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1. INTRODUCTION 

We study the almost-sure large time exponential behavior for the parabolic 
equation of Anderson type with random potential: 

au 
- ( t ,  .u) = K A u ( t ,  x )  4 V ( t .  .u) LL ( f ,  x )  
31 (1) 
0  u )  = 1 t > O  

For discrete space parameter (.u t z"), this problem has been studied in 
detail in Carmona and Molchanov's AMS memoir Parabolic Anderson 
Problem und Inlernzittency [2].  In their last chapter, with the potential V  
taken to be white noise in time, they investigate the so-called rrlmos~-sur~ 
Lyupunov esponent for the solution, i.e. the random quantity lim, ,, t  I 

log u  ( t ,  x).  When the limit docs not exist, it is still interesting to evaluate thc 
corresponding liminf and limsup. In [2], the following lower bound is 
obtained for small ti (smaller than some tio), and with some constant c,: 

L '  almost surely lim inf tr'  log u  ( t ,  x )  2 --- 
r-x log 6-' ' 

In [3], Gaussian estimates are used to exploit the hypothesis that the family 
( V ( . ,  .x) x E z") of white noises that constitute the potential has a Gaussian 
correlation. They yield the following upper bound for K > tio. and with 
some constant c2: 

C2 , almost surely lim sup tr'  log u ( t ,  x )  < --- 
1- x log K-' 

Although there is little hope of conciliating c,  and c2 in general, this upper 
bound constitutes an improvement on earlier works ([2] ,  [8])  in which the 
Gaussian property had not been fully used. The upper bound's method of 
proof suggests that it may be adaptable to the case of continuous space 
parameter: then indeed, a Gaussian hypothesis on V is a natural one. In this 
article we show that this can indeed be done. 

Specifically. a full Gaussian hypothesis on the family of white noises 
( V ( . ,  x ) ) ,  means that V  is the formal time-derivative of a random field W 
defined under some probability space (R, F, P) by the covariance 

E [ W ( t .  . ~ ) W ( , F .  y ) ]  = s A t . Q ( x ,  J.) 
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where Q is the kernel of a positive operator. The usual meaning given to the 
pde 1 is its stochastic integral form. This equation cannot have a meaning in 
the strong sense unless W is spatially c2. However the results proved herein 
only require that W be spatially Holder-continuous (thus is equivalent to 
Hypothesis 6 below). In this case, we must (and will from now on) 
understand the stochastic pde in its less restrictive, evolution form, as 
follows: 

u ( t .  x)  = 1 + p ( t  - s.  x. y )  W (ds,  y) u (s. I.) 

Here p (s, x, I.) = (27r K slpd ' exp (-(x-),)~, 2 K s) is the transition probability 
density of Brownian motion with variance 26. The upper bound result 
mentioned in the previous paragraph holds when the stochastic integral is 
understood in the sense of Stratonovitch. 

For the sake of simplicity, we assume that W is spatially homogeneous, 
i.e. that Q (Y, y )  = Q (x - y).  In this situation in [4], Dawson and Salehi 
showed that equation 2 has a unique L ~ ( R ) -  valued solution by exhibiting its 
Wiener chaos expansion. This means introducing the Gaussian spectral 
measure of W,  i.e. the unique independently scattered Gaussian random 
measure M(ds ,  c i )  with the properties 

W ( t .  .x) = I /  e " i ~ ( d s . d A )  
~ " x [ o  / I  

where Q is the Fourier transform Q. See [7] and [4] for details. In the next 
section, we establish the following stochastic Feynman-Kac formula for this 
solution: 

THEOREM 1 Let ( u  ( t ,  .u). t 5 0 ,  x E R d )  be the unique separable solution to 
the Stratonovich stochastic evolution equation 2. Assume condition 6. Let 
(b ,  > 0 )  be u standurd Wiener Process started.from x with diffusion 2 K, under 
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its cunonical probability space (C, 3. P,) (u'here C = C ( R + ;  R"). Then P- 
almost-surely, 

The proof for the Ito equation identifies each term in the Wiener chaos 
expansion with a corresponding term in the expansion of exp in Hilbert 
polynomials. The Stratonovich solution is trivially obtained by multiplying 
the Ito one by exp Q(0) t/2. yielding the above formula. This Feynman-Kac 
representation confirms that for both stochastic and non-stochastic 
equations, spatial smoothness of the data W is not a prerequisite. Its proof 
indicates that the evolution equation is one step closer to a probabilistic 
representation than a strong equation; indeed the heat kerner p(t-s, x, y) ,  
which can be written probabilistically as P, [b,-, E dy] / dy, appears explicity 
the equation. 

In Section 3 and 4 we proceed to the main quantitative result of this 
paper. We exploit the Feynman-Kac formula by using Gaussian supremum 
estimates (Borell-type inequality, Fernique's theorem) and prove our main 
result: 

THEOREM 2 Let ( W ( t ,  .x), t > 0. x E K" be a Gaussian process on ( 0 ,  3, 
P )  it ith covariance E [ W ( t .  x) W ( s ,  y)] = s A t . Q(x-J.), where Q is any 
homogeneous covariance function such that its Fourier tran~form Q has a 
moment of' some order a > 0. i.e. 

The stochast~c parabolic evolution equation 2 in Strutonovitch Jorm has a 
unique continuous solution taking values in L~ (R) and there are positive 
deterministic constants tco and c depending only on Q such that, Jbr K < KO,  P- 
almost surely, the large-time exponential behavior is hounded above as follows: 

1 c 
lim sup - log u ( t .  s) 5 - 

r-x t log k 1  

In Section 3 we show how to reduce the proof of this upper bound to a 
situation in which the spatial parameters is in Z" instead of R". This 
discretization of space allows us, in Section 4, to finish the proof of the 
upper bound much in the spirit of the proof of the corresponding result in 
discrete space in [3] (also see [2], chapter IV, paragraph 3). 
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Regarding the Ito equation's solution, the correction factor exp-Q(O)t/2, 
valid in the homogeneous case, or merely if Q(x, x) is constant, has a trivial 
effect on the upper bound in Theorem 2. When Q (x, x) is not constant, the 
correction factor to be included inside the Feynman-Kac expection 5 is 
exp - (112) Jd Q(b,-2, h,-,)ds; this modification is not trivial. We do not 
investigate it here. 

2. THE FEYNMAN-KAC FORMULA 

2.1. The Wiener Chaos Expansion 

In [4], the unique ,L2 (a)-valued solution to the evolution equation 2 is 
exhibited as the sum in ~ ~ ( 0 )  of the series C,",oXn(t, x) defined by Xo(t, 
x) = 1 and 

To establish Theorem 1 we express Xn explicitly. From definition 3, first 
rewrite equation 7 using the spectral measure M :  

Now using a stochastic Fubini lemma (see [4], lemma 2.1) repetitively on the 
variables y,, i = n - 1. . . 1 we obtain, with the convention so = t and yo = x: 

M (dA,,, dr,,) . . . M  ( d l .  ~ s I ) .  

In the 
perty of 

last step, the spatial integral was represented thanks to the pro- 
independence of increments for Brownian motion, which yields 
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for T I  5 . . . 5 T,,: 

The proof given in [4], lemma 2.1, of the stochastic Fubini lemma used 
above is valid if one is prepared to accept the fact that if M  is a Gaussian 
spectral measure with covariance Q ,  and if g(x, 1.) is a measurbale function 
which is in L ~ ( Q )  in the x variable, then the random variables e (y) = J g (x. y )  
M ( d x )  are measurable in the parameter J .  In the above use of the lemma, 
the parameter y is in the space C  of continuous functions under the Wiener 
measure. Regularity conditions must then be imposed on g to obtain the 
required measurability. A general result in this direction is in [9], 
Proposition 2.1 and its corollaries. Here we will only need the following 
consequence of these results: 

PROPOSITION 3 Under Qpothesis 6 ,  for all t > 0 ,  x  E R" and ull positive 
integer n,  the process 

M (d,, ds,) . . . M(dA1. ds l ) ,  

has a version which is a random variable in L ~ ( C  x R ) .  

We only recall the proof of the following analytic lemma, which is the 
core of the proof of the Proposition 3, and will be of crucial importance 
throughout this article: 

LEMMA 4 I ~ Q  is a.finite measure on Rd (total rnass= Q(0) < oc) satisfying 
condition 6 ,  i.e. 3 a > 0 : K,, = JRd / x ~ ~ Q ( ~ x )  < x, then for an), a,  b in R ~ ,  
rrtr have 

Proof 
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where we used Chebyshev's inequality and the hypothesis of existence of the 
moment of order a.  Then optimizing over q > 0 (taking rl such that 
772 a-b12 = q p U ) ,  we obtain the result of the Lemma. 

2.2. Proof of the Feynrnan-Kac Formula 

By virtue of Proposition 3, we may apply the stochastic Fubini lemma again 
to 8. We thus represent X,(t, s) by E,[Xk(t, b)] where. for 0 < s < t and 
so = s, Xk(s. b) denotes the quantity 

We transformed the integrand above by symmetrizing it since a multiple 
stochastic integral is invariant under this operation (see [7], Chapter 4);  the 
symmetrization of rI& I s o ,  ,I (s,) with so = s is (n!)-'rI~!, l p s l  (s,) and the rest 
of the integrand in X,(s, b) is symmetric. Now recall that by the It6 formula 
for multiple integrals (see 171, Theorem 4.2), iff (A, r)  is a function with unit 
~ ~ ( d r .  Q(~X) ) -no rm,  then with H, the n-th Hermite polynomial, 

We can use this result for X:,(s, b) with the function f (A, r) = l p  ,](r)erA ' 

after dividing by its norm 1 1  f p(81, = (Ji /ai/ elib r2(dA)(b.)'12 = 

(Q(o).Y)"~, and obtam 



258 R. A. CARMONA A N D  F. G. VIENS 

with e, b(s) = c.j (r)e"~ M ( ~ A ,  dr). Notice that (P~,~(s) :  s E [O,t] ) is a 
continuous martingale with respect to the filtration 3, = u{W(r,x): 
r 5 s.x E Rd}) .s  E [O.t]. Its quadratic variation is easy to compute: 
( e l b ( . ) ) ,  = Q(0)s (this shows that it is in fact a Brownian motion!). Also 
recall the property that if N is a continuous martingale, then we have 

(see [6], exercise 3.3.31). Applied to our martingale e,b(s), refering to 9, this 
yields 

Taking s = t and taking the expectation with respect to P, of this equation, 
which is justified by Proposition 3 and the integrability of the right-hand 
side, we obtain the It6 equation's Feynman-Kac formula; the Stratonovich 
equation's formula 5 follows trivially P-almost surely for t, x fixed. The left 
hand side may also be expressed as an expectation with respect to Po, a 
Wiener measure started from 0, not x, of the same quantity, with b. replaced 
by b. + x. The resulting process t ,  b, x j e x p  etjb , ,, if chosen in its separable 
form, yields a separable process after the Po-expectation is taken. This 
proves that the Feynman-Kac formula 5 represents the separable version of 
u(t, x) P-almost-surely for all t, x. Under Hypothesis 6, by the Gronwall 
inequality technique, it is easy to apply the Kolmogorov lemma ([6], 
Problem 2.2.9) to establish the existence of a Holder-continuous version, 
which of course coincides with the separable one. 

Let us remark that for t and x fixed, the processes s-, b ,  , and s-x + 
b,-b, have the same distribution under P,, so that formula 5 is the same as 

We will prefer to work with formula 10 in the sequel. 

3. REDUCTION TO THE DISCRETE CASE 

To prove the main Theorem 2, we decide to replace the Brownian path ( w , ~ :  
s ~ [ 0 ,  t ] )  in the Feynman-Kac formula 10 by a path h" that stays close to w 
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proceeds only by jumps and lives in zd. Our task begins by controlling the 
error made by this substitution. 

The proof of the upper bound in Theorem 2 being indifferent of the value 
of x, we let x = 0 for notational simplicity. 

3.1. The Approximating Path 

Let E be a positive real and let bJ be the j-th component of the d-dimensional 
path b; let TJl be the first time bJ exits the interval (-E, E) ;  let T i + ,  be the 
first time after T i  that bJ exits (bTL -E,  bT, + E ) .  From the homogeneous 

,n 

Markov property, for fixed,j, the times (T;,, - Ti),"==, are independent and 
identically distributed (I.I.D.) and the successive positions x!?, = bJ which 

TL, ' 
are independent of the jump times, form a one-dimensional synlnletric 
random walk on EZ  in discrete time (xi, ,  = are I.I.D., taking values 
+ E and -E with probability 112). Now let (T , )zo  be the increasing sequence 
of all the (T!,),,,, and let ( x n ) z o  be the nearest neighbour path in E Z ~  with 
xo=  0 whose j-th component takes the same step as x.', at time T i .  We let b 
be the path thatjumps at  time T,, to site x, and is constant between jumps. We 
must note that (T,,), and (x,), are not independent sequences and do not 
have I.I.D. increments. At any time s, each coordinates of b, is within E of 
the corresponding one of b,, so that the distance separating the two paths is 
never more than E We record this property for future reference: 

PROPOSITION 5 With b dejined above, n.e have for all s 2 0, b,- b , l ~ ~ d " ~ .  

3.2. Controlling the Error: Strategy 

Let e, b = j' J 1 pl] ( ~ ) e ' ( ~ l - ~ , )  M ( ~ A  ds) . ei, = e,, 6 ,  and ii (t, x) = Eo[exp 
If we decide to seek an upper bound for the quantity 5 =lim sup tpllog ii(t. 
0) instead of y = lim sup tP1log u(t, 0), we should evaluate the "error" 
commited by this switch. Using Schwartz's inequality and the Feynman-Kac 
formula 10 we may write P-as . :  

so that 

1 
y < j + lim sup - log Eo [exp 2e1,b - 2?,,b].  

r+, 2t 

We refer to the second term in this formula as the error. The goal of this 
paper is in fact to show that we can chose the edge-size E of the 
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approximation lattice E Z ~  as a function of 6 in such a way that in the regime 
of small ti, this error is negligeable in front of the contribution of y. In this 
section we compute the error. We have abused the notation y because we 
are disregarding the factors of 2, which are irrelevant in the absence of 
information on the value of the final constant c in Theorem 2. 

First we operate a kind of discretization of time. using the continuity in t 
of e and F in the last step for measurability: 

1 
lim sup - log Eo [exp e,  b  - Zf,h]  

r-x t 
1 

= lim sup sup -log Eo [exp c ~ ,  - P,J,] 
t : * x  ~ t [ n - 1  tr] f 

5 lim sup log Eo exp sup ( r ,  h - 2, I , )  . 
n-x n / r [ n -  I n ]  J 

By Chebyshev's inequality, and using Fubini's theorem, which again is 
justified by the measurability of e and E,  we may write 

exp sup ( e , h - e , b )  ( c , ~ - P , ~ )  . (12) 
r ~ [ n - 1  t11 I 

From Proposition 6 below, choosing X = exp ( 'nt.' with ( , '  > (, the left- 
hand side of 12 becomes summable in n. so that, by the Borel-Cantelli 
lemma, the upper bound on the error in inequality 11 contributes less that 
c'E", which means that 

1 
lim sup -log Eo [exp e , , b  - < C'E'.  P - a.s. 

I - ,  t 

3.3. Controlling the Error: ,Main Estimate 

PROPOSITION 6 There exist positive constants c and 4 such that 

exp sup (el  - Z ,  b )  I exp cnci .  
I €  ?:-I 171 I (14) 

This entire section is devoted to the proof of this proposition. We begin 
by observing that for a fixed path b. e,,h- is a Gaussian process. We will 
estimate the left-hand side of equation 14 before Eo is taken by using the 
following elements of Gaussian theory. 
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Let X=(X , ,  t g T )  be a centered Gaussian process indexed by some 
metrizable space T. Let J/X// =suptETX,. Computing EIJXIJ is generally an 
impossible task. however, sharp upper bounds on E//X/I and P [IIXII > A] are 
made accessible via the notion of canonical metric, namely the quantity 

together with its associated entropy N ( q ) ,  the smallest number of balls of 
dianzeter 7 in the metric S nee&d to cover the index set T. With K,,,, a 
universal constant and a2 =  sup,,,^(^:) the upper bounds are as follows 
([I]. Corollary 4.15 and Theorem 2.1 (Borell-type inequality) respectively): 

Now notice that for any Gaussian process X. using 17, 

1 
exp ---(log v - E / I X I ) ' ~ V  

2a2 

= exp E X  1 1  [ I  + ( 8 ~ d ) " ~ e x ~  (31 
In our case, by the covariance relation 4, and using proposition 5 and 

Lemma 4 

According to 16, controlling e E X w h e r e  XI1 = sup,+ .-,I (eth - El h )  

reduces to evaluating the canonical metric of the process t+ erb-Z,,,. It 
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turns out that an estimate sufficient to complete the proof of proposition 6 is 
obtained by separating E/IX/I into Elle., bI and Ell?., 611. This fact means that 
the error, which is of the form E exp I /  XI/, can be measured via equation 18by 
the contribution involving o2 only, which is typical of a Gaussian situation. 
The contribution involving EIIXI/, which is of the form exp E/IX /I, is 
altogether of a lower order, consistent with the fact that the application of 
Jensen's inequality yielding exp E/IXII <E exp 1 1  X/I should be a crude estimate. 

For any fixed function b on [0, t ] ,  we can compute the canonical metric for 
t+ e,,b explicitly: 

Different tools must then be used depending on whether the path b is 
Brownian motion or its E-approximation b. 

3.3.1. Contvol of Edexp E ~ ~ ~ , ~ l ~ l  

By lemma 4, Q(0) - Q(x) = J'(1 - e l n x ) & ( d ~ )  5 ~f , lx / " ' (~+" )  . Define the 
114 -Holder constant of uniform modulus of continuity for b on the interval 
[n- 1, n] as 

d 4 ( 2 + r x )  Since moreover It - s < t - s /  

The entropy of the metric on the right-hand side is bigger than that of 6's. 
n(2+a) 112 Thus with the notation c = Q(o)'/"I + 2nK:,Ch,, ) and 7 = 8(2 + n)/ 

a ,  the quantity 1 + (clrl)' serves as an upper bound for Nn,(rl). 
Now in property 16, we may replace the infinite upper bound of 

integration by qlIlax, the diameter of [n- I, n] in the metric Ob,  because for 
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7 > qmax, N(7) = 1. Clearly qmax < (2n + 1)'12 Q (0)' = c'  since Sh cannot 
exceed (2n + 1) Q (0). We obtain: 

We used the fact that J: log1i2(l/r112)drl' = sr exp(-x2/2)d.u = (-12) ' I2 .  
Hence there is some constant K:: depending only on Q (and a )  such that 

Now for any y' > 0 and a > 0, simple calculus yields that there exists a 
constant K,I,, such that for every x, K >  0, 

Using y ' = 4 2  (2 + a)  < 112, we obtain 2/(2 - y ') < 413. Thus 

Eo [exp E Ile ,h I ]  < C, exp (n2l3K;) (22) 

where a and C, are defined by Fernique's theorem (see for example lemma 
1.3.25 in [ 5 ] )  applied to the modulus of continuity of Brownian motion: 

3a > 0 : C, = Eo exp a 

3.3.2. Control of Eo[exp EllZ.,bll] 

Whenever two times s and t are between two consecutive jumps of the 
approximating path 6, ~ ( 6 ,  - b,) = Q(0) and the explicit formula 20 for Sh 
becomes 
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so that calling M-1 the number of jumps of b in the interval [n-1, n] ,  and 
covering each of the M intervals determined by the jumps separately, we 
obtain 

We apply this entropy estimate to property 16 with the help of the following 
elementary 

LEMMA 7 Fur an), A E [0, I], 

and the tact  that on [n-1. n ] ,  Sh does not exceed c t = ( Q ( 0 )  (2n+ 1 ) ) ' 1 2 ,  to 
obtain: 

5 Kunl, (MQ(o))' ' M ~ ' ~ ' ( ( T / ~ ) '  ' + logU2M) + ( ~ ~ Q ( o ) ~ o ~ M ) " ~ )  ( 
5 Kp(2n log M) ' I 2  (24) 

where KQ is u constant depending only on Q. Now notice that M-1 = N, the 
number ofjurnps beticeen times n and n- 1, has the sarnc7 distribution as N I ,  the 
number oj'jurnp.~ between times 0 and 1 except we must replace the.first jump 
by an inc-lepmclent "remaining life" jump; at any rate, i f  ,f is an increasing 
function, E f ' ( N )  I Ef  (N1 + 1). B}, definition N I  = Nf + . . . + Nf wherp N{ 
refers to the j-th component of 6. Thanks to inequality 24, with the notation 
L. = KQ (2n)' 2, and by the independence of the N-"s, 

Eo exp El/; = Eo exp c 10g ' /~(2  + N ;  + . . . + N ? )  

< log1 
- ( E ~  exp c l o g 1 / 2 ~ f ) d  

The following lemma allows to finish the proof. 
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LEMMA 8 There is a constant K = K,,, depending only on K and E such that 

Indeed, with the help of the Stirling-type estimate k !  > k k 3 f  this lemma 
implies 

E~ exp c I O ~ ' / ~ N ;  

" I@ < - exp c logli2k 
- k! 

k=O 

where K', the sum of the second series,for c = 0, is clearly finite,for all values o f  
K, thus depends only on K and E .  Replacing c by its \ due  gives that there is a K 
depending on1.v on Q ,  a,  K ,  E such that 

Eo exp El&,hl < K(l + exp Kn112(1 + 10g'l'(n'/~))). 

This estimate, together ivith 22, implies by Schwurtz's inequality that for 
large n ,  

Eo exp - e.,bI < exp(n314). w 

This and the estinzate 19, in conjunction with 18, imply the validity of 
Proposition 6 ,  and thus of the almost-sure exponential upper hound 13 on the 
error, with 9 = 2cu/(2 + a). 

Prooj of Lemma 7 By the change of variables u2 = log (l/q2), 

Call this quantity ~ ( l o g ' ~ ' ( l / ~ ~ ) ) .  Let us compare F(x) to G(x)=(x T K )  
e-X2/" Since G '(x)- F f ( x )  = (1 -K .x )e -~~ /~ ,  G- F first increases, then deceases 
with x .  By picking G(0) = F(O), i.e. K = F(0) = (~12) '  2, and by noting that 
F ( m )  = G(m) = 0, we can conclude that G 2 F everywhere, which is what 
the lemma asserts. 
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Proof of Lemma 8 As noted at the start of this section, the n-th jump time 
T: of the first component of the path b is a sum of I.I.D. random variables 
t , , .  . ., t ,  with distribution that of the first exit time T,,, of the standard 2 ~ -  
Brownian motion from [ - E ,  E ] .  Let FzK,E(t)  = Prob[rk,, < t] be its distribu- 
tion function. By the scaling property of Brownian motion, FlK.<(t) = 

F1,l (2ti, ~ - ~ t ) .  We conclude the proof by using the results and notation of 
Proposition 9 below: 

PROPOSITION 9 Let F(t) be the distribution functiort of the,first exit time of 
Brownian motion from the interval [- 1, 11. Then F,,, = sup, oF1(t) < m. Let 
T I , .  . .,T,,, . . . be the successive passage times of Brownian rnotion on the sites 
of Z ,  excluding the return times to the last visited sites of Z .  Thejz,for all t > 0, 

Proof With T t  and T ;  the first hitting times of 1 and -1 respectively, we 
can write: 

Po[Tl E dt] = P o [ T ,  E dt; T :  > T,] + Po[TT 6 dt; T ,  > T:] 

=2Po[Tr  E dt; T t  > T,]  

<2Po[T;  E dt] = (27rt3)-'I2 exp ( - & ) d l  

which is a bounded function on R,. That is the first assertion. The second 
statement is a general property of renewal processes (the T k - T k P l  are I.I.D. 
with distribution function F), and is proved by successively conditioning by 
the events { T l ~ d s l ;  . . .; T k P 1 €  dsk). 

4. PROOF OF T H E  U P P E R  BOUND 

By the validity of equation 13, to prove Theorem 2, it only remains to find 
an upper bound on the approximating Lyapunov exponent -j. 

Recall the notation 2, = J J lpl l  (s)e1(';~-6) %(dA, ds) ,  as well as C ( t ,  0) = 

Eo[exp e",,$] and -1. = lim sup,,, t-' log ii(t. 0). 
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4.1. Reduction to Gaussian Fields with Finite Dimensional Index Sets 

We decompose the expectation giving 12 according to the possible values of 
the jump times of b. Denote by S ( t .  k )  the simplex set {s l , .  . .,sk: 0< s l <  s2 < 
. . .ski t ) .  For a multi-index k =  (kl , .  . .,kd)-): let / k = k l  + . . . + kd. The set 
of the first k,  jump times of the j-th component of h is a point (s:):~~ in 
S(t ,  kj). Given the set of all jump times { s j  : , j  E [ l  . . . dl;  i E [l . . . k j ] ) ,  let 
{il : 1 E [0, lkl i- I ] )  be that same set, but ordered. and with the convention 

= 0  and S k l + l  = t .  Lastly, let 6 be the value of b between the two jump 
times Sl and .il + 1. Then 11 can be written as: 

where the expectation Eo is conditional on the given jump times and we 
denote the increment W ( b ,  x )  - W ( a .  x) by W ( ( a ,  b ) .  x). Now further 
decompose.ii over the possible sites visited by b. While the path h is not 
independent from the jump times (unless d = I),  it is still true that the path 
{b, - 6 : I = 0 . .  . . , lkl + 1 )  may only follow, in reverse order, a so-called 
nearest-neighbor path started from 0. Call P l L l  the set the set of all such 
paths, which is identifiable to (1, .  . . .2d11". This simply yields 

we have for the j-th component of b: 

Po[T{  E dsl:  . . . ; T i ,  E dsk,: N: = k,] 
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where we set C = F,,,,,KE-~ and used the results of Proposition 9 and the 
scaling properties of Brownian motion. Replacing the conditional prob- 
abilities in 25 by 1, and replacing the exponential term by its supremum over 
all possible jump times we obtain 

c l k l  tlk :kl 

fi(t50! 5 C------ C exp sup w((F~,: ,+,)>.~~) 
ilNafd.l kj! 05.~1 S S B S I  l=n 

This expression is increasing in t .  Denoting by ~ , ( ( s , ; .  . .; sk)) the quantity 

C W((s1. sl+l), .?I ) we can write 

(Cn) k '  
J(n) = sup Ei(t, 0) 5 C ------ 

I F [ , ~ -  l n] 
E e x p  sup @,(s) (26) 

k c N d  II;=I kj! iePlil S E S ( ~  X I )  

For fixed n, k and fixed path X, W, is simply a Gaussian process indexed by 
S(n,jk 1 ) .  lndeed it is a linear combination of components of the Gaussian 
field W. 

4.2. Using Borell's Inequality 

The remainder of the Proof of Theorem 2 follows the strategy of the proof in 
[3]. The goal is to find a deterministic function X(n) such that P-almost 
surely J(n) = sup,,,,-, .]ii(t. 0) is less than X(n), and for which the Lyapunov 
exponent is tractable. By the Borel-Cantelli lemma, an excellent choice of 
X(n) is such that the series P[J(n)  > X(n)] just barely converges. S~nce 
relation 26 provides an upper bound on J(n) in the form of a series 
CktNdCxEP, J(2.  k.n),  we will look for X(n) in the same form CktN,, 
CZEpil X(X. k. n), and write 

5 x P[J ( i .  k. n) 2 X(Z, k, n)] 

We will need a slight improvement on the Borell-type inequality 17, which 
comes for free when one applies inequality 17 separately on each ball of an 7 
cover of the index set (see equation (5.10) on page 119 in [I]): 
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LEMMA 10 Let { X ( t ) : t ~ T j  be a Gaussian process with canonical entropy 
N(7). Then ,for any 77 > 0, for any X > p(q) = cunlv J: l ~ ~ l ~ ~ N ( ~ ' ) d n ' .  with 
c2 = S U ~ ~ ~ ~ E [ X ( ~ ) ~ ] ,  

We will use this inequality on each of the Gaussian processes w,(s): S E 

S(n, ikl)} for each fixed k, n and 3 E Plkl. We must compute the entropy N of 
each process and must choose a convenient 77 = 77, , k .  Let us first say that we 
choose 7 2 = 4 ~ ( ~ )  n; note that while the Borell-type inequality 17 is just 
Lemma 10 with 71=77~,,, in our case the &diameter of the index set is 
v~,,, = 4Q(0) nk which, for large k, is significantly larger than our choice of 
7; this is why the improvement of Lemma 10 is needed. For each n, k and 3, 
we have the following estimate for the canonical metric of w?: 

LEMMA 11 Let S?(S, T)  = (E(w,(s) - w,(T))*)"~. We have: 

Proof Lemma 2.1 in [3]. 
For integer k, we may use the following covering of S(n, k) with balls of 

radius 1 in the metric . I I :  all the balls of radius 1 centered at a point in the 
set C,, A of points c = (cl, . . ., ck) of the lattice (kp'zlK such that 0 5 cl< c25  
. . 5 c/; 2 n. Indeed, for any s€S(n, k), the point c defined by c,= [ks]/k 

belongs to Cn,k and since kc, 5 ks < kc, + 1, thus 1s - cl 5 xfZl k-' = 1. 
Counting the set C, /; is like counting the number of points (ml ,  . . ., mA) with 
integer coordinates increasing between 0 and nk. This number is well known 
to be the binomial coefficent This number is bounded above by 
2.6knk as the following explicit computation shows (for large n, the factor 2 
may be removed, and the value 6 may be replaced bye, but this is irrelevant 
for the sequel): 

where we used the Stirling-like global bound k!>kk3-k. Covering the 
simplex S(4Q(0) n. kl) with balls of radius less than r12 in the metric ( . I,, is 
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like covering S(4Q (0) n/q2. lkl) with balls of radius less than 1 if 4Q(0) n/q2 
is an integer. If it is not, covering S ( [ 4 ~ ( 0 ) n / q ~ ]  + 1, k )  with balls of radius 
1 is an even harder task. Thus we obtain 

For each 2,  n, k, we always have a2 = Q(0)n. To compute p (q) = p ((4Q(0) 
T I ) '  2), notice that q f 2  5 4Q(O)n implies N, .k(?)') 5 2.6 " ( 9 )  'I and hence 

Since the estimate 28 is uniform in 3. which is not surprising since the 
potential W is spatially homogeneous. the optimal choice of A(?. n ,  k) 
should be the same for all .Y. Now Lemma 10 on each summand in 27 yields 

4.3. Computing A(n) and its Lyapunov Exponent 

We choose X(k, n) such that each summand in the above series reduces to 
np2(lk2 + 1). Thus P[J  (n) > X(n)] < IZ~~K,,, ,  which is summable series in n 
so that P-almost surely, for n large enough, J(n) > X(n) and in particular, 

1 1 
lim sup- log i ( t .  0) < lim sup logX(n) .  P-almost-surely. (30) 

I--r t rl-x ?Z 

By this choice of X (k, n). 
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To find the Lyapunov exponent for this quantity, we choose J and J '  
arbitrarily small numbers and decompose the sum according to whether or  
not Ikl 5 (logn2)/J, treat the simple case of lkl =O separately (no jumps, 
Borell's inequality is not used; we omit the details) and require that n be so 
large that for JkJ  = (logn2)/J, (log(] + JkJ2))/)k~ be less than J'. We obtain X(n) 
as the sum of the following three terms: 

The Lyapunov exponent of a sum of functions is the greatest of the 
Lyapunov exponents of the individual functions. The first term has null 
Lyapunov exponent. For the other two, note that 

The second term has Lyapunov exponent 2 d 2 c .  The third term, when the 
sum is for ikl 2 0, can be expressed as an expectation with respect the law 
P (2dC) of a vector of d independent Poisson processes (NJ,) with common 
intensity 2dC: 

112 I' where a' = Q ( O ) ' ~ * ( C ~ ~ , ~  + 2'I2(log4d + (' + <)Ii2). Let a = Q(0) (cUniv+ 
(2 log 4d)'I2). Because 6, E 1  are arbitraily small, and by inequality 30, we 
thus have, P-almost-surely, 

For the last estimate we refer to [3] (Lemma 2.2 and calculation following) 
where the above limit was evaluated in the case of small intensity using the 
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Varadhan lemma (see [ 5 ] ,  Theorem 2.1.10); namely, it is shown that if 
< e-l-" 

1 u2/4 
lim l o g  [exp a ( n ~ : ) ' / ' ]  5 - 

n - x  n 
X 

4.4. Conclusion 

In view of the result (31) and of the almost-sure upper bound on the error 
(13), we have proved that under hypothesis 6 there are positive numbers Co 
and KO depending only on Q (and d )  such that for any x in R ~ ,  if C= 
Fmaxm 2 <  CO, then 

1 tku2 
lim sup-log u( t ,  x) 5 2 d 2 c  V ~ ~ ~ ~ ~ l ( ~ +  n)p-u,s. 

I+% f 410g(2dc)-' 

Notice that for C small enough (C < C,), the firct term on the right-hand 
side reduces to du2,'410g (2dC) '. We are now free to choose E as a function 
of K (provided the condition C = F,,,KE-* < Co A CI  holds) to minimize 
the upper bound. This is easily done with E = tcq with q arbitrarily small, to 
obtain that E ~ "  ( 2 + r t ) =  K ~ ' ~ ~  ( 2 + n '  is negligeable next to l o g - ' ( ~ ~ l ~ )  = 
log- l (K -  I +  40q (2 + n) ). Hence we obtain the upper bound in Theorem 2: 
there is a universal constant c and a positive number KO depending on Q 
such that for K < KO and for any .x, P-amlost-surely, 

1 Q(O)d(c + (2 1 o g 4 d ) ' ~ ~ ) ~  
lim sup - log u ( t ,  x) < 

I--7c t log 6-' 
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