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Abstract

Using recent criteria for the convergence of sequences of multiple stochastic integrals based on the
Malliavin calculus, we analyze the asymptotic behavior of quadratic variations for the fractional Brownian
motion (fBm) and we apply our results to the design of a strongly consistent statistical estimators for
the fBm�s self-similarity parameter H.
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1 Introduction

1.1 Context and motivation

The motivation for this work is to examine the variations of fractional Brownian motion (fBm) using tools
from stochastic analysis. The stochastic analysis of fBm has been intensively developped in recent years and
its applications are many. The Hurst parameter H characterizes all the important properties of the fBm
and therefore, estimating H properly is of the utmost importance. Several statistics have been introduced
to this end, such as wavelets, k-variations, variograms, maximum likelihood estimators, or spectral methods.
Information on these various approaches can be found in the book of Beran [1].
In this paper we will use the k-variations statistics to estimate H. Let us recall the context. Suppose that

a process (Xt)t2[0;1] is observed at discrete times f0; 1N ; : : : ;
N�1
N ; 1g and let a be a ��lter�of length l � 0

and p � 1 a �xed power; that is, a is an l+1-dimensional vector a = (a0; a1; : : : ; al) such that
Pl

q=0 aqq
r = 0

for 0 � r � p� 1 and
Pl

q=0 aqq
p 6= 0. Then the k-variation statistic associated to the �lter a is de�ned as

VN (k; a) =
1

N � l

N�1X
i=l

24 ��Va � iN ���k
E
h
Va
�
i
N

�ki � 1
35
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where for i 2 fl; � � � ; Ng,

Va

�
i

N

�
=

lX
q=0

aqX

�
i� q
N

�
:

When X is fBm, these statistics are used to derive strongly consistent estimators for the Hurst parameter,
and their associated normal convergence results. A detailed study can be found in [5], [7] or more recently
in [3]. The behavior of VN (k; a) is used to derive similar behaviors for the corresponding estimators. The
basic result for fBm is that, if p > H+ 1

4 , then the renormalized k-variation VN (k; a) converges to a standard
normal distribution. The easiest and most natural case is that of the �lter a = f1;�1g, in which case p = 1;
one then has the restriction H < 3

4 . The techniques used to prove such convergence in the fBm case in
the above references are strongly related to the Gaussian property of the observations; they appear not to
extend to non-Gaussian situations.
Our purpose here is to develop new techniques that can be applied to both the fBm case and other non-

Gaussian selfsimilar processes. Since this is the �rst attempt in such a direction, we keep things as simple as
possible: we treat the case of the �lter a = f1;�1g with a k-variation order = 2 (quadratic variation), for fBm
itself, but the method can be generalized. We will apply the Malliavin calculus, Wiener-Itô chaos expansions,
and recent results on the convergence of multiple stochastic integrals proved in [10], [9] or [11]. The key
point is the following: if the observed process X lives in some �nite Wiener chaos, then the statistics VN can
be decomposed, using product formulas and Wiener chaos calculus, into a �nite sum of multiple integrals.
Then one can attempt to apply the criteria in [9] to study the convergence in law of such sequences and
to derive results on the estimators for the Hurst parameter of the observed process. The criteria in [9] are
necessary and su¢ cient conditions for convergence to the Gaussian law; in some instances, these criteria fail
(e.g. the fBm case with H > 3=4), in which case a proof of non-normal convergence �by hand�, working
directly with the chaoses, will be employed. It is the basic Wiener chaos calculus that makes this possible.
This article is structured as follows. Section 2 presents preliminaries on fractional stochastic analysis.

Section 3 presents strategies and proof outlines; some calculations, recorded as lemmas, are proved in the
Appendix. Section 4 establishes our parameter estimation results.

2 Preliminaries

Here we describe the elements from stochastic analysis that we will need in the paper. Consider (BHt )t2[0;1]
a fractional Brownian motion with Hurst parameter H 2 (0; 1) and denote by H its canonical Hilbert space.
If H = 1

2 then B
1
2 is the standard Brownian motion (Wiener process) W and in this case H = L2([0; 1]).

Otherwise H is the Hilbert space on [0; 1] extending (by linearity and closure under the inner product

1[0;s];1[0;t]

�
H) the rule 


1[0;s];1[0;t]
�
H = RH (s; t) := 2

�1
�
s2H + t2H � jt� sj2H

�
:

As there should be no risk of confusion, we will drop the superscript and always denote B = BH . Denote
by In the multiple stochastic integral with respect to B. This In is actually an isometry between the Hilbert
space H�n(symmetric tensor product) equipped with the scaled norm 1p

n!
k � kH
n and the Wiener chaos

of order n which is de�ned as the closed linear span of the random variables Hn(B(')) where ' 2 H with
k'kH = 1 and Hn is the Hermite polynomial of degree n. We will sometimes use the representation of
B with respect to a standard Brownian motion W : there exists a Wiener process W and a deterministic
kernel KH (t; s) for 0 � s � t such that B (t) = IW1

�
KH (t; �)

�
where IW1 is the Wiener integral with respect

to W (see [8]).
We recall that any square integrable random variable which is measurable with respect to the �-algebra

generated by B can be expanded into an orthogonal sum of multiple stochastic integrals

F =
X
n�0

In(fn)
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where fn 2 H�n are symmetric functions and I0(f0) = E [F ].
We now introduce the Malliavin derivative for random variables in a �nite chaos. If f 2 H�n we will use

the following rule to di¤erentiate in the Malliavin sense

DtIn(f) = nIn�1(fn(�; t)); t 2 [0; 1]:

It is possible to characterize the convergence in distribution of a sequence of multiple integrals to the
standard normal law. We will use the following result (see Theorem 4 in [9], see also [10]).

Theorem 1 Let (Fk; k � 1), Fk = In(fk) (with fk 2 H�n for every k � 1) be a sequence of square integrable
random variables in the n th Wiener chaos such that E[F 2k ]! 1 as k !1: Then the following are equivalent:

i) The sequence (Fk)k�0 converges in distribution to the normal law N (0; 1).

ii) One has E[F 4k ]! 3 as k !1.

iii) For all 1 � l � n� 1 it holds that limk!1 kfk 
l fkkH
2(n�l) = 0.

iv) kDFkk2H ! n in L2(
) as k !1, where D is the Malliavin derivative with respect to B.

Criterion (iv) is due to [9]; we will refer to it as the Nualart�Ortiz-Latorre criterion. A multidimensional
version of the above theorem has been proved in [11]; it will be used in Section 3.4 to study the vectorial
convergence of our variations.

3 Variations of fractional Brownian motion

3.1 Strategy: try the Nualart�Ortiz-Latorre characterization

With a = f1;�1g and k = 2, with B = fractional Brownian motion (fBm), we will use the tools in the
previous section to reproduce the results found in [13], [6] , and summarized in [3], seeking to show a central
limit theorem for the standardized quadratic variation. When a central limit theorem does not hold, our
tools will also provide the correct limiting distribution.
With the notation Ai = 1((i�1)=N;i=N ] (i = 1; : : : ; N) and B (Ai) = B (i=N) � B ((i� 1) =N) so that

V ar [B (Ai)] = N
�2H , this variation can be expressed as

VN = N
2H�1

NX
i=1

�
jB (Ai)j2 �N�2H

�
: (1)

To show it converges to the standard normal law N (0; 1) after an appropriate scaling, instead of employing
a Gaussian method, we propose a Wiener chaos approach which can generalize to higher order cases than
fBm. In fact, our tools allow some new results even in the Gaussian case, e.g. when H = 3=4. The strategy
is to attempt to use the characterization by Nualart and Ortiz-Latorre [9, Theorem 4] as presented in the
previous section. In the next two subsections, we prove the following.

Theorem 2 Let H 2 ( 12 ; 1) and B be a fractional Brownian motion with parameter H. Consider the
standardized quadratic variation VN given by (1).

� If H 2 (1=2; 3=4), let

c1;H := 2 +
1X
k=1

�
2k2H � (k � 1)2H � (k + 1)2H

�2
; (2)

then
FN :=

q
N=c1;HVN (3)

converges in distribution to a the standard normal law.

3
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� If H 2 (3=4; 1), let
c2;H := 2H

2 (2H � 1) = (4H � 3) ; (4)

then
�FN :=

q
N4�4H=c2;HVN (5)

converges in L2 (
) to a standard Rosenblatt random variable with (selfsimilarity) parameter H0 =
2H � 1; this random variable is equal to

(4H � 3)1=2

4H (2H � 1)1=2

ZZ
[0;1]2

�Z 1

r_s

@KH

@u
(u; s)

@KH

@u
(u; r) du

�
dW (r) dW (s) (6)

where W is the standard Brownian motion used in the representation B (t) = I1 (KH (t; �)).

� If H = 3=4, let
c01;H := (2H(2H � 1))2 = 9=16 (7)

and de�ne

~FN :=

s
N

c01;H logN
VN : (8)

Then ~FN converges in distribution to a standard normal law.

The central limit theorem part can be actually stated for H 2 (0; 34 ] but we prefer to stay in the context
of long-memory. The Nualart-Ortiz-Latorre characterization is useful only when a Gaussian limit exists;
otherwise, which is the case when H > 3=4, a di¤erent argument will need to be used.

3.2 Expectation evaluation

The product formula of multiple integrals (see [8]) in our present case, yields VN = N2H�1I2

�PN
i=1Ai 
1 Ai

�
and

E
h
jVN j2

i
= 2N4H�2

NX
i=1

NX
j=1

��hAi; AjiH��2 ; (9)

where, as we said, Ai = 1((i�1)=N;i=N ] for i = 1; : : : ; N . To calculate this quantity, we notice that hAi; AjiH =
E [B (Ai)B (Aj)] can be calculated explicitly via RH , as 2�1(2

�� i�j
N

��2H � �� i�j�1N

��2H � �� i�j+1N

��2H):This ex-
pression is close to H (2H � 1)N�2 j(i� j) =N j2H�2, but we must take care whether the series

P
k k

4H�4

converges or diverges. Let us consider �rst the case of convergence.

Case 1: H < 3=4. In this case, isolating the diagonal term, and writing the remaining term as twice the
sum over i > j, we can write

E
h
jVN j2

i
= 2=N +N�2

N�1X
k=1

(N � k)
�
2k2H � (k � 1)2H � (k + 1)2H

�2
:

Lemma 7 in [15] implies the above sequence converges, and thus limN!1E

����pNVN ���2� = c1;H :
Case 2: H > 3=4. In this case, we will instead compare the series in E

h
jVN j2

i
to an integral; in the sum

de�ning this quantity, the tridiagonal term corresponding to ji � jj � 1 can be ignored as we did in the
previous step when i = j. By Lemma 8 in [15] we have that N2

P
i;j=1;��� ;N ;ji�jj�1 2

��hAi; AjiH��2 compares
to a Riemann sum in such a way that it converges to H2 (2H � 1) = (4H � 3). This non-tridiagonal term,

4
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which is of order N�2, dominates the tridiagonal term which is of order N1�4H � N�2 (since H > 3=4). In
conclusion when H > 3=4, according to (9),

lim
N!1

E
h��N2�2HVN

��2i = c2;H :
Case 3: H = 3=4. In this case, we have

E
h
(VN )

2
i
=
2

N
+
1

N

N�1X
k=0

�
2k2H � (k � 1)2H � (k + 1)2H

�2 � 1

N2

N�1X
k=0

k
�
2k2H � (k � 1)2H � (k + 1)2H

�2
and since 2k2H � (k � 1)2H � (k + 1)2H behaves as (3=4) k�1=2 we get E

h
(VN )

2
i
' c01;H (logN) =N . Thus,

limN!1E

���� ~FN ���2� = 1 where c01;H = 9=16 and ~FN := � N
c01;H logN

� 1
2

VN :

3.3 Derivative calculations

We now attempt to show that kDFNk2H converges in L2 (
) to n = 2, where FN is given by (3), (5) or
(8) depending on whether H is bigger or smaller than 3=4 or equal to 3=4. We will see that this only
works for H � 3=4. Using the rule DrI2 (f) = 2I1 (f (�; r)) when f is symmetric, we have DrVN =

2N2H�1PN
i=1Ai (r) I1 (Ai). Hence

kDVNk2H = 4N
4H�2

NX
i;j=1

I1 (Ai) I1 (Aj) hAi;AjiH (10)

and thereforeE
h
kDVNk2H

i
= 4N4H�2PN

i;j=1

��hAi;AjiH��2. We note immediately from (9) thatE hkDVNk2Hi =
2E
�
V 2N
�
, and fom the results of the previous section, limN!1E

h
kDFNk2H

i
= 2 holds in all cases.

Thus it is now su¢ cient to show that kDFNk2H �E
h
kDFNk2H

i
converges to 0 in L2 (
).

A simple use of the product formula for multiple integrals gives

kDVNk2H �E
h
kDVNk2H

i
= 4N4H�2

NX
i;j=1

hAi;AjiHI2 (Ai 
Aj)

and thus

E
h
kDFNk2H �E

h
kDFNk2H

ii2
= (c1;H)

�2N2(4N4H�2)24

NX
i;i0=1

iX
j=1

i0X
j0=1

hAi;Ai0iH hAi;AjiH hAi0 ;Aj0iH hAj ;Aj0iH

Case 1: 1=2 < H < 3=4. In this case, by Lemma 7 in the appendix, the conclusion is that

E
h
kDFNk2H �E

h
kDFNk2H

ii2
is asymptotically equivalent to a constant multiple of N8H�6. This, together with the calculations in Section
3.2, is the Nualart�Ortiz-Latorre necessary and su¢ cient condition for FN to converges in law to a standard
normal.

Case 2: H = 3=4. This case is treated similarly to the previous one. We record the following for later use.
As N !1

E
h
kD ~FNk2H

i
=

N

logN

�
c01;H

��1
4N4H�2

NX
i;j=1

hAi; Aji2H ! 2: (11)
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Case 3: H > 3=4. In this case, using the scaling �FN = N2�2HVN=
p
c2;H one checks that

�
D �FN



2
H �

E
�
D �FN



2
H does not converge to 0. Therefore, the Nualart�Ortiz-Latorre characterization cannot be applied,

and if there is a limit, it cannot be Gaussian. In fact we will prove directly that the limit is not Gaussian. In
order to �nd the limit of �FN , let us return to the de�nition of this quantity in terms of the Wiener process
W such that B (t) =

R t
0
KH (t; s) dW (s). We then note that �FN can be written as �FN = ~I2 (fN ) where ~I2 is

the double Wiener integral operator with respect to W , and fN = Nc
�1=2
2;H

PN
i=1

~Ai 
 ~Ai where

~Ai (s) = 1[0; i+1N ] (s)K
H

�
i+ 1

N
; s

�
� 1[0; iN ] (s)K

H

�
i

N
; s

�
: (12)

Lemma 8 in the Appendix shows that fN converges in L2
�
[0; 1]2

�
to c�1=22;H L2H�11 where L2H�11 is the function

(r; s) 7! L2H�11 (r; s) :=

Z 1

r_s

@KH

@u
(u; s)

@KH

@u
(u; r) du: (13)

Now de�ne the random variable Y := d (H0) ~I2
�
L2H�11

�
where

d (H0) = (H0 + 1)
�1
(2 (2H0 � 1) =H0)1=2 = (4H � 3)1=2(2H � 1)�1=2=

�p
2H
�
= c

�1=2
2;H

This Y is a standard Rosenblatt random variable with parameter H0 = 2H � 1, as can be seen for instance
in [14]. By the isometry property for stochastic integrals,

E
h�� �FN � Y ��2i = 


fN � c�1=22;H L2H�11




2
L2([0;1]2)

;

which, by the convergence of Lemma 8, proves that �FN converges to the Rosenblatt random variable Y =

c
�1=2
2;H

~I2
�
L2H�11

�
in L2 (
).

This �nishes the proof of Theorem 2.

Remark 3 For every H 2 (0; 1) it holds that VN (2; a) converges almost surely to zero. Indeed, we already
showed in this Section 3 the convergence in probability to zero as N !1; to obtain almost sure convergence
we only need to use an argument in [3] (proof of Proposition 1) for empirical means of discrete stationary
processes.

3.4 Multidimensional convergence of the 2- variations

This section is devoted to the study of the vectorial convergence of the 2-variations statistics. We will restrict
ourselves to the case H � 3

4 in which the limit of the components are Gaussian random variables. We make
this choice in order to bene�t from some recent results in [11] that characterize the convergence in law of
a vector of multiple stochastic integrals to a Gaussian vector. Our strategy is based on the following result
(Proposition 2 in [11]).
De�ne the following �lters constructed from the �lter a = f1;�1g:

a1 = f1;�1g; a2 = f1;�2; 1g; a3 = f1; 0; 0;�1g; : : : aM = (1; 0; 0; : : :� 1g

where M is an integer at each step p, the vector ap has p � 1 zeros. Note that for every p = 1; : : : ;M , the
�lter ap is a p+ 1 dimensional vector.
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Consider the statistics based on the above �lters (1 � p �M)

VN (2; a
p) =

1

N � p+ 1

NX
i=p

" �
B( iN )�B(

i�p
N )
�2

E
�
B( iN )�B(

i�p
N )
�2 � 1

#

=
1

N � p+ 1

NX
i=p

�
(I1(Ai;p))

2
� p
N

��2H
� 1
�

=
1

N � p+ 1

� p
N

��2H NX
i=p

I2 (Ai;p 
Ai;p)

where we denoted by
Ai;p = 1[ i�pN ; iN ]

; 1 � p �M;p � i � N:

We have the following vectorial limit theorem.

Theorem 4 Let B be a fBm with H 2 (0; 3=4) and let M � 1. For 1 � p; q �M de�ne

cp;q;H :=
1

(pq)2H

X
k�1

�
jkj2H + jk � p+ qj2H � jk � pj2H � jk + qj2H

�2
+ c0p;q;H ; and cp;H := cp;p;H

with c0p;q;H =
(jp�qj2H�p2H�q2H)2

2(pq)2H
and

�FN (a
p) :=

p
Nc�1p;HVN (2; ap): (14)

Then the vector ( �FN (a1); : : : ; FN (aM )) converges as N ! 1, to a Gaussian vector with covariance matrix
C = Ci;j where Cp;q =

cp;q;Hp
cp;Hcq;H

.

If H = 3
4 , de�ne

dp;q;H :=
1

(pq)2H
3

16
; and dp;H := dp;p;H ;

and

~FN (a
p) =

s
N

logN
d
�1=2
p;H VN (2; a

p):

Then the vector (FN (a1); : : : ; FN (aM )) converges as N ! 1, to a Gaussian vector with covariance matrix
D = Di;j where Dp;q =

dp;q;Hp
dp;Hdq;H

.

Proof. Let us estimate the covariance of two such statistics

E [VN (2; a
p)VN (2; a

q)]

=
N4H

(N � p+ 1)(N � q + 1)
1

(pq)2H
2
NX
i=p

NX
j=q

hAi;p 
Ai;p; Aj;q 
Aj;qiH
H

=
N4H

(N � p+ 1)(N � q + 1)
2

(pq)2H

NX
i=p

NX
j=q

hAi;p 
Aj;qi2H:

The next step is to compute the scalar product

hAi;p 
Aj;qiH = h1[ i�pN ; iN ]
; 1[ j�qN ; jN ]

iH

=
1

2

"���� i� jN
����2H + ���� i� j � p+ qN

����2H � ���� i� j � pN

����2H � ���� i� j + qN

����2H
#
:

7



Assume that p � q. We need to estimate the sum

NX
i=p

NX
j=q

"���� i� jN
����2H + ���� i� j � p+ qN

����2H � ���� i� j � pN

����2H � ���� i� j + qN

����2H
#2

=
1

N4H

p�1X
j=q

NX
i=p

�
ji� jj2H + ji� j � p+ qj2H � ji� j � pj2H � ji� j + qj2H

�2
+

1

N4H

NX
j=p

NX
i=p

�
ji� jj2H + ji� j � p+ qj2H � ji� j � pj2H � ji� j + qj2H

�2
+ c0p;q;H

=
2

N4H

NX
j=p

N�jX
k=1

�
jkj2H + jk � p+ qj2H � jk � pj2H � jk + qj2H

�2
+ c0p;q;H

=
2

N4H

N�pX
k=1

(N � k � p)
�
jkj2H + jk � p+ qj2H � jk � pj2H � jk + qj2H

�2
=

2

N4H

N�pX
k=1

(N � k � p)k4Hg( 1
k
)2 + c0p;q;H

where we denoted by
g(x) = 1 + (1� (p� q)x)2H � (1� px)2H � (1 + qx)2H :

By the asymptotic behavior of the function g around zero, we obtain for large k

g(
1

k
) � 2H(2H � 1)pq 1

k2
:

We distinguish again the cases H < 3
4 and k =

3
4 and we conclude that

E [VN (2; a
p)VN (2; a

q)] �N!1 cp;q;H
1

N
; for H <

3

4

and

E [VN (2; a
p)VN (2; a

q)] �N!1 dp;q;H
logN

N
for H =

3

4

where the constant cp;q;H and bp;q;H have been de�ned in the statement of the theorem. The conclusion then
follows from Proposition 2 in [11].

Remark 5 Is it also possible to give an analogue of Theorem 4 in the case H 2
�
3
4 ; 1
�
. In this situation

we don�t need to use Proposition 2 in [11] because we have L2 convergence. De�ne, for p = 1; : : : ;M the
sequence �FN (ap) = bp;HN2�2HVN (2; a

p) where bp;H is a suitable normalizing constant such that E
�
�FN (a

p)
�2

converges to 1 as N ! 1. Then the vector ( �FN (a1); : : : ; FN (aM )) converges as N ! 1, in L2(
) to the
vector (Z2H�11 (1); : : : ; Z2H�1M (1)) with Z2H�1p (1) (p = 1; : : : ;M) Rosenblatt random variables with selfsimi-
larity index 2H � 1 as de�ned in Theorem 2. In this case the L2 convergence of each component will imply
the L2 convergence of the vector.

4 The estimators for the selfsimilarity parameter

In this part we construct estimators for the selfsimilarity exponent of a Hermite process based on the discrete
observations of the driving process at times 0; 1N ; : : : ; 1. It is known that the asymptotic behavior of the
statistics VN (2; a) is related to the asymptotic properties of a class of estimators for the Hurst parameter H.
This is mentioned for instance in [3].
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We recall the setup of how this works. Suppose that the observed process X is a Hermite process; it
may be Gaussian (fractional Brownian motion) or non-Gaussian (Rosenblatt process or even a higher order
Hermite process). With a = f�1;+1g, the 2-variation is denoted by

SN (2; a) =
1

N

NX
i=1

�
X(

i

N
)�X( i� 1

N
)

�2
; (15)

Recall that E [SN (2; a)] = N�2H :By estimating E [SN (2; a)] by SN (2; a) we can construct the estimator

ĤN (2; a) = �
logSN (2; a)

2 logN
: (16)

To prove that this is a strongly consistent estimator for H, we begin by writing

1 + VN (2; a) = SN (2; a)N
2H

where VN is the original 2-variation, and thus

log (1 + VN (2; a)) = logSN (2; a) + 2H logN

= �2(ĤN (2; a)�H) logN:

Moreover, by Remark 3, VN (2; a) converges almost surely to 0, and thus log (1 + VN (2; a)) = VN (2; a)(1 +
o(1)) where o (1) converges to 0 almost surely as N !1. Hence we obtain

VN (2; a) = 2(H � ĤN (2; a)) (logN) (1 + o(1)): (17)

Relation (17) means that VN�s behavior immediately give the behavior of ĤN �H.
Speci�cally, we can now state our convergence results. First, the Gaussian case.

Theorem 6 Suppose that H > 1
2 and assume that the observed process is a fBm with Hurst parameter H.

Then strong consistency holds for ĤN , i.e. almost surely,

lim
N!1

ĤN (2; a) = H (18)

and

� if H 2 ( 12 ;
3
4 ), then, in distribution as N !1,

p
N log(N)

2
p
c1;H

�
ĤN (2; a)�H

�
! N (0; 1)

� if H 2 ( 34 ; 1), then, in distribution as N !1,

N1�H log(N)
2

p
c2;H

�
ĤN (2; a)�H

�
! Z

where Z is the law of a standard Rosenblatt random variable (see 6).

� if H = 3
4 , then, in distribution as N !1,p

N logN
2

p
c0;1;H

(ĤN (2; a)�H)! N (0; 1):

Proof. This follows from the relation (17) and Theorem 2.
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5 Appendix

Lemma 7 With H 2 (0; 3=4),

hAi; AjiH = 2
�1

 
2

���� i� jN
����2H � ���� i� j � 1N

����2H � ���� i� j + 1N

����2H
!
;

as N !1, we have

NX
i;i0=1

iX
j=1

i0X
j0=1

hAi;Ai0iH hAi;AjiH hAi0 ;Aj0iH hAj ;Aj0iH = o
�
N�4� :

Proof. As a general rule that we will exemplify below, we have the following: if i = i0 or i = i0� 1 the term
hAi;Ai0iH will give a contribution of order 1

N2H while if ji� i0j � 2 the same term will have a contribution

less that cst: ji�i
0j2H�2

N2H�2 N�2. Using this rule, although several cases appear, the main term will be obtained
when all indices all distant by at least two units.
We can deal with the diagonal terms �rst. With i = i0 and j = j0, the corresponding contribution is of

order

N�4H

0@ NX
i;j=1

��hAi;AjiH��
1A2

� N�8H = O(N�4):

It is trivial to check that the terms with i = i0 and j = j0 � 1, as well as the terms with i = i0 � 1 and
j = j0 � 1 yield again the order N�1. By changing the roles of the indices, we also treat all terms of the
type ji� i0j � 2 and jj � ij � 2.
Now for the hyperplane terms with i = i0 and jj � j0j � 2, jj � ij � 2, jj0 � ij � 2, we can use the

relations of the form
hAi;AjiH � 2

2�2HH (2H � 1)N�2 j(i� j) =N j2H�2 ;

holding also for the pairs (i; j0) and (j; j0), to obtain that the corresponding contribution is of the order

NX
i=1

X
jj�j0j�2;jj�ij�2;jj0�ij�2

N�2HN�6 j(i� j) =N j2H�2 j(i� j0) =N j2H�2 j(j � j0) =N j2H�2

= N�3�2H
NX
i=1

X
jj�j0j�2;jj�ij�2;jj0�ij�2

N�3 j(i� j) =N j2H�2 j(i� j0) =N j2H�2 j(j � j0) =N j2H�2

� N�3�2H = O(N�4)

where we used the fact that the last summation above converges as a Riemann sum to the �nite integralR
[0;1]3

j(x� y) (x� z) (y � z)j2H�2 dxdydz, and then the fact that H < 3=4. On the hyperplanes term of the
form i = i0 � 1 and jj � j0j � 2, jj � ij � 2, jj0 � ij � 2, or ji � i0j � 2, ji � jj � 2, and jj � j0j � 2, the
calculation is identical.
Lastly, and similarly to the case just treated, when all indices are distant by at least 2 units, we can again

use the upper bound N�2 j(i� j) =N j2H�2 for hAi;AjiH and all other three pairs, obtaining a contribution
of the form X

ji�i0j�2;jj�j0j�2;jj�ij�2;jj0�ij�2

N�8
���� i� i0N

����2H�2 ���� i� jN
����2H�2 ���� i� j0N

����2H�2 ����j � j0N

����2H�2
� N�4

Z
[0;1]4

j(x� x0) (x� y) (x0 � z) (y � z)j2H�2 dx0dxdydz;

since H < 3=4, we have 8H � 6 < 0, and the above goes to 0 as well, albeit slower than the other terms.
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Lemma 8 With H 2 (3=4; 1), and

~Ai (s) = 1[0; i+1N ] (s)K
H

�
i+ 1

N
; s

�
� 1[0; iN ] (s)K

H

�
i

N
; s

�
;

we have that LN (r; s) := N
PN

i=1
~Ai (r) ~Ai (s) converges in L2

�
[0; 1]2

�
to the function

(r; s) 7! L2H�11 (r; s) :=

Z 1

r_s

@KH

@u
(u; s)

@KH

@u
(u; r) du:

Proof. ~Ai (s) can be rewritten as

~Ai (s) = 1[0; iN ] (s)

�
KH

�
i+ 1

N
; s

�
�KH

�
i

N
; s

��
+ 1[ iN ;

i+1
N ] (s)K

H

�
i+ 1

N
; s

�
= N�11[0; iN ] (s)

@KH

@u
(�i; s) + 1[ iN ;

i+1
N ] (s)K

H

�
i+ 1

N
; s

�
=: Bi (s) + Ci (s)

where �i = �i (s) depends on s but is nonetheless in the interval [i=N; (i+ 1)=N ]. The product ~Ai (r) ~Ai (s)
yields square-type terms with Bi (s)Bi (r) and Ci (s)Ci (r), and a cross-product term. This last term
is treated like the term involving Ci (s)Ci (r), and we leave it to the reader. Now, using the fact that
K (t; s) � c (t=s)H�1=2 (t� s)H�1=2 we write

ZZ
[0;1]2

drds

�����2Nc�1=22;H

NX
i=1

Ci (s)Ci (r)

�����
2

� 4N2c�12;H

ZZ
[0;1]2

drds

NX
i=1

NX
j=1

1[ iN ;
i+1
N ] (s)1[ jN ;

j+1
N ] (r)

�
i+ 1

Ns

�H�1=2�
j + 1

Nr

�H�1=2
N2�4H

� 4N2�4Hc�12;H

ZZ
[0;1]2

dtdu
NX
i=1

NX
j=1

N�2
�
1 +

1

i

�H�1=2�
1 +

1

j

�H�1=2
� 8N2�4Hc�12;H :

Since H > 1=2, this proves that the portion of ~D2 �FN corresponding to Ci tends to 0 in L2
�
[0; 1]2

�
. For the

dominant term, we calculate�����2Nc�1=22;H

NX
i=1

Bi (r)Bi (s)� 2c�1=22;H L (r; s)

�����
= 2c

�1=2
2;H

�����
NX
i=1

1[0; iN ] (r _ s)
@KH

@u
(�i (r) ; r)

@KH

@u
(�i (s) ; s)�

Z 1

r_s

@KH

@u
(u; s)

@KH

@u
(u; r) du

����� :
This converges to 0 pointwise as a limit of Riemann sums. At this point we can conclude that the sequence
LN (y1; y2) converges (in probability for instance) to L

2H�1
1 (y1; y2) for every y1; y2 2 [0; 1]. Our desired result
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will follow if we proved that the sequence (LN )N�1 is a Cauchy sequence in L2([0; 1]2). It holds that

kLN � LMk2L2([0;1]2)

= N2
N�1X
i;j=0

�
E

�
BH(

i+ 1

N
)�BH( i

N
)

��
BH(

j + 1

N
)�BH( j

N
)

��2

+M2
M�1X
i;j=0

�
E

�
BH(

i+ 1

M
)�BH( i

M
)

��
BH(

j + 1

M
)�BH( j

M
)

��2

� 2MN
N�1X
i=0

M�1X
j=0

�
E

�
BH(

i+ 1

N
)�BH( i

N
)

��
BH(

j + 1

M
)�BH( j

M
)

��2

and we already seen that N2
PN�1

i;j=0

�
E
�
BH( i+1N )�BH( iN )

� �
BH( j+1N )�BH( jN )

��2
converges to the con-

stant H2(2H � 1)=(H � 3=4).
We regard now the sum

MN
N�1X
i=0

M�1X
j=0

�
E

�
BH(

i+ 1

N
)�BH( i

N
)

��
BH(

j + 1

M
)�BH( j

M
)

��2

=MN
N�1X
i=0

M�1X
j=0

"���� i+ 1N � j + 1
M

����2H + ���� iN � j

M

����2H � ���� i+ 1N � j

M

����2H � ���� iN � j + 1
M

����2H
#2
:

For any two -variables function g such that @g
@x@y (x; y) exists and belongs to L

2([0; 1]2) it can be easily shown
(by a Riemann sum argument) that

MN
N�1X
i=0

M�1X
j=0

�
g(
i+ 1

N
;
j + 1

M
) + g(

i

N
;
j

M
)� g( i+ 1

N
;
j

M
)� g( i

N
;
j + 1

M
)

�2
can be written as

1

MN

N�1X
i=0

M�1X
j=0

�
@g

@x@y
(ai; bj)

�2
with ai located between i

N and i+1
N and bj located between

j
M and j+1

M and consequently it converges to

(2H(2H � 1))2
R 1
0

R 1
0
jx� yj4H�4dxdy = H2(2H � 1)=(H � 3=4):
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