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The stochastic Anderson model in discrete or continuous space is defined for a class
of non-Gaussian spacetime potentials W as solutions u to the multiplicative stochastic
heat equation u(t, x) = 1 +

R t
0

κ∆u(s, x)ds +
R t
0

βW (ds, x)u(s, x) with diffusivity κ and
inverse-temperature β. The relation with the corresponding polymer model in a random
environment is given. The large time exponential behavior of u is studied via its almost

sure Lyapunov exponent λ = limt→∞ t−1 log u(t, x), which is proved to exist, and is
estimated as a function of β and κ for β2κ−1 bounded below: positivity and nontrivial
upper bounds are established, generalizing and improving existing results. In discrete
space λ is of order β2/ log(β2/κ) and in continuous space it is between β2(κ/β2)H/(H+1)

and β2(κ/β2)H/(1+3H).

Keywords: Anderson model; polymer; random environment; non-Gaussian; Lyapunov
exponent; Malliavin derivative; Feynman–Kac formula; strong disorder.
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1. Introduction

1.1. Model and motivations

The stochastic Anderson model is a stochastic parabolic partial differential equa-
tion, namely the stochastic heat equation with linear multiplicative potential: for
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all x ∈ Rd and all t ≥ 0,

u(t, x) = 1 +
∫ t

0

κ∆u(s, x)ds +
∫ t

0

βW (ds, x)u(s, x). (1.1)

In this paper, κ is a fixed positive diffusion constant, β is a fixed “inverse-
temperature” parameter, ∆u is the Laplacian of u or its discrete analogue, the
potential W (s, x) is a centered random field on R+ × Rd or R+ × Zd, which is
stationary in the space parameter x, and whose time-derivative has a white-noise
behavior in time. In the relatively long history of previous works on the continuous-
time stochastic Anderson model [3, 4, 6–9, 11–13, 18–20], authors have only consid-
ered the case of a Gaussian field W , special non-Gaussian cases being used only in
discrete time (see [10] and references therein). However, one primary original moti-
vation for studying this model was to understand the structure of its Lyapunov
exponents — large time exponential explosion rates — in analogy to these rates for
products of random matrices and other stochastic differential systems, going back
to the celebrated multiplicative ergodic theorem of Oseledets, and later extensively
developed by Ludwig Arnold and his school in the general cocycle form for random
dynamical systems (see Arnold’s excellent recent monograph [2]). There is typically
no restriction on the type of non-degenerate random elements that can be used to
study these finite-dimensional systems’ Lyapunov exponents; for instance Oseledets’
theorem is valid for wide classes of distributions, just like its additive analogues (e.g.
Kingman’s sub-additive theorem). This motivates the use of non-Gaussian noise in
the infinite-dimensional dynamical system (1.1) here, the objective being to esti-
mate the almost sure Lyapunov exponent λ := limt→∞ t−1 log u(t, x) when it exists.
In order to simplify the presentation, d is taken as 1, but the results herein can be
proved using identical techniques for any d.

Beyond extending the study of λ for the Anderson model by considering non-
Gaussian potentials, this paper investigates the behavior of λ as a function of both
the diffusivity parameter κ and the inverse-temperature parameter β. We believe
that such a study has never been attempted before. Our results show that λ, which
is non-random and x-independent, depends on (κ, β), and is commensurate, in some
scales, to the product of a universal factor β2 and a second factor which is a function
of κ/β2 when this ratio is small, where the function depends on the potential W ’s
spatial regularity. In particular, the dependence on (κ, β) is nontrivial in the sense
that no scaling can be performed to reduce the study to κ = 1 or to β = 1.

For instance, on R+ × Zd, when β2/κ is bounded below, λ is of order
β2/ log(β2/κ), which has physical interpretations in the sense of fast dynamo and
strong disorder, as we allude to briefly at the end of this introduction. In the case of
continuous space R+ × Rd, even when restricted to fixed κ or fixed β, our results are
sharper than any previously published: we find that, when β2/κ is bounded below
and W is spatially H-Hölder continuous, λ is sandwiched between β2(κ/β2)H/(H+1)

and β2(κ/β2)H/(1+3H), thereby further closing a gap which, in the case of β = 1,
had already been reduced in [12]. These improved results are made possible by
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borrowing some tools from [12, 18], and the recent preprint [5], using them more
efficiently herein, and also introducing new tools.

From the physical standpoint, our results are the hallmarks of an important set
of effects known as strong disorder. Indeed, consider the random (W -dependent)
probability measure PW defined by

dP W/dPb = Z−1
t exp

∫ t

0

βW (ds, bs),

where Pb is the law of a standard Brownian motion b independent of W , and Zt is the
normalizing factor Eb[exp

∫ t

0
βW (ds, bs)] needed to make the total mass of PW equal

to 1. This PW is called the law of the Brownian polymer in the random environment
W (see [18]). It turns out that the law of Zt is the same as the law of u(t, x) for any
fixed x. The polymer measure PW is interesting if it is significantly different from
the Wiener measure, which means that the random environment’s Hamiltonian:∫ t

0
βW (ds, bs) has a nontrivial effect on each path (polymer) b, a property which

can be called strong disorder. If W does not depend on the parameter x, then W

cannot have any effect on b, and we see that in this case λ = limt→∞ t−1 log Zt = 0;
thus it is interesting to be able to ensure that λ > 0. Our lower bound results show
that this holds for arbitrarily high temperature β−1 as long as the diffusivity is
accordingly small; whether this positivity of λ also holds for β−1 arbitrarily large
with κ fixed is yet an open problem.

Another way to measure the nontriviality of the Hamiltonian’s influence on the
polymer path b (strong disorder) is to look for a gap between λ (the “quenched” Lya-
punov exponent) and its “annealed” analog, the Lyapunov exponent of its average:

λa = lim
t→∞ t−1 logE[Zt].

If W had little or no effect on Zt, one should arguably obtain the same Lyapunov
exponent whether or not one averages Z against W ’s randomness. For instance
in the Gaussian case, it is an elementary calculation (see (3.1) below) to prove
that λa = 2−1β2Q(0) where Q(0) is the common conditional variance of W (1, x).
Thus being able to ensure that λ < 2−1β2Q(0) is another sign of strong disorder.
Our upper bound results prove that this holds for arbitrarily high temperature as
long as κ/β2 is sufficiently small; in fact the factors 1/ log(β2/κ) or (κ/β2)H/(H+1)

can be made arbitrarily small, indicating a very pronounced strong disorder in the
corresponding parameter range. Whether λ < λa still holds for arbitrarily small
κ/β2 is also an open question.

Lastly, we mention the issue of stochastic fast dynamo. The Anderson model
is a 1-D toy model for the fundamental equation of 3-D magneto-hydrodynamics
(MHD) describing the evolution of a magnetic field H , which is a system of three
coupled Anderson models with an additional first-order transport term (see [15]).
The stochastic fast dynamo conjecture is that if the velocity field is a random
field with enough turbulence, the almost-sure Lyapunov exponent of the magnetic
energy is positive, and increases dramatically as diffusion is turned on (as κ goes
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from 0 to being positive, for fixed temperature). Our lower bounds β2/ log(β2/κ) or
β2(κ/β2)H/(H+1) increase indeed very rapidly from 0 as κ increases from 0, showing
that fast dynamo can be expected in the 3-D problem as well. This is not a new
observation; our results show, however, that this holds for any temperature, and
for non-Gaussian noise.

1.2. Summary of main results

We begin with a random field W which, conditionally on a stochastic process q

defined on the real line (or on the unit circle in the case of Z), is spatially homo-
geneous and Brownian in time; W is constructed so that q is the density of the
Fourier transform of its random spatial convariance; in particular the conditional
variance of W (1, x) is Q(0) =

∫
R q(y)dy for any x (or

∫
[0,2π) q(y)dy in the case of

Z). See the next section for a precise construction of this non-Gaussian noise W

and its relation to the random variable Q(0). In this paper, we prove the following:

(1) the so-called almost-sure Lyapunov exponent λ defined by

λ = lim
t→∞,t∈N

1
t

log u(t, x), (1.2)

exists, does not depend on x, and is non-random (Theorem 3.1, p. 457);
(2) for (t, x) ∈ R+ × Z and c+, c1, c3 constant depending only on the law of q, if

Q(0) has a moment of order > 1,

c1β
2/ log(β2/κ) ≤ λ ≤ c3β

2/ log(β2/κ)

hold for β2/κ > c+ (Theorem 4.1, p. 462);
(3) for (t, x) ∈ R+ × R and c++, c2, c4 constant depending only on the law of q, if

Q(0) has a moment of order > 1,

c2β
2(κ/β2)H/(H+1) ≤ λ ≤ c4β

2(κ/β2)H/(1+3H)

hold for β2/κ > c++ (Theorems 5.1 and 5.2, p. 469).

The paper is structured as follows. Section 2 constructs W and gives the
Feynman–Kac formula for the solution u(t, x) of (1.1); all proofs in this paper rely
on this formula. In Sec. 3, existence of λ is proved by first showing in Sec. 3.1 that
E[t−1 log u(t, x)] converges, and then proving almost sure convergence via a concen-
tration inequality established in Sec. 3.2 by using a Malliavin calculus method. The
lower and upper bounds for the Anderson model in discrete space are established in
Secs. 4.1 and 4.2 respectively, while the corresponding results in continuous space
are dealt with in Secs. 5.1 and 5.2.

2. Preliminaries

To simplify our presentation, we consider mainly the case of d = 1, but all our
results hold for arbitrary spatial dimension d. Moreover, in this section, we present
our model for the parameter space R+ × R, but nearly identical constructions also
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hold for R+ × Z, a fact which we will not comment on further. Here and throughout,
the letter λ is used to denote the Fourier variable, a standard notation; this should
not cause any confusion with the use of the letter λ for the Lyapunov exponent.

Let W be a separable centered random field on R+ × R, defined under some
probability space (Ω,F ,P), such that

W (t, x) =
∫
R+×R

1[0,t](s)eiλx
√

q(λ)M(ds, dλ), (2.1)

where M is a Gaussian independently scattered white-noise measure on R+ × R,
defined on some probability space (ΩM ,FM ,PM ) and q is a non-negative random
process on R defined on another probability space (Ωq,Fq,Pq) independent of M ,
satisfying q ∈ L1 = L1(Ωq × R) with respect to Pq× Lebesgue’s measure, i.e.

Eq

[∫
R

q(λ)dλ

]
< ∞, (2.2)

where Eq denotes the expectation with respect to Pq. Thus, the probability space
where W is defined can be taken as Ω = ΩM ⊗Ωq, F = FM ×Fq, and P = PM ×Pq.
The law of the Gaussian measure M is defined by the following covariance structure:
for any square-integrable test functions f, g : R+ × R → C, we have

EM

[∫
R+×R

f(s, λ)M(ds, dλ)
∫
R+×R

g(s, λ)M(ds, dλ)

]

=
∫
R+×R

f(s, λ)g(s, λ)ds dλ, (2.3)

where EM denotes the expectation with respect to PM and the bar denotes complex
conjugation.

Conditionally on the process q, W has a covariance structure similar to the case
where q is non-random: for all s, t ∈ R+ and all x, y ∈ R,

E[W (t, x)W (s, y)|Fq] = min(s, t)Q(x − y), (2.4)

where Q is a homogeneous covariance function that is random, and is Fq-
measurable. This fact is obtained using the representation of W in (2.1) and the
covariance structure of M in (2.3), in the following elementary way:

E[W (t, x)W (s, y)|Fq]

= EM

[∫
R+×R

1[0,t](r)eiλx
√

q(λ)M(dr, dλ)

×
∫
R+×R

1[0,s](r)eiλy
√

q(λ)M(dr, dλ)

]

=
∫
R+×R

1[0,t](r)1[0,s](r)eiλ(x−y)q(λ)dr dλ

= min(s, t)
∫
R

eiλ(x−y)q(λ)dλ,
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which is precisely the claim in (2.4), and proves in addition that

Q(x) =
∫
R

eiλxq(λ)dλ.

The fact that no restriction is placed on q, other than the very weak L1-
integrability in (2.2), means that modulo this integrability, any mixture of homoge-
neous Gaussian fields can be considered as a potential for the Anderson model,
which exhausts a wide range of random fields. We also have E[(W (t, x) −
W (s, x))2] = |t − s| Eq[Q(0)]. Note that Condition (2.2) on q is equivalent to
Eq[Q(0)] < ∞, and is thus equivalent to the square-integrability of W . Also note
that conditional on q, and for fixed x ∈ R, the map t �→ W (t, x) is a Brown-
ian motion with scale

√
Q(0). This can allow us to define the stochastic integral∫ t

0 W (ds, x)u(s, x) as an Ito integral conditionally on q as long as u is adapted and
square integrable given q; there seems to be little hope of defining such integrals
without assuming Eq[Q(0)] < ∞.

The solution of the Anderson model equation (1.1) can be represented using
the stochastic Feynman–Kac formula. Let b be a Wiener process started at 0 with
variance κ defined on some probability space (Ωb,Fb,Pb) equipped with a filtration
{Fb

t : t ≥ 0}, and assume that b is independent of W . For fixed t and x, we have

u(t, x) = Eb

[
exp

(
β

∫ t

0

W (ds, bt − bs + x)
)]

,

where Eb denotes the expectation with respect to Pb. This formula can be estab-
lished using standard techniques such as in [9], by conditioning on q. The proof
is omitted. It is also easy to show that W has stationary and independent incre-
ments in time. Using this, and the fact that the covariance structure of W given in
(2.4) depends only on spatial differences, we have the following non-time-reversed
Feynman–Kac formula: for fixed t and x,

u(t, x) =
P

Eb

[
exp

(
β

∫ t

0

W (ds, bs + x)
)]

(2.5)

=
P

Eb

[
exp

(
β

∫ t

0

W (ds, bs)
)]

(2.6)

where the equality holds in distribution under P = PM ×Pq. The expression on the
right-hand side of (2.6) also has the interpretation of the partition function Zt in
the polymer measure PW based on the Hamiltonian − ∫ t

0 W (ds, bs), as we already
mentioned on p. 453.

3. Existence of the Almost-Sure Lyapunov Exponent

In this section, we study the existence of the almost-sure Lyapunov exponent λ in
(1.2). We will first show that the limit of its expectation exists, i.e.

λ̄(x) := lim
t→∞
t∈N

1
t
E[log(u(t, x))].
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Because of the invariance of the law of W under spatial shifts, we have the equality
between (2.5) and (2.6), implying that λ̄(x) ≡ λ̄ does not depend on x. We then
make the connection with the above limit and the Lyapunov exponent: we show
using Malliavin derivatives that (log u(t, x)−E[logu(t, x)])/t converges to 0 almost
surely, thereby proving the existence of λ and that λ = λ̄, which implies our claim
that λ is non-random and not dependent on x. In other words, the proof of the
next theorem is an immediate consequence of the following two propositions.

Theorem 3.1. Assume that there exists k > 1 such that

Eq[Q(0)k] = Eq

[(∫
R

q(λ)dλ

)k
]

< ∞.

Then P-almost surely, for every fixed x ∈ R,

λ := lim
t→∞
t∈N

1
t

log(u(t, x))

exists, does not depend on x, is finite, and is non-negative.

3.1. Convergence of the mean

Proposition 3.1. Assume Eq[Q(0)] < ∞. There exists a constant λ ≥ 0 such that

λ = lim
t→∞

1
t
E[log(u(t, x))] = sup

t≥0

1
t
E[log(u(t, 0))].

Proof. As we mentioned above, we can replace x with 0. Let U(t) = E[log(u(t, 0))].
We will show that the function U is super-additive, i.e. for t, h > 0,

U(t + h) ≥ U(t) + U(h).

Using the Feynman–Kac formula in (2.6) and the independence of increments of b,
we have

u(t + h, 0) = Eb[eβ
R t+h
0 W (ds,bs)]

= Eb[eβ
R t
0 W (ds,bs)eβ

R t+h
t

W (ds,bs)]

= Eb[Eb[eβ
R t
0 W (ds,bs)eβ

R t+h
t

W (ds,bs)|Fb
t ]]

= Eb[eβ
R t
0 W (ds,bs)Eb[eβ

R t+h
t

W (ds,bs)|Fb
t ]].

Let pt be the heat kernel on R at time t ≥ 0, and b′ be an independent copy of b.
For t, s ∈ R+ and x ∈ R, set θtW (s, x) = W (s + t, x). We then have

u(t + h, 0) = Eb[eβ
R t
0 W (ds,bs)Eb′ [eβ

R h
0 (θtW )(ds,bt+b′s)]]

=
∫
R

Eb[eβ
R t
0 W (ds,bs)Eb′ [eβ

R h
0 (θtW )(ds,y+b′s)]|bt = y]pt(dy)

=
∫
R

Eb′ [eβ
R

h
0 (θtW )(ds,y+b′s)]Eb[eβ

R
t
0 W (ds,bs)|bt = y]pt(dy)

=
∫
R

Eb[eβ
R h
0 (θtW )(ds,y+bs)]Eb[eβ

R t
0 W (ds,bs)|bt = y]pt(dy).
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Substituting this into U(t + h) and using Jensen’s inequality for the logarithm, we
get

U(t + h) = E
[
log
∫
R

Eb[eβ
R h
0 (θtW )(ds,y+bs)]Eb[eβ

R t
0 W (ds,bs)|bt = y]pt(dy)

]

= E[log(u(t, 0))]

+ E

[
log
∫
R

Eb[eβ
R h
0 (θtW )(ds,y+bs)]

Eb[eβ
R

t
0 W (ds,bs)|bt = y]

Eb[eβ
R t
0 W (ds,bs)]

pt(dy)

]

≥ E[log(u(t, 0))]

+ E

[∫
R

log(Eb[eβ
R

h
0 (θtW )(ds,y+bs)])

Eb[eβ
R

t
0 W (ds,bs)|bt = y]

Eb[eβ
R

t
0 W (ds,bs)]

pt(dy)

]
.

Note that by the invariance of W in law under shifts in space, for any y ∈ R, we
have the equality in law under P

Eb[eβ
R

h
0 (θtW )(ds,y+bs)] =

P
Eb[eβ

R
h
0 (θtW )(ds,bs)].

Using this and the independence of increments of W in time, which means that
θtW is independent of W restricted to [0, t], we have

U(t + h) ≥ E[log(u(t, 0))]

+
∫
R

E[log(Eb[eβ
R

h
0 (θtW )(ds,y+bs)])]E

[
Eb[eβ

R
t
0 W (ds,bs)|bt = y]

Eb[eβ
R

t
0 W (ds,bs)]

]
pt(dy)

= E[log(u(t, 0))]

+E[log(Eb[eβ
R

h
0 (θtW )(ds,bs)])]E

[∫
R

Eb[eβ
R

t
0 W (ds,bs)

∣∣bt = y]

Eb[eβ
R

t
0 W (ds,bs)]

pt(dy)

]

= E[log(u(t, 0))] + E[log(Eb[eβ
R h
0 W (ds,bs)])]

= E[log(u(t, 0))] + E[log(u(h, 0))]

= U(t) + U(h).

Thus, U is super-additive. It follows that

lim
t→∞

1
t
U(t) = sup

t≥0

1
t
U(t),

and that the limit exists, although it may be infinite.
To show that the limit is finite, we only need to show that U(t)/t is bounded for

all t. Indeed, using Jensen’s inequality, Fubini’s lemma, and the covariance structure
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in (2.4), we have

1
t
U(t) =

1
t
E[log(Eb[eβ

R
t
0 W (ds,bs)])] =

1
t
EqEM [log(Eb[eβ

R
t
0 W (ds,bs)])]

≤ 1
t
Eq[log(EbEM [eβ

R
t
0 W (ds,bs)])]

=
1
t
Eq

[
log

(
Eb

[
exp

(
β2

2
EM

[(∫ t

0

W (ds, bs)
)2
])])]

=
1
t
Eq

[
log
(
Eb

[
exp

(
tβ2

2
Q(0)

)])]
=

β2

2
Eq[Q(0)]. (3.1)

This is finite by our assumption on Q(0). To show that λ ≥ 0, we again use Jensen’s
inequality, but in the other direction, to get that

U(t) ≥ EEb[log eβ
R

t
0 W (ds,bs)] = βEbEqEM

[∫ t

0

W (ds, bs)
]

= 0.

3.2. Almost-sure convergence

We first start with some notation on Malliavin calculus for the Gaussian measure
M , that will be used throughout the paper. Let F be a random variable in the
space L2(ΩM ,FM ,PM ) generated by M . Its Malliavin derivative DF with respect
to M , when it exists, is a random field on the parameter space R+ × R (see [16, 21]
for more details). Thus, the Malliavin derivative here is defined only in terms of the
randomness in M . For this paper, it is sufficient to note two important properties
of D:

(1) Let (FM
t )t≥0 be the filtration of M . If G has a Malliavin derivative and G is

FM
t -measurable for some t ≥ 0, then for all λ ∈ R and all s > t, Ds,λG = 0.

(2) Let f be a square integrable function from R+ × R to C (non-random with
respect to the randomness in M , but possibly dependent on q), let F =∫
R+×R

f(s, λ)M(ds, dλ), and g be a function in C1(R). Then, conditional on q,
the random variable G = g(F ) has a Malliavin derivative (w.r.t. M) given by,

Ds,λG = g′(F )f(s, λ),

for all s ≥ 0 and all λ ∈ R, as long as g′(F ) is in L2(ΩM ). Note that Ds,λF =
f(s, λ).

For t ≥ 0 and for any bounded measurable function f : C([0, t];R) → R, we set

〈f〉t = Eb[f(b)eβ
R

t
0 W (ds,bs)]/u(t, 0),

where b is a Brownian motion. This notation is borrowed from the mathematical
physics theory of Gibbs measures: it is the expectation of f(·) with respect to the
polymer measure PW we described in the introduction (up to time t). Note that
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PW is a random probability measure, since it depends on the randomness in W ,
i.e. in both M and q.

Proposition 3.2. Assume that there exists k > 1 such that

Eq[Q(0)k] = Eq

[(∫
R

q(λ)dλ

)k
]

< ∞.

Then P-almost surely, for any fixed x ∈ R,

lim
t→∞
t∈N

1
t

log u(t, x) = lim
t→∞
t∈N

1
t
E[log(u(t, x))].

Proof. Let us first compute the Malliavin derivative of log u(t, 0) (where we replace
x again by 0 due to the spatial homogeneity of W ) conditional on the stochastic
process q. All the computations below hold given Fq, i.e. conditional on q, for all
s ≤ t.

Ds,λ log u(t, 0) =
1

u(t, 0)
Ds,λu(t, 0)

=
1

u(t, 0)
Eb

[
Ds,λ exp

(
β

∫
[0,t]×R

eiλbs
√

q(λ)M(ds, dλ)

)]

=
1

u(t, 0)
Eb

[
βeiλbs

√
q(λ) exp

(
β

∫
[0,t]×R

eiλbs
√

q(λ)M(ds, dλ)

)]

= β
√

q(λ)〈eiλbs〉t.
Computing the norm of the Malliavin derivative, we have

‖D log u(t, 0)‖2 = β2

∫ t

0

∫
R

q(λ)〈eiλbs 〉t〈e−iλbs〉tdλ ds

= β2

∫ t

0

〈∫
R

q(λ)eiλ(b1s−b2s)dλ

〉
t

ds

≤ tβ2Q(0),

where b1
s and b2

s are two independent Brownian motion. Using Theorem 9.2.3(iii)
in Üstünel’s textbook [21], we have that for k ∈ N,

E

[(
1
t

log u(t, 0) − 1
t
E[log u(t, 0)]

)2k
]

= EqEM

[(
1
t

log u(t, 0) − 1
t
E[log u(t, 0)]

)2k
]

≤ ckt−2kEqEM [‖D log u(t, 0)‖2k]

≤ Ck,Qt−k,
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where ck is a constant depending on k and Ck,Q = ckβ2kEq[Q(0)k]. By Chebyshev’s
inequality, for any constant C(t),

P
[∣∣∣∣1t log u(t, 0) − 1

t
E[log u(t, 0)]

∣∣∣∣ > C(t)
]
≤ Ck,Q

tk(C(t))2k
.

To complete the proof, we apply the Borel–Cantelli lemma: by choosing
C(t) = t−ε/(2k) with some positive ε < k − 1, we get that the last expression
above is summable in t ∈ N, showing that almost surely, for t large enough,∣∣ 1

t log u(t, 0) − 1
t E[log u(t, 0)]

∣∣ < t−ε/(2k).

We can perform a finer analysis of the speed of concentration of t−1 log u(t, 0)
around its mean, by considering various integrability hypotheses on Q(0). Such
results are physically related to the question of evaluating the so-called fluctua-
tion exponent. The latter is defined as the exponent α of t in the asymptotics
of the standard deviation

√
Var[log u(t, 0)] . It is conjectured by physicists that

Var[log u(t, 0)] � t2α, with fluctuation exponent α < 1/2. This is a difficult and
long-standing mathematical conjecture. The tools herein allow us to prove that
α ≤ 1/2, as the reader can easily check. However, when looking at almost-sure
convergence rather than mean-square convergence, we obtain a different notion of
fluctuation speed, as a trivial consequence of the proof above, which, presumably
unlike α, is sensitive to how many moments Q(0) has, or alternately to whether our
noise W is (sub)-Gaussian or not.

Corollary 3.1. With the same hypothesis as in Proposition 3.2, for any β > 1,

P-almost surely for t large enough,

|log u(t, 0) − E[log u(t, 0)]| ≤ t
1
2+ β

2k .

The value 1
2 + β

2k could be called an upper bound on an “almost-sure
fluctuation exponent” ᾱ, where ᾱ is a value as small as possible such that
|log u(t, 0) − E[log u(t, 0)]| tends to 0 as fast as tᾱ. In particular, if Q(0) has
moments of all orders, |log u(t, 0) − E[log u(t, 0)]| ≤ tγ for all γ > 1/2, i.e. we
can take ᾱ = 1/2 + ε for any ε > 0. One should expect ᾱ to always exceed α,
since the former can be regarded as an almost-sure statement while the latter is for
mean-square convergence. Still, one may reach lower than the threshold ᾱ = 1/2+ε,
by making stronger integrability hypotheses on Q(0), e.g. assuming that Q(0) is a
bounded random variable, which corresponds to saying that W is sub-Gaussian,
or assuming that Q(0) is sub-Gaussian, which implies that W has sub-exponential
tails. The study of these and other generalizations are left to the reader.

4. Estimation of the Lyapunov Exponent: Discrete Space

In this section, we consider the Anderson model on R+ × Z. The theorem and
propositions in the previous section, proved for R+ × R, also hold for R+ × Z
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using identical proofs; as we alluded to in the Introduction, we will not comment
on these proofs further.

The next theorem is an immediate consequence of the next two propositions
combined with Theorem 3.1.

Theorem 4.1. For the Anderson model on R+ × Z, assume that there exists k > 1
such that

Eq[Q(0)k] = Eq

[(∫
R

q(λ)dλ

)k
]

< ∞.

Then P-a.s., λ := limt→∞ t−1 log u(t, x) exists, is non-random, does not depend on
x, and is bounded as

c1
β2

log(β2/κ)
≤ λ ≤ c3

β2

log(β2/κ)

as soon as β2/κ > c+, where c1, c3 and c+ depend only on the law of q, and are
given more explicitly in Propositions 4.1 and 4.2 below.

4.1. Lower bound result

Proposition 4.1. Assume that Eq[
√

Q(0) − Q(2)] = c > 0. Let c1 := c2/(9π).
Under this very weak non-degeneracy hypothesis, there exists a constant c+ depend-
ing only on c such that for β2/κ ≥ c+, we have

λ ≥ c1
β2

log(β2/κ)
.

In fact, we can take c+ = ee ∨ x where x is the solution of the equation x−1 log x =
c2/(18π).

Proof. The Feynman–Kac formula (2.6) is now to be understood with b replaced by
a simple symmetric random walk on Z in continuous time, with speed parameter κ.
In other words, b jumps at the jump times ti of a Poisson process Nt with parameter
2κt, and the positions followed by b are those of a discrete-time simple symmetric
random walk. Bounding the formula in (2.6) below by throwing away all paths b

that do not jump exactly once in the interval [0, t], we have

u(t, 0) ≥ Pb[Nt = 1]
1
2

∫ t

0

ds

t
(eβW (s,0)+βW ([s,t],+1) + eβW (s,0)+βW ([s,t],−1))

= κte−2κt

∫ t

0

ds

t
(eβW (s,0)+βW ([s,t],+1) + eβW (s,0)+βW ([s,t],−1)),
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where W ([s, t], x) := W (t, x)−W (s, x). Using Jensen, the fact that W is mean-zero,
and then choosing the maximum of the two increments of W , we have

1
t
E[log u(t, 0)] ≥ log κt

t
− 2κ +

∫ t

0

ds

t2
E[βW (s, 0) + log(eβW ([s,t],+1) + eβW ([s,t],−1))]

≥ log κt

t
− 2κ + β

∫ t

0

ds

t2
E[max(W ([s, t], +1); W ([s, t],−1))].

Conditional on q, (W ([s, t], +1); W ([s, t],−1)) is a jointly Gaussian vector with
covariance matrix

√
t − s

[
Q(0) Q(2)

Q(2) Q(0)

]
.

Therefore

E[max(W ([s, t], +1); W ([s, t],−1))] = Eq[EM [max(W ([s, t], +1); W ([s, t],−1))]]

=
1√
π

√
t − sEq[

√
Q(0) − Q(2)].

Hence by our non-degeneracy hypothesis

1
t
E[log u(t, 0)] ≥ log κt

t
− 2κ + βt−2cπ−1/2

∫ t

0

s1/2ds

=
log κt

t
− 2κ + βt−1/2c0, (4.1)

where c0 := 2c/(3
√

π).
To conclude the proof of the proposition, it is sufficient to find a single value t

depending on β and κ such that the last expression above exceeds a positive fraction
of the last term in (4.1). We choose

t = c′β−2 log2(β2/κ),

where the constant c′ is determined below. Plugging this value into the expression
(4.1) we get

1
t
E[log u(t, 0)]

≥ β2

(
c0(c′)−1/2 − (c′)−1

log(β2/κ)
+ 2

log log(β2/κ)
c′ log2(β2/κ)

+
log c′

c′ log2(β2/κ)

)
− 2κ.

We may now choose our constant c′. In order to get a weak restriction on β and κ,
we simply choose

c′ = 4/c2
0.

Thence
1
t
E[log u(t, 0)] ≥ β2

(
c2
0/2

log(β2/κ)
+ 2

log log(β2/κ)
c′ log2(β2/κ)

+
log c′

c′ log2(β2/κ)

)
− 2κ.
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By reducing c to a smaller constant if necessary, we may assume that c′ > 1. If
x := β2/κ ≥ ee, we obtain

1
t
E[log u(t, 0)] ≥ c2

0

2
β2

log(β2/κ)
− 2κ.

Now we only need to check that the term 2κ is negligible. More precisely, let us
require that

c2
0

2
β2

log(β2/κ)
≥ 4κ.

With our notation x = β2/κ, this translates as

x−1 log x ≤ c2
0/8 = c2/(18π),

which is satisfied for a sufficiently large x since the function f(x) = x−1 log x is
decreasing for x > e. We have thus proved that, with x := β2/κ, if x−1 log x ≤
c2/(18π) and x > ee, then

1
t
E[log u(t, 0)] ≥ c2

0

4
β2

log(β2/κ)
.

This finishes the proof of the proposition.

4.2. Upper bound result

The next proposition is valid for all β2 > κ > 0, but is only useful when β2 is
not too close to κ; indeed, only then can we be in the strong disorder regime,
i.e. λ strictly less than the quantity 1

2β2Eq[Q(0)], which is the annealed Lyapunov
exponent mentioned on p. 453, as proved in (3.1).

Proposition 4.2. Assume that Eq[Q(0)] < ∞. Then there is a non-random con-
stant c3 depending only on the law of Q(0) such that for all β2 > κ > 0,

λ ≤
(

c3
β2

log(β2/κ)

)
∧
(

1
2
β2Eq[Q(0)]

)
.

In fact, we can take c3 = KuEq[max(
√

2, 6
√

2Ku

√
Q(0))

√
Q(0)] where Ku is

the universal constant in the so-called Dudley entropy upper bound for Gaussian
expected suprema.

Proof. From (3.1), we have that

t−1E[log u(t, 0)] ≤ 1
2
β2Eq[Q(0)],

which explains the corresponding upper bound in the statement of the proposition.
We thus only need to prove λ ≤ c3

β2

log(β2/κ) .
We begin by recalling notation and a technical result which can be traced back

to [6] in the case where Q(0) is non-random, and was expressed more quantitatively
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in [12] for continuous space. Here it can be proved directly by conditioning on q.
The details are left to the reader. Let α be any fixed positive number. Let Iα be
the set of all paths of the random walk b on [0, t] which have at most αt jumps. Let
Yα = supb∈Iα

∫ t

0 βW (ds, bs). The following holds:

E[Yα|Fq] = EM [Yα] ≤ Ku

√
Q(0)βt

√
α, (4.2)

where Ku is the universal constant in the so-called Dudley Entropy upper bound
(see [1] or [14]).

Let us now decompose u(t, 0) according to the number of jumps of the random
walk b. With Nt the number of jumps of the path b before time t, we have:

u(t, 0) = Pb[Nt ≤ αt]Eb

[
exp

(∫ t

0

βW (ds, bs)
)∣∣∣∣Nt ≤ αt

]

+
∞∑

n=1

Pb[nαt < Nt ≤ (n + 1)αt]

×Eb

[
exp

(∫ t

0

βW (ds, bs)
)∣∣∣∣nαt < Nt ≤ (n + 1)αt

]
.

≤ Pb[Nt ≤ αt] exp(Yα) +
∞∑

n=1

Pb[nαt < Nt] exp(Y(n+1)α)

≤ exp(Yα) +
∞∑

n=1

Pb[nαt < Nt] exp(Y(n+1)α). (4.3)

We will need to use the tail of Nt, which is a Poisson process with parameter κ.
We simply use the well-known bound, valid for all a > κ and t large enough,

Pb[at < Nt] ≤ exp(−at log(a/κ)). (4.4)

With the shorthand notation

pn = pn(t) = exp(−nαt log(nα/κ)) (4.5)

and p0 = 1, the above upper bound on u(t, 0) becomes

u(t, 0) ≤
∞∑

n=0

pn(t) exp(Y(n+1)α).

Now using the fact that for A, B > 0 and t > 1, (A + B)1/
√

t ≤ A1/
√

t + B1/
√

t,
we get

1√
t
log u(t, 0) ≤ log

( ∞∑
n=0

(pn)1/
√

t exp
(

1√
t
Y(n+1)α

))
.
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To evaluate the expectation of the above, we first evaluate the expectation condi-
tional on q, i.e. the operator EM . Hence by Jensen’s inequality

EM

[
1√
t
log u(t, 0)

]
≤ log

∞∑
n=0

(pn)1/
√

tEM

[
exp

(
1√
t
Y(n+1)α

)]
. (4.6)

By standard calculations in Gaussian analysis (see for instance applications of the
Borell–Sudakov inequality in [9]), using the fact that the conditional variance of∫ t

0
W (ds, bs) is bounded above by Q(0)t for any b, we have

EM

[
exp

(
1√
t
Ynα

)]
≤ exp(EM [Ynα]/

√
t) exp(β2Q(0))

≤ exp(Ku

√
Q(0)β

√
nαt + β2Q(0)), (4.7)

where we used (4.2) in the last inequality.
Combining (4.6) and (4.7), we get

EM [t−1 log u(t, 0)]

≤ 1√
t
log

( ∞∑
n=0

(pn)1/
√

t exp(Ku

√
Q(0)β

√
(n + 1)αt + β2Q(0))

)

= β2Q(0)/
√

t +
1√
t
log

( ∞∑
n=0

(pn)1/
√

t exp(Ku

√
Q(0)β

√
(n + 1)αt)

)
. (4.8)

We immediately get that

lim
t→∞E[t−1 log u(t, 0)]

≤ lim sup
t→∞

1√
t
Eq

[
log

( ∞∑
n=0

(pn)1/
√

t exp(Ku

√
Q(0)β

√
(n + 1)αt)

)]
. (4.9)

We need to transform the right-hand side of the above using log(A+B) ≤ log+ A+
log+ B + log 2 valid for A, B > 0 where log+ = 0 ∨ log:

1√
t
Eq

[
log

( ∞∑
n=0

(pn)1/
√

t exp(Ku

√
Q(0)β

√
(n + 1)αt)

)]

≤ 1√
t
Eq[log(exp(Ku

√
Q(0)β

√
αt))]

+
1√
t
Eq

[
log+

( ∞∑
n=1

(pn)1/
√

t exp(Ku

√
Q(0)β

√
(n + 1)αt)

)]
+

log 2√
t

.

In view of (4.9), and using Fatou’s lemma, and the expression (4.5) for pn, we now
have

lim
t→∞E[t−1 log u(t, 0)] ≤ βKuEq[

√
Q(0)

√
α]

+Eq

[
lim sup

t→∞
1√
t
log+

( ∞∑
n=1

e−nα
√

t log(nα/κ)+Ku

√
Q(0)β

√
(n+1)αt

)]
. (4.10)
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We may now choose the coefficient α in order to minimize the last expression
above; α may depend on q. We choose

α = cβ2/ log2(β2/κ),

where the constant c will be chosen below as a function of Q(0). The fact that the
lim sup in (4.10) is inside the expectation means that we can choose t arbitrarily
large and possibly dependent on c. With x = β2/κ, for any n ≥ 1, one readily
checks that the exponent in (4.10) will be smaller than −2−1nα

√
t log(nα/κ) as

soon as

c
n

log2 x
(log(ncx) − 2 log log x) > 2Ku

√
c
√

Q(0)
√

n + 1
log x

. (4.11)

We also impose c ≥ 2 (see footnotea). In this case, it is easy to check that log(ncx)
always exceeds 3 log log x for all x > 1, which implies that log(ncx) − 2 log log x >

3−1 log(ncx). This in turn implies that Condition (4.11) is true as soon as

cn

3
≥ 2Ku

√
c
√

Q(0)
√

n + 1

⇐⇒
c ≥ 36K2

uQ(0)
n + 1
n2

⇐=

c ≥ 72K2
uQ(0),

where the last implication holds because n ≥ 1.
Summarizing, what we have proved is that if

1 < β2/κ

c = max(2, 72K2
uQ(0)), (4.12)

α = cβ2/ log2(β2/κ), (4.13)

then

lim
t→∞E[t−1 log u(t, 0)] ≤ βKuEq

[√
Q(0)

√
α
]

+Eq

[
lim sup

t→∞
1√
t
log+

( ∞∑
n=1

exp(−2−1nα
√

t log(nα/κ))

)]
.

(4.14)

aThis is done for convenience; in cases where the random variable Q(0) is bounded above by a
(very small) non-random constant, an improvement on this lower bound on c is possible, but it
creates problems such as requiring a random lower bound on β.
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To evaluate the last series above, we brutally ignore the term n inside the logarithm,
yielding an upper bound

∞∑
n=1

exp(−2−1nα
√

t log(nα/κ)) ≤
∞∑

n=1

exp(−2−1nα
√

t log(α/κ))

=
exp(−2−1α

√
t log(α/κ))

1 − exp(−2−1α
√

t log(α/κ))
≤ 1,

where the last inequality holds as soon as t > (2 log 2)2/(α log(α/κ))2. Although α

is random because c is random, since c is greater than 2 by definition, this restriction
on t is met as soon as t > (2 log 2)2/(α′ log(α′/κ))2 where α′ is the same as α in
(4.13) but with c replaced by 2; therefore our lower bound on t is non-random.
Hence from (4.14), and the expressions (4.12) and (4.13) we get

lim
t→∞E[t−1 log u(t, 0)] ≤ βKuEq

[√
Q(0)

√
α
]

= β2KuEq

[√
cQ(0)

]
/ log(β2/κ)

=
β2

log(β2/κ)
KuEq

[
max(

√
2, 6

√
2Ku

√
Q(0))

√
Q(0)

]
.

However, in (4.4) we used the fact that a = α > κ, which by (4.13), with
x = β2/κ, means cx/ log2(x) > 1, i.e.

max(2, 72K2
uQ(0)) >

log2 x

x
.

Our restriction on c being greater than 2, which leads to the max(2, ·) above, is
also convenient here because it means it is not necessary to impose a random lower
bound on x; indeed for all x > 1, x−1 log2 x < 1, which means that α always exceeds
κ. This finishes the proof of the proposition.

5. Estimation of the Lyapunov Exponent: Continuous Space

In this section, we consider the Anderson model on R+ × R. The Lyapunov expo-
nent λ, which still exists (is non-random, and does not depend on x) thanks to
Theorem 3.1, now satisfies bounds that scale as powers, rather than containing a
logarithmic term as in the discrete case. For the bounds below, we assume that
there exists k > 1 such that

Eq[Q(0)k] = Eq

[(∫
R

q(λ)dλ

)k
]

< ∞. (5.1)

We also assume some regularity (resp. irregularity) of Hölder-continuity type on
the spatial behavior of W in order to prove an upper bound (resp. lower bound) on
λ. This is condition (5.3) (resp. condition (5.2)) below.
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5.1. Lower bound result

Theorem 5.1. Assume (5.1) and that for some H ∈ (0, 1), for all |x| ≤ r1,

Eq[Q(0) − Q(x)] ≥ c1x
2H . (5.2)

Then there exists a constant c++ depending on r1 and c1, and a constant c2 depend-
ing only on the law of q, such that for β2/κ > c++, we have

λ ≥ c2β
2(β2/κ)−F (H),

where F (H) = (1/3) ∧ (H/(H + 1)).

Proof. The proof of this theorem is very similar to the proof of the corresponding
result in [5]: one only needs to replace t by κt and check all of the details. We omit
them.

5.2. Upper bound result

The theorem below for the upper bound is an improvement on the correspond-
ing results in [5] and [12], and indeed on all previous upper bound results for the
stochastic Anderson model’s Lyapunov exponent in the case of a space-time poten-
tial which is white in time. The proof is also more streamlined and efficient.

Theorem 5.2. Assume (5.1) and that for some H ∈ (0, 1), for all |x| ≤ r2,

Eq[Q(0) − Q(x)] ≤ c3x
2H . (5.3)

Then there exists a constant c++ depending on r2 and c3, and a constant c4 depend-
ing only on the law of q, such that for β2/κ > c++, we have

λ ≤ (c4β
2(β2/κ)−G(H)) ∧

(
1
2
β2Eq[Q(0)]

)
,

where G(H) = H/(1 + 3H).
In fact, we may take c++ = 1 ∨ ( 4

√
2Ku

c3r1+3H
2

)2 and c4 = 4
√

2(1 ∨ c3)K
4/3
u (1 +

2Eq[Q(0)2/3]). Here Ku is still the universal constant in the Dudley entropy upper
bound for Gaussian expected suprema.

Proof. The proof starts off similarly to the proof of Proposition 3.1 in [5], up to
Step 3. In that proof, a discretization was constructed, where b is replaced by a
process b̃ in discrete space εZ, which jumps to the position of b at a distance ε from
the previous visited site in εZ, the first time that this new site in εZ is reached by
b. We call Nt the total number of jumps of b̃ before time t. Using the same notation
Yα as in the proof of Proposition 4.2, we still have that u(t, 0) is bounded above as
follows:

u(t, 0) ≤ exp(Yα) +
∞∑

n=1

Pb[nαt < Nt] exp(Y(n+1)α).
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Evidently, while Yα is the same as in our discrete space proofs, on the other
hand, Nt is not a Poisson process, and b̃ is not a Markov process, but a useful
estimate was still obtained in [5] and [12]. Specifically, estimate (22) in [5] was

Pb[Nt > nαt] ≤ exp
(
− t

2
(αnε)2 + tαn

)
. (5.4)

Here we need to modify this estimate to account for the diffusion parameter κ. To
go from κ = 1 to κ �= 1, under Pb, we simply need to multiply b by

√
κ. By the

definition of the jumps of b̃ as hitting times of εZ, this modification is equivalent
to replacing ε by ε/

√
κ. Therefore (5.4) becomes

Pb[Nt > nαt] ≤ exp
(
− t

2κ
(αnε)2 + tαn

)
.

For Yα, we still have from (4.2),

EM [Yα] ≤ βKu

√
Q(0)t

√
α. (5.5)

At this point, borrowing calculations from the proof of Proposition 3.1 in [5]
up to Step 3, and using the hypothesis of the theorem, the discretization method
amounts to introducing an error of order ε 2H , or more precisely,

E[t−1 log u(t, 0)] ≤ c3β
2ε2H +

1
2
pε

t (β), (5.6)

where pε
t (β) is bounded as

tpε
t (β) ≤ 2βKut

√
αEq[

√
Q(0)] + E[log+ B] + log 2,

where B =
∑∞

n=1 Pb[nαt < Nt] exp(2βYα(n+1)). The proof of Proposition 3.1 in [5]
is valid in our case if

ε ≤ r2. (5.7)

We will see below how this effects our parameters once we have chosen ε.
We are now able to use the two estimates (5.4) and (5.5), proceeding as in the

proof of Proposition 4.2, to get, as in (4.10),

lim sup
t→∞

pε
t (β)

≤ 2βKu

√
αEq[

√
Q(0)]

+Eq

[
lim sup

t→∞
1√
t
log+

( ∞∑
n=1

e−
√

t
2κ (αnε)2+

√
tαn+2βKu

√
Q(0)

√
(n+1)αt

)]

=: A2 + A3. (5.8)

In other words, we have proved

E[t−1 log u(t, 0)] ≤ A1 + A2 + A3

with A1 = c3β
2ε2H , and A2 and A3 given in (5.8) above.
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The remainder of the proof is more complex than the upper bound in the discrete
case herein. In order to motivate our choices for the free parameters α and ε, let us
imagine for the moment that the term

√
n + 1 in (5.8) is not present. This decouples

the problem of choosing α and ε as functions of β, and the problem of choosing an
optimal relation between α and ε. Hence let us first impose that the negative term√

t
2κ (αnε)2 be four times as large as

√
tαn: this means α ≥ n−18κε−2. If we simply

choose

α = 8κε−2, (5.9)

the last inequality becomes true for all n ≥ 1. On the other hand, let us now check
to see in what situation the negative term is also four times as large as the term
with the square root:

1
2κ

(αnε)2 ≥ 8βKu

√
Q(0)

√
(n + 1)α.

This means that we must consider low values of n separately. Thus let n0 be the
first integer such that the above inequality is true: n0 is the smallest n such that

n2

√
n + 1

≥ Ku

√
2−1Q0βκ−1/2ε.

Therefore

n0 ≤ (Ku

√
Q0βκ−1/2ε)2/3. (5.10)

Before we can see the effect of n0, and indeed of the entire series term A3 in
(5.8), we must choose ε by comparing the first term A2 = 2βKuEq[

√
Q(0)

√
α] in

(5.8), with the discretization error term A1 = c3β
2ε2H in (5.6). By choosing to

make these two terms equal, except for the factor
√

Q(0) to avoid having to make
ε random, we impose 2βKu

√
α = c3β

2ε2H ; in other words, with our choice of α

above in (5.9), we have

ε = (4
√

2Kuc−1
3

√
κ/β)1/(1+3H).

We record now that this choice of ε and the condition (5.7) mean that we are
restricting the parameters β and κ as announced in the statement of the theorem
with the constant c++:

β√
κ
≥ 4

√
2Ku

c3r
1+3H
2

=:
√

c++.

We can now evaluate the term A3 in (5.8). We have

A3 = Eq

[
lim sup

t→∞
1√
t
log+

((
n0−1∑
n=1

+
∞∑

n=n0

)
e−

√
t

2κ (αnε)2+
√

tαn+2βKu

√
Q(0)

√
(n+1)αt

)]

≤ Eq

[
lim sup

t→∞
1√
t
log n0

]
(5.11)
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+Eq

[
2βKu

√
Q(0)

√
n0α

]
(5.12)

+Eq

[
lim sup

t→∞
1√
t
log+

( ∞∑
n=1

exp
(
−
√

t

4κ
(αnε)2

))]
. (5.13)

The term in line (5.11) is zero. The series
∑∞

n=1 exp(−
√

t
4κ (αnε)2) can be made less

than twice its first term by choosing t large enough, and therefore the term in line
(5.13) is also zero. With the estimate on n0 in line (5.10), we have that the term in
line (5.12) is

Eq

[
2βKu

√
Q(0)

√
n0α

]
= Eq

[
2βKu

√
8κ1/2ε−1√n0

√
Q(0)

]
≤ Eq

[
2βKu

√
8κ1/2ε−1(Ku

√
Q(0)βκ−1/2ε)1/3

√
Q(0)

]
= 2

√
8K4/3

u Eq[Q(0)2/3]β2(
√

κ/β)2/3.

We have proved

A3 ≤ 2
√

8K4/3
u Eq[Q

2/3
0 ]β2(

√
κ/β)2H/(1+3H).

Returning to the evaluation of A1 and A2, with our choice of ε, we have

A1 + A2 = c3β
2ε2H(1 + Eq[

√
Q(0)])

= c3(4
√

2Kuc−1
3 )2H/(1+3H)(1 + Eq[

√
Q(0)])β2(

√
κ/β)2H/(1+3H).

Since we assumed in the hypothesis of the theorem that β2 ≥ κ, and since the
power of

√
κ/β in A3 is greater than in A1 + A2 (2/3 is greater than 2H/(1 + 3H)

since H < 1), we can summarize our estimates by

E[t−1 log u(t, 0)] ≤ 4
√

2(1 ∨ c3)K4/3
u (1 + 2Eq[Q(0)2/3])β2(

√
κ/β)2H/(1+3H),

which, together with Theorem 3.1, proves all statements in the theorem.
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