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Abstract: In this paper we implement an algorithm for the
optimal selection of a portfolio of stock and risk-free as-
set under the stochastic volatility (SV) model with discrete
observation and trading. The SV model extends the clas-
sical Black-Scholes model by allowing the noise intensity
(volatility) to be random. The main assumption is that the
portfolio manager has discrete access to the continuous-time
stock prices; as a consequence the volatility is not observed
directly. In this partial information situation, one cannot
hope for an arbitrarily accurate estimate of the stochastic
volatility. Using instead a new type of optimal stochas-
tic filtering, and its associated particle method due to del
Moral, Jacod, and Protter [9], our algorithm, of the “smart”
Monte-Carlo-type, approximates the new Hamilton-Jacobi-
Bellman equation that is required for solving the stochastic
control problem that is defined by the portfolio optimization
question.

Keywords: Stochastic portfolio optimization, stochastic
volatility, particle filtering, Monte-Carlo methods.

1 INTRODUCTION

The celebrated Black-Scholes model for stock prices,
which was introduced and used by Black, Scholes, and
Merton in the early 1970’s ([3], [24]), is still immensely
popular, as a vast majority of financial practitioners in
today’s financial industry believe that most stock prices
and indices are best modeled by continuous-time stochas-
tic processes driven by Brownian-like noise, and the Black-
Scholes model is the simplest and best understood model in
this class. Merton’s name is most often associated with his
so-called Mutual Fund theorems ([22], [23]), which cast the
problem of optimal selection of a portfolio of stock and risk-
free asset in the framework of stochastic optimal control
of diffusion processes. Merton originally used the Black-
Scholes model as the underlying stock price. He showed
that if the question is to maximize an expected future util-
ity of the portfolio, the answer is obtained by solving a
Hamilton-Jacobi-Bellman (HJB) partial differential equa-
tion (PDE).

Portfolio optimization using this HJB approach has been
a popular one ever since. It has to be said that it appealed
greatly to the world’s probability community because of the
highly non-trivial use of stochastic analysis that is required

to prove the HJB equations, and because of the excitement
created by finding such a beautiful application of stochastic
theories to such a useful and popular are as finance. Fur-
ther, the stochastic theory of HJB equations appears as a
strong connection between a young and vigorous theory of
stochastic analysis and the industrial engineering point of
view of dynamic programming problems. A casual visitor
in the land of the stochastic theory of finance will notice that
there is an even more popular topic in finance than portfolio
optimization that has benefitted from being cast into a theory
based on stochastic analysis: the question of option pricing,
introduced by Black and Scholes themselves. In reality, the
financial industry today is in greater need of mathematical
results on portfolio selection than on option pricing. One
reason for the imbalanced distribution between the two top-
ics in stochastic finance may be that option pricing is mathe-
matically easier than portfolio optimization; indeed the HJB
equation is a nonlinear parabolic PDE, while the fundamen-
tal equation of option pricing is the Black-Scholes equation,
which is a linear parabolic PDE. We cite as our main practi-
cal motivation for the present work our desire to correct the
imbalance. From a mathematical standpoint, we also have
a preference for portfolio optimization precisely because, to
paraphrase Leon Tolstoy, linear PDEs form in some sense
a unique big happy family, while each nonlinear PDE is an
individual unhappy family, and why would one turn one’s
attention to a family that needs no help to achieve happi-
ness...?

Among the hypotheses in Merton’s original work, two of
the most important ones are still widely used in stochas-
tic portfolio optimization: the use of a constant, or at the
least, non-random volatility, and the assumption that obser-
vations and trading occur in continuous time. Both assump-
tions are far from being satisfied in most real financial mar-
kets. Today, it is widely recognized that constant volatility
is the single most important deficiency of the Black-Scholes
model. We choose to use the Stochastic Volatility (SV)
model, one of several extensions/corrections of the Black-
Scholes model which have recent appeared. Relaxing the
second assumption is no less crucial. Indeed for many in-
vestors, not only does the presence of transaction costs for-
bid continuous trading, but information does not come in
continuously, and is thus incomplete. In our view, this prob-
lem is just as concerning as the first one, but has received
much less press. We tackle it by requiring that portfolio



selection and rebalancing occur only at a set of discrete ob-
servation times, based solely on the available observations.
Our main philosophy is that, going against a natural math-
ematical tendency, one should not then revert to discrete
time models; the underlying stocks should still be consid-
ered as continuous-time Brownian-motion-driven stochastic
processes. The simple fact of having continuous-time mod-
els with discrete time information captures, in our view, the
essence of the incompleteness of information that all port-
folio managers are faced with.

2 THE MATHEMATICAL PROBLEM

2.1 Portfolio optimization with stochastic volatility

We will work exclusively in a model in which the risk-
free assetB is assumed to have a constant interest rater:
Bt = ert for all t ≥ 0. Under the simplest SV model, the
evolution of the price of a single risky assetX is given by
the following stochastic differential equation:

dXt = Xtµdt+Xtσ (Yt)dWt. (1)

Here t ∈ R+, W is a Brownian motion, the mean
rate of returnµ is assumed to be constant for simplicity,
and the stochastic volatilityσ (Yt) is a deterministic func-
tion σ of a stochastic processY that satisfies a diffusion
equation driven by another Brownian motionZ such that
corr (W,Z) = ρ with 0 ≤ |ρ| < 1, i.e.

dYt = α (Yt)dt+ β (Yt) dZt. (2)

Typically (see [15], and their statistical study of the Standard
& Poor 500 index), practitioners takeσ = exp andY = a
fast-mean-reverting process such as the Ornstein-Uhlenbeck
process with largeα:

dYt = α (m− Yt)dt+
√
αdZt. (3)

For i = 0, 1, · · · , N , let FX

i
be the information con-

tained in the discrete sequence ofobservedasset prices
X0, X1, · · · , Xi. Note than for notational simplicity we as-
sume here, and in the remainder of the paper unless oth-
erwise specified, that the observation times are the inte-
gers. Note thatFX

i
is not the commonly used “filtra-

tion of X”, which contains much more information. For
x̄ = (x0, · · · , xN ) a fixed sequence of positive numbers, de-
note byF x̄

i
, the scenario (event){X0 = x0, · · · , Xi = xi}.

We consider self-financing portfoliosa = (ai)
N

i=0 with
wealthWs =Wai,bi

s = aiXs+ biBs for s ∈ [i, i+1]. This
ensures that the strategy be constant in each interval[i, i +
1). Using wealth as a state variable is a standard choice,
and thus we can reduce the number of control variables, by
letting bi = (wi − xiai) e

−ri. AssumeW0 = w0 is given.
The basic portfolio maximization problem with horizonN+
1 is to find a portfolioa∗ that attains the supremum

V (0, x0, w0) = sup
a
E

[
U
(
Wa,b

N+1

)
|X0 = x0,W0 = w0

]

(4)

for all i = 0, · · · , N , where the supremum is over all(a, b)
that are non-anticipating, i.e. such that(ai, bi) are functions
depending only onw0, x0, x1, · · · , xi. Other restrictions on
(a, b) may be placed, such as requiring thatW be bounded
below (no ruin), or that the possible values for(ai, bi) be
bounded and/or discrete. HereU is some utility function. A
typically choice isU (w) = wp/p for somep ∈ (0, 1) (the
so-called Hyperbolic Absolute Risk Averse (HARA) case).

We will see below that one of the most important con-
cepts needed for solving this problem is how to find the best
estimate for the volatility ofX given only the discrete ob-
servations ofX. This is called the stochastic volatility filter-
ing problem, and can be written as the following conditional
probability distribution:

pi (dy) := P
[
Yi ∈ dy|FX

i

]
. (5)

Before we explain what mathematical techniques are re-
quired for solving the portfolio optimization problem and
implementing a numerical method for it using the stochastic
volatility filter, we review the current literature related to the
problem.

2.2 Position of the problem in the current literature

Nonlinear stochastic filtering has a key role in partially
observed stochastic control. We cite [13], [10], [11], [2] and
recently [29]. Recent advances on finance-related aspect of
this topic are still restricted to non-stochastic volatility: [30],
[26], [21], [25], in which the linear-quadratic and integral-
quadratic models are considered, but only using standard
linear filtering.

There is no literature on filtering of stochastic volatility in
continuous time. The reason for this gap is that probabilists’
work on filtering of continuous-time processes have concen-
trated on continuous-time observation; in that situation, the
volatility σ2 (Y·) is, in principle, obtainable exactly from the
information inX (measurable w.r.t. the filtration ofX), as
the so-called quadratic variation〈X〉 of X. However eval-
uating〈X〉t, a problem of estimation, rather than filtering,
is treacherous in practice. The financial industry contains
notorious stories of investment firms whose bankruptcy can
be traced to a poorly estimated volatility.

The popular ARCH/GARCH models are designed to esti-
mate stochastic volatility in a stable way (see [20], [4], [14]).
Dan Nelson ([27]; see also [4]) showed that ARCH/GARCH
models are in fact an approximate filter, since they con-
verge to the full information SV as the observation time step
δ → 0, leading many to believe the task is now to “bridge
the gap to continuous time” (see [4]; [17], [18], [19]). But
the quality of the ARCH/GARCH “filter” is only guaran-
teed for high observation frequencyδ−1. We adopt a dif-
ferent angle, seeking not an estimation but theoptimalfilter
whenδ is fixed. The very recent work [9] gives a numer-
ical method for discrete-observation filtering of diffusions
under stochastic volatility, which opens the way to numer-
ically solving the stochastic volatility control problem with
discrete information, as we detail below.



Recent work on volatility filtering that departs from
the ARCH/GARCH framework, but differs from the opti-
mal filtering approach includes: [5] (a newprojection fil-
ter); [6] (reduction to linear (Kalman) filtering in a special
case); [28] (filtering w.r.t exogenous observation noise, not
stochastic volatility). [12], [16] study models with stochas-
tic volatility, but in the first case, the issue is to hedge an op-
tion, while in the other, the SV is filtered out of unobserved
noise in random observation times, reducing the problem to
standard filtering.

3 FILTERING WITH STOCHASTIC VOLATILITY

The probability measurepi (dy) is random since it de-
pends on the valuesX0, X1, · · · , Xi. However at timei,
the valuesX0 = x0, · · · , Xi = xi are known to us (they
constitute theobservation, whileY is thesignal) and there-
foreFX

i can be replaced byF x̄
i , andpi (dy) can be consid-

ered as being non-random, depending only on the parame-
tersx̄i := (x0, x1, · · · , xi). To make the deterministic de-
pendence on̄x appear clearly, we will systematically denote
p by px̄i (dy).

Using the concept of Bayes’ formula, it is not difficult to
establish an explicit recursion relation for the filter in (5). It
can be found in [31]. However, in view of the complexity
of this iterative formula, there is currently no hope to eval-
uatepx̄i by any other method than the “smart”-Monte-Carlo
algorithm recently established in [9], even for the simplest
of examples.

The algorithm of [9] (detailed in Section 5 therein), it-
self a bootstrapping extension of the genetic algorithm of
[8], yields a good approximation (ordern−1/3) of px̄i as the
empirical distribution of a family ofn interacting particles(
Y k
i

)n
k=1

p̂x̄i (dy) =
1

n

n∑

j=1

δY j
t
(dy) . (6)

The particles evolve according to the iteration of a two-
step (selection/mutation) process. In the mutation process,
they evolve independently according to the Euler approxi-
mations of the diffusionY defined by the original dynamics
of (X,Y ), with time stepm = n1/3. To take the selection
step, the particles, which are created jointly with observa-
tions simulated one time-step into the future, use these simu-
lated observations to evaluate each particle’s fitness relative
to a bootstrapping version of the maximum likelihood esti-
mator of how they should be distributed. The particles then
rearrange their positions according to their fitnesses, which
is the selection step. This algorithm is explicitly given on
page 16 of [9].

4 MATHEMATICAL TOOLS

All the results quoted in this section are established in
[31]. For any scenariōx := (x0, x1, · · · , xN ), and anyi ≤
N , we definēxi = (x0, · · · , xi). Using a standard idea, we
embed our portfolio optimization problem into a dynamic
one as follows: for allw, x, x̄, for all i = 1, 2, · · · , N , for

all s ∈ [i, i+ 1], find

V (s, x, w) = V (s, x, w; x̄i)

= sup
a∈A0

E
[
U
(
Wa

N+1

)
|Xs = x,Wa

s = w,F x̄
i

]
. (7)

Recall that the control setA0 is the set of all sequences
(aj)

N
j=0 of the formaj = aj

(
w0, X̄j

)
. It should be clear

from the self-financing condition

Wt = aiXt + (Wi −Xiai)e
r(t−i) (8)

that this is just as general as allowingaj to be of the form
aj = aj

(
X̄j , W̄j

)
.

Theorem 1 For s ∈ [i, i + 1), V in (7) satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

∂V

∂s
+ sup

a∈A0

[(AaV ) (s, x,w)] = 0. (9)

where for any fixeda ∈ A0, Aa is the infinitesimal
generator of(X,Wa) in [i, i + 1) with σ replaced by√
Z
i,X
s (x; x̄i), where

Zi,X
s (x; x̄i) := E

[
σ2 (Ys) |Xs = x,F x̄

i

]
.

Moreover, there exists an optimal control inA0, i.e. thesup
in (9) is attained. This theorem also holds ifA0 is replaced
by any proper subset ofA0.

HereZi,X appears naturally as the filtered expected value
of the squared Stochastic Volatilityσ2 (Ys). In this sense,
the dynamics ofV follow a so-calledseparation principle
(see [32], [2]), i.e. the fact that the unobserved SV parameter
σ2 (Ys) can be replaced by its filtered value at times, given
the current information, and all past discrete information.
Note that in the calculation of this filtered value, although
the current stock price may be invoked, one is not allowed
to use any continuousflow of information for any non-zero
length of time. This makes it impossible to estimate the SV
using formulas such asσ2 (Yt) = 〈X〉t, notwithstanding the
fact that the current stock price may be used. However, as
we are about to see in Proposition 2, since the controls inA0

can only change at timesi = 0, 1, · · · , N , the optimal strat-
egy only makes use of the informationF x̄

i at those times, a
fact which is arguably intuitively obvious.

We now present an iterative formula, which reduces the
complexity of the HJB equation (9), and is the key to our
Monte-Carlo method.

Proposition 2 Let I be any subset ofR,and replaceA0

by its restriction toI-valued sequences., For anyi =
0, 1, · · · , N , for anyf = f (x,w; x̄i), define

Φi (f) (xi, wi) = Φi (f)x̄i−1
(xi, wi)

:= sup
ai∈I

E
[
f
(
Xi+1,W

ai

i+1; x̄i
)
|F x̄

i
,Wai

i
= wi

]
. (10)

Then we have

V (i, xi, wi)x̄i−1
:= V (i, xi, wi; x̄i)

= Φi
(
Φi+1

(
· · ·ΦN (U)

))
x̄i−1

(xi, wi) (11)

and the controla∗ = (a∗0 ,̇ · · · , a
∗

N
) which is obtained by

calculating an optimala∗
i

for thesup in formula (10) is such
that a∗ ∈ A0, and attains thesup in (7), i.e. is an optimal
control.



5 ALGORITHM

Theorem 1 shows that in principle, by solving a partial
differential equation, one can find the optimal strategy for
problem (7). However it should be clear that there is no
hope of solving this equation explicitly, or perhaps even ap-
proximate it by an analytic method, because the SV filter is
analytically intractable, and the PDE is inextricably linked
to the SV filter via its coefficients.

Proposition 2 proves that the full optimization problem
(7) can be replaced by an iteration of one-step optimiza-
tion problems in which, at each step, the set of admissible
strategies is one-dimensional, since between two observa-
tion times, we are not allowed to change our strategy. One
can abandon any attempt of solving a PDE for the one-step
optimization, by simply calculating the expectation that is
to be maximized for a certain range of strategies, and inves-
tigating which strategy yielded the maximum expectation.
Repeating this work for all scenarios that one wishes to con-
sider yields a function indexed by the set of all scenarios.
This function is used as the starting point of the next step.
This is one of three basic ideas which leads to our algorithm.

The second idea is as follows. In order to calculate the
Monte-Carlo expectations to be maximized, one needs to
understand the dynamics of(X,Y ) on the interval[i, i+ 1]
under the conditioning{F x̄

i ,W
ai
i = wi}. It should be clear,

and is in fact true, that these dynamics are equivalent to the
regular dynamics of(X,Y ) given by (1), (2), started from
the observed valuexi for X and the measurepx̄i (dy) for Y .
Further, in order to simulate these dynamics, one can simply
use an approximation ofpx̄i (dy); naturally, one is lead to
use the del Moral-Jacod-Protter approximation alluded to in
section 3.

The third and last idea is that since one is using a Monte-
Carlo-type algorithm for generating an approximation for
the SV filter, and since there seems to be no other way to
calculate the expectations to be maximized than by more
Monte-Carlo methods, one should seriously consider ar-
ranging things so that the two Monte-Carlo methods work
hand in hand. This is easily done if one is willing to use
the same number of Monte-Carlo generations in the expec-
tation calculation as there are particles in the filter approxi-
mation. Then in order to simulate the pair(X,Y ) on[i, i+1]
starting from the measure(δxi

⊗ px̄i ) (dx⊗ dy), it should
be clear that it is sufficient to do one of then Monte-Carlo
runs started from each of then points

(
xi, Y

k
i

)n
k=1

where(
Y k
i

)n
k=1

is the set of then particles in the SV filter.
These ideas lead to the general algorithm that follows. Let

SN andTN denote the set of all strategies and the set of all
possible wealths that one is willing or able to consider. The
subscriptN denotes the fact that these sets should depend
on the number of observationsN . More specifically, the no-
tationSi andTi indicates that at the end ofi time steps, each
strategy inSi is ani-dimensional vector, while the range of
wealth values inTi presumably grows withi in the same
fashion that a binomial tree grows. The notationA0,i for the
set of all possible strategies one is willing to consider at time
i, has a similar interpretation, although in this case, there is

no reason to think that one should allow this set of scalars
to depend oni. We will comment more on these point fur-
ther down. Also, for simplicity, since we are using inter-
observation times equal to1, we assume that each time the
Euler method is implemented, since it is implemented in an
interval of length1, if one wishes to usem Euler steps, then
the Euler time step should be1/m. Lastly, since for a com-
puter implementation, the setsSi, Ti, Ai have to be discrete
and finite, we will need some truncation and discretization
procedures to ensure that our Euler methods, which in prin-
ciple can yield arbitrary values, are then projected back to
the closest values inSi, Ti, Ai. We denote the truncation
and discretization of an arbitrary valueχ by [{χ}] .

1. Initialization . LetXk
0 = x0,W

k
0 = w0 andY k

0 = y0
for all k = 1, · · · , n. For all (x̄, w) ∈ SN × TN let
V̂ (N + 1, x̄, w) = U (w).

2. Calculation of the filter . For each̄x ∈ SN , use the del
Moral-Jacod-Protter method with Euler time step1/m
to calculate the particlesY k

i = Y k
i (x̄) for all i ≤ N,

k ≤ n.

Repeat step 3 fori = N down to0:

3. Calculation of the approximate control solu-
tion V̂ and its corresponding approximate
optimal strategy. We assume that we know
V̂ (i+ 1, xi+1, wi+1, x̄i) for all x̄i+1 ∈ Si+1 and
wi+1 ∈ Ti+1, as well as the corresponding optimal
strategy a∗i+1 (x̄i+1, wi+1) . From step 2, we also
knowY k

i (x̄) for all x̄i ∈ Si, k ≤ n. For each̄xi ∈ Si,
wi ∈ Ti, ai ∈ A0,i:

(a) independently for eachk ≤ n

i. simulate an observation one step into the
future X̂m

i+1 (k) using the Euler scheme
with time step1/m for the pair(X,Y ) start-
ing from

(
xi, Y

k
i (x̄)

)
, over [i, i + 1] [Note

that it is necessary to simulatêY k
i+1 also, but

this value can be discarded],
ii. calculate the correspondingsimulated

wealth, one step into the future

̂̂
Wa

m

i+1 (k)

= aiX̂
m
i+1 (k)+ai

(
X̂m
i+1 (k)− xi

)
er+wie

r,

(b) calculate theMonte-Carlo averageof these sim-
ulations

F̂ (ai, x̄i, wi)

=
1

n

n∑
k=1

V̂
(
i+ 1,

[{ ̂(X,Wa)
m

i+1 (k)
}]

, x̄i

)
,

(c) theapproximate i-th step optimal strategy and
maximum expected yieldare

V̂ (i, xi, wi, xi−1) = max
ai∈A0,i

F̂ (ai, x̄i, wi) ,

a∗i (x̄i, wi) = argmax
ai∈A0,i

F̂ (ai, x̄i, wi) .



6 IMPLEMENTATION

According to the del Moral-Jacod-Protter algorithm, for
a one-dimensional situation such as our, it is preferable to
have the relationn = m3. The algorithm detailed above
is proved to converge in [31], as long as the price dis-
cretization step, which we call1/m′ is related tom as
m′ ≥ m1+c(σ) wherec (σ) is a constant that depends on
the non-degeneracy and boundedness ofσ. Similarly, the
truncation condition needed for the convergence of the al-
gorithm can be written in the form

|log (xi+1/xi)| < Km = K∗ + ‖σ‖
√
logm

The convergence is proved [31] to occur roughly at the speed
1/m. While the constants involved above are typically not
large, the conditions for convergence still imply that even
for very small values ofm, the algorithm we propose is still
extremely memory intensive. Indeed, it requires storing val-
ues ofV̂ anda∗ for all times, for all possible wealths, and
most greedily, for all possible scenarios.

On the other hand, interacting particle filters in one di-
mension are known to require only a very small number of
particles in order to achieve an excellent level of accuracy
and stability; typically 10 particles are sufficient. Our sim-
ulations for the del Moral-Jacod-Protter algorithm appear to
confirm this fact. This means that if one even only wishes to
usem = 3 Euler steps per observation interval, there should
be27 particles, which is amply sufficient for filtering.

Although this level for the Euler approximation may seem
uncomfortably small for purists of numerical methods for
stochastic differential equation, we have chosen to usem =
3 in order to show that our algorithm can be implemented
on a modest platform. Increasingm by only an order of
magnitude would require supercomputer storage capacities.
In the same vein, we decided to restrict the strategies to only
5 integer values for the number of stock holdings, from−2
to+2.

Because of the very low value form, we have also de-
cided to restrict the setSN of scenarios to a set given by
a the values of a binomial model. In order to be consis-
tent with the parameters of the(X,Y )-dynamics, we chose
to use the so-called Cox-Ross-Rubenstein correspondence,
given as follows: at each time step, a stock price has the op-
tion of going up or down by a factor ofu or d respectively,
with probabilities both equal to1/2. The values ofu andd
are given by

u = exp
((
µ− σ2/2

)
∆t+ σ

√
∆t

)
, (12)

d = exp
((

µ− σ2/2
)
∆t− σ

√
∆t

)
. (13)

Here∆t is the Euler time step, which is1/m = 1/3, while
µ is the value determines in the model forX. Forσ, some
interpretive creativity is required. Our whole work is aimed
at being able to use random values for the volatility, but now
we much choose a representative single valueσ. In order to
stay within the confines of the conditions needed for conver-
gence of the algorithm, it is best to choose the functionσ (y)

to be bounded. People working in SV models usually take
σ (y) = exp (y). Instead, we will useσ (y) = H (exp (y))
whereH (ε) is the continuous piecewise linear function that
is equal to the identity function forε ∈ [0.05; 0.2], and is
constant outside this interval. Thisσ takes on the values
between0.05and 0.2 fairly uniformly. By using a mean-
reverting model (2) forY with mean in that range, we can
ensure that this Ornstein-Uhlenbeck process does indeed al-
low σ (Y (t)) to scan the values in[0.05; 0.2] fairly uni-
formly. It is then consistent to take the scalar value ofσ
in the correspondence (12), (13) to be0.125. We take the
mean rate of return to beµ = 0.1. To give the portfolio a
good shot at making more money than the bank, we choose
the risk-free rate to ber = 0.02.

We run this simulation for4 time intervals, with initial
stock price equal to100 and initial wealth equal to1000, us-
ing the so-called Hyperbolic Absolute Risk Averse (HARA)
U (w) = wp/p for the utility function, withp = 0.6. This
type of risk aversion means that one is not much more sat-
isfied by becoming immensely rich than by having a decent
return on one’s portfolio, while one is extremely dissatisfied
by very low returns. The results are displayed in Figures 1,
2, and 3. Each of these three figures are relative to a given
realization of the stock price (a fixed scenario); the solid line
denotes the evolution of the wealth of the optimal portfolio.
The family of dashed lines below the solid line denote the
evolutions of 100 randomly chosen other portfolio positions
from the strategy set for the same scenario. The pictures
show that the optimal portfolio exceeds the other strategies,
and only a few strategies come close, which means that one
would have to be very lucky to do as well as the optimal
portfolio.

It is worth noting that the algorithm we propose actu-
ally outputs, in backwards induction in time, optimal strat-
egy values and optimized expected terminal utility values as
functions of the following independent parameters: wealth
w, scenariox̄. In order to obtain the figures below, one
needs to work forward in time in the algorithm’s output: for
a fixed scenariōx, one uses self-financing to calculate the
wealth at timei+1 that corresponds to the previously deter-
mined values of the optimal strategy up to timei, which in
turn can be used to calculate the optimal strategy to hold in
the interval[i+1, i+2], allowing the forward calculation to
continue. This is exactly what the practitioner will want to
do with the algorithm’s output. However, in the end, since
this operation can be performed offline, the practitioner only
needs to be handed a table containing the evolution of the
optimal strategy values for each scenario that one wishes
to consider. The associated evolutions of portfolio wealth
and expected future utility can be given for each scenario as
well, for the purpose of comparing with the actual outcome,
or for commercial purposes, to show what can be expected
from the market.

These last remarks give us hope that even if the offline
calculations present a tremendous storage challenge if a high
degree of accuracy wants to be guaranteed, storage can be
reduced to a much smaller file by the above forward pro-
cedure, and that file can be reduced further still by throw-
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Figure 1: An optimal strategy for a typical scenario com-
pared to other randomly chosen strategies for the same sce-
nario.
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Figure 2: An optimal strategy for another typical scenario
compared to other randomly chosen strategies for the same
scenario.

ing away a large proportion of the scenarios, keeping only a
small proportion of the most representative ones, since this
last, wasteful operation does not effect the precision with
which the calculations were performed originally.

Figure 4 and 5 are graphical illustrations of the particle
filter for given typical scenarios. At each instant, the particle
filter is comprised of a certain number of particle positions.
These are arranged in a histogram, which is linearly inter-
polated and, when time varies, yields a surface in 3D. The
narrower the spread at each time, the more efficient the filter
is, and if the mean of the filter actually follows the signal,
one can conclude that the filter is working well. This is what
is observed in the figures.
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(2001), no. 2, 155–194.

[9] Del Moral, P.; Jacod, J.; Protter, Ph. The Monte-Carlo



1

2

3

4

5

6

7

8

9

10

-2

-1

0

1

2

3

4

0

200

400

600

X - values

Time

P
ar

tic
le

D
is

tr
ib

ut
io

n
Generated
signal

Filter
Evolution

No. of particles = 3375
time steps = 10

Figure 5: Another 3D picture of the particle filter’s evolution
for another typical path (dark solid line) of the stochastic
volatility.

method for filtering with discrete-time observations.
(1999). To appear inAnnales de l’I.H.P.

[10] El Karoui, N.; Du, H. N.; Jeanblanc-Picqu´e, M. Ex-
istence of an optimal Markovian filter for the control
under partial observations.SIAM J. Control Optim.26
(1988), no. 5, 1025–1061.

[11] El Karoui, N.; Jeanblanc-Picqu´e, M. Martingale mea-
sures and partially observable diffusions.Stochastic
Anal. Appl.9 (1991), no. 2, 147–176.

[12] Fischer, P.; Platen, E.; Runggaldier, W. Risk minimiz-
ing hedging strategies under partial observation.Semi-
nar on Stochastic Analysis, Random Fields and Appli-
cations (Ascona, 1996), 175–188, Progr. Probab.,45,
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