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Abstract: In this paper we implement an algorithm for the to prove the HIB equations, and because of the excitement
optimal selection of a portfolio of stock and risk-free as- created by finding such a beautiful application of stochastic
set under the stochastic volatility (SV) model with discrete theories to such a useful and popular are as finance. Fur-
observation and trading. The SV model extends the clasther, the stochastic theory of HIB equations appears as a
sical Black-Scholes model by allowing the noise intensity strong connection between a young and vigorous theory of
(volatility) to be random. The main assumption is that the stochastic analysis and the industrial engineering point of
portfolio manager has discrete access to the continuous-time@iew of dynamic programming problems. A casual visitor
stock pricesas a consequence the volatility is not observed in the land of the stochastic theory of finance will notice that
directly. In this partial information situation, one cannot there is an even more popular topic in finance than portfolio
hope for an arbitrarily accurate estimate of the stochasticoptimization that has benefitted from being cast into a theory
volatility. Using instead a new type of optimal stochas- based on stochastic analysis: the question of option pricing,
tic filtering, and its associated particle method due to delintroduced by Black and Scholes themselves. In reality, the
Moral, Jacod, and Protter [9], our algorithm, of the “smart” financial industry today is in greater need of mathematical
Monte-Carlo-type, approximates the new Hamilton-Jacobi- results on portfolio selection than on option pricing. One
Bellman equation that is required for solving the stochastic reason for the imbalanced distribution between the two top-
control problem that is defined by the portfolio optimization ics in stochastic finance may be that option pricing is mathe-
question. matically easier than portfolio optimizatipimdeed the HIB
equation is a nonlinear parabolic PDE, while the fundamen-

Keywords: Stochastic portfolio optimization, stochastic tal equation of option pricing is the Black-Scholes equation,

volatility, particle filtering, Monte-Carlo methods. which is a linear parabolic PDE. We cite as our main practi-
cal motivation for the present work our desire to correct the
1 INTRODUCTION imbalance. From a mathematical standpoint, we also have

a preference for portfolio optimization precisely because, to
s paraphrase Leon Tolstoy, linear PDEs form in some sense

The celebrated Black-Scholes model for stock price ! ; : ; X ;
which was introduced and used by Black, Scholes, and® unique big happy family, while each nonlinear PDE is an

Merton in the early 1970's ([3], [24]), is still immensely mdiviqlual unhappy family, and why would one turn one's
popular, as a vast majority of financial practitioners in attention to a family that needs no help to achieve happi-

today’s financial industry believe that most stock prices ness...?
and indices are best modeled by continuous-time stochas- Among the hypotheses in Merton’s original work, two of
tic processes driven by Brownian-like noise, and the Black-the most important ones are still widely used in stochas-
Scholes model is the simplest and best understood model iic portfolio optimization: the use of a constant, or at the
this class. Merton's name is most often associated with hisleast, non-random volatility, and the assumption that obser-
so-called Mutual Fund theorems ([22], [23]), which cast the vations and trading occur in continuous time. Both assump-
problem of optimal selection of a portfolio of stock and risk- tions are far from being satisfied in most real financial mar-
free asset in the framework of stochastic optimal control kets. Today, it is widely recognized that constant volatility
of diffusion processes. Merton originally used the Black- is the single most important deficiency of the Black-Scholes
Scholes model as the underlying stock price. He showedmodel. We choose to use the Stochastic Volatility (SV)
that if the question is to maximize an expected future util- model, one of several extensions/corrections of the Black-
ity of the portfolio, the answer is obtained by solving a Scholes model which have recent appeared. Relaxing the
Hamilton-Jacobi-Bellman (HJB) partial differential equa- second assumption is no less crucial. Indeed for many in-
tion (PDE). vestors, not only does the presence of transaction costs for-
Portfolio optimization using this HIB approach has been bid continuous trading, but information does not come in
a popular one ever since. It has to be said that it appealeatontinuously, and is thus incomplete. In our view, this prob-
greatly to the world’s probability community because of the lem is just as concerning as the first one, but has received
highly non-trivial use of stochastic analysis that is required much less press. We tackle it by requiring that portfolio



selection and rebalancing occur only at a set of discrete obfor alli = 0,--- , N, where the supremum is over &M, b)
servation times, based solely on the available observationsthat are non-anticipating, i.e. such tiat, b;) are functions

Our main philosophy is that, going against a natural math-

depending only oy, zg, z1, - - - , ;. Other restrictions on

ematical tendency, one should not then revert to discrete(a,b) may be placed, such as requiring thitbe bounded

time models the underlying stocks should still be consid-
ered as continuous-time Brownian-motion-driven stochastic

below (no ruin), or that the possible values fas, b;) be
bounded and/or discrete. Hdreis some utility function. A

processes. The simple fact of having continuous-time mod-typically choice isU (w) = w? /p for somep € (0,1) (the

els with discrete time information captures, in our view, the
essence of the incompleteness of information that all port-
folio managers are faced with.

2 THE MATHEMATICAL PROBLEM

2.1 Portfolio optimization with stochastic volatility

We will work exclusively in a model in which the risk-
free asseB is assumed to have a constant interest rate
B, = et for all t > 0. Under the simplest SV model, the
evolution of the price of a single risky ass¥tis given by
the following stochastic differential equation:

dX; = Xypdt + Xyo (Yy) dW. @
Heret ¢ R,, W is a Brownian motion, the mean
rate of returny is assumed to be constant for simplicity,
and the stochastic volatility (Y;) is a deterministic func-
tion o of a stochastic procesg that satisfies a diffusion
equation driven by another Brownian motighsuch that
corr (W,Z) = pwith0 < |p| < 1,i.e.

)

Typically (see [15], and their statistical study of the Standard
& Poor 500 index), practitioners take= exp andY = a

dY; = a(Yy) dt + B (Vz) dZ;.

so-called Hyperbolic Absolute Risk Averse (HARA) case).

We will see below that one of the most important con-
cepts needed for solving this problem is how to find the best
estimate for the volatility ofX given only the discrete ob-
servations ofX. This s called the stochastic volatility filter-
ing problem, and can be written as the following conditional
probability distribution:

pi (dy) := P [Y; € dy| F*] . (5)

Before we explain what mathematical techniques are re-
quired for solving the portfolio optimization problem and
implementing a numerical method for it using the stochastic
volatility filter, we review the current literature related to the
problem.

2.2 Position of the problem in the current literature

Nonlinear stochastic filtering has a key role in partially
observed stochastic control. We cite [13], [10], [11], [2] and
recently [29]. Recent advances on finance-related aspect of
this topic are still restricted to non-stochastic volatility: [30],
[26], [21], [25], in which the linear-quadratic and integral-
guadratic models are considered, but only using standard
linear filtering.

There is no literature on filtering of stochastic volatility in

fast-mean-reverting process such as the Ornstein-Uhlenbeckontinuous time. The reason for this gap is that probabilists’

process with large::

dY; = a(m —=Y,) dt + /adZ,. (©)]

Fori = 0,1,---, N, let X be the information con-
tained in the discrete sequence afservedasset prices
Xo, X1, -+, X;. Note than for notational simplicity we as-
sume here, and in the remainder of the paper unless oth
erwise specified, that the observation times are the inte
gers. Note that7X is not the commonly used “filtra-
tion of X, which contains much more information. For
T = (o, - ,zn) afixed sequence of positive numbers, de-
note by ¥, the scenario (evenf)Xo = xo,--- , X; = z;}.

We consider self-financing portfolias = (a;)Y_, with
wealthW, = Waibi = q; X, +b; B, for s € [i,i+1]. This
ensures that the strategy be constant in each intgrval
1). Using wealth as a state variable is a standard choice
and thus we can reduce the number of control variables, b
letting b; = (w; — x;a;) e~ "' AssumeW, = wy is given.
The basic portfolio maximization problem with horizdht
1is to find a portfolioa™ that attains the supremum

V (0,29, wp) = supE [U (Wﬁril) | Xo = o, Wo = wo
(4)

work on filtering of continuous-time processes have concen-
trated on continuous-time observatjam that situation, the
volatility o2 (Y?) is, in principle, obtainable exactly from the
information in X (measurable w.r.t. the filtration of), as

the so-called quadratic variatiqiX') of X. However eval-
uating (X),, a problem of estimation, rather than filtering,
is treacherous in practice. The financial industry contains
notorious stories of investment firms whose bankruptcy can

be traced to a poorly estimated volatility.

The popular ARCH/GARCH models are designed to esti-
mate stochastic volatility in a stable way (see [20], [4], [14]).
Dan Nelson ([27]see also [4]) showed that ARCH/GARCH
models are in fact an approximate filter, since they con-
verge to the full information SV as the observation time step
6 — 0, leading many to believe the task is now to “bridge
the gap to continuous time” (see {417], [18], [19]). But
the quality of the ARCH/GARCH *“filter” is only guaran-

Yeed for high observation frequenéy'. We adopt a dif-

ferent angle, seeking not an estimation butdpgémalfilter
when¢ is fixed The very recent work [9] gives a numer-
ical method for discrete-observation filtering of diffusions
under stochastic volatility, which opens the way to numer-
ically solving the stochastic volatility control problem with
discrete information, as we detail below.



Recent work on volatility filtering that departs from all s € [i,4 + 1], find
the ARCH/GARCH framework, but differs from the opti- _ .
o . T V(s,x,w) =V (s,2,w;T;)

mal filtering approach includes: [5] (a ngwojectionfil- )
ter), [6] (reduction to linear (Kalman) filtering in a special =sup E[U (W) | Xs =2, Wi =w, FF].  (7)
case) [28] (filtering w.r.t exogenous observation noise, not €4 .
stochastic volatility). [12], [16] study models with stochas- Recall that the control sed, is the set of all sequences
tic volatility, but in the first case, the issue is to hedge an op- (@) Of the forma; = a; .(?UUaXJ‘)- It should be clear
tion, while in the other, the SV is filtered out of unobserved from the self-financing condition

noise in random observation times, reducing the problem to Wi = a; Xy + (W; — Xiai)g(t—i) (8)
tandard filtering. o .
standard fitering that this is just as general as allowingto be of the form
3 FILTERING WITH STOCHASTIC VOLATILITY aj = @ (Xj’ Wj)'

Theorem1 For s € [i,i + 1), V in (7) satisfies the

The probability measure; (dy) is random since it de-  Hamilton-Jacobi-Bellman (HJB) equation

pends on the valueXy, X,,---,X;. However at time, 8_V a _
the valuesXy = zy,--- ,X; = x; are known to us (they s " aseufo ATV 0] =0, @)
constitute thebservationwhile Y is thesigna)) and there- where for any fixeds € Ao, A? is the infinitesimal

fore 7X can be replaced by?, andp; (dy) can be consid-  generator of (X, W®) in [i,i + 1) with o replaced by
ered as being non-random, depending only on the parame-\/?
tersz; := (0,1, ;). To make the deterministic de- /4=~ (%3 7i), where
p(laondein(cde ;)ﬁl appear clearly, we will systematically denote 20X (2;7;) = E [02 (Ys) | X, = =, j_—ﬂ _
p by pi (dy). . . .
Using the concept of Bayes’ formula, it is not difficult to mczge)c;‘s’eg;[tg}ﬁge)fl!ﬁg &”egfé%]gllggwé%ﬁé 'ifiéhﬁﬁélg .
establish an e>.<plicit recursion rel.atio'n for the filter in (5): It by any proper subset of,. P
can be found in [31]. However, in view of the complexity . )
of this iterative formula, there is currently no hope to eval- HereZ"~ appears naturally as the filtered expected value
uatep? by any other method than the “smart™-Monte-Carlo Of the squared Stochastic Volatility® (). In this sense,
algorithm recently established in [9], even for the simplest the dynamics of” follow a so-calledseparation principle
of examples. (see[32], [2]), i.e. the fact that the unobserved SV parameter
The algorithm of [9] (detailed in Section 5 therein), it- o~ (Ys) can be replaced by its filtered value at timegiven
self a bootstrapping extension of the genetic algorithm ofthe current information, and all past discrete information.
[8], yields a good approximation (order 1/3) of p? as the Note that in the calculation of this filtered value, although

empirical distribution of a family of. interacting particles ~ the current stock price may be invoked, one is not allowed

(Y}c)n to use any continuouow of information for any non-zero
=1 1 length of time. This makes it impossible to estimate the SV

P2 (dy) = — Z By (dy). (6) using formulas such ag (;) = (X),, notwithstanding the
ni= T fact that the current stock price may be used. However, as

The particles evolve according to the iteration of a two- we are aboutto see n Rroposnmn 2, since the_contro4s)|n
can only change attimes=0,1,--- , N, the optimal strat-

step (selection/mutation) process. In the mutation process; I K fthe inf HGiF at th i
they evolve independently according to the Euler approxi- egy only makes use of the informatidgij’ at those times, a

mations of the diffusiorY” defined by the original dynamics fa(\:,tVWh'Ch IS argua;bly It.‘;tUItlt\./elnybVIOIUS. hich red th
of (X,Y), with time stepm = n'/3. To take the selection € now present an jterative formuia, which reduces the

step, the particles, which are created jointly with observa- complexity of the HIB equation (9), and is the key to our

tions simulated one time-step into the future, use these SimuMonte—CarIo method.

lated observations to evaluate each particle’s fitness relativd>roposition 2 Let J ?e alny dsubset aR.and égp'aCCAB
to a bootstrapping version of the maximum likelinood esti- 5Y, "™ .re]s\;rl%lrogmt/(} ;VF} l(Jme w?g%”%g%ﬁsé" rany=
mator of how they should be distributed. The particles then > ™7’ ' T

rearrange their positions according to their fitnesses, which ' (f) (wiwi) = @ (f),, | (wi,wi)
is the selection step. This algorithm is explicitly given on ‘ @i =\ | TF yhai
page 16 of [9]. = izlepIE [f (XerlaWH-l)xz) |F2 Wi = w,] . (10)
4 MATHEMATICAL TOOLS Then we have
Vv (i, X, wi)i’i,—l =V (i, X4, Wy i’z)

All the results quoted in this section are established in =" (B (- N (U))), (i, wy) (11)
[31]. For any scenari@ := (xg, 21, - ,zn), and anyi < « _ (o o .
N, we definez; — (w0, - -+ , ). Using a standard idea, we and the controla* = (af;--- ,a}) which is obtained by

\ Lo . - calculating an optimat:; for thesup in formula (10) is such
embed our portfolio optimization problem into a dynamic thatq* € A, and attains theup in (7), i.e. is an optimal
one as follows: for alk, z,z, forall: = 1,2,--- , N, for control.



5 ALGORITHM no reason to think that one should allow this set of scalars
to depend ori. We will comment more on these point fur-

Theorem 1 shows that in principle, by solving a partial ther dow.n. Also, for simplicity, since we are usin_g inter-
differential equation, one can find the optimal strategy for Observation times equal o we assume that each time the
problem (7). However it should be clear that there is no Euler method is implemented, since it is implemented in an
hope of solving this equation explicitly, or perhaps even ap- interval of lengthl, if one wishes to use: Euler steps, then
proximate it by an analytic method, because the SV filter is the Euler time step should bigim. Lastly, since for a com-
analytically intractable, and the PDE is inextricably linked Puter implementation, the sef§, T, A; have to be discrete
to the SV filter via its coefficients. and finite, we will need some truncation and discretization

Proposition 2 proves that the full optimization problem Procedures to ensure that our Euler methods, which in prin-
(7) can be replaced by an iteration of one-step optimiza—C'p|e can yield arblt'rary values, are then projected chk to
tion problems in which, at each step, the set of admissibleth® closest values if5;, T;, A;. We denote the truncation
strategies is one-dimensional, since between two observa@nd discretization of an arbitrary valyeby [{x}] -
tion times, we are not allowed to.change our strategy. One 1 |nitialization . Let Xk = zo, WE = wo andY¥ = yo
can alban.don any attempt of solylng a PDE forthe one-step o || f — 1,---,n. Forall(z,w) € Sy x Ty let
optimization, by simply calculating the expectation that is V(N +1,3,0) =U ().
to be maximized for a certain range of strategies, and inves- S
tigating which strategy yielded the maximum expectation. 2. Calculation of the filter. For eache € Sy, use the del

Repeating this work for all scenarios that one wishes to con- ~ Moral-Jacod-Protter method with Euler time stigpn
sider yields a function indexed by the set of all scenarios. to calculate the particleg* = Y} (z) foralli < N,
This function is used as the starting point of the next step. k<n.

This is one of three basic ideas which leads to our algorithm. Repeat step 3 far= N down to0:

The second idea is as follows. In order to calculate the ) .
Monte-Carlo expectations to be maximized, one needs to 3. Calculation of the approximate control solu-

understand the dynamics @k, V') on the intervali, i + 1] tion V and its corresponding approximate
under the conditioningF?, W = w;}. It should be clear, optimal strategy. We assume that we know
and is in fact true, that these dynamics are equivalentto the V(i + 1, 2ip1, wis, 2;) for all Zipn € Siyq and
regular dynamics of X, Y) given by (1), (2), started from wi+1 € Ti1q, as well as the corresponding optimal
the observed value; for X and the measune (dy) for Y. strategy a;,; (Zi+1,wi+1). From step 2, we also
Further, in order to simulate these dynamics, one can simply ~ knowY* (z) for all z; € S;, k < n. For eachz; € S;,
use an approximation qf? (dy); naturally, one is lead to w; € Ty, a; € Ag i
g:g;cgﬁ g.el Moral-Jacod-Protter approximation alluded to in (a) independently for each< n

The third and last idea is that since one is using a Monte- i. simulate an observation one step into the
Carlo-type algorithm for generating an approximation for future X7%, (k) using the Euler scheme
the SV filter, and since there seems to be no other way to with time stepl /m for the pair(X, V') start-
calculate the expectations to be maximized than by more ing from (z;,Y;* (z)) , over [#,i + 1] [Note
Monte-Carlo methods, one should seriously consider ar- that it is necessary to simula¢/; ; also, but
ranging things so that the two Monte-Carlo methods work this value can be discarded],
hand in hand. This is easily done if one is willing to use ii. calculate the correspondingsimulated
the same number of Monte-Carlo generations in the expec- wealth, one step into the future
tation calculation as there are patrticles in the filter approxi- —m
mation. Then in order to simulate the pak, Y') on[i, i+1] weae, (k)
starting from the measur@,, ® p?) (dz ® dy), it should . .
be clear that it is sufficient to do one of theMonte-Carlo =a; X[}y (k)+a; (Xﬁl (k) — rz) e’ +wge”,
runs itar_ted from each of thepom_ts (3. Yik)l_czl where (b) calculate thélonte-Carlo averageof these sim-
(Y¥),_, is the set of the particles in the SV filter. ulations

These ideas lead to the general algorithm that follows. Let F(ai, 7, w;)
Sy andTy denote the set of all strategies and the set of all n '
possible wealths that one is willing or able to consider. The 1 Z v (Z +1, H(XTV\W):L (k)H ’@,) ’
subscriptN denotes the fact that these sets should depend ni=

on the number of observatio®s. More specifically, the no-
tationS; andT; indicates that at the end ofime steps, each
strategy inS; is ani-dimensional vector, while the range of

(c) theapproximate i-th step optimal strategy and
maximum expected yieldare

wealth values irll; presumably grows witli in the same V (i, 25, w5, 2i-1) = max F(a;,Z,w;),
fashion that a binomial tree grows. The notatidy); for the ai€Ao i
set of all possible strategies one is willing to consider at time a; (T;,w;) = argmaxF (a;,T;,w;).

i, has a similar interpretation, although in this case, there is ai€ Ao



6 IMPLEMENTATION to be bounded. People working in SV models usually take
o (y) = exp (y). Instead, we will use (y) = H (exp (y))

According to the del Moral-Jacod-Protter algorithm, for WhereH (¢) is the continuous piecewise linear function that

a one-dimensional situation such as our, it is preferable tois equal to the identity function for € [0.05;0.2], and is

have the relatiom = m3. The algorithm detailed above constant outside this interval. Thistakes on the values

is proved to converge in [31], as long as the price dis- between0.05and 0.2 fairly uniformly. By using a mean-

cretization step, which we call/m’ is related tom as  reverting model (2) foi” with mean in that range, we can

m’ > m!*te(?) wherec (o) is a constant that depends on ensure that this Ornstein-Uhlenbeck process does indeed al-

the non-degeneracy and boundedness.oSimilarly, the  low o (Y (t)) to scan the values if0.05;0.2] fairly uni-

truncation condition needed for the convergence of the al-formly. It is then consistent to take the scalar valuerof

gorithm can be written in the form in the correspondence (12), (13) to bé25. We take the
mean rate of return to be = 0.1. To give the portfolio a
og (zi41/2:)| < Ky = K™ + ||| \/logm good shot at making more money than the bank, we choose

h ] 41317t hiv atth dthe risk-free rate to be = 0.02.
1 /;Cc\)/?/\éireg?hneci;ztrgx;as i[nvo]lv(;gcgtl:c:\;gua?re }t/yT)ica(IaI;%i? We run this simulation f.or.4.t|me intervals, with initial
Iargé the conditions for convergence still imply that even _stock price equal t600 and_lmtlal wealth _equal 6000, us-
for ve:ry small values ofin, the algorithm we propose is still ing the so-called Hyperb_qllc Absqlute R.'Sk Averse (HA.RA)
extremely memoryinten1sive Indeed, it requires storing val- U (w) = w*/p for the utility function, withp = 0.6. This

: ' type of risk aversion means that one is not much more sat-

umejsfﬂr/ezgﬁa f;?;ﬁ” g?s?§|'ef2(r;:rl\lalorﬁgss$ble wealths, and isfied by becoming immensely rich than by having a decent
g Y: bo . L . . return on one’s portfolio, while one is extremely dissatisfied
On.the other hand, mtergctmg particle filters in one di- by very low returns. The results are displayed in Figures 1
mension are known to require only a very small number of 2, and 3. Each of these three figures are relative to a given
partlcles_m ordgr 0 achleve_ an excellent. '?Ve' of aceuracy e qlization of the stock price (a fixed scenayrtbp solid line
and. stability typically 10 particles are S“ﬁ'c'em- Our sim- denotes the evolution of the wealth of the optimal portfolio.
uIat:cpnstfr?r tfhe J::ie_llkl]\./loral—\]acct):—l:.rfotter algonthrln apphear :0 The family of dashed lines below the solid line denote the
322”'1”]1 3léu?§r .ste '2 meera(?l:')sser?/altigrr:lian?(\e/fvr;?rtlhye\:\gssh%sulg evolutions of 100 randomly chosen other portfolio positions
be27 _articles whicf)h iz amolv sufficient for filt,erin from the strategy set for the same scenario. The pictures
P ’ Py 9. show that the optimal portfolio exceeds the other strategies,

unﬁgrr:w?‘g?tglt)rlnsslﬁ\]/:lll fgrthi:?;fg?pn‘ﬁxg:g:orzgsg dS:?;‘ and only a few strategies come close, which means that one
riably . pur would have to be very lucky to do as well as the optimal
stochastic differential equation, we have chosen tomuse portfolio

3 in order to show that our algorithm can be implemented , i )
It is worth noting that the algorithm we propose actu-

on a modest platform. Increasing by only an order of I in backwards induction in ial
magnitude would require supercomputer storage capacities?y UtPULS, In backwards induction in time, optimal strat-

In the same vein, we decided to restrict the strategies to only?9Y Values and optimized expected terminal utility values as
5 integer values for the number of stock holdings, from functions of the following independent parameters: wealth
to 2 w, scenarioz. In order to obtain the figures below, one

Because of the very low value fon, we have also de- needs to work forward in time in the algorithm’s output: for

cided to restrict the sefy of scenarios to a set given by & fixed scenari@;, one uses self-financing to calculate the
a the values of a binomial model. In order to be consis- wealth at time + 1 that corresponds to the previously deter-

tent with the parameters of ti{&l, Y')-dynamics, we chose mined values of the optimal strategy up to timevhich in

to use the so-called Cox-Ross-Rubenstein correspondencéum can be used to calculate the optimal strategy to hold in

given as follows: at each time step, a stock price has the Op_the intervalli + 1, ¢ + 2], allowing the forward calculation to

tion of going up or down by a factor af or d respectively, continue. This is exactly what the practitioner will want to

with probabilities both equal to/2. The values of: andd do with the algorithm’s output. However, in the end, since
are given by this operation can be performediofe, the practitioner only

needs to be handed a table containing the evolution of the
u = exp <(N _ 02/2) At + m/ﬂ) 7 (12) optimal_strategy values_for each sgenario that one wishes
to consider. The associated evolutions of portfolio wealth
exp ((u _ (,2/2) At — (,\/E) ) (13) and expected future utility can be given for each scenario as
well, for the purpose of comparing with the actual outcome,
Here At is the Euler time step, which is/m = 1/3, while or for commercial purposes, to show what can be expected
1 is the value determines in the model &t Foro, some  from the market.
interpretive creativity is required. Our whole work is aimed  These last remarks give us hope that even if tHinef
at being able to use random values for the volatility, but now calculations present a tremendous storage challenge if a high
we much choose a representative single valuk order to degree of accuracy wants to be guaranteed, storage can be
stay within the confines of the conditions needed for conver-reduced to a much smaller file by the above forward pro-
gence of the algorithm, itis best to choose the functign) cedure, and that file can be reduced further still by throw-

d



Numbers below the time indices
are the stock prices
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Figure 1: An optimal strategy for a typical scenario com- Figure 3: An optimal strategy for a third typical scenario
pared to other randomly chosen strategies for the same sce&sompared to other randomly chosen strategies for the same
nario. scenario.

No. of particles = 1000
time steps = 10

Figures below time indices
indicate stock prices
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by Algorithm
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Figure 2: An optimal strategy for another typical scenario Figure 4: A 3D picture of the particle filter's evolution for a

compared to other randomly chosen strategies for the sameypical path (dark solid line) of the stochastic volatility.
scenario.

porate liabilities.J. Political Economy81 (1973), 635-

ing away a large proportion of the scenarios, keeping only a 654

small proportion of the most representative ones, since this
last, wasteful operation does not effect the precision with [4]
which the calculations were performed originally.

Figure 4 and 5 are graphical illustrations of the particle
filter for given typical scenarios. At each instant, the patrticle

filter is comprised of a certain number of particle positions. [5] Brigo, D.; Hanzon, B. On some filtering problems aris-
These are arranged ina hiStOgram, which is |inear|y inter- |ng in mathematical finance. The interp|ay between in-

polated and, when time varies, yields a surface in 3D. The surance, finance and control (Aarhus, 199¥urance
narrower the spread at each time, the more efficient the filter Math. Econom22 (1998), no. 1, 53-64.

is, and if the mean of the filter actually follows the signal,

one can conclude that the filter is working well. Thisiswhat [6] Chib, S; Nardari, F, Shephard, N. Markov Chain

is observed in the figures. Monte Carlo methods for Generalized Stochastic
Volatility Models. Preprint (Nov. 1998).

Bollerslev, T; Rossi, P.E. Introduction. IiModelling
stock market volatility — Bridging the gap to continu-
ous timePeter E. Rossi, Ed. Academic Press, 1996.

REFERENCES
[7] Crisan, D; Gaines, J.Lyons, T. Convergence of a
[1] Bally, V.; Talay, D. The law of the Euler scheme for branching_ particle method to the solution of the Za-
stochastic differential equations: Il. Aproximation of kai equation.SIAM J. Appl. Math58 (1998), no. 5,
the densityMonte Carlo Methods and Applicatior, 1568-1590.

(1996), 93-128. [8] Del Moral, P; Guionnet, A. On the stability of interact-

[2] Bensoussan, AStochastic control of partially observ- ing processes with applications to filtering and genetic
able systemsCambridge University Press, Cambridge, algorithms.Ann. Inst. H. Poinca® Probab. Statist37
1992. (2001), no. 2, 155-194.

[3] Black, F; Scholes, M. The pricing of options and cor-  [9] Del Moral, P; Jacod, J.Protter, Ph. The Monte-Carlo



e [19] Gallant, A. R. and Tauchen, G. E. (1996), ‘Which Mo-
ments to Match?’Econometric Theorl2 (4), 657-
681.

[20] Ghysels, E. Harvey, A.C; Renault, E. Stochastic
volatility. Statistical methods in financel19-191,
Handbook of Statistl4, North-Holland, 1996.

[21] Lim, A. E. B.; Moore, John B. A quasi-separation
theorem for LQG optimal control with 1Q constraints.
Systems Control Let82(1997), no. 1, 21-33.

[22] Merton, R. Lifetime portfolio selection under uncer-
tainty. The continuous time cadeeview of Economics

Figure 5: Another 3D picture of the patrticle filter's evolution and Statistic$1 (1969), 247-257.
for another typical path (dark solid line) of the stochastic
volatility. [23] Merton, R. Optimum consumption and portfolio rules

in a continuous time modelournal of Economic The-

method for filtering with discrete-time observations. ory 3 (1971), 373-413.

(1999). To appear iAnnales de I'l.H.P. [24] Merton, R. The theory of rational option pricingell
[10] El Karoui, N: Du, H. N Jeanblanc-Pica'M. Ex- Journal of Economics and Management Sciedce

istence of an optimal Markovian filter for the control (1973), 141-183.
under partial observationSIAM J. Control Optim26 [25] Moore, J. B; Zhou, Xun Yu Lim, A. E. B. Discrete
(1988), no. 5, 1025-1061. time LQG controls with control dependent noiSys-

. L, . tems Control Lett36 (1999), no. 3, 199-206.
[11] El Karoui, N; Jeanblanc-Picqy M. Martingale mea- ( )

sures and partially observable diffusiorBtochastic  [26] Nagai, H. Risk-sensitive dynamic asset management
Anal. Appl.9 (1991), no. 2, 147-176. with partial information. Preprint.

[12] Fischer, R.Platen, E. Runggaldier, W. Risk minimiz-  [27] Nelson, D.B. ARCH models as diffusion approxima-
ing hedging strategies under partial observat®smi- tions.J. Econometricg5(1990), no. 1-2, 7-38.
nar on Stochastic Analysis, Random Fields and Appli- ) S )
cations (Ascona, 1996)175-188, Progr. Probatis, [28] Nielsen, J.N. Vestergaard, M. Estimation in continu-

Birkhauser, Basel, 1999. ous time stochastic volatility models using nonlinear
filters. Int. J. Theor. Appl. Financ& (2000), no. 2,
[13] Fleming, W. H; Pardoux, E. Optimal control for par- 279-308.
tially observed diffusionsSIAM J. Control Optim20 ) ) o
(1982), no. 2, 261-285. [29] R|shel, R.. A strong separation _pnnuple for stochas-
tic control systems driven by a hidden Markov model.
[14] Fornari, F, Mele, A. Stochastic volatility in finan- SIAM J. Control Optim32 (1994), no. 4, 1008—1020.
cial markets — Crossing the bridge to continuous time. , i i )
Kluwer A.P., 2000. [30] Rishel, R. Optimal portfolio management with par-
tial observation and power utility function. Btochas-
[15] Fouque, J.-P.Papanicolaou, G Sircar, K.R.Deriva- tic analysis, control, optimization and applications
tives in Financial Markets with Stochastic Volatility Eds: W. M. McEneaney, G. Yin, Q. Zhang. (1999)
Cambridge, 2000. Birkhauser.

[16] Frey, R; Runggaldier, W. Risk-minimizing hedging [31] Viens, F. Portfolio optimization under partially ob-
strategies under restricted information: the case of served stochastic volatilitfCOMCON 8. The 8th In-

stochastic volatility models observable only at discrete ternational Conference on Advances in Communica-
random timesFinancial optimization. Math. Methods tion and Control, 2001W. Wells, Ed 1-12. Optim.
Oper. Res50(1999), no. 2, 339-350. Soft., Inc, Pub. Div., 2002.

[17] Gallant, A.R., Hsu, C.-T. and Tauchen, G. Using [32] Wonham, W. M. On the separation theorem of stochas-
High/Low Data to Calibrate Volatility Diffusions and tic control. SIAM J. Control6 (1968) 312-326. 93.60
Extract the Forward Integrated Variance. Unpublished
manuscript, 1998.

[18] Gallant, A. R., Hsieh, D. and Tauchen, G. E. Estima-
tion of stochastic volatility models with diagnostics,
Journal of Econometric81 159-192 (1997).



