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Abstract. In this article we study the exponential behavior of the continuous stochastic
Anderson model, i.e. the solution of the stochastic partial differential equation u(z, x) =
1+ [y kA (s,x)ds + [, W (ds, x) u (s, x), when the spatial parameter x is continuous,
specifically x € R, and W iIsaGaussianfieldon R, x R that isBrownian intime, but whose
spatial distribution iswidely unrestricted. We give a partial existence result of the Lyapunov
exponent defined as lim,_, ., " logu(t, x). Furthermore, we find upper and lower bounds
forlimsup, . t~tlogu(t, x) andliminf,_, ., 1 logu(z, x) respectively, asfunctions of the
diffusion constant ¥ which depend on the regularity of W in x. Our bounds are sharper, work
for a wider range of regularity scales, and are significantly easier to prove than al previ-
ously known results. When the uniform modulus of continuity of the process W isin the
logarithmic scale, our bounds are optimal.

1. Preliminaries
1.1. Introduction

Thisarticle studiesthe almost-sure large-time exponentia behavior of the so-called
(stochastic parabolic) Anderson model in R, i.e., the solution of the following sto-
chastic parabolic partia differential equation with linear multiplicative potential:
foral x e Randadlr > 0,

t 82u t
u(t,x)=1+f K—Z(s,x)ds+/ W (ds,x)u (s, x). @
o Ox 0

Here the potential W is a centered Gaussian field on Ry x R that is Brownian
in the time parameter ¢+ when the space parameter x is fixed, and has an arbitrary
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covariance structure in the space parameter x. All previous work on this Ander-
son model with space-time-dependent potential, whether in continuous or discrete
space, has concentrated on the case where W is homogeneous in space, e.g. [3],
[41,15],[6],[7],[8],[10], [16], [17]. Our article makes no such assumption, asking
only for milder regularity and non-degeneracy, and proving results that strengthen
all existing ones, using simpler, more efficient proofs. Thisintroduction containsa
detailed narrative explaining the nature and significance of thisarticle’s qualitative
and quantitative results; a casual reader will find, in Section 1.1.3, a short guide to
extracting precise statements of all results.

1.1.1. Quadlitative outline and significance of results

Thisarticle connectstheregularity propertiesof W with the quantitative behavior of
u, adirection which wasnever achieved precisely before, with potentially important
conseguences for the physical systems connected to the Anderson model. We refer
to [7] and [11] for specific physical motivations in astrophysics, hydrodynamics,
and other fields. In general modeling terms, our ultimate regularity result says that
if the potential’s spatial modulus of continuity is known with some precision, one
obtainssharp bounds onthe exponential rate of increase of u intime, and conversely
under certain circumstances (Corollary 29). One can then argue that if agiven rate
of increase is observable for u, which is typically the case for physical systems
modeled by u astime evolutionsin arandom potential W, then the regularity prop-
erties of the random medium W can be estimated with excellent precision. This
can be achieved with little or no need for statistical inference, which is particularly
useful in the many situations where W istypically not directly observable.

Section 2 deal swith general non-quantitativeresultsontheexistence of aLyapu-
nov exponent (see (2)). Sections 3 and 4 provide lower and upper bounds respec-
tively on this exponential behavior. Section 5 investigates the exact quantitative
meaning of these bounds for some specific scales. The remainder of this introduc-
tion givesadetailed account of our results, indicating which toolsareemployed, and
comparing our results and techniques to those used in the above-cited references.

Under some very mild boundedness and non-degeneracy conditions on the spa-
tial covariance structure of W, we prove that the so-called almost sure Lyapunov
exponent A defined by

1
A= lim —logu (¢, x), 2
t—o0 t

if it exists, is non-random, uniformly positive, and typically does not depend on
x. We also give a clear deterministic criterion under which existence of A holds.
Thisis achieved in Section 2. Our proof techniques are sharp in the sense that, in
the spatially homogeneous case, existence of A followsimmediately, at least when
t tends to infinity along an arithmetic sequence. They are also more efficient than
those used in the works cited above. Our non-degeneracy hypothesis is used to
prove a crucial positivity result in Section 2.4 despite the lack of any super- or
sub-additivity property (such propertiesare crucial in previousworks). Inspired by
anew ideain [15] in the context of directed polymers, we pioneer a use of the
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Malliavin calculus for establishing existence of A. In our situation, the Gaussian
property of W appears to be far from necessary. Beyond being a measure of our
methods' efficiency, thisis an indication that many known almost sure results for
the Anderson model may hold with non-Gaussian potentials. We will investigate
thislast ideain another article.

Regardless of whether the Lyapunov exponent exists, we are able to find upper
and lower bounds for limsup,_, .. "t logu (¢, x), and liminf, o t L logu (t, x)
respectively, as functions of the diffusion constant ¥ when « is small enough, in
Sections 3 and 4. The methods employed are very simple compared with the exist-
ing upper- and lower-bound proofs in the above-cited references in continuous
space; they are no more complex than the proofs in the simpler case of x € Z.
Our techniques are a so more powerful since they do not require homogeneity. We
borrowed a crucial ideabased on Gaussian supremum estimation techniques origi-
nally introduced in the present article’'s second-named author’s own work [6], and
further sharpened in [4], which is to consider the expected value of the supremum
over all Feynman-Kac paths of the potential integrated along each path. Both of
these references are in discrete space x € Z¢ with homogeneous potential. In con-
trast to [4] and [6], however, we work in continuous space, and our probabilistic
estimations herein draw heavily on the new ideas of Section 2.

One can compare our bounds with those previously obtained, when the po-
tential W is assumed to be essentially H-Holder-continuous in space, but not H'-
Holder-continuous for any H' > H. In this situation, the lower bound, derived
in Section 3, is of the order «/(H+1D The only previously known result in con-
tinuous space, computed in the same Holder scale for W homogeneous, can be
found in [17]: alower bound of order « #/(H+D / |og1=H)/A+H) (1/,). Moreover
the techniques used in [17] are excruciatingly complicated, and are limited to the
said Holder scale only. Our new result improves the one in [17] dlightly, extends
beyond the Holder scale, applies to the non-homogenous case, and the proofs are
comparatively much simpler.

In Section 5, we show that our lower bound isin fact optimal when the spatial
regularity of W isin alogarithmic scale: we find that liminf,_, - i1 logu (z, x)
is bounded below by a constant multiple of (Iog;c‘l)_’3 when W admits the func-

tion (Iog K_l)iﬁ /2+1/2 a5 an almost-sure uniform modulus of conti nuity on any
interval in R. Thisis precisely the same value, up to a constant, as the upper bound
on limsup,_, ., t~*logu (¢, x) which we obtain in Section 4. Even in this very
irregular scale, our upper bound is an improvement over the known result in con-
tinuous space, which was obtained for homogeneous W in [7], namely the order
(log K_l)il. Our upper bound derivation, constructed for the nonhomogeneous
case, isagain simpler than the proof in [7]. In the Holder scale, we obtain an even
better result, namely an upper bound of the order « /3H+1D We can see that for
small H, the difference between our upper and lower bounds become negligible,
which is consistent with the fact that our bounds are sharp in the logarithmic scale,
since that scale can be understood as living within the case H = 0.

Theauthorsof [17] used aspatial discretizationtechniquefirstintroducedin[7],
improving the original error estimate of [7] significantly. In our proof of the lower
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bound, we do not need to use any discretization. We only rely on a discretization
for the upper bound proof, and then again essentially only in its original form as
givenin [7], i.e. without resorting to the exceedingly delicate analytic arguments
of theimproved error estimatein [17].

1.1.2. Quantitative conclusions and heuristics

Theglobal quantitative conclusionwe can draw from our estimationsisthat, regard-
less of any spatial homogeneity, the almost-sure exponentia rate of increase of
u (t, x) inlargetime (and, if it exists, the Lyapunov exponent) is closely related to
the local spatial regularity of W: if W isprecisely H-Holder-continuousin space,
therateis sandwiched between « //(H+D and , #/BH+D) - jf W ismoreirregular yet,
specificaly if (Iogx—l)_” is a sharp almost-sure uniform modulus of continuity

for W in space, then the rate is, up to a constant, equal to (Iogx‘l)fzyfl, and a
converse of thisresult in the logarithmic scale holds.

In view of the (small) gap between our upper and lower bounds, it is difficult
to give an intuitive idea, at least in the Holder scale, of why such results should
even hold; if such an ideawere discernable, we would be in a position to formulate
a conjecture as to what the true Lyapunov exponent should be in all cases. In the
logarithmic scale, however, things are a little more clear, when one compares dis-
crete and continuous models. In the discrete case, one can consult [4] for asimple
heuristic, based on the Gaussian property of the increments of W and on the Pois-
son law for the sequence of jump times of the Feynman-Kac paths, to see why the
Lyapunov exponent should be of order log=2 (x~1).

In one interpretation, to draw a link between discrete and continuous space
cases, one can say that the discrete case falls within the continuous framework:
sincethe discrete-space W can be considered as discontinuous on R at the points of
Z, and since thereisagreat deal of independence of the increments of W in space
(the hypothesis is that {W (-, x) : x € Z} are independent), it is natural to find a
Lyapunov exponent which corresponds to a case where W features no continuity:
thisis precisely what can be observed in the logarithmic scale, where a discontin-
uous case, corresponding in the notation of Corollary 27 to the case 8 = 1, yields
exactly the discrete case result (compare in particular with Corollary 28). That the
Lyapunov exponent gets smaller when g increases from 1 can be explained asfol-
lows. What makes the Lyapunov exponent non-zero is the Feynman-Kac path b's
abilities to seek out zones where W islarge. In discrete space, one is stuck with a
specific discretization step ¢ = 1, which boasts a fixed amount of independence at
any scale, helpinginb’ssearch for high levelsof W; in continuous space, the higher
the regularity, the smaller one may take the discretization step ¢ (for example, in
the power scale s = 1/ 67+2) inthelog scles < /k 1og®#/? (1/k), see Section
5), and thus the more dependence of W’s spatial increments one is able to exploit
to restrict b's search.

Another, less optimistic, interpretation, points to the fact that the analogy be-
tween discrete and continuous space may only be taken so far. Indeed, the discrete
model is onewhich should be called “ space-time-white-noise” since W isindepen-
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dent at every site of Z. In continuous space, between the limit of continuous fields
W (e.g. case B > 1) and the case of space-time white noise, thereisan entire scale
of regularity of W: in fractional derivatives terminology, an entire 1/2-derivative
must betaken, in aSchwartz distribution sense, togo fromthecase § = 1tothecase
of white noise. In this sense, there should be much more space between the bounds
of Corollary 27 and any result for space-time white noise in continuous space. This
would contradict any analogy between discrete and continuous Anderson models
driven by space-time white noise. A way out of this“paradox” may come from the
fact that, unlike the continuous Anderson model we study inthisarticle, driven by a
potential that is abonafide function in space, the same model driven by space-time
white-noise does not seem to have a Feynman-Kac representation, or even aproper
physical meaning. Alternately the paradox may point to area physical difference
between discrete and continuous space modelsin all cases.

1.1.3. A casual reader’s guide to our results’ precise statements

The casual reader can skip Section 1.2 except for definitions (3), (4), and the
Feynman-Kac formula (8). After having taken into consideration the first two con-
ditions (E) and (E’) in Section 1.3, the reader will find the main existence result —
relating U (¢, x) := Elogu (¢, x) and a possible existence of A —in the statements
of Theorem 2 and Proposition 3, both at the beginning of Section 2.1; the remainder
of that section, and any further references to the quantities A (x) and A (x) can
be ignored on afirst reading. The crux of the proof of the almost-sure existence
Theorem 2 isestablished in Proposition 11 (Section 2.3). Of fundamental quantita-
tive importance for the entire paper is the quantity U, (t) := inf, U (¢, x), whose
super-additivity is studied in Proposition 5 (Section 2.2), and for which the basic
positivity result sup, U.(t)/t > Oisgivenin Proposition 12 (Section 2.4). All the
above results are of a qualitative nature.

Our gquantitative results are best appreciated in the two examples of the Holder
and logarithmic regularity scales of Section 5: after having read Conditions (H)
and (L) therein, with notation relative to Conditions (E’-) and (E”) of Section 1.3,
the reader will appreciate the first three corollaries of Section 5 (Corollaries 25,
26, 27). Precise, more general upper and lower bound results, i.e. not restricted to
any given regularity scale, are given respectively in Sections 3 and 4, in Theorems
14 and 23, till under hypotheses defined in Section 1.3. The last two results of
the article, Corollaries 28 and 29 in Section 5, show to what extent the Lyapunov
exponent and the potential’s modulus of continuity are intertwined.

We are grateful for the comments of two referees, which helped usimprove an
earlier version, resultingin asharper lower bound Theorem 14 and better readability.

1.2. The structure of W and the Feynman-Kac Formula

We define W specifically as follows: it is a separable centered Gaussian field on
R+ x R, defined under some probability space (€2, F, P), such that for al s, ¢ in
Ryandal x, yinR:

E[W @, x) W (s, ] =min(s, 1) Q (x, ), ©)
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where E is the mathematical expectation with respect to P, and where Q isabon-
afide covariance function for a real-valued separable Gaussian process on R.1
We define the spatial canonical metric § of W, by 62 (x, y) = E[(W (L x)

-W@y) )2] Then, wetrivially have,

) =0 x)+ 01,y —20(x,y). 4

Among the various conditions on Q and/or § which we will use in this article,
we mention here that a convenient condition leading to our lower bound result,
which wasreferred to above as anon- H-Holder continuity condition, is of thetype
8 (x,y) > clx — y|H for |x — y| small. For our upper bound result thereis a con-
dition of similar type: 8 (x, y) < C |x — y|*. However we will see, particularly in
Section 5, that we are not restricted to this Holder scale, and that we can choose
other, more irregular functions f (Jx — y|) than |x — y|7.

It is occasionally convenient to represent Q as follows: we can assume that
there exists some positive sigma-finite measure . on some measurable set A, and
some measurable function £ in L2 (R x A; dx x du) such that

Q@w?=ﬁf@ﬁf®wmww, 5)

wherethe bar denotes complex conjugation. Information on this representation can
befoundinP. Major'stext [13]. Tofix ideas, weassumethat A = R, and indeed all
useful examples can be found in this case. As aclassical example, f (x, y) = e/
and p is symmetric and of mass one if and only if W real-valued and spatialy
homogeneous.

When the Anderson model equation (1) is understood in the so-called Stra-
tonovich sense (this sense is used in al works mentioned in the Introduction), it
is known that, with b representing a Wiener process started at O with variance «
defined on some other probability space (25, Fj, Pp) which is not related to W,
we have for fixed ¢ and x, the so-called Stochastic Feynman-Kac formula

t
u(t,x) =E [exp(f W (ds, b; — by +x)):|, (6)
0

as long as the regularity of W in the space parameter is sufficient to allow the
right-hand side of (6) to actually make sense from a measure-theoretic standpoint.
When W is amost-surely uniformly continuous in space, this formula can easily
be established, by referring to the proof in[7], or adifferent proof in [16], although

1 Many of theresultsinthisarticlearevalid if wereplace R by R? for someintegerd > 1,
with essentialy identical proofs; for the sake of notational simplicity, we work withd = 1
throughout. Our Positivity and Lower Bound sections are non-trivial to extend to higher
dimensions: in fact, the transience properties of b in higher dimensions make it less than
clear that any generalization of our techniquesis possible. The extension of the Upper Bound
sectiontod > 1 would presumably be feasible, but the price to pay are a certain number of
technical difficulties due to the dependence of the jump times and the discrete-time path in
our discretization method, as were encountered in [7].
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these two articles make the additional unnecessary assumption that W is Holder-
continuous in space in order to justify formula (6). We do not know of another
published proof of formula (6) under mere uniform continuity of W, yet we do not
elaborate further on thisissue, sinceit is only tangential to our purpose.

For the reader who is simply curious as to whether the stochastic integral in
formula(6), anditsunusual notation, iswell-defined, it isconvenient to assumethat
the spectral measure i defining Q actually hasadensity: du/dy = g (y). Then, it
issufficient to recall that W can be represented using awhite-noise (independently
and homogeneously scattered Gaussian) measure M on R, x R, by the formula

Wt x) = /R 50 ) M (@5,d) Vg O)f 59 @)
X

so that we can take the following formula as a definition:

t
fo W (ds, b — by + ) :=/[o] M s ) g O)f (b= b+ x.3).
L1 X

Thisis a so-called Wiener-1t6 integral with respect to the white noise measure M
associated with W. Also, note that /g can be absorbed into f. If Q does not have
a density ¢, one can still define the stochastic integral in (6) by referring to the
spectral measure of W itself. For more details and a more general representation,
consult [13].

We can dready see that when ¢,x are fixed, we have the following
non-time-reversed Feynman-Kac formula:

u(t,x) =E, [exp (/t W (s, x + b‘v))} , (8)
0

where the equality holds in distribution under P. This formula holds by the inde-
pendence and stationarity of the increments of W in time, by reversing timein the
stochastic integral in (6). It is crucial to note that formula (8) does NOT hold for
two values u (7, x) and u (¢', x) simultaneously. When trying to estimate the law
of such apair, one must revert to the formulawith timereversal. In this article, the
formula(8) isonly used to exploit thelaw of u (z, x) for fixed ¢, x, i.e. the marginal
distributions of the stochastic processu (-, x).

Asalast aid in understanding the structure of the Feynman-Kac formula, we
mention that for any fixed continuous path » and any fixed x in R, the process
X% (x) defined by

t
X’ (x) :=/0 W (ds, x + by)

isinfacta {7} _ -Martingale, where {7V}, isthefiltration induced by W, and
that one can easily calculate the joint variation

t
< xP(), X¥' (x) > (t):/ O(x + by, x + bl)ds.
0
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The techniques used in this article do not need to refer to this specific Martingale
property. We are currently investigating directions where this property may be use-
ful for tackling open problems related to our current results (see end of Section
2.1).

1.3. Gaussian models - Assumptions

In this section we provide all the assumptions on W needed for our proofs. At
the beginning of each section we will specify the particular hypotheses needed. In
order to make sure that the Feynman-Kac formula holds, we will take amost-sure
continuity of W in space asastanding assumption in thisentire article (see Remark
1 and paragraph following).

Define

Ae) :=inf{§(x,y): lx —y| = ¢},
8(e) :==sup{d(x,y):|x—yl <&}

Note that these are increasing functions for ¢ > 0. Consider the following condi-
tions on the spatial distribution of W.

(E) [Boundedness of the variances]
sup{Q (x,x) :x e R} < x©
(E") [Nondegeneracy].There existseg > 0 such that
co = |A (s0)|? > 0.
(E’-) [Specific nondegeneracy]There existseg > 0 such that for al ¢ € (0, o),
A(e) >0, Eirgl+ A(e) =0.

(E”) [Specific regularity]. Thefollowing limit holds:

lim & (s) =0.
e—0F ©)

Here follow an analysis of these conditions, including remarks on equivalent
formulations and significance.

e The boundedness condition (E) forces the generic magnitude of W not to get
too big. The nondegeneracy condition (E’) essentialy only implies that W
is not flat in space. These are very weak conditions on Q. In particular, one
can see that the homogeneous case is a small subset of those random fields
satisfying (E) and (E’). These conditions are al that is needed to derive all
our basic existence and positivity results. Condition (E’) is equivaent to the
existence of ¢9 > O such that § (x, y) > /co for [x — y| > «o.

e The uniform nondegeneracy hypothesis (E’) has to be strengthened to (E’-)
for certain proofsin the Lower Bound and Upper Bound sections, when more
guantitativeargumentsare used. Thiscondition isequival ent to the existence of
apositiveincreasing function A suchthat § (x, y) > A (¢) forall |x — y| > «.
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e The generic upper bound found in 1998 in [7] was of the order log~ (x 1),
an order which coincides with the discrete space bounds, according to [6] and
[4]. In order to have abetter upper bound in continuous space, it isnecessary to
assume something like an upper-bound anal ogue of Condition (E’). Thisidea
was aready conjectured in [17], in their Holder-scale condition (H), although
no attempt was made there to formulate an upper bound. Here, with Condition
(E™), not only are we able to prove an upper bound, but unlikein [17], spatial
homogeneity will not be needed, and we are not restricted to the Holder scale.
Condition (E") isequivalent to the existence of a positive increasing function
s withlimp, 8§ =0and 8 (x, y) <8 (e) foral |x — y| <.

Remark 1. Recall that we have as a standing assumption that W is almost-surely
continuous. The theory of Gaussian regularity can be used to argue that we should

then have, in the context of Condition (E"), 8 (r) = o ((Iog (r—l))*l/z).

e More specifically, under Condition (E”) on §, the Gaussian regularity theory
implies that § (r) (log (r—l))l/ ? is an almost-sure modulus of continuity for
W in space. For exampleif 8 (r) < rf, (E") impliesthat W isy-Holder-con-
tinuous in x for all y < H. Thisis the situation studied in [17]. Condition
(E") isnot restricted to the Holder scale since it encompasses the following
logarithmic scale of regularity, studied in detail in [18] and in [14], given by

5(r) = (Iog (r—l))fﬂ

forany 8 > 0:itissimpleto seethat continuity of W (i.e. the above Remark 1)
only imposestherestriction 8 > 1. Thisisaconsequence of the so-called Dud-
ley-Fernique theory for Gaussian regularity [see detailsin [18] for example]
which implies that if 8 < 1, the corresponding W is not uniformly contin-
uous, in fact is unbounded, on any interval in space. In this highly irregular
situation, it is not clear to us that there is any way to prove the Feynman-Kac
formulg; if there were a rigorous interpretation of the formula, for example
by using approximations, we conjecture that it would be impossible to manip-
ulate the formula to derive upper- and lower-bound results such as those we
obtain herein. Thus the condition 8 > 1 in our logarithmic scale seemsto be
necessary for any development using our techniques.

2. Existence of the almost-sure Lyapunov exponent
2.1. Introduction

In this section we study the existence of

A= lim 1294 ®0)

t—>00 t

for ageneral Gaussian field W. Of paramount importance is the quantity

U (t,x) = E[logu (t, x)] . 9)
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The goal of this entire section is to establish the following result.
Theorem 2. Assume (E) and (E’) are satisfied. With U defined in (9), if

1
A (x0) 1= lim pUAGED) (10)
teN

exists for a fixed xg € R, then the Lyapunov exponent for the solution of the sto-
chastic parabolic Anderson model (1) restricted to integers, i.e. lim;_ o0 teN i1
logu (z, xp), exists for that xo almost surely, is finite, positive, and non-random.
Soecifically for any xg satisfying (10), almost surely

1 1

lim —logu (¢, xo) = A (xg) = lim =U (¢, xo) .
t—>00 t t—00 f

teN teN

Under some circumstances, one can prove that A (xp) is constant almost every-
where, e.g asin the case of compact space (see Remark and 4 and Proposition 8),
or in the next proposition, which is obtained for free.

Proposition 3 (The Homogeneous case). Under the hypothesis of Theorem 2, if
in addition the Gaussian field W is spatially homogeneous, then the Lyapunov
exponent of the Anderson model restricted to integers

1 1

A(x) = lim =U (¢t,x) = lim —logu (¢, x)
—o0o t—o0
teN teN

exists almost surely, isfinite, positive, non-random, and does not depend on x; i.e.
thereexists A, > O suchthat A (x) = A, for all x.

Inthisparagraph, we givean overview of the structure and results of the Section.
The first step is to study the expected value U (¢, x). Without a strong hypothesis
such as homogeneity, it may not be possible to control this quantity in large time.
However, we show that the study of the function inf, U (¢, x) can be fruitful. A
property of superadditivity is proven for this function which implies the existence
of the limit

A = lim ¢t~ Yinf U (¢, x) .
t—00 X

Then, we connect thislimit with #~1U (¢, x). If thelimit of t U (¢, x) existswhen
t — oo for a particular x then this limit is at least as large as A.. Subsection
2.4 is devoted to the proof of positivity of A, under the non-degeneracy condi-
tion (E’), which then immediately implies the uniform positivity of A_ (x) =
liminf,_  ~1U (¢, x). Although Subsection 2.4 is relegated to the end of the
present Section 2 for purposes of readability, the proof of 1, > 0 isentirely self-
contained, within Subsection 2.4. A study of A_ (x), without the use of the non-
degeneracy condition (E’), is also given (Proposition 8), which includes a partial
result of constancy of A_ (x).



Sharp estimation of the amost-sure Lyapunov exponent for the Anderson model 11

Remark 4. We leave it to the reader to rephrase the statements of Theorem 2 and
Proposition 3 without the assumption (E’) : one only needs to replace “ positivity”
by “non-negativity”. It is aso useful, and trivial, to see that if A_ (x) is constant,
then the Lyapunov exponents identified in Theorem 2 and Proposition 3 coincide
with this constant at any point x. See Proposition 8 for non-homogeneous cases
where this constancy holds.

Thefinal stepin proving thealmost sure statement in Theorem 2 and Proposition
3 isto make the connection between

lim U, x)/t = lim E[r‘llogu(t,x)]
11— 00 =00

and lim;_ ot~ Llogu (z, x) for those values of x € R for which the first limit
exists. To this end we estimate the Malliavin derivative of logu (z, x) efficiently,
and use non-Gaussian concentration inequalities in order to derive an almost-sure
result (Proposition 11): we obtain that [U (¢, x) — logu (¢, x)]/t converges to O
almost surely; this holds regardless of the behavior of U (z, x), but it isonly when
U isasymptotically linear that an almost-sure Lyapunov exponent can be deduced.

Arguably, Proposition 11 can be valuable even if U (z, x) isnot asymptotically
linear in z. More precisely we can reformul ate the proposition as

u(t,x) =expU (t,x) + o(1))

whereitisknown from Section2.4that U (z, x) isthe dominant term. Wealso prove
herein that U (r, x) < tsup, Q (x, x), which means that U does not grow faster
than linearly. Thus Proposition 11 gives a deterministic function around which the
almost-sure exponential rate of change of u concentrates, even if it is not asymptot-
ically constant. Such a situation occurswhen A (x) :=limsup,_, U (¢, x) /t >
A (x) == limsup,_, , U (¢, x) /t. One then has an exponential rate of increase
t~Llogu (¢, x) which, almost surely, oscillates between the values A (x) and
A_ (x). ldentifying examples of this situation is an open problem. Presumably,
one should be able to find such an example if the potential W is highly inhomoge-
neous in space (e.g. such that Var [W (1, x)] achieves at least two very different
levels).

Our final existence result is expressed as alimit of the continuous time process
t~Llogu (¢, x) aong afixed sequence of times. We use the sequence of positive
integer times in this article, although other sequences can be considered success-
fully. The mgjority of previous papers on the almost-sure existence of Anderson
models Lyapunov exponents also work with the sequence of integers, but often
ignore the fact that this does not prove existence of the limit of r~1logu (z, x)
whent isallowed to tend to infinity along arbitrary sequences of times. The articles
[7] and [16] do consider resultsalong all possible sequences simultaneously, but do
not prove any existence results, and thus fall short of addressing the real problem.
We are well aware of this problem in our present work as well.

Togivesomeinsight asto why thisisamuch harder problem than many may be-
lieve, notethat onewoul d needto show, for example, that [log u (7, x) — logu (n, x)]
/n convergesto 0 asn — oo for dl r € [n — 1, n]. One needs only to attempt
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writing down Ito’s formula for the difference logu (¢, x) — logu (n, x) to see that
what appearsto make the estimation so arduousis precisely thetime-reversal inthe
Feynman-Kac formula (6). We suspect that if W issufficiently regular in space, the
result may betrue, but al our attempts have failed so far, even in the homogeneous
case.

2.2. Convergencein the mean

Let U (¢, x) be defined by (9) for all x € R and al r € R... The problem of exis-
tence of the Lyapunov exponent when x € R has never been solved, and in the
casewhen W isnot homogeneous, the question of existence has not been answered
even for x € Z. One way to understand why the non-homogeneous case is more
difficult resides in the fact that the superadditive or subadditive properties do not
hold in general for U (-, x). However, consider the quantity

l)* 1) = “I l/ l,x = “I E |Ogu l,x .
( ) re ( ) re ( )

Proposition 5. Under the hypothesis (E), U, is a superadditive function (i.e,
Us (1 4 5) > Uy (1) + Uy (5) for all s, £ inR,). Thelimit o, := lim,_ o0 71U, (1)
exists, is non-negative, isfinite, and equals sup, U (t) /¢ .

Proof. In this proof, we will make use of the following notation. For ¢ fixed,
Ep [F (b. — by + )]l
where F depends on b. only viathe values b, for r > t, represents the quantity
Eb[F (0. — b+ y)],

where, after the expectation istaken, the fixed value y is replaced with the random
value b;. By theindependence of increments of b, the above quantities are of course
equa to

E, [F b)) |]-",”] :
By the Feynman-Kac formula (8), and by conditioning inside E;, with respect

tothefiltration {}'}’ } -0 Yenerated by b, and using the independence of increments
of b, we have -

Ut +s,x) =E [log (B, felo” Wiaraton |)]
— Elog (Eb {efé Widractb) o[ Wrbitbr =brt) ])]

— E[log <Eh {ef(; Wdrx+b)g, [e W (dr by by —by+x)

#1))]

—E |Og <Eb {efé W(dr,x+b,) E, I:efttﬂ W(dr,b,fb1+)r+x)iH }):| .
y=b;
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Now define the shifted potential 6, W by 6, W (¢', x) = W (1 + ¢/, x) — W (¢, x) for
all x e Rand ¢ > 0. Note that then, 8, W has the same distribution as W, and that
r — b, — b, for t fixedand r > ¢ hasthe samedistribution asr — b, _;. Thus, we
can rewrite things as:

Ut +s,x) = E|log (E, [els Vdrattn]

eJo Wdrx+by)

x Ep ———E» [ef(’)Y 0,W(dr’,y+b,/+x)]
u(t, x)
y=b;
Jo W(dr,by+x) : ,
=U(t,x)+E |og Ep, e—Eb I:efo 6; W (dr ,b,/+y+x)]
u(t,x) ,
Y=0;

Definition 6. We define a (random) measure Py, w ;.. on the same space as P, by
the formula

ep (Jo W (dr.b, +x))

Po.w.i.x [A] = Ep ) 1y |- (11)

Remark 7. By the Feynman-Kac formula (8), we have Py w; » [©2] = 1 s0 (11)
clearly defines a probability measure.

Now, using Jensen’s inequality for the logarithm, we get

U+s,x)=U(tx)+E [Iog <Eb,w,m { E, [ef5 QfW(d’“”r’ﬂ“)]’ ) })}
Y=0;

U(t,x)+E I:Eb,w,t,x { log Ep, [efg glw(dr/'br,ﬂﬂ)]’ b ” ’
Y=t

v

It isimportant to note that we may not use Fubini’s theorem here because Py, w .«
depends on the randomness in W. However, we can revert to the original nota-
tion, which allows us to use Fubini safely, and then exploit the fact that the terms
involving W without the shift 6, are independent of those involving this shift, to
obtain:

Ut+s,x)>U(x)

Jo W(dr,by+x) . / q
+E Eb eo— |Og Eb I:efo etW(d}’ ,br/—i-y-‘,-x):H
u(t,x) y=b,
=U(t,x)
ft W (dr,by+x) , ) -
+E, | E e log Ep [ef() 0, W (dr ,br/+y+x)]‘
u(t,x) y=b;
=U(t,x)
[ J& W(dr,brx) . /
+E, {E e E [Iog E, [efd 0, W (dr ,h,,+>+x)]]‘ .
u(t,x) y=bs
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Taking an infimum over all values of x yields

U* (I+S) 2 U* (t)

Jo W(dr,by+x) ,
e s ,
inf E,{E| —— | E|logE Jo 0: W (dr'.b+y+x) ’ .
+;eR b { |: u(t,x) i| [ 9% [e ]] y=b;

However, we can obtain a lower bound by taking an infimum over al possible
values of x + y, after the expectation with respect to P istaken in the second term

in the product above, but before replacing y by b,. We then recognize the quantity
U, (s) because P is 6;-invariant. Then, using Fubini again we get

y=b; }
eJo Wdrb+x)

Ui (1) +l2};E {Eb |:WU* (s) . :| ]

exp(féW(dr,b,+x)):|}

Us (t +5)

v

eJo Wdr,br+x) }

Us @+ 100 Ep {E[ u(t, x)

e € [1ogE, [elo (@b ]

:U*(f)‘f‘U*(S)jQLE:Eb[ u(t,x)

Hereweused Remark 7 which endsthe proof of theproposition’sfirst statement. The
remaining statements are nearly trivial. First, since U, is super-additive, U, (¢) /t
has alimit when r — oo which eguals sup, U () /t. Thus we only need to show
that U, (¢) /t is bounded for all ¢. For b fixed, we caculate the variance of the
centered Gaussianr.v. [y W (ds, by + x) using (7) as

' 2 t
E|:</ W(ds,bs—i-x)) } =/ / |f (bs +x, V)7 1 (dy) ds
0 0 JyeR

t

= Qbs+x,bg+x)ds <tsupQ(z,2).
0

zeR

Then, note that by Jensen’sinequality and Fubini’slemma, and the hypothesis (E),
t
U (t,x) = ElogE, (exp/ W (ds, by +x))
0
t
< logEE, (exp/ W (ds, by +x)>
0

t
= logEyE (exp/ W (ds, by -I-x))
0
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1 ‘ 2

< IogEbexprpQ(z,z)) = EsupQ(z,z).

zeR 2 zeR

This proves that the limit of U, (r) /¢ is bounded above by 2-1 sup,cr Q (2, 2).
To prove that this limit is non-negative, we use Jensen’s ineguality by moving the
logarithm inside E,,, to get that:

t
U (t,x) > EEp (Iogexp[ W (ds, b —i—x)) =0, (12
0

finishing the proof of the proposition. ]

Proposition 5isof crucial importancefor the proof of thelower boundin Section
3. Moreover, in the homogeneous case this proposition enables us to conclude that
the existence of the Lyapunov exponent holds, asisspelled out in Corollary 3, where
the Lyapunov exponent is seen to be constant. The next proposition investigatesthe
possible constancy of another notion of lower bound.

Proposition 8. Define
o1
A_(x) :=Iliminf =U (¢, x) .
t—oo

Assume Condition (E). Let Ajn; := inf, A_ (x). Then either the function 1_(x)
is bounded away from its infimum on any finite interval, or A_ (x) = Ajps for
Lebesgue-almost every x.

The latter situation occurs when the SPDE (1) is defined for x in a compact
smooth manifold.

Proof. To establish the first statement, we can write:

u(t, x) = Ep [elo W@s.x+b0) o1 W(ds,x+b5)j|

-5 (g, [efol W (ds,x+by) , f{ W(ds,x+bs)

b
gl
_E, w5 Wdsx+b) g, [efl’ W (ds,x+b1+bs—b1)

7]

_E, w5 Wdsx+b) g, [e o 61W(dr,x+b1+b,)]]

9

where we used the independence of the increments of 5 on [1, r — 1] respectively
[0, 1]. Now using Jensen’s inequality, Fubini, and the identical distribution of W
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and 6. W, we obtain:

U(t.x) = E [Iog E, [efol Wdsxb) g, [e i1 91W(dr,x+b1+b,>]]]

1 _
>E [Eb |:/ W (ds, x + bs) + logEp [efé 191W(dr,x+b1+br)]i|:|
0

=E [E [W(ds,x +bs)] +E [Iog E, [efg’l W(dr,x+b1+b,)]]]

= Ep [E[logu(r — 1, x + b1)]]
=E,[U(t—1x+0b1)].

Recall from (12) that for any x, U (¢, x) /t > 0. Therefore, by Fatou's lemmawe
have, for each fixed x,

o1 o1
Illmmf ;U (t,x) > Ep [Iltmmf ;U t—1x +b1):| ,
i.e., forall x,
Ao (x) = Ep[re (x +b))] = fp(dz)/\_ (x+2). (13

where p (dz) is the Gaussian measure (27) Y2 dz exp (—z2/2).

We proceed with a proof by contradiction. Let Ajs = inf, A_ (x). Assume A_
isnot a constant a.e. Therefore, since p and the L ebesgue measure are equivalent,
we have

o(x A (x) > Ajnf) > 0.
Hence by monotone convergence, There exists e > 0 such that
p(x A (x)>Aint +€) > 0.

Thismeansthat thereisaset Z of positive Lebesguemeasure such that for all x € Z,
A— (x) > Ainf + €. By definition, even if Ajnr isnot attained, there exists a sequence
(xn), suchthat A_ (x,) convergesto Ajns. Now, using (13), we have for each n,

A (xn) = /p(dZ)L (Xn +2)

= / p ) A (xp +2) +f pd2) A (xp +2)
T—xy R\Z—x,

> (& + Ainf) p (Z — xp) + Ainf (L — p (Z — xn))
= Linf +&p (Z — xpn)
If we assume that the sequence (x,),, has an accumulation point (non-infinite), then

asn — 00, p (Z — x,) will tend p (Z), and since A_ (x,) tends to Ajns, we obtain
acontradiction.
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If on the contrary we cannot assume that (x,),, has an accumulation point, this
implies that with

em + A i=inf {A_ (x) 1 x € [-M, M]},

ey > 0forany M, whichisthefirst alternative of the proposition.

To establish the third statement, we must reinterpret the law of b in the Feyn-
man-Kac formulato be that of the Markov process whose generator isthe Laplace-
Beltrami operator on a smooth compact manifold. Since the Lebesgue measure is
still absolutely continuous with respect to the law of b1, the previous arguments
till hold, and we can apply the second alternative of the proposition, since (x,),,
must have an accumulation point. O

Remark 9. The constancy of A_ in Proposition 8 is not needed for any of the other
results in this paper to hold. In this sense, this constancy property appears as a
bonus in our results, for which homogeneity is not required.

2.3. Almost-sure convergence

We begin with alemma from stochastic analysis. The filtration of M isthe family
of sigma-fields (F;),-¢ defined by setting 7; to be the sigma-field generated by
all the random variables M ([0, s] x B) wheres < t and B isaBorel set in R.
For arandom variable F in the space L2 (2, F, P) generated by M, its Malliavin
derivative D F with respect to M, when it exists, isarandom fieldon Ry x R in
accordance with the usual definitions from the theory of abstract Wiener spaces.
One may consult the corresponding chapter in [12] for a precise definition. For our
purposes, it will be sufficient to note the following two important propertiesof D.

1. Let f beanon-random function in L2 (R4 x R.,ds x w (dy)). For any fixed
t>0,letF = [[p g f(s,y)M(ds,dy).Letgbeafunctionin Cl(R), and
let g’ bethe usual derivative of g. Then G = g (F) hasaMalliavin derivative
givenforal s > 0andal y € R by

Ds,yG = g/ (F) f(s,y)

aslongasg’ (F)isin L? (). Notein particular that Dy F = f(s,y)
2. If G hasaMalliavin derivative and G is F;-measurable for somer > 0, then
foraly e Randdls > r wehave D, ,G = 0.

It is informative to note that D is the only closable operator that satisfies al
multidimensional analogues of thefirst condition above (g in C* (R" ), d arbitrary).
Thisfact will not be used herein. It is convenient to define the domain of the Mal-
liavin derivative D asthe so-called set D12, The book [12] can again be consulted
for definitions and properties of this set, but here it is sufficient to say that when
G € DY2 then DG € L? (92 x R4 x R, Pxds x u (dy)), and one immediately
sees that the G described in the first property above isindeed in D12,
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Lemma 10. Let G be a centered random variablein L? (2, F, P). Assume G €
D12 and G is F;-measurable. Then for every integer k > 0, there exists a constant
Cy that only depends on k such that

E [GZI‘] < C {E UyeR 1 (dy) /Ot (E [Ds,yG|fs])2ds]}k.

Proof. We need the following version of the Clark-Ocone representation theorem
(see[12]). Since G € DY2 and EG = 0,

G= // E[ Dy, G| Fs] M (ds. dy).
R+><R

Note that the stochastic integral above is of 1td type, since the integrand
E[D;,yG| F;] is adapted to the filtration (F;)=¢ of M. In particular, assume
now, as we may by our hypothesis, that G is F;-measurable for some fixed r > 0.
Then we can rewrite the above formulaas G = Y () where the stochastic process
Y isdefined for al r € [0, ¢] by

Y (r) = // E[DsyG|F] M (s, dy).
[0,r]1xR

Sincetheintegral isof 1t6 type, with square-integrableintegrand (using the hypoth-
esis G € DY?), we see that Y is a martingale and that its quadratic variation is
given by
(¥) (ds) _
ds
from which we immediately get

fR (E[DsyG|F])? 1 (dy)

E[Y) (] =E /R fo (E[ Dy, G| F])2dsi dy)-

The Burkholder-Davis-Gundy inequality can be applied, yielding in particular the
statement of the lemmawhen r = ¢. |

We now apply thislemmato G = t~1logu (¢, x) where t and x are fixed. By
property 2 above, we have Dy ,G = Ofor s > ¢. By property 1 above, the operator
D is clearly linear, and operates only on the randomness of M, so that we may
write, using the formula (8) for u,

D=1t g [Ds,yexp ( / [ £ (bs +x, y)M(ds,dw)]
tu(t,x) [0./]xR
1 1
— E, [f (by+x, y) eXp ( / / £ (bs+x, y) M (ds, dy))} .
tu (t, x) [0./]xR

Werewrite this formulausing the probability measure P, w ; . defined by (11). We
have

1
Ds,yG = ;Eh,W,t,x [f (s +x,y)]. (14)
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Now using the previous lemma for & > 1 coupled with several uses of Jensen’s
inequality and Fubini’s lemma, plus hypothesis (E), we get

E[(G - E[G)*]

1 r t k
= % C\E /Ru(dy)fo (E [Ep.w.rox Lf (Bs +x. )] m])zds“
LJye
1 B t ) k
< ﬂck E _/yERM(dy)/O E[Eb,w,,,x [lf(bs +x, )| ]|]—'S]ds“
1 ! k
- cadi E[Eb,w,t,x [[ u(dy)lf(bs+x,y)|2} m]ds]}
! LJo yeR
1 rrt k
= G EAEE““AQ@+Lm+muﬂM”
j i
SFQ&QQ@Jf. (15)

In the remainder of this section and the next one, we assume that ¢ can take
only positive integer values. What we have just proved is that for any fixed x € R
andr € N, we have

1 1 2
E [(; logu (t, x) — ;U (, x)> :| <t7*Cox (16)

where C g ; isaconstant depending only onk and Q. Now by Chebyshev’sinequal -
ity, for any constant C (¢),

1 1
PH;Iogu (t,x) — ;U(t,x)

C
> C (z)] < ﬁ. (17)

To be able to apply the Borel-Cantelli lemma, we may for example require that
t*C (1)% = t# where 8 > 1. Thismeans C (r) = 1~ *~#)/2 <o that by choosing
B — 1> 0and small enough, we only need to require that k > 1 to guarantee that
lim;— o C (t) = 0. In particular, we can state the following result.

Proposition 11. Almost surely, for any fixed x € R,

. 1 1
lim { —logu (t,x) — -U (t,x) )| = 0.
—>00 t t

teN

Combining this with the result of the previous section, the proof of Theorem
2 iscomplete. To prove Proposition 3, it is sufficient to note that by homogeneity,
U (¢, x) does not depend on x, so that U (¢, x) = U, (¢) is superadditive, and thus
A=Ay = lim_ o U (¢, x) /t exists, so that Proposition 3 follows immediately
from Theorem 2 and Proposition 5.
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2.4. Positivity

The purpose of this section is only to establish the next proposition, whose proof
does not depend on any of the results described above. The proposition provides a
structure and a crucial ingredient for the proof Theorem 14.

Proposition 12. In the notation of Proposition 5, if (E) and (E’) hold, A, > 0.

Proof. Themainideain thisproof isto restrict the Feynman-Kac paths b to regions
where the canonical metric 52 is bounded below, using Condition (E’) . Throughout
the proof, except for Step 3wherethe superadditive limiting property of U, isused,
our timet > Oisfixed (large enough) and x € R is fixed. We first choose a pair
(x0, yo) such that xop = x and yg = x — gg. By Condition (E’) for all x’ > xp
and y' < yo, we have §2 (x', y') > co. It will be notationally convenient to keep
the identities of xg and x separate. We will also introduce the shorthand notation
b} 1= x + bs. Herewe continue to use a standard Brownian motion b starting from
0 under Py, so that b* starts from x under Py.

Step 1.Controlling the probabilities of »* being outside of [xg, yo]. Let

Ay :={ inf by Zxo}, and A_ :={ sup by Syo}.
selr,21] selr,21]

We begin with asimpleresult, whose proof weinclude for completeness. As stated,
it refersto the law of standard Brownian motion started from x = xo. If one prefers
to use the Brownian motion started from x with variance « (as is required when
referring to the Feynman-Kac formulafor equation (1)), one only needsto replace
t by «t in the statement of the lemma below. This modification changes nothing to
the usage of the lemmain the current proof of the proposition.

Lemma. For anyc > 2, there exists g non-dependent on x suchthat if ¢ > rg then,
Py [A+] > (crt) Y2 and P [A_] > (crr)~ Y2,

Proof of the lemma. In this proof, as aways, note that under P, b is a standard
Brownian motion started from 0. Then, with 7_1 the first hitting time of —1 by b,
and the Markov property at time ¢, we can write

Po[4:]= |

X0

e¢]

Py [b; +x € dz] Py |:S€i[l;l’f2t] (bf — b;c) +z> xo|b;‘ = Z:|

00
:/ Pb[b,+xedz]Pb[inf bSZxO—zi|
X s€[0,7]

0

oo
Z/ Pb[bz—i—xedz]Pb[inf bsz—l]
xo+1 s€[0,7]

=Py b1z o+ 1= ) Vi | Py [To1 > 1]

In the last expression, ast — oo, the first term converges to 1/2 uniformly in x
since xop — x = 0, while the second satisfies lim; oo P, [T—1 > t] /1 = /2/7.
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Theresult followsfor A.. The proof for A_ startsidentically. Wethen arrive at the
fact that

Py [A-] = Py [b1 = o — 1= x) /Vi] P [T > 1].

Sinceyg —1—x = —1 — g9, thefirst factor in the last expression convergesto 1/2
uniformly in x, while the second satisfies lim,_, oo P, [T1 > t] v/t = /2/7. The
lemmafollows. i

Continuing with the proof of the proposition, let x; > xo and let y1 < yo, and
define

Al = {x1= b} =x0:Vs e[, 2]},
A_={y1<bf <yo:V¥selr,2]}.
If x1 (resp. y1) tends to +oo (resp. —oo), then P, [IL] tends to P, [A4]

(reep.Pb [A_] tends to P, [A_]). Therefore, using the above lemma, for any

fixed t > 1g, there exist fixed values of x1 and y1 (which may depend on ¢, x, &g),
such that

Py [A+] = 4—$; and Py [A-] = 4—\1/?

Step 2.Restricting b*. Let X, = X, (21) = [Z' W (ds, bY). We have
U@2t,x)=E [IogE;, [eX”]] > E [|og E, [e"hl/;+ + eX”l/L]]
X1y eXblg_”]
>E [max {Iog = [eXb1A+] :logE;, [exblgi]}]

{
e |og(Es[ 14, P 2. ] toa(&[ 13- | P[]} .

By the result of the previous step, and using Jensen’s inequality, we have for any
t >t

>E [Iog E, [max

U (2t,x) > —log (4«/?) +E [max [Eb [xbvh] “E, [XM,]”
= —log4 — (logt) /2+ E [max {Z+, Z_}] )
Here we have introduced
Zy =By [XplAs| and Zo =, [ XA

these form a pair of centered jointly Gaussian random variables. Indeed, they
are both linear combinations of values of a single centered Gaussian field. This
implies that the random variable Z, — Z_ is centered Gaussian. Now let o =
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. .\ 2\ Y2 - -
(E [(Z+ — Z,> D . Then (ZJr — Z,> /o isastandard normal random var-

iable. Thus we can write E HZ+ — Z_‘ /a] = J/2/7. This, plus the trivial fact
that max (a, b) = (la — b| +a + b) /2, imply

S s
= (2m)"12 (E [(ZJr . Z_)ZD .

We thus conclude

12
U (21, x) > —log4 — (logt) /2 + (2m)~1/2 <E [(z+ - Z)ZD .

Step 3.Satement of strategy. By definition of U, and by the fact that A, =
sup, Uy (t) /t, wehave A, > inf, U (2t, x) /(2t) for any fixed ¢. So we only need
to identify a single value ¢ such that U (2¢, x) is bounded below uniformly in x.

From the result of the previous step, the proposition will thus be established if we
5 o\ 12
can prove that logr = o (E <Z+ — Z_> , and that this holds uniformly

in x. In fact, we will prove more, namely that with c¢g the constant identified in
Condition (E’), for some g >0, for any fixed t > 1,

e [(z+ _ z_)z} > cot.

Step 4. Calculating the variance of Z, — Z_. We introduce a new, time-
free, random field: let {vI/ (x):x e R} denote a centered Gaussian field satisfy-

ing E[W(x) W(y)] — 0 (x, y). Also, for every fixed s € [0, 2], let Z, (s) =

Ep, [W ) |A+] and Z_ (s) = Ep [W (b7) |A_]. We now prove the following
formula.

E [(z+ - Z_)z} - /Ozt E [(Z+ (5)— 7_ (s))z} ds.

To begin with, writing squares of expected values (E; [ F (b’c)])2 as expectations
of products E;, , [ F (b*) F (b™)] where under the measure P, ;, b* and b'* are
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independent copies of b*, we have
E [(z - 2_)2]
—e[e [ [ wiasn) [ wasds 090 0]
ve[E [ [ wiasn) [T w @i @0 - )]
2 [E [ wias) [ wias )13 090 d- ()]
—e[ [ e asi 00 d ()]
+Ep [/02 Q (b b") ds|A_ (") N A (b’x)}

2
—2E, [/ t Q (brb¥)ds|Ay (b)NA- (b”‘)} .
0

Now using Fubini’stheorem to bring the timeintegration outside, and using thefor-
mulaE [W (x) W (y)] = Q (x, y), and another Fubini to bring this new E outside,
we obtain

E[(z_z_)z} _ /0 “EE, [ (b) W (0) 1A (%) 1 A ()] s
+/02t EE, [

2t
—2/ ==
0

Reintroducing sguares and products of expectations with respect to P, we obtain

el (2~ 2)] = [ e[ (& [ 02)14.]) ] s

W (b2) W () 1A (b%) 0 A (b) ] ds
[

W (o) 144 (0) N A () ] ds.

2t - - - - 2
=/0 E[(Eb [W (2)144] - B [W (1) 14-]) :|ds
which iswhat we set out to prove in this step.

Step 5.Estimating the variance of Z, — Z_. Conclusion. First we discard the
entirefirst half of the expressionfor E [(Z+ — ) ]Just obtained, for s € [0, ],
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yielding the lower bound

- - \2 2 - - 2
E|(Z,—Z_ 2/ E|:Z () —Z_(s) :|ds. 18
(z-2.)]= [Cg|(z ) 18)
Our initial goal hereisto show that Z, — Z_ can be expressed as an increment
of W itself, albeit between random sites. By the assumption on the continuity of
W, dmost surely, W defined in Step 4 is continuous on al of R. Therefore the set
I = {W(x) ‘x € [xo,xl]} isaclosed interval. Also, for al s € [z, 2¢], under

the conditioning A, we have b € [xo, x1]. This implies that for each fixed s,
Z. (s) isaconvex combination of pointsin theinterval 1} indeed, to be specific,
if we denote by f; + (dy) the distribution of b} given A, f; + is supported by
[x0, x1], hes total mass 1, and we have Z, (s) = [} f + (dy) W (y). Therefore,
since I, isconvex, Z, (s) € I,. This proves there exists a point x5, € [xo0, x1]
such that Z, (s) = W (x}_). Similarly, there exists a point x} _ € [y1, yo] such
that Z. (s) = W (x}_). Notethat x , andx} _ arerandom; yet they are bounded
asindicated, and conditional onx}, andx}_, W (x7 ) and W (x}_) arejointly
Gaussian, with covariance given using the function Q.
Now we can write

e[ 07 )] =[(7 (0 - 7 0 ))]
—E|E [(W () - W (xi—)>2

=E _5 (x;"’+; x;_)z] ‘

Since x; , and x; _are supported by [xo, x1] and [y1, yo] respectively, we can use
the lower bound on 82 given in Condition (E’), which, with the lower bound (18 ),

yields
5 B 2 2t
E |:<Z+ — Z_> i| > / cods = cot,
t

which, by Step 3, ends the proof of the proposition. |

3. Lower bound

With this section, we begin the quantitative analysis of the exponential behavior of
u in large time. We note that existence of the Lyapunov exponent is not required
for any of the results below.

Lemma 13. With the notationsin the previous Sectionlet A_ (x) = liminf,_ o U
(t,x)/t. Then A_ (x) isalower bound for the exponential behavior of the solution
of the Stochastic parabolic Anderson PDE for x fixed, almost surely:
liminf 10940 *)
t—00 t
teN

>A_(x).
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Proof. Let x befixedandlet 8 < A_ (x). We have, for k > 1,

P[M < ,3} = P[logu (1, x) < Bt]
= P[logu (,x) — U (t,x) < —U (t, x) + Bt]
_ 2%
- E[llogu (t,x) — U (z,x)| ].
U (1, %) — pn*
Using the calculations in Subsection 2.3, more specifically (16), we obtain

logu (t, x) t*Co
P| ——= _ 19
[ ‘ Sﬂ}f(va,m—ﬁnz" 19

Thereexistsarg so largethat Vi > 19 :

U(t, x) > (x_ (x) — M) .

2
Thus, (19) is continued by

logu (t, x) t*Cox 2 &
P[ Sﬂ}f : ZkZCQ’k(—> 7% (20)
t r_—B Ao(x)—B
((=*)1)

With £k = 2 we see that the probability is summable for + € N since 8 <
A_ (x). Therefore, we can apply the Borel-Cantelli lemmato assert that there ex-
ists an almost-surely finite integer r_ (w) such that for every integer r > 1 (w),
logu (z,x) /t > B.Inconclusion, for any 8 < A_ (x) and any x € R, we have
almost surely
liminf
11— 00

logu(z, x) _ 5.
t
teN

Since B can be taken arbitrarily close to A_ (x), the result of the lemma
follows. O

We now have a clear method for finding lower bounds for the Lyapunov expo-
nent: a lower bound for A_ (x) implies aimost surely the same lower bound for
lim ianﬁo t~Ylogu(t, x), which is the starting point of the next theorem’s proof.

te

Theorem 14 (ower Bound for the Lyapunov Exponent). There exists a universal
constant ¢,, such that if u(z, x) isthe solution of the stochastic parabolic Anderson
PDE (1), under Conditions (E) and (E’-), we have for small «, for fixed x, almost
surely:

.. logu(t, x) Cu 1 Cu -2 Cu
liminf > k| A =—,
R t V327 Vo (k) to (k) /321
where g () isthe unique solution of the equation

¢ = VoA (Vo). (21)
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Proof. Step 1.Srategy. To prove thistheorem, we need to recall some earlier facts
found in Section 2. Sincewetrivialy have A_ (x) > A, by definition, we will seek
only to bound A, from below. By Proposition 5, we have that A, > U,(r)/t for
any ¢. Therefore, we only need to identify a single time 7o such that U (1o, x) /1o
exceeds the announced lower bound ¢, / (tg+/327r) uniformly for al x.

Step 2.Using prior setup with new scaling. We will proceed similarly to the
proof of Proposition 12. Now we should interpret »* ashaving variance x and start-
ing point x, but in this proof it will be sufficient to use the notation b, as aways,
for our standard Brownian mation under Py, started from 0. Multiplying b by /k
will then yield the right variance. We modify the definitions of A, and A_. The
new choices we make for these events are not symmetric, unlike in the proof of
Proposition 12, which will result in amuch larger lower bound than if we had kept
the choices made in that proof. We take

Ay = {ﬁxl > by > /1 (xg —x) : Vs €[t, Zt]],
and
A= {Viv = Vb, = ViGo— ) Vs e [, 21

Note that we have the following equalitiesin law under Pp:

aw

Ay ' 1 > by > (xo —x) 1 Vs’ € [1,2]},

law

A_E {1/ by < (yo—x) [/ V5" €[1, 2]}
which proves in particular that the probabilities P, [fh] and P, [A_] do not

depend on ¢. By letting xo = x, x1 = /k, we get that P, I:/L_:I does not depend

on x or . To get the same effect on A_, we may take yo — x = —/k, and
y1 = —24/k. In other words, there is a positive universal constant C, such that

log (min {Pb [AJF Py AL } = —C,.Inany event, since A, and A_ are dis-
joint, we still have from the proof of Proposition 12
U@, x)>—Cy+E [max {Z+, Z_”

and

~ 5 1 2t 2 1/2
* . *
E [max {Z+, Z,}] > T (/l E [6 (xf 45 x3) ]ds) ,
where herethe random variabIeSx;’j 4 and x;ﬁ_ are bounded respectively below and

above by xo+/f and yp+/7. The other conclusion we can draw is that with these
choices of x'sand y’s, we get |xo — yo| = +/k.
Step 3.Optimization of the parameters. Using Condition (E’-), we see that

8 (x} s x;‘ﬁ)z > AZ (¢)



Sharp estimation of the amost-sure Lyapunov exponent for the Anderson model 27

wheree = |xg — yol| v/t = /1, aslong aswe can guarantee that 1/« ¢ can be made
small when « is small. We would then have

U2, %) > —Cu + 1/ 21)A (JU) .

Itisclear we need to chooser = 1o = g (k) asafunction of «, and that an optimal
choice, up to multiplicative universal constants, is one such that

2C,27 = /i (ko) .

Since by Condition (E’-) A isa bijective function (near 0) with inverse A—1, we

would have to take
2
1 _1[2C.V2r
k==—|A" === .
10 Vo

This relation can of course be inverted to write 79 as a function of «, athough the
expression cannot be as explicit. We also have /kfo = A~ (Cy+/27/10), and we
seethat sincelim,_.o A (r) = 0, thesameholdsfor A~1, and therefore x g issmall
aslong as tg is large enough.

Step 4.Checking 7o can be made large enough when « issmall. Since the above
choicefor g implies

Uo.x) _ Cu _ QK Al 20,21 2
210 29 2 o ’
we will be able to conclude the proof of the theorem as long as we can justify
that when « issmall, g is large, since by Step 3, thiswould also imply that /7o
is small, allowing the use of Condition (E’-). Since W is assumed to be almost-
surely continuous, the theory of Gaussian regularity (see for example [18]) implies

that A (r) = o(log=%2(1/r)). In particular, we can assume that for small r,
A (r) < log~Y/2 (1/r). Equivalently, for small x, we have

At x) > eV,

Combining thisinequality with the expression for « above yields
1
o> exp (—to/ (4 Cu)),
0

whichindeed impliesthat if « issmall, 7o will haveto belarge. Hencethe claim that
Kk tg can be made small enough isjustified, and the proof of the theorem is complete.
Notethat the universal constant ¢, inthe statement of thetheorem equals2C,, /2.
O

Corollary 15. By possibly adjusting the leading constant by a universal positive
factor less than 1, the previous theorem holds even if the liminf is taken over all
timess € R4 (removing the subscript ¢ € N).
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Proof. Thetechnique used in[17] and in [7] to handle the infimum of « (¢, x) for
alt € [n—1, n] wheren € N, can be used here again with no additional difficulty.
We omit these details since no new ideais required from those introduced in [17].
It is worth mentioning that this technique cannot be adapted to solving the open
problem at the end of Section 2.1. Thisis becausein [17], the authors only show a
lower bound for the liminf of the quantity n =2 log (inf {u (¢, x) : t € [n — 1, n]}).
The same idea of how to handle adl ¢ € [n — 1, n] simultaneously is used in the
upper bound context in [7]. But when putting the two together, a gap will always
exist between lower and upper bounds. Thus the open problem at the end of Section
2.1 remains. O

4. Upper bound

For the upper bound we will use a discretization technique similar to those in [7]
or [17], while making some necessary improvements. We will approximate the
Brownian path in the Feynman-Kac formula (8) with a path that staysin eZ where
¢ isasmall positive number that will be chosen as afunction of «.

4.1. Notations and basic results

For any Brownian motion path in C the space of continuous functions, let ro = 0
andfori =1,2,3,... lets; bethefirst timeafter ;1 that b, — by, _, exits[—e, ¢].
We define the discretized path b as the right-continuous path that jumps at each
timey; to the position x; := b,,, and that is constant between jump times. For any
time 7, we define N, as the number of jumps of 5 up to time r. Denote by
St,n)y={i=(1,12,....1)|0=t0<t1<12<--- <1, <t}
thesimplex of all the possible sequencesof n jumptimes, and by P, theset of all pos-
siblevisitedsitesx = (xo, x1, . . . , x,). Under P, theinter-jumptimesT; = t; —#;_1
areindependent and identically distributed and are independent of x. The sequence
X itself under P;, is a symmetric nearest-neighbor random walk on ¢Z started at x.
Here and throughout, x is fixed.
For b the discretized version of b, using the convention 7, 1 := ¢, we define:
N,

t
X i= [ Wds B = 3 Wlisa, ) = W)
i=0
() == a(t, x) = Ep [expXy, (7, )] .

Let A, = limsup,_, .t tlogu(r, x) and A, = limsup,_, .t~ tlogii(r). We
may write almost surely using the Cauchy-Schwarz inequality:

u(t,0) < Ep [ezxﬁ’(x)—zx,v, (f,i)ill/za(t)l/Z’

and thus,

he=5 (e 40y, (22)
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with & = limsup,_, ., l0gE, exp(2X? (x) — 2X y, (7, ¥)). This last quantity is the
error committed by discretizing b, i.e. by replacing A by (a constant multiple of)
.+ We seek an upper bound on both & and .. We note here that both & and i
arerelative to the Gaussian field 2W rather than W.

4.2. Error estimate

We quote here a result that was originally in established in [7], and used subse-
quently in[17], more specifically Proposition 3 therein. We do not repeat the proof,
noting instead that the measurability conditions that are required for a rigorous
proof do not need to assume the Holder-type conditions of [7] or [17], but that
without continuity of W (see Remark 1 for an interpretation in the context of Con-
dition (E") ), we do not believe that the Feynman-Kac formula even holds, or that
the following result can be established. We have almost-surely:

& <I|msup IogE;, [exp( )] (23)

n—o00
where, 62, = SUP,c[,_ 1, E [(X?(x) — Xn, (&, )Z))Z] and K auniversal constant.
We can estimate a}i » using the assumption (E”) asfollows:

o2,= sp E [(Xf(x) G )z))z]

te[n—1,n]

sup E|:</ W(ds, b)—f W(ds, b)>i|
e[n—1,n]

zze[?ﬁ,n] 0 82 (bs’l;s>ds5/0 52( s Ns)dS.

Now using the fact that the two processes b and b are never more than ¢ apart, we
obtain:

2 2
O < né< (g).

Finally, using this last estimate in (23) we find that the approximation error is
bounded as

£ <K& (e) (24)
4.3. Setup for use of Gaussian supremum estimates

We can write
i(t) = Ep [esz, (”)]

~YE, [20 00

n=1

N; € [ta(n — 1), totn]] Py [N; € [ta(n — 1), tan]] .

(25)
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At thispoint, et us noticethat every discretization b ischaracterized by the number
of jumpsup to time¢, the times of those jumps, and the direction of the jumps. That
is, every path b is equivalent toitstriplet (N,, 7, X). For any positive integer n and
any o > 0, let usthen define

Tna = { (Ni, 1.X)| N; < tna; T € S(t, Ny); ¥ € Py, } .
We will use the notations

*
Xn,t,ot

=sup2Xy, (. %),

no

and

f(na,t) =E [supZXM (ff):| )

na

In order to find an upper bound for the Lyapunov exponent we invoke two classical
theorems from Gaussian processes theory that can be found in [1].

Theorem 16 Y. Sudakov - C. Borell). Let T bea Polish space and {X;};cr bea
centered, separable, Gaussianfieldwithsup, ., X; < coa.s. ThenE (sup,cy X/) <
oo and for all A > 0 we have:

52
P(|supX,—E<supX,>| >A> <2 ¥f (26)

teT teT
where 02 = sup,.r E(X?).

For aseparable Gaussian field { X, };c7 on T we use the following notation for
its canonical metric on the space 7'

p(s.1) = JE[(X, — X,)2].

Theorem 17 Qudley-Fernique). There exists a universal constant K > 0 such
that:

E (supX,) <K /w\/logN(n)dn (27)
teT 0

where N (n) isthe smallest number of balls of radius » in the metric p required to
cover the space T.

Let us estimate the entropy function N () for thefield Xy, (7, X) defined over
Tho- Let m < tna, fixed. When N, = m isfixed, for7,5 € S(t,m) andx € P,
fixed, our metric is defined as:

d((m,7,3),m,5,8)° = E (Xn (7, %) = Xu G, D))’ (28)

Remark 18. The diameter of T under the metric d (the maximum distance of our
metric) does not exceed 2/t max, Q(x, x)
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2
Thisfactistrivial to seesince E [([é W (ds, x)) } < rmaxy Q(x, x). Define
now 7;,, similarly to 7, but with the number of jumps fixed, equal with .
T ={ (N, 1,X)| Ny =m; T € S(t,m); ¥ € Py}

We obviously have Ty, = Ug<(ann T
4.4. Gaussian estimations

Lemma 19. For ¢, m and X fixed, the canonical metric for the Gaussian field
(X (2, )}, satisfies:

d((m.7,%),(m,5.5) < |4supQ(x. x) Y _ |t —sil.
* i=0

Proof. Thisresultisvery similar to Lemma 2.1 in [6] for the homogeneous case.
We have chosen to reproveit since the difference, in our non-homogeneous setting,
is not that trivial. First note that by Cauchy-Schwarz,

Qx,y) =v/Q(x,x) Q(y,y) =sup Q(x, x). (29)

Using our metric, we can write:

m

d((m.7.3). m.5.9)° =Y Q. x)tig1 — 1)+ Y Qi x)(si41 = 57)

i=0 i=0

—ZEZ(W(EJFLX;') - W, 1)) Z (W(sjt1,xj) — W(sj, 1))
i=0 j=0

m
<2 Q(x, x)=2) " Qxi, x;) |AL N Asj]
. i=0

m
-2 Z Q(xi,xj)’AtiﬂAsj’.
i,j=0,i%]
Using thenotation At; = [, t;41] and respectively As; = [s;, s;4.1] weobviously
have:

m m m
Z |AtiﬂASj|=Z|AtiﬂAsi|+ Z |Al‘iﬂASj’=l,
i,j=0 i=0 i, j=0:i]
and now using (29), we obtain:
m m
D Q@i x) AL NAs| = —supQ(x,x) Y |Ay N Asjl
i,j=0,i%j o i,j=0,is]

—sup Q(x, x) (t =Y 1Aa6n Asi|> .

i=0
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Putting everything back together, we get:

d ((m, 7, %), (m,5,5)% < 4sup O(x, x) (z > 1a5n Asi|> ,

i=0

and now the lemma follows since we have

m m
t < Z|At,-ﬂAsi|+Z|t,~ —sil.
i=0 i=0

O

Now, in order to use the Dudley-Fernique Theorem 17, we will need to count
how many balls of radius n are needed to cover T, in the metric d. To do that,
first we will see how many balls are needed to cover T;,, for each m < tan. Since
Tha = Un<tan T;,, the number of balls required to cover T),, is less than the sum
of the number of balls required to cover each 7j,,.

Suppose that we are working on 7,,. For any given sequence of jump times
there are at most 2" possible sequences X € P,,. Thus, if we cover the simplex
S(¢, m) with N balls we will need 2" N total balls to cover T,,. From Lemma 19
an upper bound for the metric (28) is: d(7, 5) < 4Q(0) -7, |t; — s;|. Using this
upper bound, we now exhibit alattice of times 7,epse, SUch that d2(7, fvenser) < 12
and then we will count how many points are in our lattice.

The next few paragraphs are similar to calculations performed originaly in
[7]. The reader familiar with those can skip directly to equation (30). Consider

the partition of the interval [0, r] by k¢ points with k := 4sup, Q(x, x)mn~2:

{0,1,2,..., % = 1}. For any sequence in S(r,m), Sy t1, 1z, , ty, fOr any
i=12---,m,wecanfindapoint j (i)t/kinthepartitionwchthat|t,-—%| < %

Consider Zeenser := (j (i) 1/k)!, for afixed sequence (j (i), of non-decreas-
ing non-negative integers from 1 to rk, and consider the set of points 7 satisfying
lt; — j(k;')ﬂ < ,%forall i=1,---,m.Weobtain acover of theentireset S (¢, m) by
alowing j () to span all such sequences. Moreover, for each such 7.e,r.r We have

i

t; X

dZ(;, fcenter) <4sup Q(x, x) Z
* i=1

m
< 4sup Q(x,x)z = 172.

Hence, the balls centered at all the ... 'S thus constructed, with radius » in the
metric d, cover the set S (¢, m). The total number of these balls is the number of
nondecreasing sequences of length m withvaluesin {1, 2, - - - , kt}. Thisnumber is
easily computed to be the binomial coefficient (kt+,;”_l). We can also show, using
Stirling's formula, that

kt -1
( tm ) < 3"(kt + m)"m™"™".
m
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Now since the set 7}, is the union of the sets S (¢, m) x {X} where ¥ spans the set
of al nearest-neighbor paths of length ., the total number N,, (1) of balls needed
to cover T,, istrivialy bounded above as follows:

4
Ny () < 273" (kt +m)"m ™" = 6" (M + 1) :
n?

where we used the definition of k.
Therefore, thefollowing is again atrivial upper bound on the number N () of
n-balls required to cover T,,,:

S tan
4
NG = 32 No0) < 10 Niga () < 1an6" (M . 1) |

m=1

For simplicity of notation, in the next few lines, we are going to use m instead of
tan. We use the Dudley-Fernique Theorem 17 to obtain:

E( Sup Xm(f,i)> <K /nm JIog N (m)dn
0

(m.7.%) € Trn

2, /tsup, O(x,x)
[
0

ognize (428G

772

2\/1 sup, Q(x,x) 4sU ¢
§K/ \/Iogm+mloglz+mlogwdn
0 n

4su , X)t
1+log12+log Mdn.
n

< K/m /

0

Now denote c1 = 1+ 10912, co = 4sup, O(x, x). We are going to make the

changeof variables: /c1 + Iog €2l — z.Withthischangeof variables, theendpoints

of integration become +o0 and Je1 and dny = —./cat 2z exp(—22/2) exp(cy).

Then, using the fact that the second moment of a standard normal isequal to 1, we
have:

2,/rsup, O(x.x) \/

o0 .2
E( sup Xm(;a i)) =< ZK«/E 62l601«/27T/ ZZE_%dZ
c1

(M.F.%) € Tian
< Kovmt

for some constant K  depending only on Q (viathefactor sup, Q/? (x, x)). Thus,
substituting back m = ran, wefind

f(na, t) = 2E (supXM (f,i)) =E(X;,4) < 2Kg+/na. (30)

Tha

To proceed further, we will need to prove alower bound on f (na, r) as well.
We will need to use the strengthened non-degeneracy hypothesis (E’-).
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Lemma 20. Under the hypothesis (E’-), there exists a constant C such that for
any fixed ¢ > O:

fna, 1) = CoA(e)ty/na.

Proof. Letusfix anm < nat. Wewill consider the function:

Tm

h(m,t) =E |:supXm(t~,)?)} ,

with the same T,, defined earlier. We obviously have h(m, t) < f(nat), for all
m < nat. The idea is to maximize the increments defining X step by step.
We will pick specific sequences 7 and ¥ and the value of EX,, (¢, X)) will be a
lower bound for the expected supremum over al the sequences. Let the timesin
the sequence 7 be equally spaced i.e., tx = kt/m, k = 0,1,..., m and write
W (tgy1, x) — W (t, x) = Wi (x). We let xo = 0 and choose x; recursively as
follows:

o = JMete it Wilxx—1+e) > Wi(xk—1— &)

T lx_1—¢ othewise )

Since thisisjust a particular sequencein 7;,, we obviously have:

m—1

h(m, 1) = Y E[Wi (x)].

k=0

By the independence and scaling of the increments of W in time, and the spatial
distribution of W, we immediately see that the values Wy, (x;) are independent —
which does not seem to be crucia here—, but moreimportantly that the distribution
of Wy (xx) isequal to that of the random variable;

Vit/mmax (Zy, Zy,)
where Z;, Z,/c isapair of centered Gaussian variablesthat are independent of x;_1
and satisfy E (Z2) = Q (vk-1 - ©),E (Z2) = 0 (xe-1 + &), adE [ (Z — 7))’
=38 (xg—1 + &, xk—1 — €). Now we can use the Hypotheses (E’-) , coupled with the

expected value of the maximum of two Gaussian random variables. Thus, for some
constant C > 0 depending only on Q, we have for al k:

E [max (Zk, Z]/C)] > CpA(e).
This proves that for any fixed ¢ > 0,

h(t,m)>mCgA (¢) \/;

We immediately obtain
f(no,t) = h(t,nat) > CoA (g) ta/no.
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Remark 21. Strictly speaking, the full strength of Condition (E’-) is nhot necessary
to prove thislemma. The only thing we need to assume is that for some increasing
function A that ispositiveexcept at 0, for al |x — y| small, § (x, y) > A (|x — y|).

The previous lemma is only needed for the application of the Borel-Cantelli
lemmawhich follows now. Since in the end we will choose the value ¢ depending
only on x, CgA (¢) appears as a fixed positive value that does not depend on »
and ¢, and thus, it will be legitimate to apply the Borel-Cantelli lemma assuming
CoA (e) isapositive constant. Next, using the Sudakov-Borell inequality 16 and
Lemma 20, we compute:

P[X) o >2f(ne,n] =P[X}, o — f(na,1) > f(na, )]

=P |:X;;,t,oz —E (SupZXNt(f,)?)) > f(nao, t):|

Tha

1 12 A2
< 2exp (-Zfz(na, t)) < 2¢"2C0A @nat

using (30) and the fact that a% = t. To simplify notations, let us denote ¢ =
CoA (). We consider the probability:

P[Ai«] :=P[3n > lsuchthat X}, , > 2f(na,1)]

n,t,a
< Z [ [X;,",,’a > 2f(na, t)]
n>1
Canlt
c S
n>1
_ —c2a1/2 1
=2 1 — e—c?at/2

< 4€_C2a1/2.

Sincec > 0, thisprobability is summablefor r € N. We can then apply Borel-Can-
telli lemmato obtain that there exists afp(w) < oo a.s. such that for all r > ry(w)
Atca istrue. That meansthat there exists 1o(w) < oo as. such that for al r > ro(w):

vn>1 X

n,t,a

<2f(na,t).

Now we are ready to continue (25). For 7 large enough r > 1p(w), we have:

i) <y eMoViaIp, [N, € [ta(n — 1), ten]] . (31)
n=1
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4.5. Estimating the distribution of the number of jumps

According to the last inequality (31) above, we must find a sharp estimation of the
distribution of the number of jumps up to time z. We first connect this distribution
with the jump times themselves. More specifically, we denote the kth jump time

by:
Sk =Ta+To+-- -+ T,
where T; isthe ith inter-jump time. We then have:
{Nt = k} = {Sk =1}.

We know that the inter-jump times 7; are independent and identically distrib-
uted random variablesindependent of the sequence X = (xg, x1, ..., x¢),and 71 is
thefirst exit time of Brownian motion started at O with variance ¥ from the interval
[—e, €]. Toavoid confusion, wewill denote Tl(K) thisfirst exit timefor the Brownian
motion with variance «. A standard scaling argument easily connects its distribu-
tion with that of thefirst exit time T = 73 of a standard Brownian motion from the
interval [—1, 1]. If Tl("), Tz("), ..., T denote the times between crossings of the
grid eZ for a Brownian motion with variance « then:

T,'(K) Distrgution 8_27:
K

While the distribution of 7" is known explicitly as a series, the corresponding
formulaisdifficult to work with. To proceed with the estimation of the distribution
of N,, we will perform a specific estimation of 7. Let m be a fixed integer > 1.
Then we have:

Py [Ny = m] = Py [Siy < 1]
=Pb|:T1(K)+T2(K)+“-+Tn(1K)St]
- - ~ K
=Pb[T1+T2+~~+Tm§;I]
- - ~ K
<3P [T fTod ot Ty < ot
<Y P| i+ T m=

XePy,

x] P[],

where P, is the set of all possible paths of a random walk started at 0 on the
integer lattice with m jumps. Since al the paths have the same probability we
have P, [X] = 2 for al x € P,,. Furthermore, since T;’s are independent of X
the probability P, [N; > m] remains unchanged if one conditions by a particular
realization of the sequence x. Thus, using S,, for the time of the mth jump of b,

Py [Ny > m] = Pb[T1+f‘2+'~-+ﬁn < %t x0=0,x1=1,...x, =m]
€
=P, I:T1+T2+...+fm§£2l and xo=0,x1=1,...x, :m:l /27"
&
=2"P, [fl+fz+---+ T < %t and b
e

iy
T+ To++ T, lVl—m]
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< 2"P, [Sm < %t andb; = m]
8 m
<2"P,| sup by >m]|.
s<ke~2t

The reflection principle for Brownian motion states that, for any a > 0 fixed,
sup, -, bs and |b,| have the same distribution. Thus we obtain,

=

me 1 2
=2"p, | 1Z] > —— | < 2m —=A%/2

Py [Ny = m] < 2"Py [|bs,

with Z astandard normal variate and A := me/+/kt. Thus, withm = tan > 1we
are able to state the final result of this section.

Proposition 22. If N, is the number of jumps of the discretization b, defined in
Section 4.1, of a Brownian motion b started at O with variance « on the lattice ¢Z,
then as soon astan > 1 we have:
&2
P, [Nt > tOH’l] < 2tom;e—:—2[m2n27.

\/?om\%

Note that, while this result holds as soon as tan > 1, it only represents a tail
estimate when « is larger than a certain value depending on ks ~2. When « is too
small, the right-hand side in the above will be greater than 1, and the proposition
will not claim anything. It is only in the tail estimate regime that this proposition
will be used below, however. Still, checking that ran exceeds 1 in the usage below
istrivial, since we will only be usingn > 1 and fixed « > 0 not dependent on ¢:
the condition is met trivialy for r > o1,

4.6. Final step

Now we can use Proposition 22 in the equation (31). Notice that we can only apply
theresult for n > 2. For those terms we have

00 o0
> HKoVIp [N, € [ta(n — 1), ran]] < Y *KoVEFDIP [N, > tan]]

n=2 n=1

00 1 2

< Z e4KQ«/(n+l)ot12tom e—ztaznz e

- Jtan-=
n=1 f
Z (az 262 20 log2— 8KQ«/(n+l)oc) (32)

\/;om

n=1

We simply bound the term for n = 1in (31) asfollows:

AKoVaIp N € 10, 1a]] < e*Kovar, (33)
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We can aso see that the general term of the seriesin (32) decays faster than geo-
metrically; therefore the sum is dominated by a constant multiple of the term with
n=1

Our purpose hereisto choose our free parameter « to make the first term of the
seriesin (32) dominated by a quantity that decaysto 0 so that the only contribution
in the Lyapunov exponent comes from (33). To this end choose «, so that:

1 2 1 ,¢?
_Et (052% —2ulog2 — 8KQ\/&) < —Ztaz%,

or
2

02 > 4(alog2+ 4K p/a) .
K

Since we may insist on o < 1, the right-hand side above is bounded above as
follows:

4(alog2+4K o) < 4/a (log2+4Kp) = C/a,

with C aconstant. Thus, takinga = (C/cs—z)z/ % with .. thealmost sureLyapunov
upper bound of the discretized iz of Section 4.1, we have proved

2

Ay < Cik %8_§,
with C; aconstant depending only on Q, aslong as«k < &.
Combiningthiswiththeerror estimate (24) of Section 4.2, we obtain our general
upper bound theorem for arbitrary values of « and ¢.

Theorem 23 Upper bound for the Lyapunov exponent). Let u be the solution of
the stochastic parabolic Anderson PDE (1). Under the Conditions (E), (E’-), and
(E") we have almost surely:

. 1 1.2 2
Ilmsup;logu(t,x) < Ck3e 3 +Cs(s),
—>00

teN

with C a constant depending only on Q, for all x < 2.

Corollary 24. By possibly adjusting the leading constant C by a universal positive
factor less than 1, the previous theorem holds even if the lim sup is taken over all
timess € R, (removing the subscript ¢ € N).

Proof. The idea of the proof isidentical to that of the corollary to Theorem 14. O

5. Examples of specific bounds

In thislast section, we assume (E), (E’-), and (E") hold.
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5.1. Holder scale

In this paragraph, we assume the following.
(H) [Holder regularity scale] For two constant ¢, C > 0, and a parameter H €
(0, 1), we have, in aneighborhood of 0,
s(ry<crt
A@r)=crfl.
We refer to Section 1.3 for an explanation of how this is connected to W's
spatial Holder continuity. The lower bound Theorem 14 yields the following.

Corollary 25. For some positive constant C depending only on Q, for all small
x and all x, almost surely,

.. . logu(t,
liminf M > CQKH/(H+1).
t—00 t

Proof. From Condition (H) we calculate an upper bound on the unique solution g
to equation (21), finding

o < c,fclcfH/(HJ“l),
-1
and the result follows immediately, with Co = ( 32nc§c) . O

For an upper bound, we only need to optimize the value of ¢ in Theorem 23,
now that we know that 82 (¢) is of order ¢2#. Clearly, up to constant factors, it
is optimal to choose ¢ so that the error and the main term in the upper bound are
equal:

1 _
82H =k3¢

[VN)

Thisgivese = /6142 s that the Lyapunov upper bound equals, up to a con-
stant, 2¢2H = 2 H/BH+D) |n other words, we have the following.

Corollary 26. For some positive constant C depending only on Q, for all small
x and all x, almost surely,

. H
limsup < Cok 3HFL,

—>0o0

logu(t, x)
t

5.2. Logarithmic scale

In this paragraph, we assume the following.
(L) [Logarithmic regularity scale] For two constant ¢, C > 0, and a parameter

B > 1, we have
1 -B/2
s(r)y<cC <Iog—> ,
-

1\ P2
A@r) > c(lOg—) .
r
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We refer to Section 1.3, in particular Remark 1 and the paragraph following it,
for an explanation of why we must have 8 > 1 and how thisis connected to W's
spatial modulus of continuity.

Wetrivially get thefollowing result for upper and lower bounds, which we state
together to emphasize the fact that the two bounds are of the same order, showing
that in the logarithmic scale, our proofs are sharp.

Corollary 27. For some positive constants ¢ and Co depending only on Q, for
all small ¥ and all x, almost surely,

-B -B
K t t K

t—0o0 1—00

Proof. For the upper bound, again, we choose ¢ so that both of the quantities in
Theorem 23 (and its corollary) are equal, i.e. choose ¢ so that

€= ﬁ(log%)gﬁ . (34)

With this choice, we have that the upper bound is commensurate with:

1 3p —2/3 1\~ #
7233 = (ﬁ (Iog —) > K3 = (Iog—) .
e e

Now in order to return to a formula involving only «, it is sufficient to see that
because of relation (34), we have ¢ < «1/2~* forany o« > O.

For the lower bound, we use Theorem 14 (and its corollary) as follows. Letting
to be the unique solution to equation (21), we seethat for small «, 7o hasto belarger
than 1 since no value lessthan or equal to 1 solves (21). As a consequence we have

1
to < Cc22? log? (—t)
K1Q

1
< Cc228 log? (-) .

K

The corollary follows. O

This sharp result can also be related to the estimations in discrete space. It has
been known since[6], and has been confirmed in [4] (where explicit constantswere
computed), that the Lyapunov upper and lower bounds for the stochastic Anderson
model in Z¢ are both of order

1 -1
(Iog ;) .

In continuous space, since we must have 8 > 1in order to even use the Feynman-
Kac formula, we see that there is a fundamental quantitative difference between
discrete and continuous space behaviors. The Anderson model in discrete space
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will always increase faster than the same model in continuous space, as long as
some spatial regularity is assumed for the potential.

In order to further understand the above example of the logarithmic regularity
scale, one can write § (r) = (Iog%)fl/2 f (r). In[18] it is shown that W is uni-
formly continuousin x if and only if lim, o f (r) = 0,inwhichcase f is,uptoa
non-random constant, an almost-sure uniform modul us of continuity of W in space.
Thecase 8 < linthelogarithmic scale clearly does not satisfy this condition. The
argument leading to the upper bound in the last corollary can be repeated in the
general situation to show that the factor f ()2 will aways appear in any upper
bound next to (log 5‘1)_1. Then, using again the relation (34) as above to return
to k, we obtain precisely the following.

Corollary 28. Let f (r) be an almost-sure modulus of continuity for W in space.
For some positive constant Cp depending only on Q, for all small « and all x,
almost surely,

2
IimsuploQu(t’x) <C f (\/f)
t—00 t log ¢

This provesthat the continuous-space exponential behavior isaways of alower
order than the discrete space one, and that the ratio of the two upper bounds,
f? (), isprecisely related to theal most-sure uniform modul us of continuity of W
in space. Thisresult makes no use of thefact that § isinthelogarithmic scale. While
we cannot draw any conclusion for alower bound in this general situation, Corol-

lary 27 can still bereformulated using the representation § () = (log %)71/2 f @),
if fisassumed to belarge enough. We statethisasthe ultimate result of our article.
It isan easy consequence of [18] and the calculationsin the proofs of Theorems 14
and 23 and all corollariesabove. The conditionsit referstoin[18] aretypically sat-
isfied in al useful examples, including our logarithmic scalefor 8 > 1. The result
proves that there is a precise relation between the almost-sure Lyapunov exponent
of the continuous-space Anderson model and the almost-sure spatial regularity of
its potential.

Corollary 29. Let f beanincreasing function defined near Osuchthat £ (r) > r#
forall H > 0, and lim,_o f (r) = 0, and f satisfies the technical conditions
defined in[18]. If W (1, -) admitsa constant multiple of f for an exact almost-sure
uniform modulus of continuity on any interval in R, then
2 2
0! (V&) np 199D e logue ) S (V&)

<lim Co———— (35
logt ~ - t 100 t - log 39

K

for some positive constants cp and C o depending only on Q, for all small « and
all x, almost surely.

Conversely, assumethat s (r) = (Iog%)fl/zg (randA (r) = (Iog%)fl/zh r)
for some ¢ and % satisfying the technical conditions defined in [ 18], and such that
g (), h(r) > rf for all H > 0. If (35) holds almost surely for some x, then
theratios g/f and h/f are bounded away from 0 and +o0, and W (1, -) admits a
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constant multiple of f for an exact almost-sure uniform modulus of continuity on
any interval in R.
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