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Abstract. In a viscous magnetic fluid with a velocity field that is white-
noise in time, the magnetic field H is a 3d-vector-valued random field on
R? satisfying a linear system of stochastic parabolic partial differential
equations, in which the zero- and first-order terms have coefficients that
are white-noise in time. The stochastic fast dynamo effect conjectures
that the exponential rate of change of the norm of H for large time is
a constant (almost-sure Lyapunov exponent) that remains positive even
as the magnetic diffusivity decreases to zero. Existence, uniqueness,
and explicit stochastic Feynman-Kac- and particle-type formulae for H
are proven. Using the theory of products of random matrices, and the
particle representation, a discussion of how to establish the dynamo
effect is given. Ideas for proving and observing even sharper results are
cast in the setting of numerical simulations.

1 Introduction

This expository paper discusses a long-standing conjecture in random magneto-
hydrodynamics (MHD): the stochastic fast dynamo effect. According to this effect,
the magnetic field’s intensity inside a magnetic fluid can grow exponentially fast
under appropriate conditions on the fluid’s random velocity, even in the limit of
small magnetic diffusivity.

The MHD fast dynamo problem was formulated by the Russian school of mathe-
matical physics ([27], [30] and references therein). The problem’s equations’ involve
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a coupling of the magnetic field and of the velocity field. The random context, in-
troduced by Molchanov and his collaborators, was an attempt to simplify the prob-
lem’s complexity by assuming that the velocity field is known, which eliminates
the nonlinearity from the equations. Indeed, instead of satisfying a Navier-Stokes-
type equation, the velocity field is assumed to be a very erratic random field. This
assumption accounts heuristically for a highly turbulent regime as is typical in non-
linear fluid dynamics (the case of high Reynolds number). It is then hoped that
the well-known properties of exponential magnification of random flows yield the
desired dynamo effect.

The fast dynamo effect was established for the statistical moments of the mag-
netic field by Molchanov, Ruzmaikin and Sokolov [22] using analytic methods. In
[23], Molchanov and Tutubalin were the first to study pathwise random fast dy-
namo; they applied the theory of products of random matrices and their almost-sure
exponential magnification (Lyapunov exponents, Oseledets’ multiplicative ergodic
theorem, see [6] Chapter VI). They only solved a simplified model with linear ve-
locity field, however. The case of null magnetic diffusivity was treated in [3], but
it does not constitute a fast dynamo theorem, which regards the case of small but
nonzero diffusivity. A toy model was considered in [21], which we extended slightly
in [29]. However, the difficulties encountered in the works cited above have led
some to search for arguments against the random approach. Most notably in [27],
V. Oseledets states that “Difficulties arise in this interpretation [the random ap-
proach] because chaotic flows behave differently in different directions.” This paper
will show that such a concern is unfounded. We will explain how to obtain random
fast dynamo results in an incompressible and spatially homogeneous setting. We
will show why products of random matrices are the right tool to tackle the random
fast dynamo problem. Our techniques are based on a representation formula for
the magnetic field using particle systems.

Let {V; (t,z) : t > 0;2 € R%j = 1,2,3} be a given random field, the velocity
field. Let k be a positive constant, the magnetic diffusivity. Maxwell’s equations
yield that the magnetic field {H; (t,z) : t > 0;2 € R?;j = 1,2,3} satisfies the
partial differential equation

% (t,z) = KA Hj (t,z) + (V (t,2) - V) H; (t,z) - 37‘2 (t,2) Hy, (t,2)  (1.1)

for all ¢, z,j, with initial data H; (0,2) = H;-) (z), a given function. The repeated
indices k£ above denote summation for k£ = 1,2, 3. For simplicity of exposition, we
assume there are no boundary conditions on H. The following definition gives two
forms of the fast dynamo effect: the pointwise effect (D1), and the energy effect
(D2):

Definition 1.1 A magnetic field H is said to exhibit the fast dynamo effect
if, for small enough magnetic diffusivity k > 0, there is a A (k) > 0 such that
lim, 0 A (k) > 0 and the large-time exponential behavior of H is bounded by A (k)
from below

D1: for each x:
| _
liminf - log |H (¢, z)|| = A (%),

D2: or for the magnetic energy:

1 1/2
. 2 _
liminf + log (/||H(t,m)|| dm) =\ (k).
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The function A may be abusively called a Lyapunov exponent. If H satisfies
equation (1.1) with a random velocity field V', the fast dynamo effect may be called
random. In this article we will concentrate on a special type of random velocity
field: the stochastic case, in which the behavior of V' in the time parameter is of
white-noise type. That is, we assume that V is the time-derivative, in the gener-
alized sense, of a random field {v; (t,z) : t > 0;2 € R% j = 1,2, 3} whose behavior
is Brownian in time. It then becomes necessary to interpret equation (1.1) in the
stochastic sense, as follows

t t
H;(t,z) = H;-] (z) +/ kA Hj (s,x)ds + / (v(ds,z) - V) Hj (s,z)
0 0

t 6’1)j
_/0 G—M(ds,x)Hk(s,x).

The integrals in this equation may be interpreted in the Ito or the Stratonovich
sense (see for example [14]). The stochastic fast dynamo effect simply means that
the solution to equation (1) satisfies one of the two effects of definition 1.1 with
probability one (almost-surely).

2 Existence, uniqueness, and representations

2.1 Existence and uniqueness: evolution approach. Existence and unique-
ness of a solution to equation (1) is guaranteed by the recent works of [16] and [26],
in the weak and the evolution settings respectively. The weak form replaces equa-
tion (1) by its integral against an appropriate family of test functions. The evolution
form of [26] is based on the stochastic semigroup of operators with infinitesimal
generator A + V (t,z) - V. We will use this form because of its direct connection
to the probabilistic representations needed for tackling the dynamo problems. We
state the existence and uniqueness result:

Proposition 2.1 Let {v; (t,z) : t > 0;2 € R%j =1,2,3} be a Gaussian ran-
dom field defined by its covariance structure E[v (t,z)v (s,y)] = s A tQ (z,y) on
some probability space (Q,F,P). Let {b,:t >0} be a 3-dimensional Brownian
motion with variance 2k on the Wiener space (W, G,Py). If v(1,-) has a spatial
gradient that has a bounded second moment, then

(a): The backwards Stratonovich stochastic differential equation

wrs () =2 — /St v (oczr, Ot (w)) + /St b(odr) (2.1)

on the product probability space (A x W, F x G,P x Py) has a solution for
all0 < s <t and x € R3 that is a stochastic flow of homeomorphisms,

(b): The formula Ty s f(x) = Ep(f(pr,s (x)) defines a stochastic semigroup of
operators for 0 < s < t in the sense of [26]. T'’s kernel, the marginal density
p(s,t,y,2) = Pyloes () € dy] /dy is a stochastic kernel in the sense of
conditions (i)-(iv) in [26].

If moreover all 5th-order spatial derivatives of v have second moments, then

(c): The stochastic kernel p also satisfies integrability conditions (v)p, (vi)p
and (vii), in [26], as well as forward and backward Kolmogorov equations
(see [26])
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(d): There is a unique solution in C (R+; 2 (Q X R3)) to the following evolu-
tion form of equation (1), in which the anticipative integrals are of generalized-
Stratonovich type:

H(ta) = [ p.ty.a) B G)dy

t
Ov.
[ [ peitue) gt @y s d.  @2)
r3 Jo Tk

Moreover, the solution is almost-surely in C (Ry; L? (R3)), and is a classi-
cal solution to equation (1) if H® is smooth enough.

Proof Although the results in [26] are formulated for a single equation rather
than a system of 3 equations, and for Skorohod integrals rather than generalized
Stratonovich integrals, this proposition is a straightforward consequence of the the-
orems in [26]. For the definition and properties of generalized Stratonovich antici-
pative stochastic integrals, see [25]. O

2.2 Feynman-Kac representation. A Feynman-Kac formula for the solu-
tion to (1) or (2.2) exists. It is based on the stochastic kernel p. Before it can be
given, we will define the notion of multiplicative stochastic integral.

For m (dt) the differential of some matrix-valued Stratonovich integrable adapted
process, let M be the solution to the generalized Stratonovich stochastic differen-
tial equation dM; = Mym (dt) with initial data My equal to the identity matrix
Id. This linear stochastic flow of matrices can be understood with the following
multiplicative stochastic integral notation M; = [][; o [[d + m (ds)] which can be
defined as a limit of appropriate Riemann products. As such, M; appears as a
(continuous) product of (infinitesimal) random matrices. Note the order of the
endpoints in the interval of integration, which indicates in which order the matri-
ces are to be multiplied. Let W be the matrix-valued Gaussian field defined by
Wik (dt,z) = —0v;/Oxy, (dt, z), and define the “Stratonovich correction term”

0 0

@) =Bl Wia (L) V-0 @] = |

Q]',l:| (z,z).

Proposition 2.2 The solution to equation (2.2) is given by the formula

H(t.w) = By |[] [1a=W (ods, o @))] H (910 (=) (23)
| [¢,0]

= By | ][ [1a- W (ds,00s (@) = 7 (91 (@) ds] HO (410 (2)) f2.4)
[ [£,0]

Proof Replacing the product integral notation by its definition as the solution
of a stochastic differential equation, using a conditional stochastic Fubini lemma to
bring the expectation E; inside the resulting formula, and using the definition of
the stochastic kernel p, the proof of formula (2.3) follows. Formula (2.4) is obtained
by transforming the Stratonovich integral into an Ito integral, as follows. Let ¢ and
z be fixed. Let Y be the process defined by the backwards Stratonovich equation

Y (ds) = =Y (s) W (ods,got,s (a:)) L Y () =1d, s<t.
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The value Y (0) is precisely the multiplicative integral in formula (2.3). Note that
the process Y is not anticipative. Rather, it is backwards adapted, and therefore
the stochastic differential coincides with the usual Stratonovich differential. Con-
sequently

sz(ds wt,s (T ))

l\ﬁl»—\

Vit (d8) = =Yim (5) Wit (ds, 01,0 (2)) =
—Yie,m (8) Wi (ds Ot,s )
+%Ykm( ) Wa,m (ds Pt,s (-73)) m,l (ds Vs (@ ))

= Vi (5) Wit (ds, 90, (2))

1
3% ) |5 ,m] Pue (@), e (2) ds

—Yi,m (5) Wit (dS ©Pt,s ) 8) Yn,t (@1,s () ds.

O

Remark 2.1 The equations (1) or (2.2) can be understood in the Ito or the
Stratonovich senses. We chose to use the Stratonovich sense for two reasons:

(i): it is generally accepted that the Stratonovich integral is the appropriate
limit in the setting of diffusion approximation;

(ii): the Ito equation also has a Feynman-Kac representation, but it involves
more complicated correction terms: let

G(z) = kId—27'Q(z,x),
i@ = =(G @) 0 Qim (,9) ly=s,

and let by, by, b3 be three independent Brownian motions in addition to b.
The Ito equation’s Feynman-Kac formula is the same as formula (2.3) with
v (-) ds replaced by v* (-) by, (ds) and with the flow ¢ driven by \/G (-)b (ds)
rather than just b(ds). This shows that the Ito equation can only have a
Feynman-Kac representation if VG and G™' are defined, i.e. if G is a
positive definite matriz (the so-called coercivity condition), which is the case
only if k is large. The Ito Feynman-Kac formula is therefore not physically
relevant for the dynamo problem for which k must be small.

2.3 Particle representation. Representations of stochastic PDEs with sys-
tems of exogenous particles have seen a rapid growth in recent years (see e.g. [10],
[12], [13], [15]). We propose a particle representation which is akin to the Feynman-
Kac formula, but has several advantages.

Proposition 2.3 Let (bi)ieN be a family of independent Brownian motions in
R? with variance 2k. Let the particles (Xi)ieN be forward versions of the stochastic
flow ¢ of equation (2.1):

t t
Xi=Xx¢ —/ v (odr, X (r)) +/ bi (odr)
0 0
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The solution to (1), or to (2.2), or to the weak form of (1), satisfies the particle
representation formula almost-surely

— - z i 9.
/f H(t,z)de = lim — ;fXZ (2.5)
where the vector-valued weights Z* are defined as
zi= I [1d+W (ds,X}) +~ (X}) ds] Z§ (2.6)
s€[t,0]

as long as the initial positions X¢ and initial vectors Z} are such that the measure
. 1 N i o . . 0
my oo % Doimt ZO(SX& s a vector-valued measure whose density is H".

Remark 2.2 Formula (2.5) gives the solution H as the density of the measure-
valued stochastic process

K3
b = NIILHOO—ZW
with respect to the Lebesque measure. The above limit is almost-sure with respect
to Px [[;2, Py, and does not depend on the paths (b"), by the effect of the law of
large numbers.

Proof (of the proposition). A straightforward application of the general theory
of particle representations (see Section 11.3 in [18]) and of the fact that dZ} =
A4 (dt,Xg), yields that the measure p; solves the weak form of the stochastic
PDE (1). However, the theory does not guarantee that this measure has a density
H. If the weak equation has a unique solution, then Chapter 6 in [26] proves
that it must coincide with the unique evolution solution of Proposition 2.1, thereby
showing that u; has a density equal to the evolution solution H. Uniqueness of the
weak solution is given by the results in [16]. O

3 Comparing Feynman-Kac and particle representation

3.1 Particles more efficient than Feynman-Kac. We have been involved
in some of the only attempts to estimate Lyapunov exponents using stochastic
Feynman-Kac formulas such as (2.3) (see [7], [8], [9], [29], [2]). Our Feynman-Kac
approach in [2] is the only one not based on an approximation by some kind of
independent particle system, and is too specific to be applied to a wider context.
The other Feynman-Kac methods all run into common difficulties not present in
the particle methods: the time-reversal, which causes anticipativity in the formula,
and the need to approximate the average over all paths somehow. In the particle
method, the fact that the solution is given as a measure means that there is no need
for time-reversal, and the Feynman-Kac-type average is replaced by an empirical
measure over a countable family of paths, whose approximation by a finite number
of paths is natural.

3.2 How to discretize time and space. Discretizing the space parameter,
as an effort to reduce the problem’s complexity, and as a crucial step for any numer-
ical simulation, is problematic both in particle and Feynman-Kac representations.
The generator of the particles X ¢ or b is the random operator with white-noise drift
Ly =A,+V (t,z)- V. It is well known that there is no Markov process in discrete
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space Z¢ with a generator L containing a drift, unless the drift can be incorpo-
rated into the second order term by writing the generator in a so-called divergence
form, L = 0; (a;;0;). Even if V were a bonafide function, it is clear that there can
be no divergence form for L; since its second order term is the Laplacian, which
forces the matrix a to be the identity, and the drift to be zero. This means that
any discretization of X? or b will not preserve the Markov property, and thus, the
corresponding formulas will not representent a stochastic PDE in discrete space.
Consequently a spatial discretization of X ¢ or b, such as Euler’s method, will need
to be justified by a convergence theorem to the continuous space stochastic PDE.

Discretizing time faces similar difficulties in both settings. It is perhaps even
more important to implement from the theoretical standpoint than space discretiza-
tion, since it would lead to a discrete-time multiplicative stochastic integral, which
is a bona fide product of random matrices, and which could allow the application
of classical results on these products. This is evidenced by the toy model of the
next section in which sharp upper and lower bounds of the fast-dynamo type are
obtained thanks to large deviations estimates. These results also illustrate the
difficult task of finding a lower bound.

4 A toy model

The following model ignores the first order term V - VH, and is cast in discrete
time and space.

Let { M, (z) : n € N;z € R®} be a family of random matrices such that M, (z)
and M,, (y) are independent if n # m, and such that all matrices have the same
law p. Assume p is strongly irreducible and contractive, in the sense of Definition
5.3 below. Assume the following integrability condition: Ja > 0 :

[ wtam) (lm® + =) < oc.

Let b be a simple symmetric random walk in Z® which jumps at times x'Z,
(assuming k! is an integer). Let E; be the expectation with respect to b, and
assume that b is independent of the matrices M, (z). Let V € R3 be fixed and
define the analog of the magnetic field by a discrete Feynman-Kac-type formula

H(n,z) =EyM, () - Mg (b, —bp +2)--- My (b — b1 +2) V.
Theorem 4.1 With the above hypotheses and notation, the Lyapunov exponent
7 (0) = limn 1 log||M,, (0)--- My (0) V||
n

exists and there exist a,eq > 0, such that if ¢ < &g , the large deviations estimate

2

P [|n~ log My (0)- - My (0) V1| = (0)] > €] < exp 55,

holds; it follows that,
(a) there exist ko,c > 0 such that for all 0 < k < Ko, almost surely,
1
limsup ~log || H (n, )| < (0) + cv/k;
n—oo N
(b) if moreover all the coefficients of all the matrices My, (x) and all the com-

ponents of V are positive, there exists ¢! > 0 such that for all 0 < k < kg, almost
surely,

1
lim inf - log ||H (n,z)|| >~ (0) — ¢'Vk
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Proof The first statement is the basic component of the Oseledets theorem (see
Proposition 5.1 below). The second one is the large deviations result of LePage (see
[4] Chapter 5).

To prove the upper bound (a), by the Borel-Cantelli lemma, we only need to
show summability of the following probabilities in n:

P[||H (n,z)|| > expn (7 (0) + ¢ (k))]
P [Eb | M () - - My (b — b + ) -+ My (b — by + 2) V|| > e”(7(0)+5)]

IN

IN

S P [Mn(m)---Mk (b — by + @) -~ My (b — by +2)V > e"(7(0)+5)] ;
bEPrn
here P, is the set of all possible nearest-neighbor trajectories of length [kn] started
from the origin in Z3. This set has cardinality 6/""). Since n,z and b are now fixed,
we can use the LePage large deviations result, to obtain

P||H (n,z)|| > expn (v(0) + & (k)] < 65" exp—%

which is summable if ¢ > y/k2a?log6 := &1 (k). The large deviations result is
only for small ¢ < &g, therefore we need to impose ¢; (k) < 9. This holds for

Kk < ko = £52a” log 6, and we obtain the result for ¢ = \/2a2log6.
To prove the lower bound:

P [I1H (n,2)|| < e1(®)=<)]

< P [|u(n,x)1| < e"“(o)’s)]

= r [Eb [(Mn () Mg (bn — b + @) -+« My (b — b1 + @), Vj] < en(1(0)=9)
< 6P (M, (0) M (0)-+ My (0)), ; Vj < "]

< 6P [||Mn (0) -~ My (0) -+ - My (0) V|| < en(v(O)—s/m]

(M (0) -+ - My (0) -~ My (0)y ; Vj
| M7, (0) - - - M (0) - - - My (0) V]|
Let Vi, := My, (0)--- My, (0) --- My (0) V. The results of Guivarc’h and Raugi (see

[4], Chapter 6) imply that there is a random vector Z* such that

Va)y 25

=2
Z;

65 P [ ens/2>]

lim
n—oo (Vn)j
and make it easy to show that the second term in the last expression is summable
for any €. The first term is summable by the calculation for the upper bound. This

finished the proof of the theorem. O

5 The dynamo effect

5.1 Reduction to the IID case. The particle representation shows that we
are faced with the system of (infinitesimal) matrices in the weights’ formula (2.6):

M (ds) :=Id+ W (ds,X}) +~ (X!)ds; s>0.
This infinitesimal increment is in the Ito sense, which guarantees that these ma-

trices, when multiplied together, form a Markov process. There exists a theory of
Lyapunov exponents for such linear multiplicative matrix-valued Markov processes
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(see e.g. [6] Chapter 4), but it is not as well-developed as the more basic theory
of products of independent and identically distributed (IID) matrices. To guaran-
tee that the matrices M (ds) are IID, it is necessary that v be constant. This is
guaranteed if the velocity field v satisfies the following weak homogeneity condition.

Definition 5.1 A Gaussian random field v defined on the Cartesian product
of two index sets T x X by its covariance structure
Ev(t,z)v(s,y) = R(5,1)Q(z,y) : s,t€T; zyed,

is said to be spatially weakly homogeneous for all x € X if its spatial covariance
function @Q is such that Q (x,x) does not depend on x. In other words, the spatial
variance s constant.

Note that this condition is much weaker than the more commonly used homo-
geneity condition @ (z,y) = @ (z —y). Assuming that v is spatially weakly homo-
geneous, not only is v constant, but it also follows that the matrices W (ds, X?)
are actually IID, as the following discrete-time argument shows.

Lemma 5.2 Let {M, (z) : n € N} be a family of random elements indexed by
time n, and depending on o another parameter x in a countable set X. If for each
fired x € X, M. (z) is an IID family, and if the law of this family does not depend
on x, then for any random sequence {X, : n € N} in X such that X,, is measurable
w.rt. Fpo1 = o(Mo;--- ; Mp_1), the family of elements {My (X,) :n € N} is
1ID.

Proof Let f, g be bounded measurable functions. Then

Ef (Mn (X)) g (Mp1 (Xn-1))
= E{E[f (M, (Xy)) |Fn-1]g (Mp—1 (Xn-1))}
= E{E[f (M (2))] |z=x,9 (Mn—1(Xn-1))}
E[f (M (0)]E[g (Mn—1 (Xp-1))]
E[f (M, (0)]E{E[g (M1 (2))] [o=xn_1 }
= E[f (M (0))]E[g(Mn-1(0))].

O

This argument can be adapted to the continuous-time setting for W (ds, X;)
because this differential is in the Ito sense. It can be adapted to the continuous
space setting by noting that by hypothesis, W (ds, z) is continuous in the space
variable x, and therefore this random field can be approximated using the same
random field defined solely for € Q32, so that we may use X = Q? in the above
lemma.

5.2 Main result.

Definition 5.3 Let pu be a probability law on the group of invertible matrices
of size d. The law p is strongly irreducible if there is no finite union U of proper
subspaces of R? such that gU = U for all g in the support of pu. The law p
is contractive if the semigroup generated by the support of p contains a sequence
{gn :n € N} such that gy ||gn|| ™" converges to a rank-one matriz.

Proposition 5.1 Let {M, : n € N} be an IID family of matrices in GLg4 (R)
with common law p such that [0V log||z|| u(dz) and [0V log ||w_1|| u(dz) exist.
There is a sequence of d nested random subspaces {0} = Vg1 C Va4 CVy g C--- C
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Vi = R? and a sequence of d deterministic numbers Ay > Ao > - > Ay (Lyapunov
exponents) such that the limit

1
lim — ”MnMn—l e M1MOV||

n—oo N

is almost surely equal to N\, iff V' € Vi\Viq1. This is the Oseledets or Multiplicative
Ergodic theorem. Ay is called the top Lyapunov exponent.
Moreover

1
llm — ||det (MnMnfl .- MIMO)“ = )\1 + ... +)‘d

n—oo N

If p is strongly irreducible and contractive, then A1 > Aa.
Proof See e.g. [20] or [6]. O

The following, our main result, must be stated in the form of a conjecture
because a crucial step in the proof still eludes us for technical reasons.

Conjecture 5.1 Let {v(t,z) : t > 0,2 € R%} be a Gaussian random field that
is Brownian in t and weakly homogeneous in x. Assume that all 5th-order spa-
tial derivatives of v have second moments, so that the conclusions of Proposi-
tion 2.1 and Proposition 2.3 are valid. Let p be the distribution of the matriz
M = I1j1,0) [Id — Ovi/z; (ds,0)] and assume that the top Lyapunov ezponent A
associated with p thru the Oseledets theorem (Proposition 5.1) is positive. Then the
solution to equation (1) or (2.2) has the energy fast dynamo property of definition

(1.1) (D2).

Proof (Sketch of proof).
The heart of the proof is to calculate the magnetic energy [ ||H (t, 2)||* dz by
using the particle representation. We define the Mth particle approximation to H

/HM (t,z) f () dz := iszj (t) f (XJ‘)
) M t

j=1

and for any positive integer I, denote by HM:! (t,x) the average of HM over the
cube B; (x) of volume [~3 centered at the point x in (l_IZ)B, so that we have

M, _ﬁ . J J
H™ (t,z) = MZZ (t)lBl(z) (Xt)
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The particle representation for H then yields, using a Riemann-sum-type limit, and
the Mth particle approximation,

/ IH (t,2)|? da
:/H(t,m)kde (t,2),

13 M .
- g RSO (K 20 1 (3)

zE(l_1Z)3 =1 =

. . . 3
= lim lim lim Z ZZk 1Bl (z) ( ) 1,(a) (Xi) i

N—o00l—00 M—00
:ce(l—lz)3 =1

o oM .
+ Jim lm lim ) Z Zi01nw (X)) 37 2 2 (01ne (X7)
ze(l- lz)3 i=1 J=135#1
= Eo (t) + E1 (t)

In the last step, the sum over j is separated according to whether j =i. It is easy
to see that we may take M as a function of ] in the above limits. We choose M = I3.
Thus the first term in the last expression is precisely equal to

N
. 1 i 2
Eo (t Nhinooﬁzzk = Jm 2170
7=
Recall that E; is the expectation with respect to a Brownian motion path b of
velocity 2k, and let X (b) and Z (-, b) be the particle and weight constructed using
b. The second term can be written as

|Eq (1)]

=|lim lim ) Zzh (t) PEy [Z, (£,0) 1p,(z) (X¢ (B))] 1m,2) (X7)

N—o00l—00
xE(l—lz)3 i=1

dm T S OR [0 Py ]
ze(l— 1Z)3 =1

IN

Well-known properties of IID matrices My, My, -+, M,,--- indicate that for
M™) = M, --- MyM,; and for any fixed vectors e, e; and a, the ratio

<M(")el;a>/<M(”)eg;a>

converges to a finite nonzero limit almost-surely (results of Guivarc’h and Raugi,
see [4] Theorem VI.3.1). This is a strong indication that although the vectors
Z%(t) and Z (t,b) have norms that increase exponentially fast, their kth components
are remarkably close. Consequently, the products Z{ (t) Z (t,b) are presumably
bounded above and below by constant multiples of ||Z’ (t)”2 On the other hand,
the quantity

By, ¢)—x;|<i- = Po[|Xe (0) = X{| <17']
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has the same transience properties as the similar term for Brownian motion alone,
P, [|bs] < 171], which is of order (It}/ 2)73. These elements indicate that the term
F (t) should be no greater than a constant multiple of t=3/2Eq (), showing that
the large-time exponential behavior of the energy [ ||H (t,z)||* d is that of Eq (t)
alone.

Using the concavity of the logarithm and Fatou’s lemma, the estimation of Ey
reduces to showing that part (D2) of Definition 1.1 holds for any given Z? rather
than H. It also shows that H satisfies part (D2) of Definition 1.1 with A (k) > A (0).
Since the infinitesimal matrices used to form any given Z° have the same law as
M (ds) := Id + W (ds,0), A (0) is the top Lyapunov exponent \; corresponding to
the law of M} = [} 0 [d + Wi,; (ds,0)], the positivity assumption on A; finishes
the proof. O

Definition 5.4 A wvelocity field v defined on R3? is called incompressible or
divergence free if V-v = 0.

Corollary 5.4.1 In the case of an incompressible velocity field v, the positivity
of the top Lyapunov exponent in Conjecture (5.1) is satisfied. Hence the energy fast
dynamo property is established in this case.

Proof The incompressibility of v implies that the correction term v vanishes
and that each infinitesimal matrix W (ds,0) has trace zero, since traceW = =V -
v = 0. Again, we only need to consider the infinitesimal matrices M (ds) :=
Id + W (ds,0); because v = 0, the Ito and Stratonovich interpretations of this
differential coincide, and therefore the product My = []}; o M (ds) is a member
of the Lie group whose algebra is the set of trace-zero matrices, i.e. the matrices
with determinant one. By the Oseledets theorem 5.1, this proves that the three
Lyapunov exponents of the law p of M; are related by Ay + A2 + A3 = 0. On the
other hand, \; and Ay are distinct, by a well-known property of solutions to linear
matrix SDEs, which says in particular that p is strongly irreducible and contractive
(section 5.9 in [4]). Therefore, A\; must be positive. O

6 Further Conjectures

Although Conjecture 5.1 and its corollary already constitutes a fast dynamo
theorem, we will also seek the pointwise fast dynamo theorem, as well as, in the
spirit of the toy model of section 4, the behavior of A (k) near zero, and an upper
bound for the exponential behavior.

6.1 Sharp upper bounds.

Conjecture 6.1 There is a constant ¢’ > 0 such that parts (D1) and (D2) in
1.1 hold with the liminf replaced by a limsup and with X\ (k) repalced by a N (k)
that satisfies X' (k) < A (0) +c'/log (k7 1).

Proof (Ideas for proof).

Energy and pointwise sharp upper bounds can be proven using the large de-
viations ideas of section 4, combined with the Lyapunov exponent estimation in
continuous time found in [8], and with spatial discretization techniques employed
in [9]. Although this may prove to be technically challenging, we believe the upper
bound is inherently easier than the lower bound. O



Towards pathwise stochastic fast dynamo in magneto-hydrodynamics 13

6.2 Pointwise fast dynamo.

Conjecture 6.2 The pointwise fast dynamo property (Part (D1) of Definition
1.1) holds.

Proof (Ideas for proof).

The difficulty with the pointwise case is that a formulation of the energy as in
the sketch of the proof of Conjecture 5.1, with a norm inside the average % Ziil
of the leading term Ejy (t), is not available in the pointwise case. The lower bound
in the toy model of section 4, under the additional restriction that all components
of all matrices and vectors involved are positive, and using the lower bound time-
discretization technique of [7] Chapter IV, could yield A (k) > A(0) — ¢/logr~!.
Since one may take k small, and since X (0) is positive, this would indicate a possible
pointwise fast dynamo theorem (D1) if the argument could be extended beyond the
hypothesis of global positivity. Imposing a strong drift term on the velocity field v,
which is a reasonable physical hypothesis, could allow such an extension. O

6.3 Sharp lower bound for the energy.

Conjecture 6.3 There is a constant ¢ > 0 such that part (D2) of Definition
1.1 holds with X (k) > X (0) + ¢/ log (k7').

Proof (Ideas for proof).

To prove such a result, discretization techniques such as those used in [7] Chap-
ter IV, [8] and [9], would reduce the problem to the following question, which re-
mains the most fundamentally difficult question in this study: can one maximize
the top Lyapunov exponent of a product of random matrices in which, at each time
step, there is a choice between several matrices with the same law and a certain
amount of independence? There is hope to discover special cases in which this well-
known open problem ([19]) can be solved, such as a global positivity condition. O

6.3.1 Low discrepancy particle sequence and simulations. We propose a simulation-
assisted method. The particle representation of Proposition 2.3 claims that for any
given “typical” realization of the auxiliary Brownian family (b%), the approximate

empirical sum N~ SN 7§ x;i converges to the solution of (1). Therefore, to rep-
resent this solution, one may choose any such typical realization. Choosing one is a
non-trivial task. An efficient way to do so is to identify a so-called low-discrepancy
sequence of Brownian paths.

Low discrepancy is a well-known concept in random number simulation; such
sequences have the advantage of being much more efficient than pseudo-random
number generators (see [5]). Moreover, their precision is given explicitly by the
Koksma-Hlawka inequality (Theorem 2.C.1.4 in [5]), which would make them con-
venient to use in a mathematical proof. There is a natural notion of low discrepancy
for which it is known that (see [28]) there does not exist a low discrepancy sequence
for the infinite dimensional random variable that is uniform on [0,1] in each of its
coordinates. Although our situation is also infinite dimensional, one would prove
the sharp lower bound conjecture by a Borel-Cantelli argument, using only prob-
ability calculations for fixed time. Consequently, a notion of low discrepancy that
is uniform in time would then be sufficient. Because the empirical mean in the
particle representation formulas only averages out the randomness in the family of
paths (b%), the low discrepancy would be conditional on the value of the random
medium v. For example, for the leading term Ej (t) we would have the
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Conjecture 6.4 There exists a realization (5’) of the Brownian family so
K3
that uniform low discrepancy holds for Eqg almost-surely:

N
Z |Zi (15)|2 := Discrep (N,IA)) —0as N — oo.

i=1

1
sup |Eg (t) — —=
tzg o (t) N

One could argue that uniformity in time will be difficult to establish because of
an increased amount of information for large ¢. This can be overcome by normalizing
the above equation by the deterministic exponential rate that is expected. In this
sense, we would prove a weighted low-discrepancy result.

The idea then is to identify a scheme to construct a sequence of paths with the
low discrepancy property and such that the maximization effect described above
occurs for the empirical mean + Ef\;l |Zi (t)|2 for all N large enough. It would
occur on a small proportion of the sequence of paths, small enough to ensure low
discrepancy, and large enough to dictate the behavior of the whole mean without
too many cancellations.
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