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Abstract

We define a covariance-type operator on Wiener space: for F and G two random variables in the
Gross–Sobolev space D1,2 of random variables with a square-integrable Malliavin derivative, we let

ΓF,G :=


DF, −DL−1 G


, where D is the Malliavin derivative operator and L−1 is the pseudo-inverse

of the generator of the Ornstein–Uhlenbeck semigroup. We use Γ to extend the notion of covariance and
canonical metric for vectors and random fields on Wiener space, and prove corresponding non-Gaussian
comparison inequalities on Wiener space, which extend the Sudakov–Fernique result on comparison of
expected suprema of Gaussian fields, and the Slepian inequality for functionals of Gaussian vectors. These
results are proved using a so-called smart-path method on Wiener space, and are illustrated via various
examples. We also illustrate the use of the same method by proving a Sherrington–Kirkpatrick universality
result for spin systems in correlated and non-stationary non-Gaussian random media.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The canonical metric of a centered field G on an index set T is the square root of the
quantity δ2

G (s, t) = E

(G t − Gs)

2, s, t ∈ T . When G is Gaussian, this δ2 characterizes
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much of G ’s distribution, and is useful in various contexts for estimating G’s behavior, from
its modulus of continuity, to its expected supremum; see [1] for an introduction. The canonical
metric, together with the variances of G, are of course equivalent to the covariance function
QG (s, t) = E [G t Gs], which defines G’s law when G is Gaussian. In this article, we concentrate
on comparison results for expectations of suprema and other types of functionals, beyond the
Gaussian context, by using an extension of the concepts of covariance and canonical metric on
Wiener space. We introduce these concepts now. For the details of analysis on Wiener space
needed for the next definitions, including the spaces D1,p (p > 1) and the operators D and L−1,
see Chapter 1 in [14] or Chapter 2 in [10]. The notion of a ‘separable random field’ is formally
defined e.g. in [2, p. 8].

Definition 1.1. Consider an isonormal Gaussian process W defined on the probability space
(Ω , F , P), and associated with the real separable Hilbert space H: recall that this means that W =

{W (h) : h ∈ H} is a centered Gaussian family such that E [W (h) W (k)] = ⟨h, k⟩H. Let D1,2 be
the Gross–Sobolev space of random variables F with a square-integrable Malliavin derivative,
i.e. such that DF ∈ L2 (Ω × H). We denote the generator of the associated Ornstein–Uhlenbeck
operator by L . For a pair of random variables F, G ∈ D1,2, we define a covariance-type operator
by

ΓF,G := ⟨DF, −DL−1G⟩H. (1.1)

Let F = {Ft }t∈T be a separable random field on an index set T , such that Ft ∈ D1,2 for each
t ∈ T . The analogue for the operator Γ of the covariance of F is denoted by

ΓF (s, t) := ΓFs ,Ft = ⟨D(Ft ), −DL−1(Fs)⟩H. (1.2)

The analogue for Γ of the canonical metric δ2 of F is denoted by

∆F (s, t) := ⟨D(Ft − Fs), −DL−1(Ft − Fs)⟩H. (1.3)

Remark 1.2. (i) When F = {Ft }t∈T is in the first Wiener chaos, and hence is a centered
Gaussian field, ΓF coincides with its covariance function QF .

(ii) In general, the random variable ∆F (s, t) is not positive. However, according e.g. to [9,
Proposition 3.9], one has that E[∆F (s, t)|Ft − Fs] > 0, a.s.-P.

(iii) In general, we do not have ΓF,G = ΓG,F . However, Γ does extend the notion of covariance
for centered random variables, in the sense that E[ΓF,G] = E[FG]. More generally, if F
and G are in the same Wiener chaos, then ΓF,G = ΓG,F , but this symmetry does not extend
in general beyond such special cases.

The extension of the concept of covariance function given above in (1.1) appeared
in [3,11], respectively in the study of densities of random vectors and of multivariate normal
approximations, both on Wiener space. Comparison results on Wiener space have, in the past,
focused on concentration or Poincaré inequalities: see [19]. Recently, the scalar analogue of the
covariance operator above, i.e. ΓF,F , was exploited to derive sharp tail comparisons on Wiener
space, in [13,20].

The two main types of comparison results we will investigate herein are those of
Sudakov–Fernique type and those of Slepian type. See [1,2] for details of the classical proofs.

In the basic Sudakov–Fernique inequality, one considers two centered separable Gaussian
fields F and G on T , such that δ2

F (s, t) > δ2
G (s, t) for all s, t ∈ T ; then E


supT F


>

E

supT G


. Here T can be any index set, as long as the laws of F and G can be determined
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by considering only countably many elements of T ; this works for instance if T is a subset
of Euclidean space and F and G are almost surely continuous. To try to extend this result to
non-Gaussian fields with no additional machinery, for illustrative purposes, the following setup
provides an easy example.

Proposition 1.3. Let F and G be two separable fields on T , with G and F − G independent,
and E[Ft ] = E[G t ] for every t ∈ T . Then E


supT F


> E


supT G


.

The proof of this proposition is elementary. Let H = F − G. Note that for any t0 ∈ T ,
E [H (t0)] = 0. We may write P = PH × PF with obvious notation. Thus

E


sup
T

F


= E


sup

T
(H + G)


= EG


EH


sup

T
(H + G)


where under PH , G is deterministic. Thus

E


sup
T

F


> EG


EH


H (t0) + sup

T
G


= EG


EH [H (t0)] + sup

T
G


= EG


sup

T
G


.

What makes this proposition so easy to establish is the very strong joint distributional
assumption on (F, G), even though we do not make any marginal distributional assumptions
about F and G. Also note that in the Gaussian case, the covariance assumption on (F, G) implies
that δ2

F (s, t) > δ2
G (s, t), and is in fact a much stronger assumption than simply comparing these

canonical metrics, so that the classical Sudakov–Fernique inequality applies handily.
Let us now discuss the Slepian inequality similarly. In the basic inequality, consider two

centered Gaussian vectors F and G in Rd , with covariance matrices

Bi j


and

Ci j

. Let

f ∈ C2

Rd


and assume for simplicity that f has bounded partial derivatives up to order 2.
Assume in addition that for all x ∈ Rd ,

d
i, j=1


Bi j − Ci j

 ∂2 f

∂xi∂x j
(x) > 0.

Then E [ f (F)] > E [ f (G)]. To obtain such a result for non-Gaussian vectors, one may again
try to impose strong joint-distributional conditions to avoid marginal conditions. The following
example is a good illustration. With F and G two random vectors in Rd and f convex on Rd ,
assume that E[F] = E[G], E| f (F)| < ∞, E| f (G)| < ∞, and G and F − G are independent.
By convexity for any c ∈ Rd we have that

f (F − G + c) > f (c) + ⟨∇ f (c), F − G⟩Rd .

Hence, choosing c = G and then taking expectations, we get E[ f (F)] > E[ f (G)], i.e. the
Slepian inequality conclusion holds. In other words we have the following.

Proposition 1.4. Let F and G be two random vectors in Rd , with G and F − G independent.
Let f : Rd

→ R be a convex function. Assume E[F] = E[G], E| f (F)| < ∞, E| f (G)| < ∞.
Then E [ f (F)] > E [ f (G)].

To avoid very strong joint law assumptions on (F, G) such as those used in the two elementary
propositions above, this paper concentrates instead on exploiting some mild assumptions on the
marginals of F and G, particularly imposing Malliavin differentiability as in Definition 1.1.
We will see in particular that, to obtain a Sudakov–Fernique inequality for highly non-Gaussian
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fields, one can use ∆ instead of δ2, and to get a Slepian inequality in the same setting, one can use
ΓFi ,F j and ΓGi ,G j instead of Bi, j and Ci, j respectively. The proofs we develop are based on the
technique of interpolation, and on the following integration-by-parts theorem on Wiener space,
which was first introduced in [9] (also see Theorem 2.9.1 in [10]): for any centered F, G ∈ D1,2,
E [FG] = E


ΓF,G


. This formula is particularly useful when combined with the chain rule of

the Malliavin calculus, to yield that for any Φ : R → R such that E

Φ′ (F)2 < ∞,

E [Φ (F) G] = E

Φ′ (F)ΓF,G


. (1.4)

The remainder of this paper is structured as follows. In Section 2, we prove a new Sudakov–
Fernique inequality for comparing suprema of random fields on Wiener space, and show how
this may be applied to the supremum of the solution of a stochastic differential equation with
non-linear drift, driven by a fractional Brownian motion. In Section 3, we prove a Slepian-type
inequality for comparing non-linear functionals of random vectors on Wiener space, and apply
it to a comparison result for perturbations of Gaussian vectors, and to a concentration inequality.
Finally in Section 4, we show how to extend the universality class of the Sherrington–Kirkpatrick
spin system, to some random media on Wiener space with dependence and non-stationarity. All
our main theorems’ proofs are based on the extension to Wiener space of the so-called smart-path
method using the objects identified in Definition 1.1.

2. A result of Sudakov–Fernique type

The proof of the following result is based on an extension of classical computations based on a
‘smart path method’ that are available in the Gaussian setting. The reader is referred to [2, p. 61]
for a similar proof (originally due to S. Chatterjee, see also [6]) in the simpler Gaussian setting.

Theorem 2.1. Let F = {Ft }t∈T and G = {G t }t∈T be separable centered random fields on an
index set T , such that Ft , G t ∈ D1,2 for every t ∈ T . Their canonical metrics on Wiener space,
∆F and ∆G , are defined according to (1.3). Assume that E

supT F
 < ∞ and E

supT G
 < ∞.

Assume that almost surely for all s, t ∈ T ,

∆F (s, t) 6 ∆G (s, t) . (2.5)

Assume furthermore that almost surely for all s, t ∈ T ,

ΓFs ,Gt = 0. (2.6)

Then

E


sup
t∈T

Ft


6 E


sup
t∈T

G t


. (2.7)

Remark 2.2. If (F, G) is jointly Gaussian, one can assume that both processes belong to the first
Wiener chaos, and then

⟨D(Ft − Fs), −DL−1(Ft − Fs)⟩H = E[(Ft − Fs)
2
], (2.8)

and similarly for G. The orthogonality condition (2.6) is then equivalent to independence, which
is an assumption one can adopt without loss of generality. As such, Theorem 2.1 extends the
classical Sudakov–Fernique inequality, as stated e.g. in Vitale [21, Theorem 1] in the case
|T | < ∞.
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Corollary 2.3. When G belongs to the first Wiener chaos (in particular, G is Gaussian),
then ∆G (s, t) = δ2

G (s, t) is G’s (non-random) canonical metric, and the conclusion of
Theorem 2.1 continues to hold without Assumption (2.6).

Proof. Let Fs =


∞

p=0 Ip( f p,s) be the chaotic decomposition of Fs for each s. Let G be an

independent copy of G of the form G t = W (gt ), with gt ∈ H such that f p,s ⊗1 gt = 0 for all
p ∈ N and all s, t > 0. This can be easily done by extending the underlying isonormal Gaussian
process to the direct sum H ⊕ H. We then have that

ΓFs ,Gt
= ⟨DFs, −DL−1G t ⟩H = ⟨DFs, gt ⟩H =

∞
p=1

pIp−1( f p,s ⊗1 gt ) = 0,

that is, Assumption (2.6) holds with G instead of G. Since G and G are both Gaussian, ∆G and
∆G are both deterministic, and thus equal to each other. Thus one can freely replace ∆G by ∆G
in (2.5). Conclusion (2.7) follows with G instead of G, by Theorem 2.1. Since G and G have the
same law, this proves (2.7) for G, finishing the proof of the corollary. �

Proof of Theorem 2.1. Step 1: Approximation. For each n > 0, let Tn be a finite subset of T
such that Tn ⊂ Tn+1 and Tn increases to a countable subset of T on which the laws of F and G
are determined (for instance, if T = R+ and F and G are continuous, we may choose for Tn the
set of dyadics of order n). By separability, as n → ∞,

sup
t∈Tn

Ft
a.s.
→ sup

t∈T
Ft and sup

t∈Tn

G t
a.s.
→ sup

t∈T
G t

and, since the convergence is monotone, we also have that as n → ∞,

E


sup
t∈Tn

Ft


→ E


sup
t∈T

Ft


and E


sup
t∈Tn

Ft


→ E


sup
t∈T

Ft


.

Therefore, we assume without loss of generality in the remainder of the proof that T = {1, 2,

. . . , d} is finite.
Step 2: Calculation. Fix β > 0, and consider, for any t ∈ [0, 1],

ϕ(t) =
1
β

E


log


d

i=1

eβ(
√

1−tGi +
√

t Fi )


.

Let us differentiate ϕ with respect to t ∈ (0, 1). We get

ϕ′(t) =
1
2

d
i=1

E


1
√

t
Fi −

1
√

1 − t
Gi


ht,β,i (F, G)


, (2.9)

where, for x, y ∈ Rd , i = 1, . . . , d, t ∈ (0, 1) and β > 0, we set

ht,β,i (x, y) =
eβ(

√
1−t yi +

√
t xi )

d
j=1

eβ(
√

1−t y j +
√

t x j )

.

Using the integration-by-parts formula (1.4) in (2.9) yields

ϕ′(t) =
1
2

d
i, j=1


1

√
t
E

∂ht,β,i

∂x j
(F, G)ΓF j ,Fi


−

1
√

1 − t
E

∂ht,β,i

∂y j
(F, G)ΓG j ,Gi


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+
1
2

d
i, j=1


1

√
t
E

∂ht,β,i

∂x j
(F, G)ΓG j ,Fi



−
1

√
1 − t

E

∂ht,β,i

∂y j
(F, G)ΓF j ,Gi


. (2.10)

The orthogonality assumption (2.6) implies that all the terms in the last line of (2.10) are zero.
For i ≠ j , we have

∂ht,β,i

∂xi
(x, y) = β

√
t

ht,β,i (x, y) − ht,β,i (x, y)2

∂ht,β,i

∂x j
(x, y) = −β

√
t ht,β,i (x, y)ht,β, j (x, y)

∂ht,β,i

∂yi
(x, y) = β

√
1 − t


ht,β,i (x, y) − ht,β,i (x, y)2

∂ht,β,i

∂y j
(x, y) = −β

√
1 − t ht,β,i (x, y)ht,β, j (x, y).

Therefore

ϕ′(t) =
β

2


i

E

ht,β,i (F, G)(1 − ht,β,i (F, G))


ΓFi ,Fi − ΓGi ,Gi


−

β

2


i≠ j

E

ht,β,i (F, G)ht,β, j (F, G)


ΓFi ,F j − ΓGi ,G j


=

β

2


i

E

ht,β,i (F, G)


ΓFi ,Fi − ΓGi ,Gi


−

β

2


i, j

E

ht,β,i (F, G)ht,β, j (F, G)


ΓFi ,F j − ΓGi ,G j


.

But
d

i=1 ht,β,i (F, G) = 1, hence ϕ′(t) is given by

β

4

d
i, j=1

E

ht,β,i (F, G)ht,β, j (F, G)


∆F (i, j) − ∆G (i, j)


.

Step 3: Estimation and conclusion. We observe that ht,β,i (F, G) > 0 for all i . Moreover, by
assumption (2.5) we get ϕ′(t) 6 0 for all t , implying in turn that ϕ(0) > ϕ(1), that is

1
β

E


log


d

i=1

eβFi


6

1
β

E


log


d

i=1

eβGi


for any β > 0. But

max
16i6d

Fi =
1
β

log


eβ×max16i6d Fi


6
1
β

log


d

i=1

eβFi


6

log d

β
+ max

16i6d
Fi ,

and the same with G instead of F . Therefore

E


max
16i6d

Fi


6 E


1
β

log


d

i=1

eβFi


6 E


1
β

log


d

i=1

eβGi


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6
log d

β
+ E


max

16i6d
Gi


,

and the desired conclusion follows by letting β goes to infinity. �

We now give an example of application of Theorem 2.1, to a problem of current interest in
stochastic analysis.

2.1. Example: the supremum of an SDE driven by fBm

Let B H be a fractional Brownian motion with Hurst index H > 1/2, let b : R → R be
increasing and Lipschitz (in particular, b′ > 0 almost everywhere), and let x0 ∈ R. We consider
the process F = (Ft )t∈[0,T ] defined as the unique solution to

Ft = x0 + B H
t +

 t

0
b(Fs)ds. (2.11)

(For more details about this equation, we refer the reader to [15].) It is well-known (see e.g. [16]
or [12]) that, for any t ∈ (0, T ], we have that Ft ∈ D1,2 with

Du Ft = 1[0,t](u) exp
 t

u
b′(Fw)dw


. (2.12)

Fix t > s > 0. By combining (2.12) with a calculation technique described e.g. in [13,
Proposition 3.7] based on the so-called Mehler formula, we get

∆F (s, t) = H(2H − 1)E ∞

0
e−z


[0,s]2


e
 t

u b′(Fw)dw
− e

 s
u b′(Fw)dw


×


e
 t
v b′(F (z)

w )dw
− e

 s
v b′(F (z)

w )dw


|u − v|
2H−2dudv

+


[0,s]×[s,t]


e
 t

u b′(Fw)dw
− e

 s
u b′(Fw)dw


e
 t
v b′(F (z)

w )dw
|u − v|

2H−2dudv

+


[s,t]×[0,s]

e
 t

u b′(Fw)dw


e
 t
v b′(F (z)

w )dw
− e

 s
v b′(F (z)

w )dw


|u − v|
2H−2dudv

+


[s,t]2

e
 t

u b′(Fw)dw+
 t
v b′(F (z)

w )dw
|u − v|

2H−2dudv


dz


. (2.13)

Here, F (z) means the solution to (2.11), but when B H is replaced by the new fractional Brownian
motion e−z B H

+
√

1 − e−2zB H , for B H an independent copy of B H , and E is the mathematical
expectation with respect to B H only. Because b′ > 0, we see that

exp
 t

u
b′(Fw)dw


− exp

 s

u
b′(Fw)dw


> 0 for any 0 6 u 6 s < t ,

exp
 t

v

b′(F (z)
w )dw


− exp

 s

v

b′(F (z)
w )dw


> 0 for any 0 6 v 6 s < t ,

exp
 t

u
b′(Fw)dw +

 t

v

b′(F (z)
w )dw


> 1 for any s 6 u, v 6 t .

In particular, ∆F (s, t) > H(2H −1)

[s,t]2 |u−v|

2H−2dudv = |t −s|2H . We recognize |t −s|2H

as the squared canonical metric of fractional Brownian motion, and we deduce from Theorem 2.1
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(observe that it is not a loss of generality to have assumed that s < t) that

E


max

t∈[0,T ]


Ft − E[Ft ]


> E


max

t∈[0,T ]

B H
t


.

Also note that by the same calculation as above, the inequality in the conclusion is reversed if b
is decreasing.

3. A result of Slepian type

In Section 2, we investigated the ability to compare suprema of random vectors and fields
based on covariances and the Wiener-space extensions of the concept of covariance in Defini-
tion 1.1. In this section, we show that these extensions also apply to functionals beyond the
supremum, under appropriate convexity assumptions.

Theorem 3.1. Let F, G be two centered random variables in D1,2

Rd

, in other words, assume

that for every i = 1, 2, . . . , d, Fi ∈ D1,2 and Gi ∈ D1,2 and E[Fi ] = E[Gi ] = 0. Let also
f : Rd

→ R be a C2-function. We define the d × d random “covariance”-type matrix

Γ F
=


Γ F

i j := ΓFi ,F j : i, j = 1, . . . , d


for F, according to (1.1), and similarly for Γ G . We assume that ΓFi ,G j = 0 for any i, j and that
for all x ∈ Rd , almost surely,

d
i, j=1


Γ F

i j − Γ G
i j

 ∂2 f

∂xi∂x j
(x) > 0. (3.14)

Then E[ f (F)] > E[ f (G)], provided f (F) and f (G) both belong to L1(Ω).

Remark 3.2. If F and G are Gaussian, then Γ F and Γ G are the covariance matrices of F and G
almost surely, and we recover the classical Slepian inequality, see e.g. [18], or the paragraph in
the Introduction preceding Proposition 1.4.

Corollary 3.3. If F is Gaussian (but not necessarily G), then the conclusion of Theo-
rem 3.1 holds without any information on the joint law of (F, G).

Proof of Theorem 3.1. Relying on a routine approximation argument, one may and will assume
that f has bounded derivatives up to order 2. For t ∈ [0, 1], set

ϕ(t) = E[ f (
√

1 − tG +
√

t F)].

We have

ϕ′(t) =
1
2

d
i=1


1

√
t

E


∂ f

∂xi
(
√

1 − tG +
√

t F)Fi


−

1
√

1 − t
E


∂ f

∂xi
(
√

1 − tG +
√

t F)Gi


.

By using the integrating-by-parts formula (1.4), we get the following extension of a classical
identity due to Piterbarg [17]:
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ϕ′(t) =
1
2

d
i, j=1

E


∂2 f

∂xi∂x j
(
√

1 − tG +
√

t F)

×

⟨DF j , −DL−1 Fi ⟩H − ⟨DG j , −DL−1Gi ⟩H


=

1
2

d
i, j=1

E


∂2 f

∂xi∂x j
(
√

1 − tG +
√

t F)

Γ F

i j − Γ G
i j


.

As a consequence, ϕ′(t) > 0, implying in turn that ϕ(1) > ϕ(0), which is the desired
conclusion. �

Proof of the Corollary. When F is Gaussian, Γ F is deterministic. Therefore, one can proceed
as in the proof of Corollary 2.3, and assume without loss of generality that F and G are defined
on the same probability space and are such that ΓFi ,G j = 0 for any i, j . �

3.1. Example: perturbation of a Gaussian vector

Here we present an example of how to perturb an arbitrary Gaussian vector G ∈ Rd using
a functional on Wiener space to guarantee that for any function f with non-negative (resp.
non-positive) second derivatives, f (G) sees its expectation increase (resp. decrease) with the
perturbation. It is sufficient for the perturbation to be based on variables that are positively
“correlated” to G, in a sense defined using the covariance operator Γ of Definition 1.1. Let
C be the covariance matrix of G.

We may assume that for every i = 1, . . . , d, Gi = I1 (gi ) where the gi ’s are such that
gi , g j


H

= Ci, j . Fix integers n1, . . . , nd > 1, let fi,k i = 1, . . . , d, k = 1, . . . , nd , be a
sequence of elements of H such that ⟨ fi,k, g j ⟩H > 0 and ⟨ fi,k, f j,l⟩H > 0 for all i, j, k, l,
and let Φi : Rni → R, i = 1, . . . , d , be a sequence of C1-functions such that ∂Φi

∂xk
> 0 for all k

(each Φi is increasing with respect to every component). For i = 1, . . . , d, we set

Fi = Gi + Φi

I1( fi,1), . . . , I1( fi,ni )


.

Our assumptions are simply saying that all the Gaussian pairs

G j , I1


fi,k


are non-
negatively correlated, as are all the Gaussian pairs


I1


fi,k

, I1


f j,ℓ


. Let (Pz)z>0 denote the
Ornstein–Uhlenbeck semigroup. For any i, j = 1, . . . , d, we compute

DFi = gi +

ni
k=1

∂Φi

∂xk
(I1( fi,1), . . . , I1( fi,ni )) fi,k

Pz DF j = g j +

n j
l=1

E ∂Φ j

∂xl
(I (z)

1 ( f j,1), . . . , I (z)
1 ( f j,n j ))


f j,l ,

where I (z)
1 means that the Wiener integral is taken with respect to W (z)

= e−z W +
√

1 − e−2z W
instead of W , for W an independent copy of W , and where E is the mathematical expectation
with respect to W only. Therefore, using the Mehler-formula representation of DL−1 (see [13,
identity (2.13)]),

Γi, j := ΓFi ,F j =


∞

0
e−z

⟨DFi , Pz DF j ⟩Hdz
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= Ci, j +

ni
k=1

∂Φi

∂xk
(I1( fi,1), . . . , I1( fi,ni ))⟨ fi,k, g j ⟩H

+

n j
l=1

⟨ f j,l , gi ⟩H


∞

0
e−zE ∂Φ j

∂xl
(I (z)

1 ( f j,1), . . . , I (z)
1 ( f j,n j ))


dz

+

ni
k=1

n j
l=1

⟨ fi,k, f j,l⟩H
∂Φi

∂xk
(I1( fi,1), . . . , I1( fi,ni ))

×


∞

0
e−zE ∂Φ j

∂xl
(I (z)

1 ( f j,1), . . . , I (z)
1 ( f j,n j ))


dz.

Using the assumptions, we see that Γi, j > ⟨gi , g j ⟩H for all i, j = 1, . . . , d . Hence, for all

C2 functions Ψ : Rd
→ R such that ∂2Ψ

∂xi ∂x j
(x) > 0, condition (3.14) is in order, so that

E[Ψ(F)] > E[Ψ(G)] by virtue of Theorem 3.1.

3.2. Example: a concentration inequality

Next we encounter an application of Theorem 3.1 to compare distributions of non-Gaussian
vectors to Gaussian distributions.

Corollary 3.4. Let F = (F1, . . . , Fd) ∈ Rd be such that Fi ∈ D1,2 and E[Fi ] = 0 for every
i , and define Γ =


Γi j := ΓFi ,F j : i, j = 1, . . . , d


, according to (1.1). Let Γ be the symmetric

part of Γ , that is, Γi j =
1
2


Γi j + Γ j i


. Let C be a deterministic non-negative definite d × d

matrix such that, almost surely, C − Γ is non-negative definite. Then, with ∥C∥op the operator
norm of C, for any x1, . . . , xd > 0, we have

P[F1 > x1, . . . , Fd > xd ] 6 exp


−

x2
1 + · · · + x2

d

2∥C∥op


.

Proof. For any θ ∈ Rd
+, we can write

P[F1 > x1, . . . , Fd > xd ] 6 P

⟨θ, F⟩Rd > ⟨θ, x⟩Rd


6 e−⟨θ,x⟩Rd E[e⟨θ,F⟩Rd ].

Let f : x → e⟨θ,x⟩Rd . This is a C2 function with ∂2 f
∂xi ∂x j

= θiθ j f .
We first need to check the integrability assumption on f in Theorem 3.1. This is equivalent to

E[e⟨θ,F⟩Rd ] < ∞. To prove this integrability, we compute

Γ⟨θ,F⟩,⟨θ,F⟩ =


i, j

θiθ jΓi j =


i, j

θiθ jΓi j ,

and we note by the positivity of C − Γ that this is bounded above almost surely by the
non-random positive constant K :=


i, j θiθ j Ci j . This implies (see for instance [20]) that

P [⟨θ, F⟩ /K > x] 6 Φ (x) where Φ is the standard normal tail. The finiteness of E[e⟨θ,F⟩Rd ]

follows immediately.
Next, by the positivity of C − Γ ,

i, j

∂2 f

∂xi∂x j
(x)


Γi j − Ci j


=


i, j

∂2 f

∂xi∂x j
(x)

Γi j − Ci j


= f (x)

i, j

θiθ j
Γi j − Ci j


6 0.
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This is condition (3.14), so that Theorem 3.1 implies that E[e⟨θ,F⟩Rd ] 6 E[e⟨θ,G⟩Rd ] with G a

centered Gaussian vector with covariance matrix C . Therefore, since E[e⟨θ,G⟩Rd ] = e
1
2 ⟨θ,Cθ⟩Rd ,

we have

P[F1 > x1, . . . , Fd > xd ] 6 e−⟨θ,x⟩Rd +
1
2 ⟨θ,Cθ⟩Rd 6 e−⟨θ,x⟩Rd +

1
2 ∥C∥op ∥θ∥

2
Rd .

The desired conclusion follows by choosing θ = x/∥C∥op, which represents the optimal
choice. �

4. Universality of the Sherrington–Kirkpatrick model with correlated media

Let N be a positive integer, and let SN = {−1, 1}
N , which represents the set of all possible

configurations of the spins of particles sitting at the integer positions from 1 to N . A parameter
β > 0 is interpreted as the system’s inverse temperature. Denote by dσ the uniform probability
measure on SN , i.e. such that for every σ ∈ SN , the mass of {σ } is 2−N . For any Hamiltonian H
defined on SN , we can define a probability measure P H

N via P H
N (dσ) = dσ exp (−β H (σ )) /Z H

N
where Z H

N is a normalizing constant. Therefore,

Z H
N = 2−N


σ∈SN

exp (−β H (σ )) . (4.15)

The measure P H
N is the distribution of the system’s spins under the influence of the Hamiltonian

H . The classical Sherrington–Kirkpatrick (SK, for short) model for spin systems is a random
probability measure in which the Hamiltonian is random, because of the presence of an
external random field J =


Ji, j : i, j = 1, . . . , N ; i > j


where the random variables Ji, j are

independent standard normal (and for notational convenience we assume the matrix J is defined
as being symmetric), and H = HN is given by

HN (σ ) :=
1

√
2N


i≠ j

σiσ j Ji, j . (4.16)

The fact that the Ji, j ’s are independent and identically distributed implies that there is no
geometry in the spin system. Indeed, in the sense of distributions with respect to the law of J ,
the interactions between the sites {1, . . . , N } implied by the definition of P H

N do not distinguish
between how far apart the sites are. Such a model is usually called “mean-field”, for this lack of
geometry. The centered Gaussian character of the external field J is also an important element in
the SK model’s definition, particularly because it implies a behavior for HN of order

√
N , which

can be observed for instance by computing the variance of HN (σ ) with respect to J for any fixed
spin configuration σ : it equals N − 1. A quantity of importance in the study of the behavior of
the measure P H

N is its partition function, or free energy, the scalar Z H
N in (4.15). In particular,

one would like to prove that it has an almost-sure Lyapunov exponent, namely, almost surely the
following limit exists and is finite:

p (β) := lim
N→∞

1
N

log Z H
N . (4.17)

A proof strategy was defined by Guerra and Toninelli [7]. In this classical case, the limit, which
we denote by pSK (β), is also known as the Parisi formula (see [8] and [4, page 251]). A
universality result, where the Gaussian assumption can be dropped in favor of requiring only
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three moments for J , with the same Parisi formula for the limit of the normalized log free energy,
was established in [5].

In the theorem below, we show that the existence and finiteness of p (β), and its equality
with pSK (β), extends to external fields J on Wiener space which contain some non-stationarity
and some dependence. Our proof’s idea is to use the same smart-path techniques on Wiener
space used in the proofs of Theorems 2.1 and 3.1, and compare Z H

N with the free energy of a
spin system with independent and identically distributed media J ∗. As explained in more detail
in Remarks 4.2 below, Condition (ii) in the theorem is designed to allow for correlations in J ,
while Condition (iii) implies that the two random media have some asymptotic proximity in law.

Theorem 4.1. Let J =


Ji, j : 1 6 j < i


and J ∗
=


J ∗

i, j : 1 6 j < i


be two families of

centered random variables in D1,2 such that

(i)


J ∗

i, j : 1 6 j < i


are independent and identically distributed with variance 1 and

ΓJ∗
i, j ,J∗

k,ℓ
= 0 for all (i, j) ≠ (k, ℓ),

(ii)


16 j<i6N ,16l<k6N ,(i, j)≠(k,l) E
ΓJi, j ,Jk,ℓ

 = o

N 2

,

(iii)


16 j<i6N E
ΓJi, j ,Ji, j − ΓJ∗

i, j ,J∗
i, j

 = o

N 2

,

(iv) ΓJi, j ,J∗

k,ℓ
= ΓJ∗

i, j ,Jk,ℓ
= 0 for all i, j, k, ℓ.

Let Z H
N be the free energy relative to J , as in (4.15), (4.16). We have limN→∞ N−1 log Z H

N =

pSK (β) in probability. If moreover there exists ε > 0 such that

(v) supi, j E
ΓJi, j ;Ji, j

1+ε


=: M < ∞,

then the convergence holds almost surely; more specifically, for any δ < 2−1ε/ (1 + ε), as
N → ∞, a.s.

1
N

log Z H
N = pSK (β) + o(N−δ).

Remarks 4.2. 1. The model in the theorem is the classical SK model (where J is independent
standard normal) as soon as ΓJi, j ,Ji, j ≡ 1 almost surely.

2. The classical universality result of Carmona and Hu in [5] assumes that J is independent
and identically distributed (i.i.d.) and has three moments. Here we do away with the i.i.d.
assumption for J , comparing it to an independent and identically distributed J ∗ with two
moments, obtaining new SK-universality classes.

3. Condition (ii) above is a way to control the correlations of J . For instance, it is satisfied
as soon as E

ΓJi, j ,Jk,ℓ

 6 (|i − k| + | j − ℓ|)−r for r > 2. Since by formula (1.4),
E
ΓJi, j ,Jk,ℓ

 >
E ΓJi, j ,Jk,ℓ

 =
E Ji, j Jk,ℓ

, this implies a corresponding decorrelation
rate.

4. Condition (iii) in this corollary can be understood as a kind of Cesaro-type convergence in
distribution. For illustrative purposes, consider the case where the comparison is with the
SK model: we have ΓJ∗

i, j ,J∗
i, j

≡ 1, and the interpretation of Condition (iii) can be made
more precise. Indeed, by Theorem 5.3.1 in [10], this type of convergence roughly leads to
convergence of Ji, j to a standard normal as i and/or j → ∞ with N .
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Proof of Theorem 4.1. Step 1: A generic result. We begin by showing a precursor result for
convergence in probability, for a generic situation. Assume that J and J ∗ satisfy merely (ii),
(iii), and (iv). We will show that for any f ∈ C2 (R) with ∥ f ′

∥∞ 6 1 and ∥ f ′′
∥∞ 6 1,E  f


1
N

log Z∗H
N


− E


f


1
N

log Z H
N

 = o(1). (4.18)

We compactify the notation by reindexing the set {i, j : i > j; i, j = 1, . . . , N } as the set
1, 2, . . . , N̄


where N̄ := N (N − 1)/2, with a bijection mapping each n = 1, . . . , N̄ to a pair

(i, j), using any fixed bijection, with J̄n := Ji, j , J̄ ∗
n := J ∗

i, j , and τn := σiσ j , with Pσ the uniform
probability measure on SN , so that each random variable τn under Pσ is dominated by 1. We use
J̄ and J̄ ∗ to denote the corresponding N̄ -dimensional random vectors.

Fix γ < 0, c ∈ [0, 1] and f as above. We define for any vector u ∈ RN̄ , and t ∈ [0, 1],

Z N̄ (γ, u) := Eσ

exp

γ

N̄
n=1

τnun

 ,

ϕ(t) := E[ f (c log Z N̄ (γ,
√

t J̄ ∗
+

√
1 − t J̄ ))].

For i = 1, . . . , N̄ and u ∈ RN̄ , we define

hi (u) :=
Eσ [τi eγ

N̄
n=1 τnun ]

Eσ [eγ
N̄

n=1 τnun ]

f ′(c log Eσ [eγ
N̄

n=1 τnun ]).

We compute that for any i, j = 1, . . . , N̄ , we have ∂hi
∂u j

(u) = γ Si, j (u) where

Si, j (u) :=

 Eσ [τiτ j eγ
N̄

n=1 τnun ]

Eσ [eγ
N̄

n=1 τnun ]

−
Eσ [τi eγ

N̄
n=1 τnun ]Eσ [τ j eγ

N̄
n=1 τnun ]

Eσ [eγ
N̄

n=1 τnun ]2


× f ′(c log Eσ [eγ

N̄
n=1 τnun ])

+ c
Eσ [τi eγ

N̄
n=1 τnun ]Eσ [τ j eγ

N̄
n=1 τnun ]

Eσ [eγ
N̄

n=1 τnun ]2
f ′′(c × log Eσ [eγ

N̄
n=1 τnun ]).

Notice that since c, τi , f ′, and f ′′ are all dominated by 1, we get
Si, j (u)

 6 3. Using the chain
rule of standard calculus,

ϕ′(t) =
c γ

2

N̄
i=1


1

√
t
E[ J̄ ∗

i hi (
√

t J̄ ∗
+

√
1 − t J̄ )]

−
1

√
1 − t

E[ J̄i hi (
√

t J̄ ∗
+

√
1 − t J̄ )]


.

Now using the integration-by-parts formula on Wiener space (1.4), and Condition (iv), this
computes as

ϕ′(t) =
c γ 2

2

N̄
i=1

E


Si,i (
√

t J̄ ∗
+

√
1 − t J̄ )(Γ J̄∗

i , J̄∗
i

− Γ J̄i , J̄i
)

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+
c γ 2

2


16i≠ j6N̄

E


Si, j (
√

t J̄ ∗
+

√
1 − t J̄ )Γ J̄i , J̄ j


.

The boundedness of
Si, j (u)

 by 3 yields, by integrating over t ∈ [0, 1], that

E  f (c log Z N̄ (γ, J̄ ∗))

− E


f (c log Z N̄ (γ, J̄ ))

 =


 1

0
ϕ′(t)dt


6

3c γ 2

2

N̄
i=1

E
Γ J̄∗

i , J̄∗
i

− Γ J̄i , J̄i

+
3c γ 2

2


16i≠ j6N̄

E
Γ J̄i , J̄ j

 .

By Conditions (ii) and (iii), replacing γ by −β/
√

N and c by 1/N , with N̄ = N (N − 1)/2,
relation (4.18) follows.

Step 2: Convergences. In this step we assume for the moment that limN→∞ N−1 log Z∗H
N =

pSK (β) holds in probability. This convergence is established below in Step 3. Combining this
convergence and relation (4.18), we get that N−1 log Z H

N converges in distribution, and thus in
probability, to pSK (β), which is the first conclusion of the theorem. To establish the second
conclusion, i.e. the almost-sure convergence, let

FN :=
1
N

log Z H
N −

1
N

E

log Z H

N


.

By the chain rule of Malliavin calculus, and using the notation E H
N for expectations of functions

of the configuration σ under the polymer measure defined by

P H
N ({σ }) =

1
2N

exp (−β HN (σ ))
σ∈SN

exp (−β HN (σ ))
,

we compute

DFN =
1
N

1

Z H
N


−β2−N

 
σ∈SN

exp (−β HN (σ )) DHN (σ )

=
−β

N
E H

N [DHN (σ )] .

Now, using the intermediary of the Mehler formula (see, e.g., [13, Proposition 3.7]), it is easy to
check that we can express

ΓFN ,FN =
β2

N 2 E H
N ⊗ Ẽ H

N


ΓHN (σ ),HN (σ̃ )


where for fixed random medium J , under P H

N ⊗ P̃ H
N , (σ, σ̃ ) are two independent copies of σ

under the polymer measure P H
N . We compute for any σ, σ ′

∈ SN ,

ΓHN (σ ),HN (σ ′) =
2
N


16 j<i6N

ΓJi, j ,Ji, j σiσ
′

i σ jσ
′

j .

Since |σi | = 1 for any σ ∈ SN , we getΓFN ,FN

 6
2β2

N 3


16 j<i6N

ΓJi, j ,Ji, j

 . (4.19)
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By Assumption (v), E
ΓJi, j ,Ji, j

1+ε


is uniformly bounded by M . Therefore, using Jensen’s

inequality for the uniform measure on the set {i, j = 1, . . . , N ; i > j} and the power function
|x |

1+ε,

E
ΓFN ,FN

1+ε


6


2β2

N 3

1+ε

(N (N − 1)/2)1+ε 2
N (N − 1)


16 j<i6N

E
ΓJi, j ,Ji, j

1+ε


6 Mβ2+2ε N−1−ε.

We now need a Poincaré-type inequality on Wiener space relative to the operator Γ , which is
recorded and proved below in Lemma 4.3: applying this lemma with F = FN and p = 2 + 2ε

yields

E

|FN |

2+2ε


6 (1 + 2ε)1+ε Mβ2+2ε N−1−ε.

A standard application of the Borel–Cantelli lemma via Chebyshev’s inequality yields that for
any δ < 2−1ε/ (1 + ε), almost surely, FN = o(N−δ), as announced in the theorem.

Step 3: Conclusion. To finish the proof of the theorem, we only need to show that
limN→∞ N−1 log Z∗H

N = pSK (β) holds in probability. The universality result of Carmona and
Hu as stated in [5] shows that this convergence holds if we assumed in addition that J ∗

i, j had
a finite third moment. However, an inspection of their proof reveals that the convergence holds
in probability without the third moment condition: one may use a computation similar to the
calculation in Step 1 above, to establish this; the details are omitted. �

Lemma 4.3. For any centered F ∈ D1,p, with p > 2,

E

|F |

p 6 (p − 1)p/2 E
ΓF,F

p/2

.

Proof. By applying a standard approximation argument, one can assume without loss of
generality that F ∈ D1,∞

= ∩p>1 D1,p. For p = 2, by relation (1.4), the inequality holds almost
as an equality (one has E[F2

] = E[ΓF,F ] 6 E[|ΓF,F |]). Therefore we assume p > 2. With the
notation G (x) = sgn (x) |x |

p−1, and thus G ′ (x) = (p − 1) sgn (x) |x |
p−2, and G (F) ∈ D1,2

with D (G (F)) = (p − 1) sgn (F) |F |
p−2 DF , we have, using again (1.4),

E

|F |

p
= E [FG (F)] = (p − 1) E


sgn (F) |F |

p−2 ΓF,F


.

Now invoking Hölder’s inequality we get

E

|F |

p 6 (p − 1) E
ΓF,F

p/2
2/p

E

|F |

p1−2/p
.

The lemma follows immediately. �
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[8] M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond, in: World Scientific Lecture Notes in Physics,

vol. 9, World Scientific, 1987.
[9] I. Nourdin, G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009) 75–118.

[10] I. Nourdin, G. Peccati, Normal Approximation with Malliavin Calculus: From Stein’s Method to Universality,
Cambridge University Press, 2012.
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