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ABSTRACT. We consider a stochastic volatility asset price model in which the volatility is
the absolute value of a continuous Gaussian process with arbitrary prescribed mean and
covariance. By exhibiting a Karhunen-Loève expansion for the integrated variance, and
using sharp estimates of the density of a general second-chaos variable, we derive asymp-
totics for the asset price density for large or small values of the variable, and study the wing
behavior of the implied volatility in these models. Our main result provides explicit ex-
pressions for the first five terms in the expansion of the implied volatility. The expressions
for the leading three terms are simple, and based on three basic spectral-type statistics of
the Gaussian process: the top eigenvalue of its covariance operator, the multiplicity of this
eigenvalue, and the L2 norm of the projection of the mean function on the top eigenspace.
The fourth term requires knowledge of all eigen-elements. We present detailed numer-
ics based on realistic liquidity assumptions in which classical and long-memory volatility
models are calibrated based on our expansion.
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1. INTRODUCTION

In this article, we characterize wing behavior of the implied volatility for uncorrelated
Gaussian stochastic volatility models. This introduction contains a careful description of
the problem’s background and of our motivations. Before going into details, we sum-
marize some of the article’s specificities; all terminology in the next two paragraphs is
referenced, defined, and/or illustrated in the remainder of this introduction.

We hold calibration of volatility smiles as a principal motivator. Cognizant of the fact
that non-centered Gaussian volatility models can be designed in a flexible and parsimo-
nious fashion, we adopt that class of models, imposing no further conditions on the mar-
ginal distribution of the volatility process itself, beyond pathwise continuity. The spectral
structure of the integrated variance allows us to work at that level of generality. We find
that the first five terms in the extreme-strike implied volatility asymptotics – which is
typically amply sufficient in applications – can be determined explicitly thanks to three
parameters characterizing the top of the spectral decomposition of the integrated vari-
ance, with the exception of a factor appearing in the coefficient of the 4th term in these
asymptotics, which depends on higher-order eigen-elements. In order to prove such a
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precise statement while relying on a moderate amount of technicalities, we make use of
the simplifying assumption that the stochastic volatility is independent of the asset price’s
driving noise.

When considering the trade-off between this restriction and calibration considerations,
we observe that our model flexibility combined with known explicit spectral expansions
and numerical tools may allow practicioners to compute the said spectral parameters
in a straightforward fashion based on smile features, while also allowing them to select
their favorite Gaussian volatility model class. Specific examples of Gaussian volatility
processes are non-centered Brownian motion, Brownian bridge, and Ornstein-Uhlenbeck
processes. This last sub-class can be particularly appealing since it contains stationary
volatilities, and includes the well-known Stein-Stein model. We also mention how any
Gaussian model specification, including long-memory ones, can be handled, thanks to
the numerical ability to determine its spectral elements. We understand that the assump-
tion of the stochastic volatility model being uncorrelated implies the symmetry of the
implied volatility on either side of the money, which in some applications, is not a desir-
able feature. Moreover, while in many option markets, liquidity considerations limit the
ability to calibrate using the large-strike wing (see the calibration study on SPX options
in [21, Section 5.4]), the ability to work with a correlated volatility model is nonetheless
important as soon as one uses the result of the calibration to, say, price illiquid options
such as out-of-the-money calls. Hence a fully functional general Gaussian model would
require a method for estimating the volatility’s correlation with the asset using liquid
options data. Such a study is beyond the scope of our article, since the case of general
correlated Gaussian stochastic volatility models presents additional mathematical chal-
lenges which may require completely new methods and techniques. We will investigate
them separately from this article. An important step toward a better understanding of
the asymptotic behavior of the implied volatility in some correlated stochastic volatility
models is found in the articles [14, 15].

Another problem which is mathematically interesting and important in practice is the
asymptotics for implied volatility in small or large time to maturity. The techniques de-
veloped in the present paper are used in the subsequent paper [26] to study the small-time
asymptotics of densities, option pricing functions, and the implied volatility in Gaussian
self-similar stochastic volatility models.

1.1. Background and heuristics. Studies in quantitative finance based on the Black-Scholes-
Merton framework have shown awareness of the inadequacy of the constant volatility as-
sumption, particularly after the crash of 1987, when practitioners began considering that
extreme events were more likely than what a log-normal model will predict. Propositions
to exploit this weakness in log-normal modeling systematically and quantitatively have
grown ubiquitous to the point that implied volatility (IV), or the volatility level that mar-
ket call option prices would imply if the Black-Scholes model were underlying, is now
a bona fide and vigorous topic of investigation, both at the theoretical and practical level.
The initial evidence against constant volatility simply came from observing that IV as a
function of strike prices for liquid call options exhibited non-constance, typically illus-
trated as a convex curve, often with a minimum near the money as for index options,
hence the term ‘volatility smile’.



EXTREME-STRIKE ASYMPTOTICS FOR GENERAL GAUSSIAN STOCHASTIC VOLATILITY MODELS 3

Asset price models where the volatility is a stochastic process are known as stochastic
volatility models; the term ‘uncorrelated’ is added to refer to the submodel class in which
the volatility process is independent of the noise driving the asset price. In a sense, the
existence of the smile for any uncorrelated stochastic volatility model was first proved
mathematically by Renault and Touzi in [32]. They established that the IV as a function of
the strike price decreases on the interval where the call is in the money, increases on the
interval where the call is out of the money, and attains its minimum where the call is at the
money. Note that Renault and Touzi did not prove that the IV is locally convex near the
money, but their work still established stochastic volatility models as a main model class
for studying IV; these models continued steadily to provide inspiration for IV studies.

A current emphasis, which has become fertile mathematical ground, is on IV asymp-
totics, such as large/small-strike, large-maturity, or small-time-to-maturity behaviors.
These are helpful to understand and select models based on smile shapes. Several tech-
niques are used to derive IV asymptotics. For instance, by exploiting a method of mo-
ments and the representation of power payoffs as mixtures of a continuum of calls with
varying strikes, in a rather model-free context, R. Lee proved in [30] that, for models with
positive moment explosions, the squared IV’s large strike behavior is of order the log-
moneyness log

(
K

s0erT

)
times a constant which depends explicitly on supremum of the

order of finite moments. A similar result holds for models with negative moment explo-
sions, where the squared IV behaves like K 7→ log

(
s0erT

K

)
for small values of K. More

general formulas describing the asymptotic behavior of the IV in the ‘wings’ (K → 0 or
+∞) were obtained in [4, 5, 6, 23, 24, 27, 18] (see also the book [22]).

From the standpoint of modeling, one of the advantages of Lee’s original result is the
dependence of IV asymptotics merely on some simple statistics, namely as we mentioned,
in the notation in [30], the maximal order p̃ of finite moments for the underlying ST, i.e.

p̃(T) := sup
{

p ∈ R : E
[
(ST)

p+1
]
< ∞

}
.

This allows the author to draw appropriately strong conclusions about model calibration.
A special class of models in which p̃ is positive and finite is that of Gaussian volatility
models, which we introduce next.

1.2. Gaussian Stochastic volatility models. Let W be a standard Brownian motion on
a probability space (Ω,F , P), and let X be a continuous Gaussian process on the same
space that is independent of W. We have X (t) = m (t) + X̃ (t), where m is a continu-
ous deterministic function on [0, T] (the mean function) and X̃ is a continuous centered
Gaussian process on [0, T] independent of W, with covariance Q. Suppose {Ft} is a filtra-
tion such that W is a Brownian motion with respect to {Ft}, and the process X is adapted
to {Ft}.

In the present paper, we study the following asset price model:

dSt = rStdt + |Xt|StdWt : t ∈ [0, T] (1)

on the filtered probability space (Ω,F , {Ft}, P), where the filtration {Ft} is such as
above. It is also assumed that the short rate r is constant. The initial condition for the
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asset price process will be denoted by s0. Note that the initial condition X0 for the process
X may be a nonconstant random variable.

We will next provide a typical example of a filtration {Ft} satisfying the conditions
mentioned above. LetN be the σ-algebra generated by the events of probability zero, and
let {FW

t } and {FX
t } be the augmentations by the familyN of the filtrations generated by

the processes W and X, respectively. Consider the filtration {Ft} such that for every t ≥ 0,
Ft = σ(FW

t ,FX
t ). Then the process W is a Brownian motion with respect to the filtration

{Ft}, and the process X is adapted to {Ft}. Note that if X0 = const a.s., then F0 is a
sub-σ-algebra of N , while if X0 is a random variable, then F0 = σ(X0;N ).

Note that it is not supposed in (1) that the process X is a solution to a stochasic differen-
tial equation as is often assumed in classical stochastic volatility models. A well-known
special example of a Gaussian stochastic volatility model is the Stein-Stein model intro-
duced in [36], in which the volatility process X is the mean-reverting Ornstein-Uhlenbeck
process satisfying

dXt = α (m− Xt) dt + βdZt (2)
where m is the level of mean reversion, α is the mean-reversion rate, and β is level of
uncertainty on the volatility; here Z is another Brownian motion, which may be correlated
with W. In the present paper, we adopt an analytic technique, encountered for instance
in the analysis of the uncorrelated Stein-Stein model by this paper’s first author and E.M.
Stein in [25] (see also [22]).

Returning to the question of the value of p̃, for a Gaussian volatility model, it can some-
times be determined by simple calculations, which we illustrate here with an elementary
example. Assume S is a geometric Brownian motion with random volatility, i.e. a model
as in (1) where (abusing notation) |Xt| is taken the non-time-dependent σ |X| where σ is
a constant and X is an independent unit-variance normal variate (not dependent on t).
Thus, at time T, with zero discount rate, ST = s0 exp

(
σ |X|WT − σ2X2T/2

)
. To simplify

this example to the maximum, also assume that X is centered; using the independence of
X and W, we get that we may replace |X| by X in this example, since this does not change
the law of ST (i.e. in the uncorrelated case, X’s non-positivity does not violate standard
practice for volatility modeling). Then, using maturity T = 1, for any p > 0, the pth
moment, via a simple change of variable, equals

E
[
(S1)

p] = sp
0

2π
√

1 + pσ2

∫∫
R2

dy dw exp

(
−1

2

(
y2 + w2 − 2

pσ√
1 + pσ2

wy

))
which by an elementary computation is finite, and equal to sp

0 /
√

1 + pσ2 − p2σ2, if and
only if

p < p̃ + 1 =
1
2
+

√
1
4
+

1
σ2 .

In the cases where the random volatility model X above is non-centered and is correlated
with W, a similar calculation can be performed, at the essentially trivial expenses of in-
voking affine changes of variables, and the linear regression of one normal variate against
another.

The above example illustrates heuristically that, by Lee’s moment formula, the com-
putation of p̃ might be the quickest path to obtain the leading term in the large-strike
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expansion of the IV, for more complex Gaussian volatility models, namely ones where
the volatility X is time-dependent. However, computing p̃ is not necessarily an easy task,
and appears, perhaps surprisingly, to have been performed rarely. For the Stein-Stein
model, the value of p̃ can be computed using the sharp asymptotic formulas for the asset
price density near zero and infinity, established in [25] for the uncorrelated Stein-Stein
model, and in [15] for the correlated one. These two papers also provide asymptotic
formulas with error estimates for the IV at extreme strikes in the Stein-Stein model. Be-
yond the Stein-Stein model, little was known about the extreme strike asymptotics of
general Gaussian stochastic volatility models. In the present paper, we extend the above-
mentioned results from [25] and [15] to such models.

1.3. Motivation and summary of main result. Adopting the perspective that an asymp-
totic expansion for the IV can be helpful for model selection and calibration, our objective
is to provide an expansion for the IV in a Gaussian volatility model relying on a mini-
mal number of parameters, which can then be chosen to adjust to observed smiles. The
restriction of non-correlated volatility means that the asset price distribution is a mixture
of geometric Brownian motions with time-dependent volatilities, whose mixing density
at time T is that of the square root of a variable in the second-chaos of a Wiener process.
That second-chaos variable is none other than the integrated variance ΓT :=

∫ T
0 X2

s ds. By
relying on a general Hilbert-space structure theorem which applies to the second Wiener
chaos, we prove that, for a wide class of non-centered Gaussian stochastic volatility pro-
cesses with a possible degeneracy in the eigenstructure of the covariance Q of X viewed
as a linear operator on L2 ([0, T]) (i.e. when the top eigenvalue λ1 is allowed to have a
multiplicity n1 larger than 1), the large-strike IV asymptotics can be expressed with three
terms and an error estimate. These terms depend explicitly on T and on the following
three parameters: λ1, n1, and the ratio δ =

∥∥PE1m
∥∥2 /λ1, where

∥∥PE1m
∥∥ is the norm in

L2 ([0, T]) of the orthogonal projection of the mean function m on the first eigenspace of
Q. We also push the expansion to five terms, and notice that the fifth term also only de-
pends on λ1, n1, and δ, while the fourth term depends on all other eignevalues and the
action of m on all other eigenfunctions. Specifically, with I (K) the IV as a function of
strike K, letting k := log (K/s0)− rT be the discounted log-moneyness, as k → +∞, we
prove

I (K) = M1(T, λ1)
√

k + M2 (T, λ1, δ) + M3(T, λ1, n1)
log k√

k

+ M4(T, λ1, n1, V)
1√
k
+ M5(T, λ1, n1, δ)

log k
k

+ O
(

1√
k

)
, (3)

where the constants M1, M2, M3, M4, and M5 depend explicitly on T and λ1, M2 also de-
pends explicitly on δ, while M3 also depends explicitly on n1, M5 depends explicitly also
on both n1 and δ, and M4 has an additional rather complex dependence on all the eigen-
elements through a factor V; this is all stated in Theorem 13 and formula (47). A similar
asymptotic formula is obtained in the case where k → −∞, using symmetry properties
of uncorrelated stochastic volatility models (see (55)). The specific case of the Stein-Stein
model is expanded upon in some detail.
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1.4. Practical implications. The first-order constant M1 is always strictly positive. The
second-order term (the constant M2) vanishes if and only if m is orthogonal to the first
eigenspace of Q, which occurs for instance when m ≡ 0. The third-order and fifth-order
terms vanish if and only if the top eigenvalue has multiplicity n1 = 1, which is typical (the
case n1 > 1 can be considered degenerate, and does not occur in common examples). The
behavior of M1 and M2 as functions of T is determined partly by how the top eigenvalue
λ1 depends on T, which can be non-trivial. In the present paper, we assume T is fixed.

For fixed maturity T, assuming that Q has lead multiplicity n1 = 1 for instance, a
practitioner will have the possibility of determining a value λ1 and a value δ to match
the specific root-log-moneyness behavior of small- or large-strike IV; moreover in that

case, choosing a constant mean function m, one obtains δ = m2λ−1
1

∣∣∣∫ T
0 e1 (t) dt

∣∣∣2 where
e1 is the top eigenfunction of Q. Market prices may not be sufficiently liquid at extreme
strikes to distinguish between more than two parameters; this is typical of calibration
techniques for implied volatility curves for fixed maturity, such as the ‘stochastic volatility
inspired’ (SVI) parametrization disseminated by J. Gatheral: see [19, 20] (see also [21] and
the references therein). Our result shows that Gaussian volatility models with non-zero
mean are sufficient for this flexibility, and provide equivalent asymptotics irrespective of
the precise mean function and covariance eigenstructure, since modulo the disappearance
of the third-order term in the unit top multiplicity case n1 = 1, only λ1 and δ are relevant.
The fourth-order term in our expansion can provide additional precision in calibration.
Its use is illustrated in Section 7.

Modelers wishing to stick to well-known classes of processes for X may then adjust
the value of λ1 by exploiting any available invariance properties for the desired class. For
example, if X is standard Brownian motion, or the Brownian bridge, on [0, T], we have
λ1 = 4T2/π or λ1 = T2/π respectively, and these values scale quadratically with respect
to a multiplicative scaling constant for X, beyond which an arbitrary mean value m may
be chosen. If X is the mean-zero stationary OU process, we have λ1 = β2/

(
ωT + α2)

where ωT is the smallest positive solution of 2αω cos (ωT) +
(
α2 −ω

)
sin (ωT) = 0, in

which case, for a fixed arbitrarily selected rate of mean reversion α, a scaling of λ1 is
then equivalent to selecting the variance of X, while a constant mean value m can then be
selected independently. [10, Chapter 1] can be consulted for the eigenstructure of the co-
variance of Brownian motion and the Brownian bridge, which are classical results, and for
a proof of the eigenstructure of the OU covariance (see also [12]). The top eigenfunctions
in all three of these cases are known explicit trigonometric functions (see [10, Chapter 1]),
and need to be referenced when selecting m. For the OU bridge, the eigenstructure of Q
(equivalently known as the Karhunen-Loève expansion of Q) was found in [11], while
in [13], such an expansion was characterized for special Gaussian processes generated by
independent pairs of exponential random variables. On the other hand, fractional Brown-
ian motion and OU processes driven by fractional Brownian motion (also known as fOU
processes) do not fall in the class of Gaussian processes for which the Karhunen-Loève
expansion is known explicitly.

However, efficient numerical techniques allowing to compute the eigenfunctions and
eigenvalues in these cases were developed by S. Corlay (see Chapter 2 in [10]). Corlay
uses the trapezoidal Nyström method and the three-step Richardson-Romberg method to
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approximate the five highest Karhunen-Loève eigenvalues of various Gaussian processes;
in principle, eigenvalues and eigenfunctions of arbitrarily high order can be obtained us-
ing his method. He starts with such estimates for Brownian motion, Brownian bridge,
and Ornstein-Uhlenbeck process, for which explicit expressions for the eigenvalues are
known. The resulting approximations are very close to the values obtained from the ex-
plicit formulas for the eigenvalues, which shows that the method used by Corlay is rather
powerful. Corlay also estimates the five highest Karhunen-Loève eigenvalues of frac-
tional Brownian motion on [0, 1] with the Hurst exponent H = 0.7. Of special interest to
the context of the present paper is the largest Karhunen-Loève eigenvalue λ1 of fractional
Brownian motion, for which Corlay obtains the approximation λ1 ≈ 0.374532521757236.

While we do not need this value, and instead use Corlay’s method to compute λ1 for
several fOU processes, we are confident that the values we obtain for the various λ1’s we
use have similar levels of accuracy to what is illustrated in [10]. Corlay’s method is thus
one of the main ingredients in the numerical part of our paper (see the discussion after
(80) in Section 7). Fractional OU processes were proposed early on for option pricing,
and recently analyzed in [9, 8]; these processes are versions of the volatility process in
the Stein-Stein model. Therefore, the resulting stochastic volatility models may be called
fractional Stein-Stein models. Section 7 illustrates how, in the case of the classical and
fractional Stein-Stein models (OU and fOU processes), the explicit, semi-explicit, or nu-
merically accessible Karhunen-Lòeve expansion of X can be used in conjunction with the
asymptotics (3) for calibrating parameters. We find that market liquidity considerations
limit the theoretical range of applicability of calibration strategies, but that significant
practical results are nonetheless available.

The remainder of this article is structured as follows. Section 2 sets up a convenient
second-chaos representation for the model’s integrated volatility. In Section 3, we gen-
eralize some results from [7, 28, 38], concerning the asymptotic behavior of densities of
infinite linear combinations of chi-squared random variables, and derive precise asymp-
totics for the density of the mixing distribution. Section 4 converts these asymptotics into
sharp asymptotic formulas for the density of the asset price ST, thanks to the analytic
tools developed in [25, 22]. In Section 5, we characterize the wing behavior of the implied
volatility in Gaussian stochastic volatility models. We find sharp asymptotic formulas
for the implied volatility with five explicit terms and an error estimate. The special case
of the uncorrelated Stein-Stein model is studied in more detail in Section 6. Finally, our
practical study of calibration strategies, with numerics, is in Section 7.

2. GENERAL SETUP AND SECOND-CHAOS EXPANSION OF THE INTEGRATED VARIANCE

Let X be an almost-surely continuous Gaussian process on a filtered complete probabil-
ity space (Ω,F , {Ft}, P) with mean and covariance functions denoted by m(t) = E[Xt]
and

Q(t, s) = cov(Xt, Xs) = E [(Xt −m(t)) (Xs −m(s))] ,
respectively, and suppose the restrictions imposed in (1) are satisfied.

Define the centered version of X : X̃t := Xt − m(t), t ≥ 0, and fix a time horizon
T > 0. It is not hard to see that Q(s, s) > 0 for all s > 0. Since the Gaussian process X is
almost surely continuous, the mean function t 7→ m(t) is a continuous function on [0, T],
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and the covariance function (t, s) 7→ Q(t, s) is a continuous function of two variables on
[0, T]2. Indeed, the continuity of the process X implies its continuity in probability on
Ω. Hence, the process X is continuous in the mean-square sense (see, e.g., [29], Lemma 1
on p. 5, or invoke the equivalence of Lp norms on Wiener chaos, see [31]). Mean-square
continuity of X implies the continuity of the mean function on [0, T]. In addition, the
autocorrelation function of the process X, that is, the function R(t, s) = E [XtXs], (t, s) ∈
[0, T]2, is continuous (see, e.g., [3], Lemma 4.2). Finally, since Q(t, s) = R(t, s)−m(t)m(s),
the covariance function Q is continuous on [0, T]2. We refer the interested reader to [2] for
more information on the continuity problems for general Gaussian processes.

In our analysis, it will be convenient to refer to the Karhunen-Loève expansion of X̃. We
will next provide certain details concerning the Karhunen-Loève expansion and introduce
notation that will be used throughout the paper.

Consider the covariance operator defined by

K( f )(t) =
∫ T

0
f (s)Q(t, s)ds, f ∈ L2 ([0, T]) , 0 ≤ t ≤ T.

The operator K is a nonnegative compact self-adjoint operator on L2 ([0, T]). The non-
zero eigenvalues of the operator K are of finite multiplicity, and we assume that they are
rearranged so that

λ1 = λ2 = · · · = λn1 > λn1+1 = λn1+2 = · · · = λn1+n2 > . . . .

In particular, λ1 is the top eigenvalue, and n1 is its multiplicity. It is known that the
series ∑∞

n=1 λn converges. The system of eigenfunctions E = {en}n≥1, corresponding to
the system {λn}n≥1, is orthonormal, and each function en is continuous on [0, T]. The
number λ0 = 0 always belongs to the spectrum of the covariance operator, and it may
happen so that λ0 is an eigenvalue of K. The spectral subspace associated with λ0 may be
infinite-dimensional, and we choose a basis Ẽ in this subspace. Then (E, Ẽ) is a complete
orthonormal system in L2 ([0, T]). Note that the eigenvalues and eigenfunctions of K
depend on T.

The classical Karhunen-Loève theorem (see, e.g., [37], Section 26.1) states that there
exists an i.i.d. sequence of standard normal variates {Zn : n = 1, 2, . . .} such that

X̃t =
∞

∑
n=1

√
λnen(t)Zn. (4)

Remark 1. The number of positive eigenvalues may be finite. We will assume throughout the
paper that the set of positive eigenvalues is infinite; this is the case for all illustrative examples we
use, such as the OU and fOU processes. It is easy to understand how the parameters used in the
paper change if the number of positive eigenvalues is finite.

Using (4), we obtain∫ T

0
X̃2

t dt =
∫ T

0

(
∞

∑
n=1

√
λnen(t)Zn

)2

dt =
∞

∑
n=1

λnZ2
n. (5)

It is worth pointing out that the previous expression for the integrated variance in a
Gaussian model with centered volatility is in fact the most general form of a random
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variable in the second Wiener chaos with half-bounded support, with mean adjusted to
ensure almost-sure positivity of the integrated variance. This is established using a clas-
sical structure theorem on separable Hilbert spaces, as explained in [31, Section 2.7.4].
In other words (also see [31, Section 2.7.3] for additional details), any prescribed mean-
adjusted integrated variance in the second chaos is of the form

V (T) :=
∫∫

[0,T]2
G (s, t) dZ (s) dZ (t) + 2 ‖G‖2

L2([0,T]2)

for some standard Wiener process Z and some function G ∈ L2 ([0, T]2
)
. Moreover one

can find a centered Gaussian process X̃ such that V (T) =
∫ T

0 X̃2
t dt and one can compute

the coefficients λn in the Karhunen-Loève representation (5) as the eigenvalues of the
covariance of X̃.

Let us set

s =
∫ T

0
m(t)2dt and δn =

∫ T

0
m(t)en(t)dt, n ≥ 1. (6)

Then, it follows from (5) and (6) that, for the non-centered process X,∫ T

0
X2

t dt =
∞

∑
n=1

λnZ2
n + 2

∞

∑
n=1

√
λnδnZn + s

=
∞

∑
n=1

λn

[
Zn +

δn√
λn

]2

+

(
s−

∞

∑
n=1

δ2
n

)
. (7)

Remark 2. It is easy to see, using (7) that if the function t 7→ m(t) belongs to the subspace of
L2[0, T] generated by the orthonormal system E, then∫ T

0
X2

t dt =
∞

∑
n=1

λn

[
Zn +

δn√
λn

]2

. (8)

For instance, the equality in (8) holds if λ = 0 is not an eigenvalue of the operator K. In the case
where the process X is centered, we have∫ T

0
X2

t dt =
∞

∑
n=1

λnZ2
n. (9)

Note that the right-hand sides of (8) and (9) are infinite linear combinations of chi-square random
variables.

Let us denote the chi-squared distribution with the number of degrees of freedom k
and the parameter of noncentrality λ by χ2(k, λ) (more information on such distributions
can be found in [22] or in any probability textbook; the convention used here is that the
mean of χ2(k, λ) is k + λ). Set

ΛT =
1

λ1

(∫ T

0
X2

t dt− s +
∞

∑
n=1

δ2
n

)
(10)

and denote

ξ0 =
n1

∑
n=1

δ2
n; ξk =

n1+···+nk+1

∑
n=n1+···+nk+1

δ2
n, k ≥ 1. (11)
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Denote also

δ =
ξ0

λ1
. (12)

Then, it is not hard to see, using (7), (10), (11), and (12), that

ΛT = χ2 (n1, δ) +
∞

∑
k=2

λn1+···+nk−1+1

λ1
χ2

(
nk,

1
λn1+···+nk−1+1

ξk−1

)
, (13)

where the repeated chi-squared notation is used abusively to denote independent chi-
square random variables. We will denote the distribution density of ΛT by qT.

3. ASYMPTOTICS OF THE MIXING DENSITY

The asymptotic behavior of the distribution density of an infinite linear combination of
independent central chi-squared random variables was characterized by Zolotarev (see
formula (5) in [38]). In [28], Hoeffding found more general and sharp formulas. The
results obtained by Zolotarev and Hoeffding were generalized to the case of noncentral
chi-squared variables by Beran (see [7]). Note that Beran considered infinite sums of chi-
squared variables with all the noncentrality parameters strictly greater than zero. Since
there is a gap betweed the results of Zolotarev, Hoeffding, and Beran, we decided to
include a discussion of a similar result, where there are no restrictions on the noncentrality
parameters. Keeping in mind the series in (13), we will study the asymptotic behavior of
the density q of the following infinite sum:

Λ = χ2 (n1, η1) +
∞

∑
k=2

ρkχ2 (nk, ηk) , (14)

where nk ≥ 1, k ≥ 1, are integers, and ηk ≥ 0 for all k ≥ 2. If ηk = 0 for some k,
then the corresponding chi-squared random variable is central. It is also assumed that
1 > ρ2 > ρ3 > · · · > 0,

∞

∑
k=2

nkρk < ∞,
∞

∑
k=2

ηkρk < ∞, (15)

and the chi-squared random variables in (14) are independent. We will denote by qΛ the
distribution density of the random variable Λ.

The distribution density of a chi-squared random variable χ2(n, η) will be denoted by
pχ2(·; n, η). It is known that if η > 0, then

pχ2(x; n, η) =
1
2

(
x
η

) n
4−

1
2

e−
x+η

2 In
2−1(
√

ηx), x > 0, (16)

where Iν is the modified Bessel function of the first kind (see, e.g., [22], Theorem 1.31).
For η = 0, we have

pχ2(x; n, 0) =
1

2
n
2 Γ
(n

2

)x
n−2

2 exp
{
−x

2

}
, x > 0 (17)
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(see, e.g., Lemma 1.27 in [22]). It is not hard to see that limη→0 pχ2(x; n, η) = pχ2(x; n, 0).
Let us also mention that

Iν(t) =
et
√

2πt

(
1 + O

(
t−1
))

, t→ ∞, (18)

for all ν ≥ 0 (see, e.g., 9.6.7 in [1]).
It is known that for t < 1

2 , the moment generating function of a chi-squared random
variable χ2(n, η) with η ≥ 0 is as follows:

t 7→ 1
(1− 2t)

n
2

exp
{

ηt
1− 2t

}
. (19)

In the formulation of the next result, we will use the following number:

A = E

[
exp

{
U
2

}]
,

where U is defined as Λ without the first term:

U =
∞

∑
k=2

ρkχ2 (nk, ηk) . (20)

Next, using (20) and (19), we obtain

A = ∏
k≥2

(1− ρk)
− nk

2 exp
{

ηkρk
2(1− ρk)

}
, (21)

and it is not hard to see, by taking into account (15), that A < ∞.
The next assertion is based on the results of Zolotarev, Hoeffding, and Beran.

Theorem 3. Suppose the conditions formulated after formula (14) hold. If η1 > 0, then∣∣∣∣∣ qΛ(x)
pχ2 (x; n1, η1)

− A

∣∣∣∣∣ = O
(

x−
1
2

)
(22)

as x → ∞, while if η1 = 0, then∣∣∣∣∣ qΛ(x)
pχ2 (x; n1, 0)

− A

∣∣∣∣∣ = O
(

x−1
)

(23)

as x → ∞. In the formulas above, the constant A is given by (21).

Remark 4. Theorem 3 is a minor generalization of similar propositions obtained in [28] and [7].
The difference between those propositions and our Theorem 3 is that [28] assumes that all the chi-
squared variables in (14) are central, in Theorem 2 in [7] they are all assumed noncentral, while
in our Theorem 3, we may have any combination of central and non-central chi-squared variables.

Theorem 2 in [7] provides an asymptotic formula for the complementary distribution function
(tail) of an infinite linear combination of independent noncentral chi-square random variables. A
sharper formula for the distribution density of such a linear combination can be extracted from the
proof of Theorem 2 in [7] (see the very end of that proof).
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Sketch of the proof of Theorem 3. We follow the proof of Theorem 2 in [7]. Let us denote
by pU the distribution density of the random variable U in (20). Then

qΛ(x) =
∫ x

0
pχ2 (x− y; n1, η1) pU(y)dy, x > 0. (24)

Let us fix 0 < α < 1. We have

qΛ(x)
pχ2 (x; n1, η1)

− A = V1 + V2 + V3 + V4,

where

V1 =
∫ αx

0

[(
1− y

x

) n1
2 −1
− 1

]
W(x, y) exp

{y
2

}
pU(y)dy,

V2 =
∫ x

αx

(
1− y

x

) n1
2 −1

W(x, y) exp
{y

2

}
pU(y)dy,

V3 =
∫ αx

0
[W(x, y)− 1] exp

{y
2

}
pU(y)dy,

V4 = −
∫ ∞

αx
exp

{y
2

}
pU(y)dy.

In the formulas above, the function W is defined by

W(x, y) =
(

1− y
x

)− n1
4 + 1

2 In
2−1(

√
η(x− y))

In
2−1(
√

ηx)

if η1 > 0, while if η1 = 0, then W(x, y) = 1. Note that η1 = 0 implies V3 = 0. Then, using
calculations similar to those in the proof of Theorem 2 in [7], we find that when η1 > 0, V3
is the leading term and is of order x−1/2, while when η1 = 0, this term vanishes, and the
next highest-order term is of order x−1. This explains the different error estimates in the
formulas in Theorem 3. We include two auxiliary statements below (Lemmas 5 and 6).
They are needed to perform the above-mentioned calculations. This finishes the sketch of
the proof of Theorem 3. �

Lemma 5. Under the assumptions in Theorem 3, the following holds:

E

[
U exp

{
U
2

}]
< ∞.

Proof. This follows in a straightforward way (details omitted), using (20), differentiating
the function in (19), and taking into account the resulting formula and (21), implying that:

E

[
U exp

{
U
2

}]
= A

∞

∑
k=2

ρk

[
nk

1− ρk
+

ηk
(1− ρk)2

]
so that that Lemma 5 clearly follows from (15) and the finiteness A < ∞. �
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Lemma 6. Under the restrictions in Theorem 3, there exists a number ε > 0, depending on the
constants in (20), and such that

pU(y) = O
(

exp
{
−
(

1
2
+ ε

)
y
})

as y→ ∞.

Proof. We have U = ρ2Ũ, where Ũ = ∑∞
k=2 ρ̃kχ2 (nk, ηk) with ρ̃2 = 1 and ρ̃k = ρk

ρ2
for

all k ≥ 3. It follows that pU(x) = 1
ρ2

pŨ

(
1
ρ2

y
)

. Since ρ2 < 1, and the random varaible Ũ
has the same structure as the random variable Λ in (14), it suffices to show that for every
τ > 0,

qΛ(x) = O
(

exp
{(
−1

2
+ τ

)
y
})

(25)

as x → ∞.
Let us first assume n1 ≥ 2. Then, using (24), (16), the fact that the function Iν is increas-

ing, and (18), we obtain (25). Next, let n1 = 1. We have

Λ ≤ χ2 (n1, η1) + χ2 (n2, η2) +
∞

∑
k=3

ρkχ2 (nk, ηk) .

Next, we observe that χ2 (n1, η1) + χ2 (n2, η2) = χ2 (n1 + n2, η1 + η2) (the previous for-
mula follows from (19)). This reduces the case where n1 = 1 to the already considered
case where n1 > 1. It follows from the previous reasoning that (25) holds. This completes
the proof of Lemma 6. �

Theorem 3 will allow us to characterize the asymptotic behavior of the distribution
density qT of the random variable ΛT defined by (13). Using Theorem 3, we see that if
δ > 0, then ∣∣∣∣∣ qT(x)

pχ2 (x; n1, δ)
− A

∣∣∣∣∣ = O
(

x−
1
2

)
(26)

as x → ∞, while if δ = 0, then∣∣∣∣∣ qT(x)
pχ2 (x; n1, 0)

− A

∣∣∣∣∣ = O
(

x−1
)

(27)

as x → ∞. In (26) and (27), the formula for A is

A = ∏
j>n1

(
λ1

λ1 − λj

) 1
2

exp

{
δ2

j

2(λ1 − λj)

}
. (28)

It is clear that for δ > 0, (26) gives

qT(x) = Apχ2 (x; n1, δ)
(

1 + O
(

x−
1
2

))
(29)

as x → ∞. Similarly, for δ = 0, (27) implies that

qT(x) = Apχ2 (x; n1, 0)
(

1 + O
(

x−1
))

(30)

as x → ∞.
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It is known that

Iν(t) =
et
√

2πt

(
1 + O

(
t−1
))

t→ ∞,

(see 9.7.1 in [1]). Next, using the previous formula in (16), we obtain

pχ2(x; n, λ) =
1

2
√

2π
λ−

n−1
4 x

n−3
4 e
√

λxe−
x+λ

2

(
1 + O

(
x−

1
2

))
(31)

as x → ∞.
Recall that we denoted by qT the distribution density of the random variable ΛT defined

by (10). Using (29) and (31), we see that for δ > 0,

qT(x) =
A

2
√

2π
δ−

n1−1
4 x

n1−3
4 e
√

δxe−
x+δ

2

(
1 + O

(
x−

1
2

))
(32)

as x → ∞. The constants A and δ in (32) are defined by (28) and (12), respectively.
We next turn our attention to the case where δ = 0. In this case, it follows from (30),

(28), and (17) that

qT(x) =
1

2
n1
2 Γ
(n1

2

) ∏
k>n1

(
λ1

λ1 − λk

) 1
2

exp

{
δ2

k
2(λ1 − λk)

}
x

n1−2
2 exp

{
−x

2

}
×
(

1 + O
(

x−1
))

(33)

as x → ∞.

Remark 7. In comparing (32) and (33), one notes that the latter cannot be obtained from the
former by letting δ tend to 0: while the exponential terms would match, the power terms do not,
and an additional discrepancy would occur when n1 > 1 from the singular term δ−(n1−1)/4.

Our next goal is to characterize the asymptotic behavior of the distribution density pT

of the integrated variance ΓT =
∫ T

0 X2
t dt. The following statement holds.

Theorem 8. (i) If δ > 0, then

pT(x) = Cx
n1−3

4 exp

{√
δ

λ1

√
x

}
exp

{
− x

2λ1

}(
1 + O

(
x−

1
2

))
(34)

as x → ∞, where

C =
1

2
√

2π
λ
− n1+1

4
1 δ−

n1−1
4 exp

{
s−∑∞

n=1 δ2
n

2λ1
− δ

2

}

×
∞

∏
j>n1

(
λ1

λ1 − λj

) 1
2

exp

{
δ2

j

2(λ1 − λj)

}
. (35)

(ii) If δ = 0, then

pT(x) = Cx
n1−2

2 exp
{
− x

2λ1

}(
1 + O

(
x−1
))

(36)
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as x → ∞, where

C =
1

2
n1
2 Γ
(n1

2

)λ
− n1

2
1 exp

{
s−∑n>n1

δ2
n

2λ1

}
∏

k>n1

(
λ1

λ1 − λk

) 1
2

exp

{
δ2

j

2(λ1 − λj)

}
. (37)

In particular, if the process X is centered, then (36) holds with

C =
1

2
n1
2 Γ
(n1

2

)λ
− n1

2
1 ∏

k>n1

(
λ1

λ1 − λk

) 1
2

. (38)

Proof. It follows from (10) that pT(x) = 1
λ1

qT

(
1

λ1
(x− τ)

)
, where τ = s−∑∞

n=1 δ2
n. Now,

formula (32) implies that

pT(x) =
A

2
√

2π

1
λ1

λ
n1−1

4
1 δ−

n1−1
4

×
(

n1

∑
n=1

δ2
n

)− n1−1
4

λ
− n1−3

4
1 exp

{
τ −∑n1

n=1 δ2
n

2λ1

}

× (x− τ)
n1−3

4 exp


√

δ(x− τ)

λ1

 exp
{
− x

2λ1

}
×
(

1 + O
(

x−
1
2

))
(39)

as x → ∞.
Next, taking into account that

(x− τ)
n1−3

4 = x
n1−3

4 (1 + O(x−1))

and

exp


√

δ(x− τ)

λ1

 = exp

{√
δ

λ1

√
x

}
(1 + O(x−

1
2 )),

and simplifying the expression on the right-hand side of (39), we obtain (34). The proof
of formula (36) is similar, using (33). �

4. ASSET PRICE ASYMPTOTICS

The model in (1) is described by a linear stochastic differential equation. Therefore, we
have

St = s0 exp
{

rt− 1
2

∫ t

0
X2

s ds +
∫ t

0
|Xs|dWs

}
. (40)

The previous equality can be derived from the Doléans-Dade formula (see [33]). Since
the processes X and W are independent, the following formula holds for the distribution
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density Dt of the asset price St:

Dt(x) =

√
s0ert
√

2πt
x−

3
2

∫ ∞

0
y−1 exp

{
−
[

log2 x
s0ert

2ty2 +
ty2

8

]}
p̃t(y)dy. (41)

In (41), p̃t is the distribution density of the random variable Ỹt =
{

1
t

∫ t
0 X2

s ds
} 1

2 . The
function p̃t is called the mixing density. The proof of formula (41) can be found in [22]
(see (3.5) in [22]). It is not hard to see that p̃t(y) = 2typt

(
ty2) , where the symbol pt stands

for the density of the realized volatility Yt =
∫ t

0 X2
s ds.

Suppose first that the volatility process is such that δ > 0. It follows from formula (34)
that

p̃t(y) = Ãy
n1−1

2 exp
{

B̃y
}

exp
{
−C̃y2

} (
1 + O

(
y−1
))

(42)

as y→ ∞, where

Ã = 2Ct
n1+1

4 , B̃ =

√
δt
λ1

, C̃ =
t

2λ1
. (43)

In (43), the constant C is defined by (35).
Our next goal is to estimate the function Dt. The asymptotic behavior as x → ∞ of the

integral appearing in (41) was studied in [25] (see also Section 5.3 in [22]). It is explained
in [22] how to get an asymptotic formula for the integral in (41) in the case where an as-
ymptotic formula for the mixing density is similar to formula (42). We refer the reader
to the derivation of Theorem 6.1 in [22], which is based on formula (5.133) in Section 5.6
of [22] and Theorem 5.5 in [22]. The latter theorem concerns the asymptotic behavior of
integrals with lognormal kernels. Having obtained an asymptotic formula for the distri-
bution density of the asset price, we can find a similar asymptotic formula for the call
pricing function C at large strikes, and then obtain an asymptotic formula for the implied
volatility I (see Section 10.5 in [22]).

Theorem 5.5 in [22] provides an asymptotic formula as w→ ∞ for the integral∫ ∞

0
A(y) exp

{
−
(

w2

y2 + k2y2
)}

dy,

where k > 0 is fixed, and it is assumed that

A(y) = elyζ(y)(1 + O(b(y)))

as y → ∞. In the previous asymptotic formula, l is a real number, and ζ and b are func-
tions satisfying certain conditions.

Let us fix T > 0. Our goal is to use Theorem 5.5 in [22] with

A(y) = y−1 p̃T(y) exp
{

C̃y2
}

,
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l = B̃, ζ(y) = Ãy
n1−3

2 , b(y) = y−1, w = (2T)−
1
2 log x

s0erT , k =

√
8C̃+T
2
√

2
, and γ = 1 (see the

formulation of Theorem 5.5 in [22] for the meaning of the constant γ). This gives∫ ∞

0
y−1 exp

−
 log2 x

s0erT

2ty2 +
Ty2

8

 p̃T(y)dy =
Ã2

n1−1
4
√

π

T
n1−3

8 (8C̃ + T)
n1+1

8

(
s0erT

)√8C̃+T
2
√

T

exp

{
B̃2

2(8C̃ + T)

}(
log

x
s0erT

) n1−3
4

x−
√

8C̃+T
2
√

T exp

{
B̃
√

2

T
1
4 (8C̃ + T)

1
4

√
log

x
s0erT

}
(

1 + O
(
(log

x
s0erT )

− 1
2

))
(44)

as x → ∞. Next, using (41) and (44), we obtain

DT(x) =
Ã2

n1−3
4

T
n1+1

8 (8C̃ + T)
n1+1

8

(
s0erT

) 1
2+

√
8C̃+T

2
√

T exp

{
B̃2

2(8C̃ + T)

}
(

log
x

s0erT

) n1−3
4

x
−
(

3
2+

√
8C̃+T

2
√

T

)
exp

{
B̃
√

2

T
1
4 (8C̃ + T)

1
4

√
log

x
s0erT

}
(

1 + O
(
(log

x
s0erT )

− 1
2

))
(45)

as x → ∞.
The next assertion can be obtained by using (43) in (45) and simplifying the resulting

expressions.

Theorem 9. If δ > 0, then

DT(x) = V
(

log
x

s0erT

) n1−3
4

x
−
(

3
2+

√
4+λ1

2
√

λ1

)
exp


√

2δ

λ
1
4
1 (4 + λ1)

1
4

√
log

x
s0erT

(
1 + O

(
(log

x
s0erT )

− 1
2

))
(46)

as x → ∞, where

V =
2

n1−5
4

√
πλ

n1+1
8

1 (4 + λ1)
n1+1

8

δ−
n1−1

4

(
s0erT

) 1
2+

√
4+λ1

2
√

λ1 exp
{
−δ(3 + λ1)

2(4 + λ1)

}

exp
{

s−∑∞
n=1 δ2

n
2λ1

}
∏

k>n1

(
λ1

λ1 − λk

) 1
2

exp

{
δ2

k
2(λ1 − λk)

}
. (47)

Formula (46) describes the asymptotic behavior of the asset price density in a Gauss-
ian stochastic volatility model in terms of the Karhunen-Loève parameters, the initial
condition s0, the interest rate r, and the time horizon T. Note that the Karhunen-Loève
parameters depend on T, while the constant V depends on s0 and r. We will sometimes
use the notation V(s0, r) to emphasize this dependence.
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An asymptotic formula similar to that in (46) can be also obtained for δ = 0, using
(36) and (37) instead of (34). We will next formulate this asymptotic formula for a special
model where the volatility is described by a centered Gaussian process.

Theorem 10. If the process X is centered, then

DT(x) = U
(

log
x

s0erT

) n1−2
2

x
−
(

3
2+

√
4+λ1

2
√

λ1

) (
1 + O

(
(log

x
s0erT )

− 1
2

))
(48)

as x → ∞, where

U =
1

Γ
(n1

2

)
λ

n1
4

1 (4 + λ1)
n1
4

(s0erT)
1
2+

√
4+λ1

2
√

λ1

∞

∏
k>n1

(
λ1

λ1 − λk

) 1
2

. (49)

5. ASYMPTOTICS OF THE IMPLIED VOLATILITY

Taking into account formula (40), we see that the discounted asset price process in a
Gaussian stochastic volatility model is given by the following stochastic exponential:

S̃t = e−rtSt = s0 exp
{
−1

2

∫ t

0
X2

s ds +
∫ t

0
|Xs|dWs

}
. (50)

The next standard assertion states that Gaussian stochastic volaitility models create a risk-
neutral environment.

Lemma 11. Under the restrictions on the volatility process X in (1), the discounted asset price
process S̃ is a {Ft}-martingale.

Proof. Lemma 11 is standard. Using Itô’s formula, we first show that the process S̃
in (50) is a positive local martingale. Hence, it is a supermartingale by Fatou’s lemma.
The conditional distribution of the stochastic integral

∫ t
0 |Xs|dWs given |X| is normal with

mean zero and variance
∫ t

0 X2
s ds. Hence by conditioning on |X| and using the normal

MGF, we can prove that E[S̃t] = s0 for all t. However, a supermartingale with a constant
expectation is a martingale. This completes the proof of Lemma 11. �

Let us define the call pricing function in the stochastic volatility model described by (1)
by C(T, K) = e−rtE [(ST − K)+] , where T is the maturity and K is the strike price, and
recall that S0 = s0 a.s.

If the initial condition for the volatility process X is constant, then the call pricing func-
tion C is free of static arbitrage. On the other hand, if the initial condition X0 is random,
then there may be static arbitrage in the function C. We refer the reader to Definition 1.2
in [34] for more details concerning static arbitrage.

Let us fix the maturity T, and consider C as the function K 7→ C(K) of only the strike
price K. The Black-Scholes implied volatility associated with the pricing function C will
be denoted by I. More information on the implied volatility can be found in [20, 22].

The asymptotic behavior of the implied volatility for stochastic volatility models, in
which the asset price density satisfies

DT(x) = r1x−r3 exp{r2
√

log x}(log x)r4(1 + O
(
(log x)−

1
2

)
, x → ∞, (51)
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where r1 > 0, r2 ≥ 0, r3 > 2, and r4 ∈ R, was characterized in [27]. However, there is
an error in the expression for the fourth coefficient in formula (91) in [27]. The correct
statement is as follows.

Theorem 12. Suppose condition (51) holds. Then the following asymptotic formula is valid for
the implied volatility:

I(K) =
√

2√
T
(
√

r3 − 1−
√

r3 − 2)

√
log

K
s0erT +

r2√
2T

(
1√

r3 − 2
− 1√

r3 − 1

)

+
2r4 + 1
2
√

2T

(
1√

r3 − 2
− 1√

r3 − 1

) log log K
s0erT√

log K
s0erT

+

[
1√
2T

(
1√

r3 − 1
− 1√

r3 − 2

)
log
√

r3 − 1−
√

r3 − 2
2
√

πr1
+

r2
2

4
√

2T

(
1

(r3 − 2)
3
2
− 1

(r3 − 1)
3
2

)]

× 1√
log K

s0erT

+
r2(2r4 + 1)

4
√

2T

(
1

(r3 − 2)
3
2
− 1

(r3 − 1)
3
2

)
log log K

s0erT

log K
s0erT

+ O

(
1

log K
s0erT

)
(52)

as K → ∞.

The proof of Theorem 12 is exactly the same as that of Theorem 17 in [27].
The next assertions (Theorems 13 and 14) are the main results of the present paper.

They provide asymptotic formulas for the implied volatility in the stochastic volatility
model given by (1).

Theorem 13. Suppose δ > 0. Then the following formula holds for the implied volatility K 7→
I(K):

I(K) = M1

√
log

K
s0erT + M2 + M3

log log K
s0erT√

log K
s0erT

+ M4
1√

log K
s0erT

+ M5
log log K

s0erT

log K
s0erT

+ O

(
1

log K
s0erT

)
(53)
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as K → ∞, where

M1 =

√
2√
T

( √
λ1√

4 + λ1 + 2

) 1
2

, M2 =

√
δ√
T

(
λ1√

4 + λ1(
√

4 + λ1 + 2)

) 1
2

, (54)

M3 =
n1 − 1
4
√

2T

 λ
3
2
1√

4 + λ1 + 2

 1
2

,

M4 = − 1√
2T

 λ
3
2
1√

4 + λ1 + 2

 1
2

log

 1
2
√

πV(1, 0)

 λ
1
2
1√

4 + λ1 + 2

 1
2


+

√
2δ

4
√

T

(√
λ1(
√

4 + λ1 − 2)
4 + λ1

) 1
2

(
√

4 + λ1 + 1),

M5 =
(n1 − 1)

√
δ

8
√

T

(
λ1(
√

4 + λ1 − 2)√
4 + λ1

) 1
2

(
√

4 + λ1 + 1),

where V (1, 0) is the value of V in (47) with s0 = 1 and r = 0.

Proof. Set r1 = V(1, 0), r2 =
√

2δ

λ
1
4
1 (4+λ1)

1
4

, r3 = 3
2 +

√
4+λ1

2
√

λ1
, and r4 = n1−3

4 . Next, using (46)

and (52), and making straightforward simplifications, we get

M1 =
2λ

1
4
1√

T
[
(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2

] ,

M2 =

√
2δλ1

(4 + λ1)
1
4
√

T
[
(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2

] ,

M3 =
(n1 − 1)λ

3
4
1

4
√

T
[
(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2

] ,

M4 = −
λ

3
4
1√

T
[
(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2

]
× log

λ
1
4
1√

2πV(1, 0)
[
(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2

]
+

δλ
1
4
1

8
√

T(4 + λ1)

[
(
√

4 + λ1 +
√

λ1)
3
2 − (

√
4 + λ1 −

√
λ1)

3
2

]
,

M5 =

√
2λ1δ(n1 − 1)

32
√

T(4 + λ1)
1
4

[
(
√

4 + λ1 +
√

λ1)
3
2 − (

√
4 + λ1 −

√
λ1)

3
2

]
.
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Finally, by taking into account the equalitites

(
√

4 + λ1 +
√

λ1)
1
2 + (

√
4 + λ1 −

√
λ1)

1
2 =
√

2(
√

4 + λ1 + 2)
1
2 ,

(
√

4 + λ1 +
√

λ1)
1
2 − (

√
4 + λ1 −

√
λ1)

1
2 =
√

2(
√

4 + λ1 − 2)
1
2 ,

(
√

4 + λ1 +
√

λ1)
3
2 − (

√
4 + λ1 −

√
λ1)

3
2 = 2

3
2 (
√

4 + λ1 − 2)
1
2 (
√

4 + λ1 + 1),

we obtain the formulas for the coefficients in Theorem 13. �

The constant V(1, 0), given by (47), depends on all the Karhunen-Loève parameters.
However, this constant appears for the first time in the fourth term of the asymptotic
expansion in (52). By keeping only three terms in (53), we obtain an asymptotic formula
for the implied volatility, in which the coefficients do not depend on V. However, now

we have the error term of the following form: O
((

log K
s0erT

)− 1
2
)

.

We will next suppose that the volatility is a centered Gaussian process, and study the
wing behavior of the implied volatility in such a case. According to formula (48), we can
take r1 = U(1, 0), r2 = 0, r3 = 3

2 +
√

4+λ1
2
√

λ1
, and r4 = n1−2

2 . Here U(1, 0) is defined by (49).
Then, using Theorems 10 and 12, and reasoning as in the proof of Theorem 13, we obtain
the following assertion.

Theorem 14. Suppose the volatility is modeled by a centered Gaussian process. Then

I(K) = L1

√
log

K
s0erT + L2

log log K
s0erT√

log K
s0erT

+ L3
1√

log K
s0erT

+ O

(
1

log K
s0erT

)

as K → ∞, where

L1 =

√
2√
T

( √
λ1√

4 + λ1 + 2

) 1
2

, L2 =
n1 − 1
2
√

2T

 λ
3
2
1√

4 + λ1 + 2

 1
2

,

L3 = − 1√
2T

 λ
3
2
1√

4 + λ1 + 2

 1
2

log

 1
2
√

πU(1, 0)

 λ
1
2
1√

4 + λ1 + 2

 1
2
 .

Remark 15. Since the processes X and W in (1) are independent, the model in (1) belongs to the
class of the so-called symmetric models (see Section 9.8 in [22]). It is known that for a symmetric
model,

I(K) = I

((
s0erT)2

K

)
for all K > 0. (55)

It is clear that, using (55) and Theorem 13, we can characterize the left-wing asymptotic behavior of
the implied volatility in the case of a noncentered Gaussian volatility. Similarly, (55) and Theorem
14 can be used in the case of a centered Gaussian volatility.
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6. IMPLIED VOLATILITY IN THE UNCORRELATED STEIN-STEIN MODEL

The classical Stein-Stein model is an important special example of a Gaussian stochas-
tic volatility model. The Stein-Stein model was introduced in [36]. The volatility in the
uncorrelated Stein-Stein model is the absolute value of an Ornstein-Uhlenbeck process
with a constant initial condition m0. In this section, we also consider a generalization of
the Stein-Stein model, in which the initial condition for the volatility process is a random
variable X0. Of our interest in the present section is a Gaussian stochastic volatility model
with the process X satisfying the equation dXt = q(m− Xt)dt + σdZt. Here q > 0, m ≥ 0,
and σ > 0. It will be assumed that the initial condition X0 is a Gaussian random variable
with mean m0 and variance σ2

0 , independent of the process Z. It is known that

Xt = e−qtX0 + (1− e−qt)m + σe−qt
∫ t

0
equdZu, t ≥ 0. (56)

If σ0 = 0, then the initial condition is equal to the constant m0. The mean function of the
process X is given by

m(t) = e−qtm0 + (1− e−qt)m, (57)

and its covariance function is as follows:

Q(t, s) = e−q(t+s)
{

σ2
0 +

σ2

2q

(
e2q min(t,s) − 1

)}
.

Therefore, the following formula holds for the variance function:

σ2
t =

σ2

2q
+ e−2qt

(
σ2

0 −
σ2

2q

)
,

and hence, if σ2
0 = σ2

2q , then the process Xt −m(t), t ∈ [0, T], is centered and stationary. In
this case, the covariance function is given by

Q(t, s) =
σ2

2q
e−q|t−s|.

The Karhunen-Loève expansion of the Ornstein-Uhlenbeck process is known explicitly
(see [12]). Denote by wn the increasingly sorted sequence of the positive solutions to the
equation

σ2w cos(wT) + (qσ2 − w2σ2
0 − q2σ2

0 ) sin(wT) = 0. (58)

If σ0 = 0, then the equation in (58) becomes

w cos(wT) + q sin(wT) = 0. (59)

For the OU process in (56) with σ0 6= 0, we have nk = 1 for all k ≥ 1;

λn =
σ2

w2
n + q2 (60)

for all n ≥ 1; and

en(t) = Kn[σ
2
0 wn cos(wnt) + (σ2 − qσ2

0 ) sin(wnt)] (61)
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for all n ≥ 1 and t ∈ [0, T]. The constant Kn in (61) is determined from

1
K2

n
=

1
2wn

σ2
0 (σ

2 − qσ2
0 )(1− cos(2wnT)) +

1
2

σ4
0 w2

n

(
T +

1
2wn

sin(2wnT)
)

+
1
2
(σ2 − qσ2

0 )
2
(

T − 1
2wn

sin(2wnT)
)

(62)

for all n ≥ 1. On the other hand, if σ0 = 0, then λn is given by (60), while the functions en
are defined by

en(t) =
1√

T
2 −

sin(2wnT)
4wn

sin(wnt) (63)

for all n ≥ 1 and t ∈ [0, T].
By the Karhunen-Loève theorem, the Ornstein-Uhlenbeck process X in (56) can be rep-

resented as follows:

Xt = e−qtm0 + (1− e−qt)m +
∞

∑
n=1

√
λnen(t)Zn

where {Zn}n≥1 is an i.i.d. sequence of standard normal variables. The eigenvalues λn,
n ≥ 1, and the eigenfunctions en, n ≥ 1, are given by (60) and (61) if σ0 6= 0, and by (60)
and (63) if σ0 = 0. Recall that the numbers wn, n ≥ 1, in (60) are solutions to the equation
in (58) if σ0 6= 0, and to the equation in (59) if σ0 = 0. We refer the interested reader to [12]
for more details.

Our next goal is to discuss the constants in the asymptotic formulas for the implied
volatility at extreme strikes in the Stein-Stein model. Since n1 = 1 for any OU process,
the third and fifth terms in the expansion of Theorem 13 are zero, and with the exception
of the term V (1, 0) in M4, the only parameters needed to compute the above-mentioned
constants are λ1 and δ1. If σ0 6= 0, then we have

λ1 =
σ2

w2
1 + q2

, (64)

where w1 is the smallest strictly positive solution to the equation in (58).
The next assertion provides explicit formulas for the number δ1 =

∫ T
0 m(t)e1(t)dt.

Lemma 16. (i) For the generalized uncorrelated Stein-Stein model with σ0 6= 0,

δ1 =
K1m(σ2 − qσ2

0 )(1− cos(w1T))
w1

+ K1σ2
0 sin(w1T)[(m0 −m)e−qT + m]

+ K1σ2(m0 −m)
w1[1− e−qT cos(w1T)]− qe−qT sin(w1T)

q2 + w2
1

, (65)

where the constant K1 is determined from (62) with n = 1. The symbol w1 in (65) stands for the
smallest strictly positive solution to (58).
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(ii) For the uncorrelated Stein-Stein model with X0 = m0 P-almost surely,

δ1 =
mq2(1− cos(w1T)) + w2

1(m0 −m cos(w1T))

w1(q2 + w2
1)
√

T
2 −

sin(2w1T)
4w1

. (66)

Proof. Taking into account (57) and (61), we see that

δ1 = b1

∫ T

0
cos(w1t)dt + b2

∫ T

0
e−qt cos(w1t)dt

+ b3

∫ T

0
sin(w1t)dt + b4

∫ T

0
e−qt sin(w1t)dt, (67)

where

b1 = mK1σ2
0 w1, b2 = (m0 −m)K1σ2

0 w1,

b3 = mK1(σ
2 − qσ2

0 ), and b4 = (m0 −m)K1(σ
2 − qσ2

0 ). (68)

It remains to evaluate the integrals in (67). We have∫ T

0
cos(w1t)dt =

sin(w1T)
w1

, (69)

∫ T

0
e−qt cos(w1t)dt =

q[1− e−qT cos(w1T)] + w1e−qT sin(w1T)
q2 + w2

1
, (70)

∫ T

0
sin(w1t)dt =

1− cos(w1T)
w1

, (71)

and ∫ T

0
e−qt sin(w1t)dt =

w1[1− e−qT cos(w1T)]− qe−qT sin(w1T)
q2 + w2

1
. (72)

In the proof of (70) and (72), we use the integration by parts formula twice. Now, taking
into account formulas (67-72) and making simplifications, we establish formula (65).

Next, suppose σ0 = 0. Then (65) implies that

δ1 =
m√

T
2 −

sin(2w1T)
4w1

1− cos(w1T)
w1

+
m0 −m√

T
2 −

sin(2w1T)
4w1

w1[1− e−qT cos(w1T)]− qe−qT sin(w1T)
q2 + w2

1
,

where w1 denotes the smallest strictly positive solution to (59). It is not hard to see, using
the equality w1 cos(w1T) + q sin(w1T) = 0, that

δ1 =
m√

T
2 −

sin(2w1T)
4w1

1− cos(w1T)
w1

+
m0 −m√

T
2 −

sin(2w1T)
4w1

w1

q2 + w2
1

, (73)

and it is clear that (73) and (66) are equivalent. This completes the proof of Lemma 16. �
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Remark 17. Since for the generalized Stein-Stein model with a random initial condition we have
n1 = 1, one can use the asymptotic formulas in Theorem 13 with M3 = M5 = 0 to characterize
the wing-behavior of the implied volatility. The dependence of the parameters λ1 and δ1, appearing
in those formulas, on the model parameters is described in (64), (65), and (66). Originally, sharp
asymptotic formulas for the implied volatility at extreme strikes in the uncorrelated Stein-Stein
model with X0 = m0 were obtained in [25] (see also Section 10.5 in [22]). However, explicit
expressions, obtained in [25] and [22] for the coefficients in the asymptotic formulas for the implied
volatility in the Stein-Stein model, are significantly more complicated than those found in the
present paper.

7. NUMERICAL ILLUSTRATION

A basic calibration strategy when presented with asymptotic results such as those given
in this paper is to assume one can place oneself in the corresponding regime, and then de-
termine model parameters by reading asymptotic coefficient off of market option prices.
We now illustrate how this strategy can produce positive results, and discuss its limita-
tions, when the top of the KL spectrum is simple (n1 = 1). As noted in the introduction,
in this case, the third and fifth terms in the expansion are null. The idea is to ignore the
big O term in the asymptotic (54), and calibrate parameters to the remaining coefficients.
Denoting the discounted log-moneyness log

(
S0erT/K

)
by k for compactness of notation,

we thus have, for |k| sufficiently large,

I (k) ' M1

√
|k|+ M2 + M4

1√
|k|

, (74)

for three constants M1, M2, and M4, which can, in principle, be read off of market data.
By the explicit expressions for the first two constants in (54) in terms of λ1 and δ1, we then
express the latter in terms of M1 and M2 as

λ1 =
64T2M4

1

(4− T2M4
1)

2
,

δ1 =
4
√

2TM2

√
4 + T2M4

1

4− T2M4
1

. (75)

Here we use (74). One notices that, conveniently, λ1 can be calibrated using only the
coefficient M1, while given M1, δ1 is then proportional to M2.

At this stage, one may simply conclude that the extreme strike asymptotics given in
the market are consistent with any Gaussian volatility model whose top of eigenstructure
is represented by the values computed in the above expressions for λ1 and δ1. However,
practitioners will prefer to determine a more specific model, perhaps by choosing a classi-
cal parametric one, and using other non-asymptotic-calibration techniques for estimating
some of its parameters. The expressions in (75) can then be used to pin down other param-
eters by calibration, as long as one can relate the model’s parameters to the pair (λ1, δ1)
from the top of its KL spectrum, whether analytically or numerically. The expression for
M4, given in (47) and (54), may be too complex to provide a reliable method for calibrat-
ing parameters beyond the pair (λ1, δ1), but we will see below that the existence of the
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corresponding term in the expansion, combined with a truncation of the formula for M4,
is very helpful for implementing the calibration based on (75).

We provide illustrations of this strategy in two cases: the stationary Stein-Stein model,
where the KL expansion is known semi-explicitly, and the Stein-Stein model’s long-memory
version, where the volatility is also known as the fractional Ornstein-Uhlenbeck (fOU)
model, and the KL expansion is computed numerically. The data we use is also gen-
erated numerically: for each model, we compute option prices and their corresponding
implied volatilities, by classical Monte-Carlo, given that the underlying pair of stochas-
tic processes is readily simulated. Specifically, in the Stein-Stein (standard OU) case, 106

paths are generated via Euler’s method based on discretizing the stochastic differential
equation satisfied by X started from a r.v. sampled from X’s stationary distribution, and
the explicit expression for log S given X, also approximated via Euler with the same time
steps; 103 time steps are used in [0, T] for the various values of T we illustrate below (1, 2, 3
and 6 months, measured in years). Option prices are derived by computing average pay-
offs over the 106 paths. The details are well known, and are omitted. In the fOU case,
the exact same methodology is used, except that one must specify the technique used to
simulate increments of the fBm process which drives X: we used the circulant method,
which is based on fBm’s spectral properties, and was proposed by A.T. Dieker in a 2002
thesis: see [16, 17].

Given this simulated data, before embarking on the task of calibrating parameters, to
ensure that our methodology is relevant in practice, it is important to discuss liquidity
issues. It is known that the out-of-the-money call options market is poorly liquid, imply-
ing that the large strike asymptotics for call and IV prices are typically not visible in the
data. We concentrate instead on small strike asymptotics. There, depending on the mar-
ket segment, options with three-month maturity can be liquid with small bid-ask spread
for log moneyness k as far down as −1 or even a bit further. Options with six-month
maturity with very small bid-ask spread can be liquid as far down as −1.5. Convincing
visual evidence of this can be found in Figures 3 and 4 in [21] which report 2011 data for
SPX options. We will also consider examples with one-month and two-month maturity,
where liquidity will be assumed to exist down to k = −0.8, based on corresponding evi-
dence in the same figures. We will illustrate calibration using intervals of relatively short
length which start on the left side within these observed liquidity ranges. Beyond these
lower bounds, liquidity is insufficient to measure IV. In these ranges of k, the constant
term M2 and the expressions

√
−k and 1/

√
−k are of similar magnitude, which may call

into question whether the expansion can be of any use in the range where liquidity exists.
However, one may expect that the KL expansion converges fast enough that the three
terms M1

√
−k, M2, and M4/

√
−k are of different orders because the three constants are.

This turns out to be the case in the two example classes we consider, so that our three-
term expansion allows us to calibrate λ1 and δ1 to M1 and M2 as in (75). This works very
well in practice, as our examples below now show.

We begin with the stationary uncorrelated Stein-Stein model with constant mean-reversion
level m, rate of mean reversion q, and so called vol-vol parameter σ. Referring to the no-
tation in Section 6, since now X is stationary, we have m0 = m and σ2

0 = σ2/ (2q), and
the constant K1, which is determined from equation (62), will play an important role for
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us. The systems of equations needed to perform calibration here have a somewhat trian-
gular structure. According to Section 6, if one were to calibrate q, access to δ1 would be
needed, if one were to rely on independent knowledge of the level of mean reversion m.
Specifically, one would solve the following system

q sin(wT) + w cos(wT) = 0 (76)

C1

(
sin(wT) +

q
w
(1− cos(wT))

)
=

δ1

m
where C1 = K1σ2

0 . As noted via (62), unfortunately the constant C1 also depends on (q, w)
in the following non-trivial way:

1
C2

1
=

q
2
(1− cos(2wT)) +

w2

2

(
T +

sin(2wT)
2w

)
+

q2

2

(
T − sin(2wT)

2w

)
. (77)

When q is not fixed, the task of determining which value of w represents the minimal
solution of the first equation above, given the large number of solutions to the above
system, is difficult. We did not pursue this avenue further for this reason. Instead, we
will assume that q, which determines the rate of mean reversion, is known, and we will
calibrate the pair (m, σ).

The equations for finding (σ, m) given prior knowledge of q, and given measurement
of M1 and M2 which imply values of (λ1, δ1) via (75), are much simpler. Indeed, since q is
assumed given, the base frequency w is computed easily as the smallest positive solution
of (59). Then according to equation (64) and part (ii) of Lemma 16, with C1 given by (77),
we obtain immediately

σ2 = λ1

(
w2 + q2

)
; (78)

m =
δ1

C1
(
sin(wT) + q

w (1− cos(wT))
) . (79)

Any fitting method can in principle be used to estimate the coefficients M1, M2, and
M4 when working from a data-based IV curve. However, it turns out that, in the ranges
of liquidity which we described above, any estimation will contain a certain amount of
instability. We now give the details of an iterative technique which increases the stability
of the method dramatically by exploiting the fact that M4 is significantly smaller than M1
and M2.

We use simulated IV data for the call option with m = 0.2 (signifying a typical mean
level of volatility of 20%), q = 7 (fast mean reversion, every eight weeks or so), and
σ = 1.2 (high level of volatility uncertainty). How to estimate M1 from the data is not un-
ambiguous. We adopt a least-squares method, on an interval of k-values of fixed length;
after experimentation, as a rule of thumb, an interval of length 0.10 or 0.20 provides a
good balance between providing a local estimate and drawing on enough datapoints.
One should start the interval as far to the left as possible while avoiding any range with
insufficient liquidity in practice. As a guide to assess this liquidity, we use the study
reported in [21, Section 5.4], which depends heavily on the option maturity, as we men-
tioned in this section. The following are intervals employed.
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Maturity T 1/12 (1 mo.) 1/12 (1 mo.) 1/6 (2 mos.) 1/6 (2 mos.)
Interval used [−0.8,−0.6] [−0.7,−0.6] [−0.8,−0.6] [−0.7,−0.6]
Maturity T 0.25 (3 mos.) 0.25 (3 mos.) 0.5 (6 mos.) 0.5 (6 mos.)
Interval used [−1.1,−0.9] [−1.0,−0.9] [−1.4,−1.2] [−1.3,−1.2]

Graphs of the data versus the asymptotic curve in (74), showing excellent agreement,
are given in Fig. 1a thru 1d, though a case-by-case need for an analysis of the trade-off
between this agreement and the liquidity-dictated calibration intervals, is apparent as one
considers various possible maturities (note the difference in ranges for log-moneyness k
on the horizontal axes).

Our stabilized calibration method starts with a least-squares measurement of M1 and
M2 based on the asymptotic curve with only the first two terms. The value of M1 is
used to calibrate σ. A guess is expressed for m to initiate the procedure; in our exam-
ples we use m = 0.22, to signify an educated guess which misses the mark by 10%, as
would be reasonable to expect when using a proxy such as the VIX to visually estimate
this so-called mean reversion level. The next step uses the values of σ and m previously
determined, along with the known value q, to compute a large number of terms in the
KL expansion of the OU process (we use 500 terms), and uses those terms to compute M4
via the expressions in (47) and (54). The value of M4 just obtained is also used to refine
the non-linear least-squares estimation of M1 and M2 based on the three-term asymptotic
function in (74) where the term M4/

√
|k| is assumed known. The third step then cali-

brates σ and m based on the new values of M1 and M2, and then recomputes M4 using
the same procedure as in the second step, which allows a new estimation of M1 and M2
using the full asymptotics including the just-updated term M4/

√
|k|. One then repeats

the third step iteratively, until one notices a stabilization. In the examples we report, the
method either stabilizes on a single set of values for the pair (σ, m), or loops between two
very close sets of values; this occurs after 6 or 7 steps. We think this needed number of re-
peats, and the precision obtained in the end, are typical, because they are functions of the
small magnitude of M4 compared to M1 (order of 2% to 10% for our maturities from one
month to six months), this M4 being considered as a nuisance term whose rough estima-
tion helps sharpen the estimation of the other two constants significantly. Summarizing
the procedure, we have:

(0) Assume q is known. Compute w as smallest frequency solving (76).
(1) Use two-term asymptotics to estimate M1 and M2, calibrate σ to M1 via (75) and

(79). Initialize m using a good guess for rate of mean reversion.
(2) Use σ and m from step 1 (and q from step 0) to compute a large number (e.g. 500)

of terms in the KL expansion of X. Use truncated theoretical formula in (47) and
(54) to compute K4 from this expansion. Re-estimate M1 and M2 by using full
three-term asymptotics (74) assuming M4/

√
|k| is known.

(3) Calibrate σ from the new M1 and m from the new pair (M1, M2) via (75), (79), and
(78). Recompute the KL expansion of X based on the new (σ, m), and recompute
K4 using the new KL expansion in the theoretical formula. Re-estimate M1 and M2
by using full three-term asymptotics (74) assuming M4/

√
|k| is known using the

new M4.
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(4) Repeat step 3 iteratively until stabilization of (σ, m) occurs.
We report our findings for the calibration of (σ, m) in our 8 examples of interest in the

following tables. The ”true values” of M1, M2, and M4 in these tables are those which are
computed from the Stein-Stein model with (σ, m, q) = (1.2, 0.2, 7) via its KL elements; as
explained above, only the first-order KL eigen-elements are needed for M1, M2, while for
M4, we use the full theoretical formula in which we ignore the eigen-elements after rank
500.

T = 1/12 (1 mo.) Calibration over the interval [−0.8,−0.6]
M1 M2 M4 σ m

True values 0.7117 0.0706 0.0188 1.2 0.2
Step 1 0.6875 0.1113 1.1196 0.22
Step 2 0.6875 0.0777 0.0188
Step 3 0.7145 0.0661 0.0183 1.2096 0.1873
Step 4 0.7138 0.0673 0.0184 1.2072 0.1907
Step 5 0.7140 0.0671 0.0184 1.2077 0.1900

T = 1/12 (1 mo.) Calibration over the interval [−0.7,−0.6]
M1 M2 M4 σ m

True values 0.7117 0.0706 0.0188 1.2 0.2
Step 1 0.6859 0.1126 1.1142 0.22
Step 2 0.6859 0.0777 0.0187 1.2102 0.1872
Step 3 0.7147 0.0661 0.0183 1.2102 0.1872
Step 4 0.7141 0.0671 0.0184 1.2081 0.1901
Step 5 0.7143 0.0668 0.0184 1.2086 0.1894

T = 1/6 (2 mos.) Calibration over the interval [−0.8,−0.6]
M1 M2 M4 σ m

True values 0.5743 0.0704 0.0245 1.2 0.2
Step 1 0.5370 0.1309 1.0490 0.22
Step 2 0.5370 0.0775 0.0232
Step 3 0.5705 0.0752 0.0251 1.1839 0.2134
Step 4 0.5732 0.0706 0.0245 1.1953 0.2005
Step 5 0.5723 0.0720 0.0247 1.1917 0.2046
Step 6 0.5726 0.0716 0.0246 1.1929 0.2032
Step 7 0.5725 0.0718 0.0246 1.1923 0.2039



30 ARCHIL GULISASHVILI, FREDERI VIENS, AND XIN ZHANG

T = 1/6 (2 mos.) Calibration over the interval [−0.7,−0.6]
M1 M2 M4 σ m

True values 0.5743 0.0704 0.0245 1.2 0.2
Step 1 0.5354 0.1322 1.0428 0.22
Step 2 0.5354 0.0775 0.0231
Step 3 0.5711 0.0748 0.0251 1.1866 0.2123
Step 4 0.5742 0.0698 0.0244 1.1995 0.1982
Step 5 0.5731 0.0715 0.0246 1.2011 0.1997
Step 6 0.5734 0.0710 0.0246 1.1962 0.2017

T = 1/4 (3 mos.) Calibration over the interval [−1.1,−0.9]
M1 M2 M4 σ m

True values 0.5001 0.0702 0.0295 1.2 0.2
Step 1 0.4699 0.1299 1.0591 0.22
Step 2 0.4699 0.0773 0.0279
Step 3 0.4980 0.0740 0.0300 1.1896 0.2107
Step 4 0.5001 0.0698 0.0294 1.1997 0.1987
Step 5 0.4995 0.0710 0.0295 1.1969 0.2021
Step 6 0.4996 0.0708 0.0295 1.1973 0.2016

T = 1/4 (3 mos.) Calibration over the interval [−1.0,−0.9]
M1 M2 M4 σ m

True values 0.5001 0.0702 0.0295 1.2 0.2
Step 1 0.4655 0.1342 1.0396 0.22
Step 2 0.4655 0.0773 0.0275
Step 3 0.4945 0.0777 0.0305 1.1732 0.2214
Step 4 0.4977 0.0716 0.0295 1.1883 0.2039
Step 5 0.4966 0.0736 0.0298 1.1832 0.2097
Step 6 0.4969 0.0730 0.0297 1.1847 0.2080
Step 7 0.4968 0.0732 0.0297 1.1842 0.2086

T = 1/2 (6 mos.) Calibration over the interval [−1.4,−1.2]
M1 M2 M4 σ m

True values 0.3838 0.0695 0.0428 1.2 0.2
Step 1 0.3521 0.1432 1.0094 0.22
Step 2 0.3521 0.0765 0.0385
Step 3 0.3817 0.0757 0.0442 1.1869 0.2178
Step 4 0.3861 0.0657 0.0423 1.2144 0.1890
Step 5 0.3846 0.0690 0.0429 1.2052 0.1986
Step 6 0.3851 0.0679 0.0427 1.2081 0.1956
Step 7 0.3849 0.0683 0.0428 1.2071 0.1966
Step 8 0.3850 0.0681 0.0427 1.2076 0.1961
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T = 1/2 (6 mos.) Calibration over the interval [−1.3,−1.2]
M1 M2 M4 σ m

True values 0.3838 0.0695 0.0428 1.2 0.2
Step 1 0.3493 0.1464 0.9934 0.22
Step 2 0.3493 0.0765 0.0380
Step 3 0.3797 0.0783 0.0446 1.1745 0.2255
Step 4 0.3850 0.0665 0.0423 1.2075 0.1915
Step 5 0.3832 0.0706 0.0430 1.1959 0.2034
Step 6 0.3837 0.0694 0.0428 1.1994 0.1998
Step 7 0.3836 0.0697 0.0429 1.1984 0.2008
Step 8 0.3836 0.0696 0.0428 1.1989 0.2003

We obtain excellent agreement of the calibration with the true values, with errors lower
than 1% after 5 to 8 steps. Other calibrations, not reported here because of their similarity
with these examples, show that calibration accuracy would increase with more liquid
options since these allow being able to use intervals further to the left, ensuring a better
match with the asymptotic regime (74). The examples reported above in full correspond
to realistic liquidity assumptions.

We now propose a calibration method to estimate the memory parameter in the fOU
volatility model. This model was introduced in [9] as a way to model long-range de-
pendence in non-linear functionals of asset returns, while preserving the uncorrelated
semi-martingale structure at the level of returns themselves. This is the model for X in (2)
where the process Z is a fractional Brownian motion, i.e. the continuous Gaussian pro-
cess started at 0 with covariance determined by E

[
(Zt − Zs)

2
]
= |t− s|2H, with “Hurst”

parameter H ∈ (0.5, 1). In [8], it was shown empirically that standard statistical methods
for long-memory data are inadequate for estimating H. This difficulty can be attributed
to the fact that the volatility process X can have non-stationary increments. In addition,
some of the classical methods use path regularity or self-similarity as a proxy for long
memory, which cannot be exploited in practice since there is a lower limit to how fre-
quenty observations can be made without running into microstructure noise. To make
matters worse, the process X is not directly observed; in such a partial observation case,
a general theoretical result was given in [35], by which the rate of convergence of any
estimator of H cannot exceed an optimal H-dependent rate which is always slower than
N−1/4, where N is the number of observations. Given the non-stationarity of the pa-
rameter H on a monthly scale, a realistic time series at the highest observation frequency
where microstructure noise can be ingored (e.g. one stock observation every 5 minutes)
would not permit even the optimal estimators described in [35] from pinning down a
value of H with any acceptable confidence level. The work in [8] proposes a calibration
technique based on a straightforward comparison of simulated and market option prices
to determine H. Our strategy herein is similar, but based on implied volatility.

Our goal is to calibrate the fOU model described above with the following parameters:
T = 1/4, m = 0.2, q = 7, σ = 1.2, with different values of the Hurst parameter H, namely

H ∈ {0.51, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85} (80)
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As mentioned above, our simulated option prices use standard Monte Carlo, where the
fOU process is produced by A.T. Dieker’s circulant method. Since the values of λ1 for
each H > 0.5 are not known explicitly or semi-explicitly, we resorted to the method de-
veloped in by S. Corlay in [10] for optimal quantization: there, the infinite-dimensional
eigenvalue problem is converted to a matrix eigenvalue problem which uses a low-order
quadrature rule for approximating integrals (a trapezoidal rule is recommended), after
which a Richardson-Romberg extrapolation is used to improve accuracy. We repeat this
procedure for the fOU process with the above parameters, for each value of H from 0.50
to 0.99, with increments of 0.01. The corresponding values we obtain for λ1 in each case
are collected in the following table:

H = 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
λ1= 0.0157 0.0155 0.0152 0.0150 0.0148 0.0146 0.0144 0.0142 0.0140 0.0138
H = 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69
λ1= 0.0136 0.0134 0.0132 0.0130 0.0128 0.0126 0.0124 0.0122 0.0120 0.0118
H = 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79
λ1= 0.0116 0.0115 0.0113 0.0111 0.0109 0.0108 0.0106 0.0104 0.0103 0.0101
H = 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
λ1= 0.0100 0.0098 0.0097 0.0095 0.0094 0.0092 0.0091 0.0089 0.0088 0.0087
H = 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
λ1= 0.0085 0.0084 0.0083 0.0082 0.0080 0.0079 0.0078 0.0077 0.0076 0.0075

Our illustration of the calibration method then consists of starting with simulated IV
data for a fOU model with a fixed H from the set in (80), then, similarly to what we did
for the Stein-Stein model, calibrate the value of λ1 to the first term of the simulated IV
curve over an interval of length 0.1. For our choice of T = 1/4 we use k ∈ [−1.0,−0.9] to
determine λ1, which is realistic in terms of liquidity constraints. We then match that value
of λ1 to the closest value in the above table, thereby concluding that the simulated data
is consistent with the corresponding value of H in the table. Because of the instability
in determining M4 in (74) by curve fitting, as noted for the standard Stein-Stein model,
rather than using the iterative technique described above, we fit our simulated data curve
to the first two terms in this expansion only, resulting in a robust estimate for M1 in all
cases, from which our calibrated λ1 results via (75). This is more efficient since we are
only calibrating the single parameter H. The results of this method are summarized here.

T = 1/4 (3 mos.) Calibration of H via λ1 over the interval [−1.0,−0.9]
True H 0.51 0.55 0.60 0.65 0.70 0.75 0.80 0.85
True λ1 0.0155 0.0146 0.0136 0.0126 0.0116 0.0108 0.0100 0.00923
calibrated λ1 0.0152 0.0147 0.0134 0.0127 0.0115 0.0109 0.0101 0.00937
calibrated H 0.52 0.55 0.61 0.64 0.71 0.74 0.79 0.84

Our method shows a good level of accuracy. One notes a bias between the curve
M1
√
−k + M2 and the simulated IV data, as illustrated in Figures 2a to 2h, which ap-

pears to shift downward as H increases. Since we are only calibrating H via λ1 which
is inferred from M1, this bias has no influence on the calibration. At the cost of comput-
ing M4 as we did for the Stein-Stein model, which would be more onerous in the fOU
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case because one would need to push Corlay’s method much further for estimating KL
eigenelements, we could obtain the 3-term expansion in (74), resulting in curves which
would have much less of a bias than in Figures 2a to 2h, but this would not improve the
calibration of λ1 and H.
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FIGURE 1. Figure 1a. One-month IV for Stein-Stein model with parameters
m = 0.2, q = 7 , σ = 1.2
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FIGURE 2. Figure 1b. Two-month IV for Stein-Stein model with parameters
m = 0.2, q = 7 , σ = 1.2

FIGURE 3. Figure 1c. Three-month IV for Stein-Stein model with parame-
ters m = 0.2, q = 7 , σ = 1.2
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FIGURE 4. Figure 1d. Six-month IV for Stein-Stein model with parameters
m = 0.2, q = 7 , σ = 1.2
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FIGURE 5. Figures 2a, 2b, 2c, 2d. IV for fOU model with H = 0.51, H = 0.55,
H = 0.60, H = 0.65
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FIGURE 6. Figures 2e, 2f, 2g, 2h. IV for fOU model with H = 0.70 H = 0.75,
H = 0.80, H = 0.85
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