(1 + ρ)γ
− λ1 + λ2

γ
B̂1 +

(λ2 − λ1)
2

2σ̂2(1 + ρ)γ
+

(λ1 + λ2)
2

2σ̂2γ(1− ρ)

+ σ̂2(1− ρ)Γ1

(
2B̂1

γ
− λ1 + λ2

σ̂2γ(1− ρ)

)(
B̂UIA

1

)
+

2η2Γ1B̂3

(
B̂UIA

3

)
σ̂2(1 + ρ)γ

+
(
B̂UIA

3

)2
Γ1

η2(1− ρ)

ρ21(1− γ)σ̂2
− σ̂2Γ (1 + ρ)

(
λ2−λ1

2 + ηB̂3

σ̂2(1 + ρ)γ

)2

−σ̂2Γ (1− ρ)

(
B̂1

γ
+ σ̂2Γ1

(
B̂UIA

1

)2 1− ρ

1− γ
− λ1 + λ2

2σ̂2(1− ρ)γ

)2
 = 0,

(107)

(
B̂UIA

2

)
t
+ (1− γ)

η(λ2 − λ1)Â2

σ̂2(1 + ρ)γ
− λ1 + λ2

γ
B̂2 −

λ1 + λ2

1− γ
+

κθ
(
B̂UIA

3

)
1− γ

σ̂2(1− ρ)Γ1

2B̂1

(
B̂UIA

2

)
γ

+
2B̂1

(
B̂UIA

2

)
γ

−
(
B̂UIA

2

) λ1 + λ2

σ̂2γ(1− ρ)


+ ηΓ1

2η
(
B̂UIA

3

)
Â1 + 2η

(
B̂UIA

3

)
Â2

σ̂2(1 + ρ)γ
+ 2

(
B̂UIA

1

)(
B̂UIA

2

)
σ̂2Γ1

1− ρ

1− γ

+ 2
(
ÂUIA

2

)(
B̂UIA

3

) (1− ρ)η2Γ1

ρ21(1− γ)σ̂2
− 2σ̂2Γ (1− ρ)

(
B̂1B̂2

γ2
− B̂2(λ1 + λ2)

2σ̂2γ(1− ρ)

)

+
2ηÂ2Γ

σ̂2γ
(
ηB̂3 +

λ2−λ1

2

σ̂2(1 + ρ)γ
) + ηΓ1

λ2 − λ1

σ̂2(1 + ρ)γ

(
ÂUIA

2

)]
= 0,

(108)
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(
B̂UIA

3

)
t
+ (1− γ)

[
(λ2 − λ1)(σ̂

2(1 + ρ)γ) +
2ηB̂3

σ̂2(1 + ρ)γ
+

(1 + ηÂ1)(λ2 − λ1)

σ̂2(1 + ρ)γ

+ σ̂2(1− ρ)Γ1

2B̂1

(
B̂UIA

3

)
γ

+
2B̂3

(
B̂UIA

1

)
γ

−

(
B̂UIA

3

)
(λ1 + λ2)

σ̂2γ(1− ρ)


+ ηΓ1

2ηÂ1

(
B̂UIA

3

)
+ 2ηB̂3

(
ÂUIA

1

)
σ̂2(1 + ρ)γ

+
2
(
B̂UIA

3

)
σ̂2(1 + ρ)γ

+
Â1(λ2 − λ1)

σ̂2(1 + ρ)γ


+ 2

(
B̂UIA

1

)(
B̂UIA

3

)
σ̂2Γ1

1− ρ

1− γ
+ 2

(
ÂUIA

1

)(
B̂UIA

3

) (1− ρ)η2Γ1

ρ21(1− γ)σ̂2

− 2Γ (1 + ηÂ1)

γ

(
λ2 − λ1

2σ̂2(1 + ρ)γ
+

ηB̂6

σ̂2(1 + ρ)γ

)
− B̂3(λ1 + λ2)

γ

−
κ
(
B̂UIA

3

)
1− γ

− 2(1− ρ)σ̂2Γ
B̂3

γ

(
B̂1

γ
− λ1 + λ2

2σ̂2(1− ρ)γ

) = 0,

(109)

with terminal conditions ÂUIA
1 (T ) = ÂUIA

2 (T ) = ÂUIA
0 (T ) = B̂UIA

1 (T ) =
B̂UIA

2 (T ) = B̂UIA
3 (T ) = 0 and Â1, Â2, Â3, B̂1, B̂2 and B̂3 satisfy (82)-(87).

Appendix E

The parameter estimation of the mispricing model (23)-(25) is quite straight-
forward since the likelihood function of the observed prices X1(t), X2(t) can be
computed explicitly. In fact, a(t) and X(t) are Ornstein-Uhlenbeck processes
given by

a(t) = θ + (a0 − θ)e−κt + σae
−κt

∫ t

0

eκudZa(u), (110)

X(t) = X0e
−(λ1+λ2)t + be−(λ1+λ2)t

(∫ t

0

e(λ1+λ2)udZ1(u)−
∫ t

0

e(λ1+λ2)udZ2(u)

)
.

(111)
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Substituting back to (23)-(24), we have

ln

(
P1(t)

P1(0)

)
=(2r̃ − σ2 − b2)t/2 +

∫ t

0

a(s)ds− λ1

∫ t

0

X(s)ds+ σZ(t) + bZ1(t)

=(2r̃ − σ2 − b2)t/2 +

∫ t

0

(
θ + (a0 − θ)e−κs + σae

−κs

∫ s

0

eκudZa(u)

)
ds

− λ1

∫ t

0

(
X0e

−(λ1+λ2)s + be−(λ1+λ2)s

(∫ s

0

e(λ1+λ2)udZ1(u)

−
∫ s

0

e(λ1+λ2)udZ2(u)

))
ds+ σZ(t) + bZ1(t)

=(2r̃ + 2θ − σ2 − b2)t/2 + (a0 − θ)(1− e−κt)/κ−X0λ1(1− e−(λ1+λ2)t)/(λ1 + λ2)

+

∫ t

0

∫ t

u

σae
κ(u−s)ds dZa(u) +

∫ t

0

b

(
1−

∫ t

u

λ1e
(λ1+λ2)(u−s)ds

)
dZ1(u)

+

∫ t

0

∫ t

u

λ1be
(λ1+λ2)(u−s)ds dZ2(u) + σZ(t),

ln

(
P2(t)

P2(0)

)
=(2r̃ − σ2 − b2)t/2 +

∫ t

0

a(s)ds+

∫ t

0

λ2X(s)ds+ σZ(t) + bZ2(t)

=(2r̃ + 2θ − σ2 − b2)t/2 + (a0 − θ)(1− e−κt)/κ+X0λ2(1− e−(λ1+λ2)t)/(λ1 + λ2)

+

∫ t

0

∫ t

u

σae
κ(u−s)ds dZa(u) +

∫ t

0

b

(
1−

∫ t

u

λ2be
(λ1+λ2)(u−s)ds

)
dZ2(u)

+

∫ t

0

∫ t

u

λ2be
(λ1+λ2)(u−s)ds dZ1(u) + σZ(t).

Let Q1(t) = ln(P1(t)/P1(0)) and Q2(t) = ln(P2(t)/P2(0)). The joint distribu-
tion of
(Q1(s), Q2(s), Q1(t), Q2(t)) with s < t is bivariate Normal with mean and
covariance given by

E(Q1(t)) = (2r̃ + 2θ − σ2 − b2)t/2 + (a0 − θ)(1− e−κt)/κ

−X0λ1(1− e−(λ1+λ2)t)/(λ1 + λ2), (112)

E(Q2(t)) = (2r̃ + 2θ − σ2 − b2)t/2 + (a0 − θ)(1− e−κt)/κ

+X0λ2(1− e−(λ1+λ2)t)/(λ1 + λ2), (113)

Cov(Q1(s), Q1(t)) = I1(s, t) + I2(s, t, λ1, λ1) + I5(s, t, λ1, λ1) + σ2s, (114)

Cov(Q2(s), Q2(t)) = I1(s, t) + I2(s, t, λ2, λ2) + I5(s, t, λ2, λ2) + σ2s, (115)

Cov(Q1(s), Q2(t)) = I1(s, t) + I3(s, t, λ1, λ2) + I4(s, t, λ1, λ2) + σ2s, (116)

Cov(Q2(s), Q1(t)) = I1(s, t) + I3(s, t, λ2, λ1) + I4(s, t, λ2, λ1) + σ2s, (117)
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where

I1(s, t) =

∫ s

0

(∫ s

u

σa exp(κ(u− v)) dv

)(∫ t

u

σa exp(κ(u− v)) dv

)
du

= −
σ2
ae

−κ(s+t)
(
(2− 2κs)eκ(s+t) − 2eκs + e2κs − 2eκt + 1

)
2k3

, (118)

I2(s, t, c, d) =

∫ s

0

b2
(
1− c

∫ s

u

exp (− (λ1 + λ2) (u− v)) dv

)
×
(
1− d

∫ t

u

exp (− (λ1 + λ2) (u− v)) dv

)
du

=
b2

2 (λ1 + λ2) 3

(
cd
(
−2e(λ1+λ2)s + e(λ1+λ2)(t−s) + e(λ1+λ2)(s+t)

−2e(λ1+λ2)t + 2
)
+ 2 (λ1 + λ2) ((λ1 + λ2) s (c+ d+ λ1 + λ2) + cds

+c
(
−e(λ1+λ2)s

)
+ c+ de(λ1+λ2)(t−s) − de(λ1+λ2)t

))
,

(119)

I3(s, t, c, d) =

∫ s

0

b2
(
1− c

∫ s

u

exp (− (λ1 + λ2) (u− v)) dv

)
×
(
d

∫ t

u

exp (− (λ1 + λ2) (u− v)) dv

)
du

=
b2d

2 (λ1 + λ2) 3

(
2ce(λ1+λ2)s − ce(λ1+λ2)(s+t) + 2 (c+ λ1 + λ2) e

(λ1+λ2)t

+ e(λ1+λ2)(−s)
(
−2ce(λ1+λ2)s − 2 (λ1 + λ2) s (c+ λ1 + λ2) e

(λ1+λ2)s

+ce(λ1+λ2)t − 2 (c+ λ1 + λ2) e
(λ1+λ2)t

))
,

(120)

I4(s, t, c, d) =

∫ s

0

b2
(
c

∫ s

u

exp (− (λ1 + λ2) (u− v)) dv

)
×
(
1− d

∫ t

u

exp (− (λ1 + λ2) (u− v)) dv

)
du

=
b2c

2 (λ1 + λ2) 3

(
2 (d+ λ1 + λ2) e

(λ1+λ2)s − de(λ1+λ2)(s+t) + 2de(λ1+λ2)t

+ e(λ1+λ2)(−s)
(
−2 (d+ λ1 + λ2) e

(λ1+λ2)s

−2 (λ1 + λ2) s (d+ λ1 + λ2) e
(λ1+λ2)s − de(λ1+λ2)t

))
,

(121)



40 Bo Yi et al.

I5(s, t, c, d) =

∫ s

0

b2
(
c

∫ s

u

exp (− (λ1 + λ2) (u− v)) dv

)
(122)

×
(
d

∫ t

u

exp (− (λ1 + λ2) (u− v)) dv

)
du

=
b2cd

2 (λ1 + λ2) 3

(
2λ1s+ 2λ2s+ e(λ1+λ2)(−(s−t))

((
e(λ1+λ2)s − 1

)
2 − 2e(λ1+λ2)(2s−t)

)
+ 2
)
.

Given the historical stock prices {P1(ti), P2(ti)}ni=1, we can obtain {Q1(ti), Q2(ti)}ni=1

and they have multivariate Normal distribution with mean and covariance
matrix by (112)-(122) . The parameters can be then estimated by maxi-
mizing the likelihood function of {Q1(ti), Q2(ti)} subject to the constraints
λ1 + λ2 > 0 and b, σ, σa, κ > 0.
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