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Abstract. In this article we study the exponential behavior of the continuous stochastic
Anderson model, i.e. the solution of the stochastic partial differential equation u(t, x) =
1 + ∫ t

0 κ�xu (s, x) ds + ∫ t

0 W (ds, x) u (s, x), when the spatial parameter x is continuous,
specifically x ∈ R, and W is a Gaussian field on R+ ×R that is Brownian in time, but whose
spatial distribution is widely unrestricted. We give a partial existence result of the Lyapunov
exponent defined as limt→∞ t−1 log u(t, x). Furthermore, we find upper and lower bounds
for lim supt→∞ t−1 log u(t, x) and lim inf t→∞ t−1 log u(t, x) respectively, as functions of the
diffusion constant κ which depend on the regularity of W in x. Our bounds are sharper, work
for a wider range of regularity scales, and are significantly easier to prove than all previ-
ously known results. When the uniform modulus of continuity of the process W is in the
logarithmic scale, our bounds are optimal.

1. Preliminaries

1.1. Introduction

This article studies the almost-sure large-time exponential behavior of the so-called
(stochastic parabolic) Anderson model in R, i.e., the solution of the following sto-
chastic parabolic partial differential equation with linear multiplicative potential:
for all x ∈ R and all t ≥ 0,

u(t, x) = 1 +
∫ t

0
κ

∂2u

∂x2 (s, x) ds +
∫ t

0
W (ds, x) u (s, x) . (1)

Here the potential W is a centered Gaussian field on R+ × R that is Brownian
in the time parameter t when the space parameter x is fixed, and has an arbitrary
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covariance structure in the space parameter x. All previous work on this Ander-
son model with space-time-dependent potential, whether in continuous or discrete
space, has concentrated on the case where W is homogeneous in space, e.g. [3],
[4], [5], [6], [7], [8], [10], [16], [17]. Our article makes no such assumption, asking
only for milder regularity and non-degeneracy, and proving results that strengthen
all existing ones, using simpler, more efficient proofs. This introduction contains a
detailed narrative explaining the nature and significance of this article’s qualitative
and quantitative results; a casual reader will find, in Section 1.1.3, a short guide to
extracting precise statements of all results.

1.1.1. Qualitative outline and significance of results

This article connects the regularity properties of W with the quantitative behavior of
u, a direction which was never achieved precisely before, with potentially important
consequences for the physical systems connected to the Anderson model. We refer
to [7] and [11] for specific physical motivations in astrophysics, hydrodynamics,
and other fields. In general modeling terms, our ultimate regularity result says that
if the potential’s spatial modulus of continuity is known with some precision, one
obtains sharp bounds on the exponential rate of increase of u in time, and conversely
under certain circumstances (Corollary 29). One can then argue that if a given rate
of increase is observable for u, which is typically the case for physical systems
modeled by u as time evolutions in a random potential W , then the regularity prop-
erties of the random medium W can be estimated with excellent precision. This
can be achieved with little or no need for statistical inference, which is particularly
useful in the many situations where W is typically not directly observable.

Section 2 deals with general non-quantitative results on the existence of a Lyapu-
nov exponent (see (2)). Sections 3 and 4 provide lower and upper bounds respec-
tively on this exponential behavior. Section 5 investigates the exact quantitative
meaning of these bounds for some specific scales. The remainder of this introduc-
tion gives a detailed account of our results, indicating which tools are employed, and
comparing our results and techniques to those used in the above-cited references.

Under some very mild boundedness and non-degeneracy conditions on the spa-
tial covariance structure of W , we prove that the so-called almost sure Lyapunov
exponent λ defined by

λ = lim
t→∞

1

t
log u (t, x) , (2)

if it exists, is non-random, uniformly positive, and typically does not depend on
x. We also give a clear deterministic criterion under which existence of λ holds.
This is achieved in Section 2. Our proof techniques are sharp in the sense that, in
the spatially homogeneous case, existence of λ follows immediately, at least when
t tends to infinity along an arithmetic sequence. They are also more efficient than
those used in the works cited above. Our non-degeneracy hypothesis is used to
prove a crucial positivity result in Section 2.4 despite the lack of any super- or
sub-additivity property (such properties are crucial in previous works). Inspired by
a new idea in [15] in the context of directed polymers, we pioneer a use of the
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Malliavin calculus for establishing existence of λ. In our situation, the Gaussian
property of W appears to be far from necessary. Beyond being a measure of our
methods’ efficiency, this is an indication that many known almost sure results for
the Anderson model may hold with non-Gaussian potentials. We will investigate
this last idea in another article.

Regardless of whether the Lyapunov exponent exists, we are able to find upper
and lower bounds for lim supt→∞ t−1 log u (t, x), and lim inf t→∞ t−1 log u (t, x)

respectively, as functions of the diffusion constant κ when κ is small enough, in
Sections 3 and 4. The methods employed are very simple compared with the exist-
ing upper- and lower-bound proofs in the above-cited references in continuous
space; they are no more complex than the proofs in the simpler case of x ∈ Z.
Our techniques are also more powerful since they do not require homogeneity. We
borrowed a crucial idea based on Gaussian supremum estimation techniques origi-
nally introduced in the present article’s second-named author’s own work [6], and
further sharpened in [4], which is to consider the expected value of the supremum
over all Feynman-Kac paths of the potential integrated along each path. Both of
these references are in discrete space x ∈ Zd with homogeneous potential. In con-
trast to [4] and [6], however, we work in continuous space, and our probabilistic
estimations herein draw heavily on the new ideas of Section 2.

One can compare our bounds with those previously obtained, when the po-
tential W is assumed to be essentially H -Hölder-continuous in space, but not H ′-
Hölder-continuous for any H ′ > H . In this situation, the lower bound, derived
in Section 3, is of the order κH/(H+1). The only previously known result in con-
tinuous space, computed in the same Hölder scale for W homogeneous, can be
found in [17]: a lower bound of order κH/(H+1)/ log(1−H)/(1+H) (1/κ). Moreover
the techniques used in [17] are excruciatingly complicated, and are limited to the
said Hölder scale only. Our new result improves the one in [17] slightly, extends
beyond the Hölder scale, applies to the non-homogenous case, and the proofs are
comparatively much simpler.

In Section 5, we show that our lower bound is in fact optimal when the spatial
regularity of W is in a logarithmic scale: we find that lim inf t→∞ t−1 log u (t, x)

is bounded below by a constant multiple of
(
log κ−1

)−β
when W admits the func-

tion
(
log κ−1

)−β/2+1/2
as an almost-sure uniform modulus of continuity on any

interval in R. This is precisely the same value, up to a constant, as the upper bound
on lim supt→∞ t−1 log u (t, x) which we obtain in Section 4. Even in this very
irregular scale, our upper bound is an improvement over the known result in con-
tinuous space, which was obtained for homogeneous W in [7], namely the order(
log κ−1

)−1
. Our upper bound derivation, constructed for the nonhomogeneous

case, is again simpler than the proof in [7]. In the Hölder scale, we obtain an even
better result, namely an upper bound of the order κH/(3H+1). We can see that for
small H , the difference between our upper and lower bounds become negligible,
which is consistent with the fact that our bounds are sharp in the logarithmic scale,
since that scale can be understood as living within the case H = 0.

The authors of [17] used a spatial discretization technique first introduced in [7],
improving the original error estimate of [7] significantly. In our proof of the lower
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bound, we do not need to use any discretization. We only rely on a discretization
for the upper bound proof, and then again essentially only in its original form as
given in [7], i.e. without resorting to the exceedingly delicate analytic arguments
of the improved error estimate in [17].

1.1.2. Quantitative conclusions and heuristics

The global quantitative conclusion we can draw from our estimations is that, regard-
less of any spatial homogeneity, the almost-sure exponential rate of increase of
u (t, x) in large time (and, if it exists, the Lyapunov exponent) is closely related to
the local spatial regularity of W : if W is precisely H -Hölder-continuous in space,
the rate is sandwiched between κH/(H+1) and κH/(3H+1); if W is more irregular yet,
specifically if

(
log κ−1

)−γ
is a sharp almost-sure uniform modulus of continuity

for W in space, then the rate is, up to a constant, equal to
(
log κ−1

)−2γ−1
, and a

converse of this result in the logarithmic scale holds.
In view of the (small) gap between our upper and lower bounds, it is difficult

to give an intuitive idea, at least in the Hölder scale, of why such results should
even hold; if such an idea were discernable, we would be in a position to formulate
a conjecture as to what the true Lyapunov exponent should be in all cases. In the
logarithmic scale, however, things are a little more clear, when one compares dis-
crete and continuous models. In the discrete case, one can consult [4] for a simple
heuristic, based on the Gaussian property of the increments of W and on the Pois-
son law for the sequence of jump times of the Feynman-Kac paths, to see why the
Lyapunov exponent should be of order log−1

(
κ−1

)
.

In one interpretation, to draw a link between discrete and continuous space
cases, one can say that the discrete case falls within the continuous framework:
since the discrete-space W can be considered as discontinuous on R at the points of
Z, and since there is a great deal of independence of the increments of W in space
(the hypothesis is that {W (·, x) : x ∈ Z} are independent), it is natural to find a
Lyapunov exponent which corresponds to a case where W features no continuity:
this is precisely what can be observed in the logarithmic scale, where a discontin-
uous case, corresponding in the notation of Corollary 27 to the case β = 1, yields
exactly the discrete case result (compare in particular with Corollary 28). That the
Lyapunov exponent gets smaller when β increases from 1 can be explained as fol-
lows. What makes the Lyapunov exponent non-zero is the Feynman-Kac path b’s
abilities to seek out zones where W is large. In discrete space, one is stuck with a
specific discretization step ε = 1, which boasts a fixed amount of independence at
any scale, helping in b’s search for high levels of W ; in continuous space, the higher
the regularity, the smaller one may take the discretization step ε (for example, in
the power scale ε = κ1/(6H+2), in the log scale ε ≤ √

κ log3β/2 (1/κ), see Section
5), and thus the more dependence of W ’s spatial increments one is able to exploit
to restrict b’s search.

Another, less optimistic, interpretation, points to the fact that the analogy be-
tween discrete and continuous space may only be taken so far. Indeed, the discrete
model is one which should be called “space-time-white-noise” since W is indepen-
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dent at every site of Z. In continuous space, between the limit of continuous fields
W (e.g. case β > 1) and the case of space-time white noise, there is an entire scale
of regularity of W : in fractional derivatives terminology, an entire 1/2-derivative
must be taken, in a Schwartz distribution sense, to go from the case β = 1 to the case
of white noise. In this sense, there should be much more space between the bounds
of Corollary 27 and any result for space-time white noise in continuous space. This
would contradict any analogy between discrete and continuous Anderson models
driven by space-time white noise. A way out of this “paradox” may come from the
fact that, unlike the continuous Anderson model we study in this article, driven by a
potential that is a bonafide function in space, the same model driven by space-time
white-noise does not seem to have a Feynman-Kac representation, or even a proper
physical meaning. Alternately the paradox may point to a real physical difference
between discrete and continuous space models in all cases.

1.1.3. A casual reader’s guide to our results’ precise statements

The casual reader can skip Section 1.2 except for definitions (3), (4), and the
Feynman-Kac formula (8). After having taken into consideration the first two con-
ditions (E) and (E’) in Section 1.3, the reader will find the main existence result –
relating U (t, x) := E log u (t, x) and a possible existence of λ – in the statements
of Theorem 2 and Proposition 3, both at the beginning of Section 2.1; the remainder
of that section, and any further references to the quantities λ− (x) and λ+ (x) can
be ignored on a first reading. The crux of the proof of the almost-sure existence
Theorem 2 is established in Proposition 11 (Section 2.3). Of fundamental quantita-
tive importance for the entire paper is the quantity U∗ (t) := infx U (t, x), whose
super-additivity is studied in Proposition 5 (Section 2.2), and for which the basic
positivity result supt U∗(t)/t > 0 is given in Proposition 12 (Section 2.4). All the
above results are of a qualitative nature.

Our quantitative results are best appreciated in the two examples of the Hölder
and logarithmic regularity scales of Section 5: after having read Conditions (H)
and (L) therein, with notation relative to Conditions (E’-) and (E”) of Section 1.3,
the reader will appreciate the first three corollaries of Section 5 (Corollaries 25,
26, 27). Precise, more general upper and lower bound results, i.e. not restricted to
any given regularity scale, are given respectively in Sections 3 and 4, in Theorems
14 and 23, still under hypotheses defined in Section 1.3. The last two results of
the article, Corollaries 28 and 29 in Section 5, show to what extent the Lyapunov
exponent and the potential’s modulus of continuity are intertwined.

We are grateful for the comments of two referees, which helped us improve an
earlier version, resulting in a sharper lower bound Theorem 14 and better readability.

1.2. The structure of W and the Feynman-Kac Formula

We define W specifically as follows: it is a separable centered Gaussian field on
R+ × R, defined under some probability space (�, F, P), such that for all s, t in
R+ and all x, y in R:

E [W (t, x) W (s, y)] = min (s, t) Q (x, y) , (3)
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where E is the mathematical expectation with respect to P, and where Q is a bon-
afide covariance function for a real-valued separable Gaussian process on R.1

We define the spatial canonical metric δ of W , by δ2 (x, y) = E
[(

W (1, x)

− W (1, y)
)2]. Then, we trivially have,

δ2 (x, y) = Q (x, x) + Q (y, y) − 2Q (x, y) . (4)

Among the various conditions on Q and/or δ which we will use in this article,
we mention here that a convenient condition leading to our lower bound result,
which was referred to above as a non-H -Hölder continuity condition, is of the type
δ (x, y) ≥ c |x − y|H for |x − y| small. For our upper bound result there is a con-
dition of similar type: δ (x, y) ≤ C |x − y|H . However we will see, particularly in
Section 5, that we are not restricted to this Hölder scale, and that we can choose
other, more irregular functions f (|x − y|) than |x − y|H .

It is occasionally convenient to represent Q as follows: we can assume that
there exists some positive sigma-finite measure µ on some measurable set 
, and
some measurable function f in L2 (R × 
; dx × dµ) such that

Q
(
x, x′) =

∫



f (x, y) f (x′, y)µ (dy) , (5)

where the bar denotes complex conjugation. Information on this representation can
be found in P. Major’s text [13]. To fix ideas, we assume that 
 = R, and indeed all
useful examples can be found in this case. As a classical example, f (x, y) = eixy

and µ is symmetric and of mass one if and only if W real-valued and spatially
homogeneous.

When the Anderson model equation (1) is understood in the so-called Stra-
tonovich sense (this sense is used in all works mentioned in the Introduction), it
is known that, with b representing a Wiener process started at 0 with variance κ

defined on some other probability space (�b, Fb, Pb) which is not related to W ,
we have for fixed t and x, the so-called Stochastic Feynman-Kac formula

u (t, x) = Eb

[
exp

(∫ t

0
W (ds, bt − bs + x)

)]
, (6)

as long as the regularity of W in the space parameter is sufficient to allow the
right-hand side of (6) to actually make sense from a measure-theoretic standpoint.
When W is almost-surely uniformly continuous in space, this formula can easily
be established, by referring to the proof in [7], or a different proof in [16], although

1 Many of the results in this article are valid if we replace R by Rd for some integer d > 1,
with essentially identical proofs; for the sake of notational simplicity, we work with d = 1
throughout. Our Positivity and Lower Bound sections are non-trivial to extend to higher
dimensions: in fact, the transience properties of b in higher dimensions make it less than
clear that any generalization of our techniques is possible. The extension of the Upper Bound
section to d > 1 would presumably be feasible, but the price to pay are a certain number of
technical difficulties due to the dependence of the jump times and the discrete-time path in
our discretization method, as were encountered in [7].
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these two articles make the additional unnecessary assumption that W is Hölder-
continuous in space in order to justify formula (6). We do not know of another
published proof of formula (6) under mere uniform continuity of W , yet we do not
elaborate further on this issue, since it is only tangential to our purpose.

For the reader who is simply curious as to whether the stochastic integral in
formula (6), and its unusual notation, is well-defined, it is convenient to assume that
the spectral measure µ defining Q actually has a density: dµ/dy = q (y). Then, it
is sufficient to recall that W can be represented using a white-noise (independently
and homogeneously scattered Gaussian) measure M on R+ × R, by the formula

W (t, x) =
∫

R+×R
1[0,t] (s) M (ds, dy)

√
q (y)f (x, y) , (7)

so that we can take the following formula as a definition:∫ t

0
W (ds, bt − bs + x) :=

∫
[0,t]×R

M (ds, dy)
√

q (y)f (bt − bs + x, y) .

This is a so-called Wiener-Itô integral with respect to the white noise measure M

associated with W . Also, note that
√

q can be absorbed into f . If Q does not have
a density q, one can still define the stochastic integral in (6) by referring to the
spectral measure of W itself. For more details and a more general representation,
consult [13].

We can already see that when t, x are fixed, we have the following
non-time-reversed Feynman-Kac formula:

u (t, x) = Eb

[
exp

(∫ t

0
W (ds, x + bs)

)]
, (8)

where the equality holds in distribution under P. This formula holds by the inde-
pendence and stationarity of the increments of W in time, by reversing time in the
stochastic integral in (6). It is crucial to note that formula (8) does NOT hold for
two values u (t, x) and u

(
t ′, x

)
simultaneously. When trying to estimate the law

of such a pair, one must revert to the formula with time reversal. In this article, the
formula (8) is only used to exploit the law of u (t, x) for fixed t, x, i.e. the marginal
distributions of the stochastic process u (·, x).

As a last aid in understanding the structure of the Feynman-Kac formula, we
mention that for any fixed continuous path b and any fixed x in R, the process
Xb· (x) defined by

Xb
t (x) :=

∫ t

0
W(ds, x + bs)

is in fact a
{FW

t

}
t≥0-Martingale, where

{FW
t

}
t

is the filtration induced by W , and
that one can easily calculate the joint variation

< Xb
· (x), Xb′

· (x) > (t) =
∫ t

0
Q(x + bs, x + b′

s)ds.
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The techniques used in this article do not need to refer to this specific Martingale
property. We are currently investigating directions where this property may be use-
ful for tackling open problems related to our current results (see end of Section
2.1).

1.3. Gaussian models - Assumptions

In this section we provide all the assumptions on W needed for our proofs. At
the beginning of each section we will specify the particular hypotheses needed. In
order to make sure that the Feynman-Kac formula holds, we will take almost-sure
continuity of W in space as a standing assumption in this entire article (see Remark
1 and paragraph following).

Define

� (ε) := inf {δ (x, y) : |x − y| ≥ ε} ,

δ (ε) := sup {δ (x, y) : |x − y| ≤ ε}
Note that these are increasing functions for ε ≥ 0. Consider the following condi-
tions on the spatial distribution of W .

(E) [Boundedness of the variances]

sup {Q (x, x) : x ∈ R} < ∞
(E’) [Nondegeneracy].There exists ε0 > 0 such that

c0 := |� (ε0)|2 > 0.

(E’-) [Specific nondegeneracy].There exists ε0 > 0 such that for all ε ∈ (0, ε0),

� (ε) > 0, lim
ε→0+

� (ε) = 0.

(E”) [Specific regularity]. The following limit holds:

lim
ε→0+

δ (ε) = 0.

Here follow an analysis of these conditions, including remarks on equivalent
formulations and significance.

• The boundedness condition (E) forces the generic magnitude of W not to get
too big. The nondegeneracy condition (E’) essentially only implies that W

is not flat in space. These are very weak conditions on Q. In particular, one
can see that the homogeneous case is a small subset of those random fields
satisfying (E) and (E’) . These conditions are all that is needed to derive all
our basic existence and positivity results. Condition (E’) is equivalent to the
existence of ε0 > 0 such that δ (x, y) ≥ √

c0 for |x − y| ≥ ε0.
• The uniform nondegeneracy hypothesis (E’) has to be strengthened to (E’-)

for certain proofs in the Lower Bound and Upper Bound sections, when more
quantitative arguments are used. This condition is equivalent to the existence of
a positive increasing function �̄ such that δ (x, y) ≥ �̄ (ε) for all |x − y| ≥ ε.
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• The generic upper bound found in 1998 in [7] was of the order log−1
(
κ−1

)
,

an order which coincides with the discrete space bounds, according to [6] and
[4]. In order to have a better upper bound in continuous space, it is necessary to
assume something like an upper-bound analogue of Condition (E’) . This idea
was already conjectured in [17], in their Hölder-scale condition (H), although
no attempt was made there to formulate an upper bound. Here, with Condition
(E”), not only are we able to prove an upper bound, but unlike in [17], spatial
homogeneity will not be needed, and we are not restricted to the Hölder scale.
Condition (E”) is equivalent to the existence of a positive increasing function
δ̄ with lim0+ δ̄ = 0 and δ (x, y) ≤ δ̄ (ε) for all |x − y| ≤ ε.

Remark 1. Recall that we have as a standing assumption that W is almost-surely
continuous. The theory of Gaussian regularity can be used to argue that we should

then have, in the context of Condition (E") , δ (r) = o
((

log
(
r−1

))−1/2
)

.

• More specifically, under Condition (E”) on δ, the Gaussian regularity theory
implies that δ (r)

(
log
(
r−1

))1/2
is an almost-sure modulus of continuity for

W in space. For example if δ (r) ≤ rH , (E”) implies that W is γ -Hölder-con-
tinuous in x for all γ < H . This is the situation studied in [17]. Condition
(E”) is not restricted to the Hölder scale since it encompasses the following
logarithmic scale of regularity, studied in detail in [18] and in [14], given by

δ (r) =
(

log
(
r−1

))−β

for any β > 0: it is simple to see that continuity of W (i.e. the above Remark 1)
only imposes the restriction β > 1. This is a consequence of the so-called Dud-
ley-Fernique theory for Gaussian regularity [see details in [18] for example]
which implies that if β ≤ 1, the corresponding W is not uniformly contin-
uous, in fact is unbounded, on any interval in space. In this highly irregular
situation, it is not clear to us that there is any way to prove the Feynman-Kac
formula; if there were a rigorous interpretation of the formula, for example
by using approximations, we conjecture that it would be impossible to manip-
ulate the formula to derive upper- and lower-bound results such as those we
obtain herein. Thus the condition β > 1 in our logarithmic scale seems to be
necessary for any development using our techniques.

2. Existence of the almost-sure Lyapunov exponent

2.1. Introduction

In this section we study the existence of

λ = lim
t→∞

log u (t, x)

t
,

for a general Gaussian field W . Of paramount importance is the quantity

U (t, x) = E
[
log u (t, x)

]
. (9)
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The goal of this entire section is to establish the following result.

Theorem 2. Assume (E) and (E’) are satisfied. With U defined in (9), if

λ (x0) := lim
t→∞
t∈N

1

t
U (t, x0) (10)

exists for a fixed x0 ∈ R, then the Lyapunov exponent for the solution of the sto-
chastic parabolic Anderson model (1) restricted to integers, i.e. limt→∞,t∈N t−1

log u (t, x0), exists for that x0 almost surely, is finite, positive, and non-random.
Specifically for any x0 satisfying (10), almost surely

lim
t→∞
t∈N

1

t
log u (t, x0) = λ (x0) = lim

t→∞
t∈N

1

t
U (t, x0) .

Under some circumstances, one can prove that λ (x0) is constant almost every-
where, e.g as in the case of compact space (see Remark and 4 and Proposition 8),
or in the next proposition, which is obtained for free.

Proposition 3 (The Homogeneous case). Under the hypothesis of Theorem 2, if
in addition the Gaussian field W is spatially homogeneous, then the Lyapunov
exponent of the Anderson model restricted to integers

λ (x) := lim
t→∞
t∈N

1

t
U (t, x) = lim

t→∞
t∈N

1

t
log u (t, x)

exists almost surely, is finite, positive, non-random, and does not depend on x; i.e.
there exists λ∗ > 0 such that λ (x) = λ∗ for all x.

In this paragraph, we give an overview of the structure and results of the Section.
The first step is to study the expected value U (t, x). Without a strong hypothesis
such as homogeneity, it may not be possible to control this quantity in large time.
However, we show that the study of the function infx U (t, x) can be fruitful. A
property of superadditivity is proven for this function which implies the existence
of the limit

λ∗ = lim
t→∞ t−1 inf

x
U (t, x) .

Then, we connect this limit with t−1U(t, x). If the limit of t−1U(t, x) exists when
t → ∞ for a particular x then this limit is at least as large as λ∗. Subsection
2.4 is devoted to the proof of positivity of λ∗ under the non-degeneracy condi-
tion (E’) , which then immediately implies the uniform positivity of λ− (x) :=
lim inf t→∞ t−1U (t, x). Although Subsection 2.4 is relegated to the end of the
present Section 2 for purposes of readability, the proof of λ∗ > 0 is entirely self-
contained, within Subsection 2.4. A study of λ− (x), without the use of the non-
degeneracy condition (E’) , is also given (Proposition 8), which includes a partial
result of constancy of λ− (x).
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Remark 4. We leave it to the reader to rephrase the statements of Theorem 2 and
Proposition 3 without the assumption (E’) : one only needs to replace “positivity”
by “non-negativity”. It is also useful, and trivial, to see that if λ− (x) is constant,
then the Lyapunov exponents identified in Theorem 2 and Proposition 3 coincide
with this constant at any point x. See Proposition 8 for non-homogeneous cases
where this constancy holds.

The final step in proving the almost sure statement in Theorem 2 and Proposition
3 is to make the connection between

lim
t→∞ U(t, x)/t = lim

t→∞ E
[
t−1 log u (t, x)

]
and limt→∞ t−1 log u (t, x) for those values of x ∈ R for which the first limit
exists. To this end we estimate the Malliavin derivative of log u (t, x) efficiently,
and use non-Gaussian concentration inequalities in order to derive an almost-sure
result (Proposition 11): we obtain that [U (t, x) − log u (t, x)]/t converges to 0
almost surely; this holds regardless of the behavior of U (t, x), but it is only when
U is asymptotically linear that an almost-sure Lyapunov exponent can be deduced.

Arguably, Proposition 11 can be valuable even if U (t, x) is not asymptotically
linear in t . More precisely we can reformulate the proposition as

u (t, x) = exp (U (t, x) + o(t))

where it is known from Section 2.4 that U (t, x) is the dominant term. We also prove
herein that U (t, x) ≤ t supx Q (x, x), which means that U does not grow faster
than linearly. Thus Proposition 11 gives a deterministic function around which the
almost-sure exponential rate of change of u concentrates, even if it is not asymptot-
ically constant. Such a situation occurs when λ+ (x) := lim supt→∞ U (t, x) /t >

λ− (x) := lim supt→∞ U (t, x) /t . One then has an exponential rate of increase
t−1 log u (t, x) which, almost surely, oscillates between the values λ+ (x) and
λ− (x). Identifying examples of this situation is an open problem. Presumably,
one should be able to find such an example if the potential W is highly inhomoge-
neous in space (e.g. such that V ar [W (1, x)] achieves at least two very different
levels).

Our final existence result is expressed as a limit of the continuous time process
t−1 log u (t, x) along a fixed sequence of times. We use the sequence of positive
integer times in this article, although other sequences can be considered success-
fully. The majority of previous papers on the almost-sure existence of Anderson
models’ Lyapunov exponents also work with the sequence of integers, but often
ignore the fact that this does not prove existence of the limit of t−1 log u (t, x)

when t is allowed to tend to infinity along arbitrary sequences of times. The articles
[7] and [16] do consider results along all possible sequences simultaneously, but do
not prove any existence results, and thus fall short of addressing the real problem.
We are well aware of this problem in our present work as well.

To give some insight as to why this is a much harder problem than many may be-
lieve, note that one would need to show, for example, that

[
log u (t, x) − log u (n, x)

]
/n converges to 0 as n → ∞ for all t ∈ [n − 1, n]. One needs only to attempt
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writing down Ito’s formula for the difference log u (t, x) − log u (n, x) to see that
what appears to make the estimation so arduous is precisely the time-reversal in the
Feynman-Kac formula (6). We suspect that if W is sufficiently regular in space, the
result may be true, but all our attempts have failed so far, even in the homogeneous
case.

2.2. Convergence in the mean

Let U (t, x) be defined by (9) for all x ∈ R and all t ∈ R+. The problem of exis-
tence of the Lyapunov exponent when x ∈ R has never been solved, and in the
case when W is not homogeneous, the question of existence has not been answered
even for x ∈ Z. One way to understand why the non-homogeneous case is more
difficult resides in the fact that the superadditive or subadditive properties do not
hold in general for U (·, x). However, consider the quantity

U∗ (t) := inf
x∈R

U (t, x) = inf
x∈R

E
[
log u (t, x)

]
.

We have:

Proposition 5. Under the hypothesis (E), U∗ is a superadditive function (i.e.,
U∗ (t + s) ≥ U∗ (t)+U∗ (s) for all s, t in R+). The limit λ∗ := limt→∞ t−1U∗ (t)

exists, is non-negative, is finite, and equals supt U∗ (t) /t .

Proof. In this proof, we will make use of the following notation. For t fixed,

Eb [F (b· − bt + y)]|y=bt

where F depends on b· only via the values br for r ≥ t , represents the quantity

Eb [F (b· − bt + y)] ,

where, after the expectation is taken, the fixed value y is replaced with the random
value bt . By the independence of increments of b, the above quantities are of course
equal to

Eb

[
F (b·) |Fb

t

]
.

By the Feynman-Kac formula (8), and by conditioning inside Eb with respect
to the filtration

{Fb
t

}
t≥0 generated by b, and using the independence of increments

of b, we have

U (t + s, x) = E
[
log
(
Eb

{
e
∫ t+s

0 W(dr,x+br )
})]

= E
[
log
(
Eb

{
e
∫ t

0 W(dr,x+br )e
∫ t+s
t W(dr,bt+br−bt+x)

})]
= E

[
log
(
Eb

{
e
∫ t

0 W(dr,x+br )Eb

[
e
∫ t+s
t W(dr,bt+br−bt+x)

∣∣∣Fb
t

]})]
= E

[
log

(
Eb

{
e
∫ t

0 W(dr,x+br ) Eb

[
e
∫ t+s
t W(dr,br−bt+y+x)

]∣∣∣
y=bt

})]
.
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Now define the shifted potential θtW by θtW
(
t ′, x

) = W
(
t + t ′, x

)−W (t, x) for
all x ∈ R and t ′ ≥ 0. Note that then, θtW has the same distribution as W , and that
r 	→ br − bt for t fixed and r ≥ t has the same distribution as r 	→ br−t . Thus, we
can rewrite things as:

U (t + s, x) = E
[
log
(
Eb

[
e
∫ t

0 W(dr,x+br )
]

× Eb


 e

∫ t
0 W(dr,x+br )

u(t, x)
Eb

[
e
∫ s

0 θtW(dr ′,y+br′+x)
]∣∣∣∣∣

y=bt








= U (t, x)+E


log


Eb


 e

∫ t
0 W(dr,br+x)

u (t, x)
Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]∣∣∣∣∣

y=bt






 .

Definition 6. We define a (random) measure Pb,W,t,x on the same space as Pb by
the formula

Pb,W,t,x [A] = Eb


exp

(∫ t

0 W (dr, br + x)
)

u (t, x)
1A


 . (11)

Remark 7. By the Feynman-Kac formula (8), we have Pb,W,t,x [�] = 1 so (11)
clearly defines a probability measure.

Now, using Jensen’s inequality for the logarithm, we get

U (t + s, x) = U (t, x) + E
[

log

(
Eb,W,t,x

{
Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]∣∣∣

y=bt

})]

≥ U (t, x) + E
[
Eb,W,t,x

{
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]∣∣∣

y=bt

}]
.

It is important to note that we may not use Fubini’s theorem here because Pb,W,t,x

depends on the randomness in W . However, we can revert to the original nota-
tion, which allows us to use Fubini safely, and then exploit the fact that the terms
involving W without the shift θt are independent of those involving this shift, to
obtain:

U (t + s, x) ≥ U (t, x)

+E

[
Eb

{
e
∫ t

0 W(dr,br+x)

u (t, x)
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]∣∣∣

y=bt

}]

= U (t, x)

+Eb

[
E

{
e
∫ t

0 W(dr,br+x)

u (t, x)
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]∣∣∣

y=bt

}]

= U (t, x)

+Eb

{
E

[
e
∫ t

0 W(dr,br+x)

u (t, x)

]
E
[
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]]∣∣∣

y=bt

}
.
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Taking an infimum over all values of x yields

U∗ (t + s) ≥ U∗ (t)

+ inf
x∈R

Eb

{
E

[
e
∫ t

0 W(dr,br+x)

u (t, x)

]
E
[
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]]∣∣∣

y=bt

}
.

However, we can obtain a lower bound by taking an infimum over all possible
values of x + y, after the expectation with respect to P is taken in the second term
in the product above, but before replacing y by bt . We then recognize the quantity
U∗ (s) because P is θt -invariant. Then, using Fubini again we get

U∗ (t + s) ≥ U∗ (t) + inf
x∈R

Eb

{
E

[
e
∫ t

0 W(dr,br+x)

u (t, x)

]

× inf
x+y∈R

{
E
[
log Eb

[
e
∫ s

0 θtW(dr ′,br′+y+x)
]]}∣∣∣∣

y=bt

}

= U∗ (t) + inf
x∈R

E


Eb


 e

∫ t
0 W(dr,br+x)

u (t, x)
U∗ (s)

∣∣∣∣∣
y=bt






= U∗ (t) + U∗ (s) inf
x∈R

E


Eb


exp

(∫ t

0 W (dr, br + x)
)

u (t, x)






= U∗ (t) + U∗ (s) .

Here we used Remark 7 which ends the proof of the proposition’s first statement.The
remaining statements are nearly trivial. First, since U∗ is super-additive, U∗ (t) /t

has a limit when t → ∞ which equals supt U∗ (t) /t . Thus we only need to show
that U∗ (t) /t is bounded for all t . For b fixed, we calculate the variance of the
centered Gaussian r.v.

∫ t

0 W (ds, bs + x) using (7) as

E

[(∫ t

0
W (ds, bs + x)

)2
]

=
∫ t

0

∫
y∈R

|f (bs + x, y)|2 µ (dy) ds

=
∫ t

0
Q (bs + x, bs + x) ds ≤ t sup

z∈R
Q (z, z) .

Then, note that by Jensen’s inequality and Fubini’s lemma, and the hypothesis (E),

U (t, x) = E log Eb

(
exp

∫ t

0
W (ds, bs + x)

)

≤ log EEb

(
exp

∫ t

0
W (ds, bs + x)

)

= log EbE
(

exp
∫ t

0
W (ds, bs + x)

)
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= log Eb exp

(
1

2
E

[(∫ t

0
W (ds, bs + x)

)2
])

≤ log Eb exp

(
t

2
sup
z∈R

Q (z, z)

)
= t

2
sup
z∈R

Q (z, z) .

This proves that the limit of U∗ (t) /t is bounded above by 2−1 supz∈R Q (z, z).
To prove that this limit is non-negative, we use Jensen’s inequality by moving the
logarithm inside Eb, to get that:

U (t, x) ≥ EEb

(
log exp

∫ t

0
W (ds, bs + x)

)
= 0, (12)

finishing the proof of the proposition. 
�

Proposition 5 is of crucial importance for the proof of the lower bound in Section
3. Moreover, in the homogeneous case this proposition enables us to conclude that
the existence of the Lyapunov exponent holds, as is spelled out in Corollary 3, where
the Lyapunov exponent is seen to be constant. The next proposition investigates the
possible constancy of another notion of lower bound.

Proposition 8. Define

λ− (x) := lim inf
t→∞

1

t
U (t, x) .

Assume Condition (E). Let λinf := infx λ− (x). Then either the function λ−(x)

is bounded away from its infimum on any finite interval, or λ− (x) = λinf for
Lebesgue-almost every x.

The latter situation occurs when the SPDE (1) is defined for x in a compact
smooth manifold.

Proof. To establish the first statement, we can write:

u(t, x) = Eb

[
e
∫ 1

0 W(ds,x+bs)e
∫ t

1 W(ds,x+bs)
]

= Eb

[
Eb

[
e
∫ 1

0 W(ds,x+bs)e
∫ t

1 W(ds,x+bs)
∣∣∣Fb

1

]]
= Eb

[
e
∫ 1

0 W(ds,x+bs)Eb

[
e
∫ t

1 W(ds,x+b1+bs−b1)
∣∣∣Fb

1

]]
= Eb

[
e
∫ 1

0 W(ds,x+bs)Eb

[
e
∫ t−1

0 θ1W(dr,x+b1+br )
]]

,

where we used the independence of the increments of b on [1, t − 1] respectively
[0, 1]. Now using Jensen’s inequality, Fubini, and the identical distribution of W
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and θ1W , we obtain:

U(t, x) = E
[
log Eb

[
e
∫ 1

0 W(ds,x+bs)Eb

[
e
∫ t−1

0 θ1W(dr,x+b1+br )
]]]

≥ E
[
Eb

[∫ 1

0
W (ds, x + bs) + log Eb

[
e
∫ t−1

0 θ1W(dr,x+b1+br )
]]]

= Eb

[
E [W (ds, x + bs)] + E

[
log Eb

[
e
∫ t−1

0 W(dr,x+b1+br )
]]]

= Eb

[
E
[
log u(t − 1, x + b1)

]]
= Eb [U (t − 1, x + b1)] .

Recall from (12) that for any x, U (t, x) /t ≥ 0. Therefore, by Fatou’s lemma we
have, for each fixed x,

lim inf
t→∞

1

t
U (t, x) ≥ Eb

[
lim inf
t→∞

1

t
U (t − 1, x + b1)

]
,

i.e., for all x,

λ− (x) ≥ Eb

[
λ− (x + b1)

] =
∫

ρ (dz) λ− (x + z) . (13)

where ρ (dz) is the Gaussian measure (2π)−1/2 dz exp
(−z2/2

)
.

We proceed with a proof by contradiction. Let λinf = infx λ− (x). Assume λ−
is not a constant a.e. Therefore, since ρ and the Lebesgue measure are equivalent,
we have

ρ (x : λ− (x) > λinf) > 0.

Hence by monotone convergence, There exists ε > 0 such that

ρ (x : λ− (x) ≥ λinf + ε) > 0.

This means that there is a set I of positive Lebesgue measure such that for all x ∈ I,
λ− (x) ≥ λinf + ε. By definition, even if λinf is not attained, there exists a sequence
(xn)n such that λ− (xn) converges to λinf . Now, using (13), we have for each n,

λ− (xn) ≥
∫

ρ (dz) λ− (xn + z)

=
∫
I−xn

ρ (dz) λ− (xn + z) +
∫

R\I−xn

ρ (dz) λ− (xn + z)

≥ (ε + λinf) ρ (I − xn) + λinf (1 − ρ (I − xn))

= λinf + ερ (I − xn)

If we assume that the sequence (xn)n has an accumulation point (non-infinite), then
as n → ∞, ρ (I − xn) will tend ρ (I), and since λ− (xn) tends to λinf , we obtain
a contradiction.
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If on the contrary we cannot assume that (xn)n has an accumulation point, this
implies that with

εM + λinf := inf {λ− (x) : x ∈ [−M, M]} ,

εM > 0 for any M , which is the first alternative of the proposition.
To establish the third statement, we must reinterpret the law of b in the Feyn-

man-Kac formula to be that of the Markov process whose generator is the Laplace-
Beltrami operator on a smooth compact manifold. Since the Lebesgue measure is
still absolutely continuous with respect to the law of b1, the previous arguments
still hold, and we can apply the second alternative of the proposition, since (xn)n
must have an accumulation point. 
�

Remark 9. The constancy of λ− in Proposition 8 is not needed for any of the other
results in this paper to hold. In this sense, this constancy property appears as a
bonus in our results, for which homogeneity is not required.

2.3. Almost-sure convergence

We begin with a lemma from stochastic analysis. The filtration of M is the family
of sigma-fields (Ft )t≥0 defined by setting Ft to be the sigma-field generated by
all the random variables M ([0, s] × B) where s ≤ t and B is a Borel set in R.
For a random variable F in the space L2 (�, F, P) generated by M , its Malliavin
derivative DF with respect to M , when it exists, is a random field on R+ × R in
accordance with the usual definitions from the theory of abstract Wiener spaces.
One may consult the corresponding chapter in [12] for a precise definition. For our
purposes, it will be sufficient to note the following two important properties of D.

1. Let f be a non-random function in L2 (R+ × R,ds × µ (dy)). For any fixed
t ≥ 0, let F = ∫∫

R+×R f (s, y) M (ds, dy).Let g be a function in C1 (R), and
let g′ be the usual derivative of g. Then G = g (F ) has a Malliavin derivative
given for all s ≥ 0 and all y ∈ R by

Ds,yG = g′ (F ) f (s, y)

as long as g′ (F ) is in L2 (�). Note in particular that Ds,yF = f (s, y)

2. If G has a Malliavin derivative and G is Ft -measurable for some t ≥ 0, then
for all y ∈ R and all s > t we have Ds,yG = 0.

It is informative to note that D is the only closable operator that satisfies all
multidimensional analogues of the first condition above (g in C1

(
Rd
)
, d arbitrary).

This fact will not be used herein. It is convenient to define the domain of the Mal-
liavin derivative D as the so-called set D1,2. The book [12] can again be consulted
for definitions and properties of this set, but here it is sufficient to say that when
G ∈ D1,2, then DG ∈ L2 (� × R+ × R, P×ds × µ (dy)), and one immediately
sees that the G described in the first property above is indeed in D1,2.
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Lemma 10. Let G be a centered random variable in L2 (�, F, P). Assume G ∈
D1,2 and G is Ft -measurable. Then for every integer k ≥ 0, there exists a constant
Ck that only depends on k such that

E
[
G2k

]
≤ Ck

{
E
[∫

y∈R
µ (dy)

∫ t

0

(
E
[
Ds,yG|Fs

])2
ds

]}k

.

Proof. We need the following version of the Clark-Ocone representation theorem
(see [12]). Since G ∈ D1,2 and EG = 0,

G =
∫∫

R+×R
E
[
Ds,yG

∣∣Fs

]
M (ds, dy) .

Note that the stochastic integral above is of Itô type, since the integrand
E
[
Ds,yG

∣∣Fs

]
is adapted to the filtration (Fs)s≥0 of M . In particular, assume

now, as we may by our hypothesis, that G is Ft -measurable for some fixed t ≥ 0.
Then we can rewrite the above formula as G = Y (t) where the stochastic process
Y is defined for all r ∈ [0, t] by

Y (r) =
∫∫

[0,r]×R
E
[
Ds,yG

∣∣Fs

]
M (ds, dy) .

Since the integral is of Itô type, with square-integrable integrand (using the hypoth-
esis G ∈ D1,2), we see that Y is a martingale and that its quadratic variation is
given by

〈Y 〉 (ds)

ds
=
∫

R

(
E
[
Ds,yG

∣∣Fs

])2
µ (dy) ,

from which we immediately get

E [〈Y 〉 (r)] = E
∫

R

∫ s

0

(
E
[
Ds,yG

∣∣Fs

])2
dsµ (dy) .

The Burkholder-Davis-Gundy inequality can be applied, yielding in particular the
statement of the lemma when r = t . 
�

We now apply this lemma to G = t−1 log u (t, x) where t and x are fixed. By
property 2 above, we have Ds,yG = 0 for s > t . By property 1 above, the operator
D is clearly linear, and operates only on the randomness of M , so that we may
write, using the formula (8) for u,

Ds,yG = 1

t

1

u (t, x)
Eb

[
Ds,y exp

(∫∫
[0,t]×R

f (bs + x, y) M (ds, dy)

)]

= 1

t

1

u (t, x)
Eb

[
f (bs +x, y) exp

(∫∫
[0,t]×R

f (bs +x, y) M (ds, dy)

)]
.

We rewrite this formula using the probability measure Pb,W,t,x defined by (11). We
have

Ds,yG = 1

t
Eb,W,t,x [f (bs + x, y)] . (14)
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Now using the previous lemma for k ≥ 1 coupled with several uses of Jensen’s
inequality and Fubini’s lemma, plus hypothesis (E), we get

E
[
(G − E [G])2k

]

≤ 1

t2k
Ck

{
E
[∫

y∈R
µ (dy)

∫ t

0

(
E
[
Eb,W,t,x [f (bs + x, y)] |Fs

])2
ds

]}k

≤ 1

t2k
Ck

{
E
[∫

y∈R
µ (dy)

∫ t

0
E
[
Eb,W,t,x

[
|f (bs + x, y)|2

]
|Fs

]
ds

]}k

= 1

t2k
Ck

{
E
[∫ t

0
E
[
Eb,W,t,x

[∫
y∈R

µ (dy) |f (bs + x, y)|2
]

|Fs

]
ds

]}k

= 1

t2k
Ck

{
E
[∫ t

0
E
[
Eb,W,t,x [Q (bs + x, bs + x)] |Fs

]
ds

]}k

≤ 1

tk
Ck sup

x∈R
Q (x, x)k . (15)

In the remainder of this section and the next one, we assume that t can take
only positive integer values. What we have just proved is that for any fixed x ∈ R
and t ∈ N, we have

E

[(
1

t
log u (t, x) − 1

t
U (t, x)

)2k
]

≤ t−kCQ,k (16)

where CQ,k is a constant depending only on k and Q. Now by Chebyshev’s inequal-
ity, for any constant C (t),

P
[∣∣∣∣1t log u (t, x) − 1

t
U (t, x)

∣∣∣∣ > C (t)

]
≤ CQ,k

tkC (t)2k
. (17)

To be able to apply the Borel-Cantelli lemma, we may for example require that
tkC (t)2k = tβ where β > 1. This means C (t) = t−(k−β)/2k , so that by choosing
β − 1 > 0 and small enough, we only need to require that k > 1 to guarantee that
limt→∞ C (t) = 0. In particular, we can state the following result.

Proposition 11. Almost surely, for any fixed x ∈ R,

lim
t→∞
t∈N

(
1

t
log u (t, x) − 1

t
U (t, x)

)
= 0.

Combining this with the result of the previous section, the proof of Theorem
2 is complete. To prove Proposition 3, it is sufficient to note that by homogeneity,
U (t, x) does not depend on x, so that U (t, x) ≡ U∗ (t) is superadditive, and thus
λ = λ∗ = limt→∞ U (t, x) /t exists, so that Proposition 3 follows immediately
from Theorem 2 and Proposition 5.
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2.4. Positivity

The purpose of this section is only to establish the next proposition, whose proof
does not depend on any of the results described above. The proposition provides a
structure and a crucial ingredient for the proof Theorem 14.

Proposition 12. In the notation of Proposition 5, if (E) and (E’) hold, λ∗ > 0.

Proof. The main idea in this proof is to restrict the Feynman-Kac paths b to regions
where the canonical metric δ2 is bounded below, using Condition (E’) . Throughout
the proof, except for Step 3where the superadditive limiting property of U∗ is used,
our time t > 0 is fixed (large enough) and x ∈ R is fixed. We first choose a pair
(x0, y0) such that x0 = x and y0 = x − ε0. By Condition (E’) for all x′ ≥ x0
and y′ ≤ y0, we have δ2

(
x′, y′) ≥ c0. It will be notationally convenient to keep

the identities of x0 and x separate. We will also introduce the shorthand notation
bx
s := x + bs . Here we continue to use a standard Brownian motion b starting from

0 under Pb, so that bx starts from x under Pb.

Step 1.Controlling the probabilities of bx being outside of [x0, y0]. Let

A+ :=
{

inf
s∈[t,2t]

bx
s ≥ x0

}
, and A− :=

{
sup

s∈[t,2t]
bx
s ≤ y0

}
.

We begin with a simple result, whose proof we include for completeness. As stated,
it refers to the law of standard Brownian motion started from x = x0. If one prefers
to use the Brownian motion started from x with variance κ (as is required when
referring to the Feynman-Kac formula for equation (1)), one only needs to replace
t by κt in the statement of the lemma below. This modification changes nothing to
the usage of the lemma in the current proof of the proposition.

Lemma. For any c > 2, there exists t0 non-dependent on x such that if t ≥ t0 then,
Pb

[
A+
]

> (cπt)−1/2 and Pb

[
A−
]

> (cπt)−1/2.

Proof of the lemma. In this proof, as always, note that under Pb, b is a standard
Brownian motion started from 0. Then, with T−1 the first hitting time of −1 by b,
and the Markov property at time t , we can write

Pb

[
A+
] =

∫ ∞

x0

Pb [bt + x ∈ dz] Pb

[
inf

s∈[t,2t]

(
bx
s − bx

t

)+ z ≥ x0|bx
t = z

]

=
∫ ∞

x0

Pb [bt + x ∈ dz] Pb

[
inf

s∈[0,t]
bs ≥ x0 − z

]

≥
∫ ∞

x0+1
Pb [bt + x ∈ dz] Pb

[
inf

s∈[0,t]
bs ≥ −1

]

= Pb

[
b1 ≥ (x0 + 1 − x) /

√
t
]

Pb

[
T−1 > t

]
.

In the last expression, as t → ∞, the first term converges to 1/2 uniformly in x

since x0 − x = 0, while the second satisfies limt→∞ Pb

[
T−1 > t

]√
t = √

2/π .
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The result follows for A+. The proof for A− starts identically. We then arrive at the
fact that

Pb

[
A−
] ≥ Pb

[
b1 ≤ (y0 − 1 − x) /

√
t
]

Pb [T1 > t] .

Since y0 − 1 − x = −1 − ε0, the first factor in the last expression converges to 1/2
uniformly in x, while the second satisfies limt→∞ Pb [T1 > t]

√
t = √

2/π . The
lemma follows. 
�

Continuing with the proof of the proposition, let x1 > x0 and let y1 < y0, and
define

Ã+ = {
x1 ≥ bx

s ≥ x0 : ∀s ∈ [t, 2t]
}
,

Ã− = {
y1 ≤ bx

s ≤ y0 : ∀s ∈ [t, 2t]
}
.

If x1 (resp. y1) tends to +∞ (resp. −∞), then Pb

[
Ã+
]

tends to Pb

[
A+
]

(
resp.Pb

[
Ã−
]

tends to Pb

[
A−
])

. Therefore, using the above lemma, for any

fixed t ≥ t0, there exist fixed values of x1 and y1 (which may depend on t, x, ε0),
such that

Pb

[
Ã+
]

≥ 1

4
√

t
and Pb

[
Ã−
]

≥ 1

4
√

t
.

Step 2.Restricting bx . Let Xb = Xb (2t) = ∫ 2t

0 W
(
ds, bx

s

)
. We have

U (2t, x) = E
[
log Eb

[
eXb

]]
≥ E

[
log Eb

[
eXb1

Ã+ + eXb1
Ã−

]]
≥ E

[
log Eb

[
max

{
eXb1

Ã+; eXb1
Ã−

}]]
≥ E

[
max

{
log Eb

[
eXb1

Ã+

]
; log Eb

[
eXb1

Ã−

]}]
=E

[
max

{
log
(
Eb

[
eXb |Ã+

]
Pb

[
Ã+
])

; log
(
Eb

[
eXb |Ã−

]
Pb

[
Ã−
])}]

.

By the result of the previous step, and using Jensen’s inequality, we have for any
t ≥ t0

U (2t, x) ≥ − log
(

4
√

t
)

+ E
[
max

{
Eb

[
Xb|Ã+

]
; Eb

[
Xb|Ã−

]}]
= − log 4 − (log t) /2 + E

[
max

{
Z̃+, Z̃−

}]
.

Here we have introduced

Z̃+ := Eb

[
Xb|Ã+

]
and Z̃− := Eb

[
Xb|Ã−

]
;

these form a pair of centered jointly Gaussian random variables. Indeed, they
are both linear combinations of values of a single centered Gaussian field. This
implies that the random variable Z̃+ − Z̃− is centered Gaussian. Now let σ =
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(
E
[(

Z̃+ − Z̃−
)2
])1/2

. Then
(
Z̃+ − Z̃−

)
/σ is a standard normal random var-

iable. Thus we can write E
[∣∣∣Z̃+ − Z̃−

∣∣∣ /σ] = √
2/π . This, plus the trivial fact

that max (a, b) = (|a − b| + a + b) /2 , imply

E
[
max

{
Z̃+, Z̃−

}]
= 2−1E

[∣∣∣Z̃+ − Z̃−
∣∣∣]

= (2π)−1/2
(

E
[(

Z̃+ − Z̃−
)2
])1/2

.

We thus conclude

U (2t, x) ≥ − log 4 − (log t) /2 + (2π)−1/2
(

E
[(

Z̃+ − Z̃−
)2
])1/2

.

Step 3.Statement of strategy. By definition of U∗, and by the fact that λ∗ =
supt U∗ (t) /t , we have λ∗ ≥ infx U (2t, x) /(2t) for any fixed t . So we only need
to identify a single value t such that U (2t, x) is bounded below uniformly in x.
From the result of the previous step, the proposition will thus be established if we

can prove that log t = o

(
E
[(

Z̃+ − Z̃−
)2
])1/2

, and that this holds uniformly

in x. In fact, we will prove more, namely that with c0 the constant identified in
Condition (E’) , for some t0 >0, for any fixed t ≥ t0,

E
[(

Z̃+ − Z̃−
)2
]

≥ c0t.

Step 4. Calculating the variance of Z̃+ − Z̃−. We introduce a new, time-

free, random field: let
{
W̃ (x) : x ∈ R

}
denote a centered Gaussian field satisfy-

ing E
[
W̃ (x) W̃ (y)

]
= Q (x, y). Also, for every fixed s ∈ [0, 2t], let Z̃+ (s) =

Eb

[
W̃
(
bx
s

) |Ã+
]

and Z̃− (s) = Eb

[
W̃
(
bx
s

) |Ã−
]
. We now prove the following

formula.

E
[(

Z̃+ − Z̃−
)2
]

=
∫ 2t

0
E
[(

Z̃+ (s) − Z̃− (s)
)2
]

ds.

To begin with, writing squares of expected values
(
Eb

[
F (bx)

])2 as expectations
of products Eb,b′

[
F (bx) F

(
b′x)] where under the measure Pb,b′ , bx and b′x are
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independent copies of bx , we have

E
[(

Z̃+ − Z̃−
)2
]

= E
[
Eb,b′

[∫ 2t

0
W
(
ds, bx

s

) ∫ 2t

0
W
(
ds, b′x

s

) |Ã+
(
bx
) ∩ Ã+

(
b′x)]]

+E
[
Eb,b′

[∫ 2t

0
W
(
ds, bx

s

) ∫ 2t

0
W
(
ds, b′x

s

) |Ã−
(
bx
) ∩ Ã−

(
b′x)]]

−2E
[
Eb,b′

[∫ 2t

0
W
(
ds, bx

s

) ∫ 2t

0
W
(
ds, b′x

s

) |Ã+
(
bx
) ∩ Ã−

(
b′x)]]

= Eb,b′

[∫ 2t

0
Q
(
bx
s,b

′x
s

)
ds|Ã+

(
bx
) ∩ Ã+

(
b′x)]

+Eb,b′

[∫ 2t

0
Q
(
bx
s,b

′x
s

)
ds|Ã−

(
bx
) ∩ Ã−

(
b′x)]

−2Eb,b′

[∫ 2t

0
Q
(
bx
s,b

′x
s

)
ds|Ã+

(
bx
) ∩ Ã−

(
b′x)] .

Now using Fubini’s theorem to bring the time integration outside, and using the for-

mula E
[
W̃ (x) W̃ (y)

]
= Q (x, y), and another Fubini to bring this new E outside,

we obtain

E
[(

Z̃+ − Z̃−
)2
]

=
∫ 2t

0
EEb,b′

[
W̃
(
bx
s

)
W̃
(
b′x
s

) |Ã+
(
bx
) ∩ Ã+

(
b′x)] ds

+
∫ 2t

0
EEb,b′

[
W̃
(
bx
s

)
W̃
(
b′x
s

) |Ã−
(
bx
) ∩ Ã−

(
b′x)] ds

−2
∫ 2t

0
EEb,b′

[
W̃
(
bx
s

)
W̃
(
b′x
s

) |Ã+
(
bx
) ∩ Ã−

(
b′x)] ds.

Reintroducing squares and products of expectations with respect to Pb we obtain

E
[(

Z̃+ − Z̃−
)2
]

=
∫ 2t

0
E
[(

Eb

[
W̃
(
bx
s

) |Ã+
])2
]

ds

+
∫ 2t

0
E
[(

Eb

[
W̃
(
bx
s

) |Ã−
])2
]

ds

−2
∫ 2t

0
E
[
Eb

[
W̃
(
bx
s

) |Ã+
]

Eb

[
W̃
(
bx
s

) |Ã−
]]

ds

=
∫ 2t

0
E
[(

Eb

[
W̃
(
bx
s

) |Ã+
]

− Eb

[
W̃
(
bx
s

) |Ã−
])2
]

ds

which is what we set out to prove in this step.

Step 5.Estimating the variance of Z̃+ − Z̃−. Conclusion. First we discard the

entire first half of the expression for E
[(

Z̃+ − Z̃−
)2
]

just obtained, for s ∈ [0, t],
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yielding the lower bound

E
[(

Z̃+ − Z̃−
)2
]

≥
∫ 2t

t

E
[(

Z̃+ (s) − Z̃− (s)
)2
]

ds. (18)

Our initial goal here is to show that Z̃+ − Z̃− can be expressed as an increment
of W̃ itself, albeit between random sites. By the assumption on the continuity of
W , almost surely, W̃ defined in Step 4 is continuous on all of R. Therefore the set

I+ :=
{
W̃ (x) : x ∈ [x0, x1]

}
is a closed interval. Also, for all s ∈ [t, 2t], under

the conditioning Ã+, we have bx
s ∈ [x0, x1]. This implies that for each fixed s,

Z̃+ (s) is a convex combination of points in the interval I+; indeed, to be specific,
if we denote by fs,+ (dy) the distribution of bx

s given Ã+, fs,+ is supported by
[x0, x1], has total mass 1, and we have Z̃+ (s) = ∫ x1

x0
fs,+ (dy) W̃ (y). Therefore,

since I+ is convex, Z̃+ (s) ∈ I+. This proves there exists a point x∗
s,+ ∈ [x0, x1]

such that Z̃+ (s) = W̃
(
x∗
s,+
)
. Similarly, there exists a point x∗

s,− ∈ [y1, y0] such

that Z̃+ (s) = W̃
(
x∗
s,−
)
. Note that x∗

s,+ and x∗
s,− are random; yet they are bounded

as indicated, and conditional on x∗
s,+ and x∗

s,−, W̃
(
x∗
s,+
)

and W̃
(
x∗
s,−
)

are jointly
Gaussian, with covariance given using the function Q.

Now we can write

E
[(

Z̃+ (s) − Z̃− (s)
)2
]

= E
[(

W̃
(
x∗
s,+
)− W̃

(
x∗
s,−
))2
]

= E
[
E
[(

W̃
(
x∗
s,+
)− W̃

(
x∗
s,−
))2
∣∣∣∣ x∗

s,+; x∗
s,−

]]

= E
[
δ
(
x∗
s,+; x∗

s,−
)2]

.

Since x∗
s,+ and x∗

s,−are supported by [x0, x1] and [y1, y0] respectively, we can use
the lower bound on δ2 given in Condition (E’) , which, with the lower bound (18 ),
yields

E
[(

Z̃+ − Z̃−
)2
]

≥
∫ 2t

t

c0ds = c0t,

which, by Step 3, ends the proof of the proposition. 
�

3. Lower bound

With this section, we begin the quantitative analysis of the exponential behavior of
u in large time. We note that existence of the Lyapunov exponent is not required
for any of the results below.

Lemma 13. With the notations in the previous Section let λ− (x) = lim inf t→∞ U

(t, x)/t . Then λ− (x) is a lower bound for the exponential behavior of the solution
of the Stochastic parabolic Anderson PDE for x fixed, almost surely:

lim inf
t→∞
t∈N

log u(t, x)

t
≥ λ− (x) .
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Proof. Let x be fixed and let β < λ− (x). We have, for k > 1,

P
[

log u (t, x)

t
≤ β

]
= P

[
log u (t, x) ≤ βt

]
= P

[
log u (t, x) − U (t, x) ≤ −U (t, x) + βt

]
≤ E

[|log u (t, x) − U (t, x)|2k
]

(U (t, x) − βt)2k
.

Using the calculations in Subsection 2.3, more specifically (16), we obtain

P
[

log u (t, x)

t
≤ β

]
≤ tkCQ,k

(U (t, x) − βt)2k
. (19)

There exists a t0 so large that ∀t ≥ t0 :

U(t, x) >

(
λ− (x) − λ− (x) − β

2

)
t.

Thus, (19) is continued by

P
[

log u (t, x)

t
≤ β

]
≤ tkCQ,k((

λ−−β
2

)
t
)2k

= CQ,k

(
2

λ− (x) − β

)2k

t−k. (20)

With k = 2 we see that the probability is summable for t ∈ N since β <

λ− (x). Therefore, we can apply the Borel-Cantelli lemma to assert that there ex-
ists an almost-surely finite integer t−(ω) such that for every integer t ≥ t−(ω),
log u (t, x) /t ≥ β. In conclusion, for any β < λ− (x) and any x ∈ R, we have
almost surely

lim inf
t→∞
t∈N

log u(t, x)

t
≥ β.

Since β can be taken arbitrarily close to λ− (x), the result of the lemma
follows. 
�

We now have a clear method for finding lower bounds for the Lyapunov expo-
nent: a lower bound for λ− (x) implies almost surely the same lower bound for
lim inf t→∞

t∈N
t−1 log u(t, x), which is the starting point of the next theorem’s proof.

Theorem 14 (Lower Bound for the Lyapunov Exponent). There exists a universal
constant cu such that if u(t, x) is the solution of the stochastic parabolic Anderson
PDE (1), under Conditions (E) and (E’-), we have for small κ , for fixed x, almost
surely:

lim inf
t→∞
t∈N

log u(t, x)

t
≥ cu√

32π
κ

(
�−1

(
cu√
t0 (κ)

))−2

= cu

t0 (κ)
√

32π
,

where t0 (κ) is the unique solution of the equation

cu = √
t0�

(√
κt0
)
. (21)
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Proof. Step 1.Strategy. To prove this theorem, we need to recall some earlier facts
found in Section 2. Since we trivially have λ− (x) ≥ λ∗ by definition, we will seek
only to bound λ∗ from below. By Proposition 5, we have that λ∗ ≥ U∗(t)/t for
any t . Therefore, we only need to identify a single time t0 such that U (t0, x) /t0
exceeds the announced lower bound cu/(t0

√
32π) uniformly for all x.

Step 2.Using prior setup with new scaling. We will proceed similarly to the
proof of Proposition 12. Now we should interpret bx as having variance κ and start-
ing point x, but in this proof it will be sufficient to use the notation b, as always,
for our standard Brownian motion under Pb, started from 0. Multiplying b by

√
κ

will then yield the right variance. We modify the definitions of Ã+ and Ã−. The
new choices we make for these events are not symmetric, unlike in the proof of
Proposition 12, which will result in a much larger lower bound than if we had kept
the choices made in that proof. We take

Ã+ :=
{√

tx1 ≥ √
κbs ≥ √

t (x0 − x) : ∀s ∈ [t, 2t]
}

,

and

Ã− :=
{√

ty1 ≤ √
κbs ≤ √

t (y0 − x) : ∀s ∈ [t, 2t]
}

.

Note that we have the following equalities in law under Pb:

Ã+
law= {

x1 ≥ √
κbs′ ≥ (x0 − x) : ∀s′ ∈ [1, 2]

}
,

Ã−
law= {

y1/
√

κ ≤ bs′ ≤ (y0 − x) /
√

κ : ∀s′ ∈ [1, 2]
}

which proves in particular that the probabilities Pb

[
Ã+
]

and Pb

[
Ã−
]

do not

depend on t . By letting x0 = x, x1 = √
κ , we get that Pb

[
Ã+
]

does not depend

on x or κ . To get the same effect on Ã−, we may take y0 − x = −√
κ , and

y1 = −2
√

κ . In other words, there is a positive universal constant Cu such that

log
(

min
{
Pb

[
Ã+
]
; Pb

[
Ã−
]})

= −Cu. In any event, since Ã+ and Ã− are dis-

joint, we still have from the proof of Proposition 12

U (2t, x) ≥ −Cu + E
[
max

{
Z̃+, Z̃−

}]
.

and

E
[
max

{
Z̃+, Z̃−

}]
≥ 1√

2π

(∫ 2t

t

E
[
δ
(
x∗
s,+; x∗

s,−
)2]

ds

)1/2

,

where here the random variables x∗
s,+ and x∗

s,− are bounded respectively below and
above by x0

√
t and y0

√
t . The other conclusion we can draw is that with these

choices of x’s and y’s, we get |x0 − y0| = √
κ .

Step 3.Optimization of the parameters. Using Condition (E’-) , we see that

δ
(
x∗
s,+; x∗

s,−
)2 ≥ �2 (ε)
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where ε = |x0 − y0|
√

t = √
κt , as long as we can guarantee that

√
κt can be made

small when κ is small. We would then have

U (2t, x) ≥ −Cu +
√

t/ (2π)�
(√

κt
)

.

It is clear we need to choose t = t0 = t0 (κ) as a function of κ , and that an optimal
choice, up to multiplicative universal constants, is one such that

2Cu

√
2π = √

t0�
(√

κt0
)
.

Since by Condition (E’-) � is a bijective function (near 0) with inverse �−1, we
would have to take

κ = 1

t0

[
�−1

(
2Cu

√
2π√

t0

)]2

.

This relation can of course be inverted to write t0 as a function of κ , although the
expression cannot be as explicit. We also have

√
κt0 = �−1

(
Cu

√
2π/t0

)
, and we

see that since limr→0 � (r) = 0, the same holds for �−1, and therefore κt0 is small
as long as t0 is large enough.

Step 4.Checking t0 can be made large enough when κ is small. Since the above
choice for t0 implies

U (2t0, x)

2t0
≥ Cu

2t0
= Cu

2
κ

(
�−1

(
2Cu

√
2π√

t0

))−2

,

we will be able to conclude the proof of the theorem as long as we can justify
that when κ is small, t0 is large, since by Step 3, this would also imply that

√
κt0

is small, allowing the use of Condition (E’-) . Since W is assumed to be almost-
surely continuous, the theory of Gaussian regularity (see for example [18]) implies
that � (r) = o

(
log−1/2 (1/r)

)
. In particular, we can assume that for small r ,

� (r) < log−1/2 (1/r). Equivalently, for small x, we have

�−1 (x) > e−1/x2
.

Combining this inequality with the expression for κ above yields

κ >
1

t0
exp (−t0/(4πCu)),

which indeed implies that if κ is small, t0 will have to be large. Hence the claim that
κt0 can be made small enough is justified, and the proof of the theorem is complete.
Note that the universal constant cu in the statement of the theorem equals 2Cu

√
2π .


�
Corollary 15. By possibly adjusting the leading constant by a universal positive
factor less than 1, the previous theorem holds even if the lim inf is taken over all
times t ∈ R+ (removing the subscript t ∈ N).
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Proof. The technique used in [17] and in [7] to handle the infimum of u (t, x) for
all t ∈ [n−1, n] where n ∈ N, can be used here again with no additional difficulty.
We omit these details since no new idea is required from those introduced in [17].
It is worth mentioning that this technique cannot be adapted to solving the open
problem at the end of Section 2.1. This is because in [17], the authors only show a
lower bound for the lim inf of the quantity n−1 log (inf {u (t, x) : t ∈ [n − 1, n]}).
The same idea of how to handle all t ∈ [n − 1, n] simultaneously is used in the
upper bound context in [7]. But when putting the two together, a gap will always
exist between lower and upper bounds. Thus the open problem at the end of Section
2.1 remains. 
�

4. Upper bound

For the upper bound we will use a discretization technique similar to those in [7]
or [17], while making some necessary improvements. We will approximate the
Brownian path in the Feynman-Kac formula (8) with a path that stays in εZ where
ε is a small positive number that will be chosen as a function of κ .

4.1. Notations and basic results

For any Brownian motion path in C the space of continuous functions, let t0 = 0
and for i = 1, 2, 3, . . . let ti be the first time after ti−1 that bt − bti−1 exits [−ε, ε].
We define the discretized path b̃ as the right-continuous path that jumps at each
time ti to the position xi := bti , and that is constant between jump times. For any
time t , we define Nt as the number of jumps of b̃ up to time t . Denote by

S(t, n) = {
t̃ = (t1, t2, . . . , tn)

∣∣ 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t
}

the simplex of all the possible sequences of n jump times, and by Pn the set of all pos-
sible visited sites x̃ = (x0, x1, . . . , xn). Under Pb the inter-jump times Ti = ti−ti−1
are independent and identically distributed and are independent of x̃. The sequence
x̃ itself under Pb is a symmetric nearest-neighbor random walk on εZ started at x.
Here and throughout, x is fixed.

For b̃ the discretized version of b, using the convention tNt+1 := t , we define:

XNt (t̃ , x̃) :=
∫ t

0
W(ds, b̃s) =

Nt∑
i=0

(W(ti+1, xi) − W(ti, xi)) ,

ũ(t) := ũ(t, x) = Eb

[
exp(2XNt (t̃ , x̃))

]
.

Let λ+ = lim supt→∞ t−1 log u(t, x) and λ̃+ = lim supt→∞ t−1 log ũ(t). We
may write almost surely using the Cauchy-Schwarz inequality:

u(t, 0) ≤ Eb

[
e2Xb

t (x)−2XNt (t̃,x̃)
]1/2

ũ(t)1/2,

and thus,

λ+ ≤ 1

2

(
ξ + λ̃+

)
, (22)
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with ξ = lim supt→∞ log Eb exp(2Xb
t (x) − 2XNt (t̃ , x̃)). This last quantity is the

error committed by discretizing b, i.e. by replacing λ+ by (a constant multiple of)
λ̃+. We seek an upper bound on both ξ and λ̃+. We note here that both ξ and λ̃+
are relative to the Gaussian field 2W rather than W .

4.2. Error estimate

We quote here a result that was originally in established in [7], and used subse-
quently in [17], more specifically Proposition 3 therein. We do not repeat the proof,
noting instead that the measurability conditions that are required for a rigorous
proof do not need to assume the Hölder-type conditions of [7] or [17], but that
without continuity of W (see Remark 1 for an interpretation in the context of Con-
dition (E”) ), we do not believe that the Feynman-Kac formula even holds, or that
the following result can be established. We have almost-surely:

ξ ≤ lim sup
n→∞

1

n
log Eb

[
exp

(
Kσ 2

n,b

)]
, (23)

where, σ 2
n,b = supt∈[n−1,n] E

[(
Xb

t (x) − XNt (t̃ , x̃)
)2]

and K a universal constant.

We can estimate σ 2
n,b using the assumption (E”) as follows:

σ 2
n,b = sup

t∈[n−1,n]
E
[(

Xb
t (x) − XNt (t̃ , x̃)

)2
]

= sup
t∈[n−1,n]

E

[(∫ t

0
W(ds, bs) −

∫ t

0
W(ds, b̃s)

)2
]

= sup
t∈[n−1,n]

∫ t

0
δ2
(
bs, b̃s

)
ds ≤

∫ n

0
δ2
(∣∣∣bs − b̃s

∣∣∣) ds.

Now using the fact that the two processes b and b̃ are never more than ε apart, we
obtain:

σ 2
n,b ≤ nδ2 (ε) .

Finally, using this last estimate in (23) we find that the approximation error is
bounded as

ξ ≤ Kδ2 (ε) (24)

4.3. Setup for use of Gaussian supremum estimates

We can write

ũ(t) = Eb

[
e2XNt (t̃,x̃)

]

=
∞∑

n=1

Eb

[
e2XNt (t̃,x̃)

∣∣∣Nt ∈ [tα(n − 1), tαn]
]

Pb [Nt ∈ [tα(n − 1), tαn]] .

(25)
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At this point, let us notice that every discretization b̃ is characterized by the number
of jumps up to time t , the times of those jumps, and the direction of the jumps. That
is, every path b̃ is equivalent to its triplet (Nt , t̃ , x̃). For any positive integer n and
any α > 0, let us then define

Tnα = {(
Nt, t̃, x̃

)∣∣Nt ≤ tnα; t̃ ∈ S(t, Nt ); x̃ ∈ PNt

}
.

We will use the notations

X∗
n,t,α = sup

Tnα

2XNt

(
t̃ , x̃
)
,

and

f (nα, t) = E

[
sup
Tnα

2XNt

(
t̃ , x̃
)]

.

In order to find an upper bound for the Lyapunov exponent we invoke two classical
theorems from Gaussian processes theory that can be found in [1].

Theorem 16 (V. Sudakov - C. Borell). Let T be a Polish space and {Xt }t∈T be a
centered, separable, Gaussian field with supt∈T Xt < ∞a.s..Then E

(
supt∈T Xt

)
<

∞ and for all λ > 0 we have:

P

(
| sup
t∈T

Xt − E
(

sup
t∈T

Xt

)
| > λ

)
≤ 2e

− λ2

2σ2
T (26)

where σ 2
T = supt∈T E(X2

t ).

For a separable Gaussian field {Xt }t∈T on T we use the following notation for
its canonical metric on the space T :

ρ(s, t) =
√

E
[
(Xt − Xs)2

]
.

Theorem 17 (Dudley-Fernique). There exists a universal constant K > 0 such
that:

E
(

sup
t∈T

Xt

)
≤ K

∫ ∞

0

√
log N(η) dη (27)

where N(η) is the smallest number of balls of radius η in the metric ρ required to
cover the space T .

Let us estimate the entropy function N(η) for the field XNt

(
t̃ , x̃
)

defined over
Tnα . Let m ≤ tnα, fixed. When Nt = m is fixed, for t̃ , s̃ ∈ S(t, m) and x̃ ∈ Pm

fixed, our metric is defined as:

d
(
(m, t̃, x̃), (m, s̃, x̃)

)2 = E
(
Xm

(
t̃ , x̃
)− Xm (s̃, x̃)

)2 (28)

Remark 18. The diameter of T under the metric d (the maximum distance of our
metric) does not exceed 2

√
t maxx Q(x, x)
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This fact is trivial to see since E
[(∫ t

0 W(ds, x)
)2
]

≤ t maxx Q(x, x). Define

now T̄m similarly to Tαn, but with the number of jumps fixed, equal with m.

T̄m = {(
Nt, t̃, x̃

)∣∣Nt = m; t̃ ∈ S(t, m); x̃ ∈ Pm

}
We obviously have Tαn = ∪k≤[αnt]T̄k .

4.4. Gaussian estimations

Lemma 19. For t , m and x̃ fixed, the canonical metric for the Gaussian field
{Xm(t̃, x̃)}T̄m

satisfies:

d
(
(m, t̃, x̃), (m, s̃, x̃)

) ≤
√√√√4 sup

x
Q(x, x)

m∑
i=0

|ti − si |.

Proof. This result is very similar to Lemma 2.1 in [6] for the homogeneous case.
We have chosen to reprove it since the difference, in our non-homogeneous setting,
is not that trivial. First note that by Cauchy-Schwarz,

Q(x, y) ≤
√

Q (x, x) Q (y, y) ≤ sup
x

Q(x, x). (29)

Using our metric, we can write:

d
(
(m, t̃, x̃), (m, s̃, x̃)

)2 =
m∑

i=0

Q(xi, xi)(ti+1 − ti ) +
m∑

i=0

Q(xi, xi)(si+1 − si)

−2E
m∑

i=0

(W(ti+1, xi) − W(ti, ti))

m∑
j=0

(
W(sj+1, xj ) − W(sj , tj )

)

≤ 2t sup
x

Q(x, x)−2
m∑

i=0

Q(xi, xi) |�ti ∩ �si |

−2
m∑

i,j=0,i �=j

Q(xi, xj )
∣∣�ti ∩ �sj

∣∣ .
Using the notation �ti = [ti , ti+1] and respectively �sj = [sj , sj+1] we obviously
have:

m∑
i,j=0

∣∣�ti ∩ �sj
∣∣ =

m∑
i=0

|�ti ∩ �si | +
m∑

i,j=0;i �=j

∣∣�ti ∩ �sj
∣∣ = t,

and now using (29), we obtain:
m∑

i,j=0,i �=j

Q(xi, xj )
∣∣�ti ∩ �sj

∣∣ ≥ − sup
x

Q(x, x)

m∑
i,j=0,i �=j

∣∣�ti ∩ �sj
∣∣

= − sup
x

Q(x, x)

(
t −

m∑
i=0

|�ti ∩ �si |
)

.
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Putting everything back together, we get:

d
(
(m, t̃, x̃), (m, s̃, x̃)

)2 ≤ 4 sup
x

Q(x, x)

(
t −

m∑
i=0

|�ti ∩ �si |
)

,

and now the lemma follows since we have

t ≤
m∑

i=0

|�ti ∩ �si | +
m∑

i=0

|ti − si | .


�

Now, in order to use the Dudley-Fernique Theorem 17, we will need to count
how many balls of radius η are needed to cover Tnα in the metric d. To do that,
first we will see how many balls are needed to cover T̄m, for each m ≤ tαn. Since
Tnα = ∪m≤tαnT̄m, the number of balls required to cover Tnα is less than the sum
of the number of balls required to cover each T̄m.

Suppose that we are working on T̄m. For any given sequence of jump times
there are at most 2m possible sequences x̃ ∈ Pm. Thus, if we cover the simplex
S(t, m) with N balls we will need 2mN total balls to cover T̄m. From Lemma 19
an upper bound for the metric (28) is: d2(t̃ , s̃) ≤ 4Q(0)

∑m
i=1 |ti − si |. Using this

upper bound, we now exhibit a lattice of times t̃center such that d2(t̃ , t̃center ) < η2,
and then we will count how many points are in our lattice.

The next few paragraphs are similar to calculations performed originally in
[7]. The reader familiar with those can skip directly to equation (30). Consider
the partition of the interval [0, t] by kt points with k := 4 supx Q(x, x)mη−2:
{0, 1

k
, 2

k
, . . . , tk

k
= t}. For any sequence in S(t, m), say t1, t2, · · · , tm, for any

i = 1, 2, · · · , m, we can find a point j (i) t/k in the partition such that |ti − j t
k
| < 1

k
.

Consider t̃center := (j (i) t/k)mi=1 for a fixed sequence (j (i))mi=1 of non-decreas-
ing non-negative integers from 1 to tk, and consider the set of points t̃ satisfying
|ti − j(i)t

k
| < 1

k
for all i = 1, · · · , m. We obtain a cover of the entire set S (t, m) by

allowing j (·) to span all such sequences. Moreover, for each such t̃center we have

d2(t̃ , t̃center ) ≤ 4 sup
x

Q(x, x)

n∑
i=1

∣∣∣∣ti − i

k

∣∣∣∣ < 4 sup
x

Q(x, x)
m

k
= η2.

Hence, the balls centered at all the t̃center ’s thus constructed, with radius η in the
metric d, cover the set S (t, m). The total number of these balls is the number of
nondecreasing sequences of length m with values in {1, 2, · · · , kt}. This number is
easily computed to be the binomial coefficient

(
kt+m−1

m

)
. We can also show, using

Stirling’s formula, that

(
kt + m − 1

m

)
≤ 3m(kt + m)mm−m.
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Now since the set T̄m is the union of the sets S (t, m) × {x̃} where x̃ spans the set
of all nearest-neighbor paths of length m, the total number Nm(η) of balls needed
to cover T̄m is trivially bounded above as follows:

Nm(η) ≤ 2m3m(kt + m)mm−m = 6m

(
4 supx Q(x, x)t

η2 + 1

)m

,

where we used the definition of k.
Therefore, the following is again a trivial upper bound on the number N (η) of

η-balls required to cover Tnα:

N(η) ≤
tαn∑
m=1

Nm(η) ≤ tαnNtαn(η) ≤ tαn6tαn

(
4 supx Q(x, x)t

η2 + 1

)tαn

.

For simplicity of notation, in the next few lines, we are going to use m instead of
tαn. We use the Dudley-Fernique Theorem 17 to obtain:

E

(
sup

(m,t̃,x̃)∈Ttαn

Xm(t̃, x̃)

)
≤ K

∫ ηmax

0

√
log N(η)dη

≤ K
∫ 2

√
t supx Q(x,x)

0

√
log m12m

(
4 supx Q(x, x)t

η2

)m

≤ K
∫ 2

√
t supx Q(x,x)

0

√
log m + m log 12 + m log

4 supx Q(x, x)t

η2 dη

≤ K
√

m

∫ 2
√

t supx Q(x,x)

0

√
1 + log 12 + log

4 supx Q(x, x)t

η2 dη.

Now denote c1 = 1 + log 12, c2 = 4 supx Q(x, x). We are going to make the

change of variables:
√

c1 + log c2t

η2 = z. With this change of variables, the endpoints

of integration become +∞ and
√

c1 and dη = −√
c2t 2z exp(−z2/2) exp(c1).

Then, using the fact that the second moment of a standard normal is equal to 1, we
have:

E

(
sup

(m,t̃,x̃)∈Ttαn

Xm(t̃, x̃)

)
≤ 2K

√
m

√
c2te

c1
√

2π

∫ ∞

c1

z2e− z2
2 dz

≤ KQ

√
mt

for some constant KQ depending only on Q (via the factor supx Q1/2 (x, x)). Thus,
substituting back m = tαn, we find

f (nα, t) = 2E

(
sup
Tnα

XNt (t̃ , x̃)

)
= E

(
X∗

n,t,α

) ≤ 2tKQ

√
nα. (30)

To proceed further, we will need to prove a lower bound on f (nα, t) as well.
We will need to use the strengthened non-degeneracy hypothesis (E’-).
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Lemma 20. Under the hypothesis (E’-), there exists a constant CQ such that for
any fixed ε > 0:

f (nα, t) ≥ CQ�(ε)t
√

nα.

Proof. Let us fix an m ≤ nαt . We will consider the function:

h(m, t) := E

[
sup
T̄m

Xm(t̃, x̃)

]
,

with the same T̄m defined earlier. We obviously have h(m, t) ≤ f (nαt), for all
m ≤ nαt . The idea is to maximize the increments defining X step by step.
We will pick specific sequences t̃ and x̃ and the value of EXm(t̃, x̃)) will be a
lower bound for the expected supremum over all the sequences. Let the times in
the sequence t̃ be equally spaced i.e., tk = kt/m, k = 0, 1, . . . , m and write
W (tk+1, x) − W (tk, x) = Wk (x). We let x0 = 0 and choose xk recursively as
follows:

xk =
{

xk−1 + ε if Wk(xk−1 + ε) ≥ Wk(xk−1 − ε)

xk−1 − ε otherwise
.

Since this is just a particular sequence in T̄m, we obviously have:

h(m, t) ≥
m−1∑
k=0

E [Wk (xk)] .

By the independence and scaling of the increments of W in time, and the spatial
distribution of W , we immediately see that the values Wk (xk) are independent –
which does not seem to be crucial here –, but more importantly that the distribution
of Wk (xk) is equal to that of the random variable:√

t/m max
(
Zk, Z

′
k

)
where Zk, Z

′
k is a pair of centered Gaussian variables that are independent of xk−1

and satisfy E
(
Z2

k

) = Q (xk−1 − ε), E
(
Z′2

k

) = Q (xk−1 + ε), and E
[(

Zk − Z′
k

)2]
= δ (xk−1 + ε, xk−1 − ε). Now we can use the Hypotheses (E’-) , coupled with the
expected value of the maximum of two Gaussian random variables. Thus, for some
constant CQ > 0 depending only on Q, we have for all k:

E
[
max

(
Zk, Z

′
k

)] ≥ CQ� (ε) .

This proves that for any fixed ε > 0,

h (t, m) ≥ mCQ� (ε)

√
t

m
.

We immediately obtain

f (nα, t) ≥ h (t, nαt) ≥ CQ� (ε) t
√

nα.


�
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Remark 21. Strictly speaking, the full strength of Condition (E’-) is not necessary
to prove this lemma. The only thing we need to assume is that for some increasing
function �̄ that is positive except at 0, for all |x − y| small, δ (x, y) ≥ �̄ (|x − y|).

The previous lemma is only needed for the application of the Borel-Cantelli
lemma which follows now. Since in the end we will choose the value ε depending
only on κ , CQ� (ε) appears as a fixed positive value that does not depend on n

and t , and thus, it will be legitimate to apply the Borel-Cantelli lemma assuming
CQ� (ε) is a positive constant. Next, using the Sudakov-Borell inequality 16 and
Lemma 20, we compute:

P
[
X∗

n,t,α > 2f (nα, t)
] = P

[
X∗

n,t,α − f (nα, t) > f (nα, t)
]

= P

[
X∗

n,t,α − E

(
sup
Tnα

2XNt (t̃ , x̃)

)
> f (nα, t)

]

≤ 2 exp

(
− 1

2t
f 2(nα, t)

)
≤ 2e

− 1
2 C2

Q�2(ε)nαt
,

using (30) and the fact that σ 2
T = t . To simplify notations, let us denote c :=

CQ� (ε). We consider the probability:

P
[
At,α

]
:= P

[∃n ≥ 1 such that X∗
n,t,α > 2f (nα, t)

]
≤
∑
n≥1

P
[
X∗

n,t,α > 2f (nα, t)
]

≤
∑
n≥1

2e− c2nαt
2

= 2e−c2αt/2 1

1 − e−c2αt/2

≤ 4e−c2αt/2.

Since c > 0, this probability is summable for t ∈ N. We can then apply Borel-Can-
telli lemma to obtain that there exists a t0(ω) < ∞ a.s. such that for all t ≥ t0(ω)

AC
tα is true. That means that there exists t0(ω) < ∞ a.s. such that for all t ≥ t0(ω):

∀n ≥ 1, X∗
n,t,α ≤ 2f (nα, t).

Now we are ready to continue (25). For t large enough t ≥ t0(ω), we have:

ũ(t) ≤
∞∑

n=1

e4KQ

√
nα tPb [Nt ∈ [tα(n − 1), tαn]] . (31)
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4.5. Estimating the distribution of the number of jumps

According to the last inequality (31) above, we must find a sharp estimation of the
distribution of the number of jumps up to time t . We first connect this distribution
with the jump times themselves. More specifically, we denote the kth jump time
by:

Sk := T1 + T2 + · · · + Tk,

where Ti is the ith inter-jump time. We then have:

{Nt ≥ k} = {Sk ≤ t} .

We know that the inter-jump times Ti are independent and identically distrib-
uted random variables independent of the sequence x̃ = (x0, x1, . . . , xk), and T1 is
the first exit time of Brownian motion started at 0 with variance κ from the interval
[−ε, ε]. To avoid confusion, we will denote T

(κ)
1 this first exit time for the Brownian

motion with variance κ . A standard scaling argument easily connects its distribu-
tion with that of the first exit time T̃ = T̃1 of a standard Brownian motion from the
interval [−1, 1]. If T

(κ)
1 , T

(κ)
2 , . . . , T

(κ)
n denote the times between crossings of the

grid εZ for a Brownian motion with variance κ then:

T
(κ)
i

Distribution= ε2

κ
T̃ .

While the distribution of T̃ is known explicitly as a series, the corresponding
formula is difficult to work with. To proceed with the estimation of the distribution
of Nt , we will perform a specific estimation of T̃ . Let m be a fixed integer ≥ 1.
Then we have:

Pb [Nt ≥ m] = Pb [Sm ≤ t]

= Pb

[
T

(κ)
1 + T

(κ)
2 + · · · + T (κ)

m ≤ t
]

= Pb

[
T̃1 + T̃2 + · · · + T̃m ≤ κ

ε2 t
]

≤
∑
x̃∈P̃m

Pb

[
T̃1 + T̃2 + · · · + T̃m ≤ κ

ε2 t

∣∣∣ x̃]Pb

[
x̃
]
,

where P̃m is the set of all possible paths of a random walk started at 0 on the
integer lattice with m jumps. Since all the paths have the same probability we
have Pb

[
x̃
] = 2−m for all x̃ ∈ Pm. Furthermore, since T̃i’s are independent of x̃

the probability Pb [Nt ≥ m] remains unchanged if one conditions by a particular
realization of the sequence x̃. Thus, using S̃m for the time of the mth jump of b̃,

Pb [Nt ≥ m] = Pb

[
T̃1 + T̃2 + · · · + T̃m ≤ κ

ε2 t

∣∣∣ x0 = 0, x1 = 1, . . . xm = m
]

= Pb

[
T̃1+T̃2+. . .+T̃m ≤ κ

ε2 t and x0 =0, x1 =1, . . . xm = m
]
/2−m

= 2mPb

[
T̃1+T̃2+· · · + T̃m ≤ κ

ε2 t and b
T̃1+T̃2+···+T̃m

= i ∀ i ≤ m
]
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≤ 2mPb

[
S̃m ≤ κ

ε2 t and b
S̃m

= m
]

≤ 2mPb

[
sup

s≤κε−2t

bs ≥ m

]
.

The reflection principle for Brownian motion states that, for any a > 0 fixed,
sups≤a bs and |ba| have the same distribution. Thus we obtain,

Pb [Nt ≥ m] ≤ 2mPb

[∣∣∣b κ

ε2 t

∣∣∣ ≥ m
]

= 2mPb

[
|Z| ≥ mε√

κt

]
≤ 2m 1

A
e−A2/2

with Z a standard normal variate and A := mε/
√

κt . Thus, with m = tαn ≥ 1 we
are able to state the final result of this section.

Proposition 22. If Nt is the number of jumps of the discretization b̃, defined in
Section 4.1, of a Brownian motion b started at 0 with variance κ on the lattice εZ,
then as soon as tαn ≥ 1 we have:

Pb [Nt ≥ tαn] ≤ 2tαn 1√
t αn ε√

κ

e− 1
2 tα2n2 ε2

κ .

Note that, while this result holds as soon as tαn ≥ 1, it only represents a tail
estimate when α is larger than a certain value depending on κε−2. When α is too
small, the right-hand side in the above will be greater than 1, and the proposition
will not claim anything. It is only in the tail estimate regime that this proposition
will be used below, however. Still, checking that tαn exceeds 1 in the usage below
is trivial, since we will only be using n ≥ 1 and fixed α > 0 not dependent on t :
the condition is met trivially for t > α−1.

4.6. Final step

Now we can use Proposition 22 in the equation (31). Notice that we can only apply
the result for n ≥ 2. For those terms we have

∞∑
n=2

e4KQ

√
nα tPb [Nt ∈ [tα(n − 1), tαn]] ≤

∞∑
n=1

e4KQ

√
(n+1)α tPb [Nt ≥ tαn]]

≤
∞∑

n=1

e4KQ

√
(n+1)α t2tαn 1√

t αn ε√
κ

e− 1
2 tα2n2 ε2

κ

=
∞∑

n=1

1√
t αn ε√

κ

e
− 1

2 t
(
α2n2 ε2

κ
−2αn log 2−8KQ

√
(n+1)α

)
. (32)

We simply bound the term for n = 1 in (31) as follows:

e4KQ

√
α tPb [Nt ∈ [0, tα]] ≤ e4KQ

√
α t . (33)
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We can also see that the general term of the series in (32) decays faster than geo-
metrically; therefore the sum is dominated by a constant multiple of the term with
n = 1.

Our purpose here is to choose our free parameter α to make the first term of the
series in (32) dominated by a quantity that decays to 0 so that the only contribution
in the Lyapunov exponent comes from (33). To this end choose α, so that:

−1

2
t

(
α2 ε2

κ
− 2α log 2 − 8KQ

√
α

)
≤ −1

4
tα2 ε2

κ
,

or

α2 ε2

κ
≥ 4

(
α log 2 + 4KQ

√
α
)
.

Since we may insist on α < 1, the right-hand side above is bounded above as
follows:

4
(
α log 2 + 4KQ

√
α
) ≤ 4

√
α
(
log 2 + 4KQ

) = C
√

α,

with C a constant. Thus, taking α = (
Cκε−2

)2/3
, with λ̃+ the almost sure Lyapunov

upper bound of the discretized ũ of Section 4.1, we have proved

λ̃+ ≤ C1κ
1
3 ε− 2

3 ,

with C1 a constant depending only on Q, as long as κ ≤ ε2.
Combining this with the error estimate (24) of Section 4.2, we obtain our general

upper bound theorem for arbitrary values of κ and ε.

Theorem 23 (Upper bound for the Lyapunov exponent). Let u be the solution of
the stochastic parabolic Anderson PDE (1). Under the Conditions (E), (E’-), and
(E”) we have almost surely:

lim sup
t→∞
t∈N

1

t
log u(t, x) ≤ Cκ

1
3 ε− 2

3 + Cδ2 (ε) ,

with C a constant depending only on Q, for all κ ≤ ε2.

Corollary 24. By possibly adjusting the leading constant C by a universal positive
factor less than 1, the previous theorem holds even if the lim sup is taken over all
times t ∈ R+ (removing the subscript t ∈ N).

Proof. The idea of the proof is identical to that of the corollary to Theorem 14. 
�

5. Examples of specific bounds

In this last section, we assume (E), (E’-) , and (E”) hold.
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5.1. Holder scale

In this paragraph, we assume the following.

(H) [Hölder regularity scale] For two constant c, C > 0, and a parameter H ∈
(0, 1), we have, in a neighborhood of 0,

δ (r) ≤ CrH

� (r) ≥ crH .

We refer to Section 1.3 for an explanation of how this is connected to W ’s
spatial Hölder continuity. The lower bound Theorem 14 yields the following.

Corollary 25. For some positive constant CQ depending only on Q, for all small
κ and all x, almost surely,

lim inf
t→∞

log u(t, x)

t
≥ CQκH/(H+1).

Proof. From Condition (H) we calculate an upper bound on the unique solution t0
to equation (21), finding

t0 ≤ c2
ucκ

−H/(H+1),

and the result follows immediately, with CQ =
(√

32πc2
uc
)−1

. 
�
For an upper bound, we only need to optimize the value of ε in Theorem 23,

now that we know that δ2 (ε) is of order ε2H . Clearly, up to constant factors, it
is optimal to choose ε so that the error and the main term in the upper bound are
equal:

ε2H = κ
1
3 ε− 2

3 .

This gives ε = κ1/(6H+2), so that the Lyapunov upper bound equals, up to a con-
stant, 2ε2H = 2κH/(3H+1). In other words, we have the following.

Corollary 26. For some positive constant CQ depending only on Q, for all small
κ and all x, almost surely,

lim sup
t→∞

log u(t, x)

t
≤ CQκ

H
3H+1 .

5.2. Logarithmic scale

In this paragraph, we assume the following.

(L) [Logarithmic regularity scale] For two constant c, C > 0, and a parameter
β > 1, we have

δ (r) ≤ C

(
log

1

r

)−β/2

,

� (r) ≥ c

(
log

1

r

)−β/2

.
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We refer to Section 1.3, in particular Remark 1 and the paragraph following it,
for an explanation of why we must have β > 1 and how this is connected to W ’s
spatial modulus of continuity.

We trivially get the following result for upper and lower bounds, which we state
together to emphasize the fact that the two bounds are of the same order, showing
that in the logarithmic scale, our proofs are sharp.

Corollary 27. For some positive constants cQ and CQ depending only on Q, for
all small κ and all x, almost surely,

cQ

(
log

1

κ

)−β

≤ lim inf
t→∞

log u(t, x)

t
≤ lim sup

t→∞
log u(t, x)

t
≤ CQ

(
log

1

κ

)−β

.

Proof. For the upper bound, again, we choose ε so that both of the quantities in
Theorem 23 (and its corollary) are equal, i.e. choose ε so that

ε = √
κ

(
log

1

ε

) 3
2 β

. (34)

With this choice, we have that the upper bound is commensurate with:

ε−2/3κ1/3 =
(

√
κ

(
log

1

ε

) 3
2 β
)−2/3

κ1/3 =
(

log
1

ε

)−β

.

Now in order to return to a formula involving only κ , it is sufficient to see that
because of relation (34), we have ε � κ1/2−α for any α > 0.

For the lower bound, we use Theorem 14 (and its corollary) as follows. Letting
t0 be the unique solution to equation (21), we see that for small κ , t0 has to be larger
than 1 since no value less than or equal to 1 solves (21). As a consequence we have

t0 ≤ Cc2
u2β logβ

(
1

κt0

)

≤ Cc2
u2β logβ

(
1

κ

)
.

The corollary follows. 
�
This sharp result can also be related to the estimations in discrete space. It has

been known since [6], and has been confirmed in [4] (where explicit constants were
computed), that the Lyapunov upper and lower bounds for the stochastic Anderson
model in Zd are both of order (

log
1
κ

)−1

.

In continuous space, since we must have β > 1 in order to even use the Feynman-
Kac formula, we see that there is a fundamental quantitative difference between
discrete and continuous space behaviors. The Anderson model in discrete space
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will always increase faster than the same model in continuous space, as long as
some spatial regularity is assumed for the potential.

In order to further understand the above example of the logarithmic regularity

scale, one can write δ (r) = (
log 1

r

)−1/2
f (r). In [18] it is shown that W is uni-

formly continuous in x if and only if limr→0 f (r) = 0, in which case f is, up to a
non-random constant, an almost-sure uniform modulus of continuity of W in space.
The case β ≤ 1 in the logarithmic scale clearly does not satisfy this condition. The
argument leading to the upper bound in the last corollary can be repeated in the
general situation to show that the factor f (ε)2 will always appear in any upper
bound next to

(
log ε−1

)−1
. Then, using again the relation (34) as above to return

to κ , we obtain precisely the following.

Corollary 28. Let f (r) be an almost-sure modulus of continuity for W in space.
For some positive constant CQ depending only on Q, for all small κ and all x,
almost surely,

lim sup
t→∞

log u(t, x)

t
≤ CQ

f 2
(√

κ
)

log 1
κ

.

This proves that the continuous-space exponential behavior is always of a lower
order than the discrete space one, and that the ratio of the two upper bounds,
f 2
(√

κ
)
, is precisely related to the almost-sure uniform modulus of continuity of W

in space. This result makes no use of the fact that δ is in the logarithmic scale. While
we cannot draw any conclusion for a lower bound in this general situation, Corol-

lary 27 can still be reformulated using the representation δ (r) = (
log 1

r

)−1/2
f (r),

if f is assumed to be large enough. We state this as the ultimate result of our article.
It is an easy consequence of [18] and the calculations in the proofs of Theorems 14
and 23 and all corollaries above. The conditions it refers to in [18] are typically sat-
isfied in all useful examples, including our logarithmic scale for β > 1. The result
proves that there is a precise relation between the almost-sure Lyapunov exponent
of the continuous-space Anderson model and the almost-sure spatial regularity of
its potential.

Corollary 29. Let f be an increasing function defined near 0 such that f (r) � rH

for all H > 0, and limr→0 f (r) = 0, and f satisfies the technical conditions
defined in [18]. If W (1, ·) admits a constant multiple of f for an exact almost-sure
uniform modulus of continuity on any interval in R, then

cQ

f 2
(√

κ
)

log 1
κ

≤ lim inf
t→∞

log u(t, x)

t
≤ lim sup

t→∞
log u(t, x)

t
≤ CQ

f 2
(√

κ
)

log 1
κ

(35)

for some positive constants cQ and CQ depending only on Q, for all small κ and
all x, almost surely.

Conversely, assume that δ (r) = (
log 1

r

)−1/2
g (r)and� (r) = (

log 1
r

)−1/2
h (r)

for some g and h satisfying the technical conditions defined in [18], and such that
g (r) , h (r) � rH for all H > 0. If (35) holds almost surely for some x, then
the ratios g/f and h/f are bounded away from 0 and +∞, and W (1, ·) admits a
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constant multiple of f for an exact almost-sure uniform modulus of continuity on
any interval in R.
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