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ONLINE SUPPLEMENT A

A.1. Background on long memory models. As mentioned in the
introduction, long-memory estimation is typically difficult both in theory
and in practice; fundamental stochastic analysis research on this question
is ongoing. In discrete time series, the long-memory autoregressive moving
average (ARMA) and autoregressive conditional heteroskedasticity (ARCH)
models that are popular in financial econometrics (see Granger and Joyeux
(1980) and Baillie, Bollerslev and Mikkelsen (1996) for variations of ARMA
and ARCH), cannot be adapted to our Bayesian context. These models are
complex and are not explicitly specified in terms of distributions; they often
rely on long data series or high-frequency in-fill data. It can be argued that
the only models for which the discrete-time parametric memory-length esti-
mation is straightforward and reliable in finite samples are those that come
from continuous-time underlying models which exhibit self-similarity (iden-
tical distribution at all time scales), of which the typical example is fractional
Brownian motion (fBm). Pioneering work in this direction was performed
in Coeurjolly (2001), and further details and developments were provided
in Chronopoulou, Viens and Tudor (2009). Long-memory structures which
are slightly more complex than those studied therein are already difficult to
estimate.

For instance, the so-called fractional Ornstein-Uhlenbeck (fOU) process
has a well-known estimator for its drift parameter in continuous time (Klept-
syna and Le Breton, 2002), and with discrete data for increasing horizon
asymptotics (Tudor and Viens, 2007), but the question of estimating its
long-memory parameter remains elusive. When in-fill asymptotics can be
attained in the data this can be accomplished via path regularity in con-
tinuous time (see Istas and Lang (1997) and its application in Brouste and
Iacus (2012)). Neither this, nor the use of increasing-horizon asymptotics
in Tudor and Viens (2007) are applicable in our paleoclimatology situation,
because our observation frequency is not high enough and our calibration
period is too short.
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A.1.1. Properties of fBm and fGn. Fractional Gaussian noise (fGn) is
defined as the first-order increment sequence of fBm. Information on fBm
and fGn can be found in standard references; Biagini et al. (2010) provides
an excellent mathematical treatment. The following is a short summary of
properties relevant to our study. Fractional Brownian motion (fBm), BH ={
BH
t : t ≥ 0

}
with Hurst parameter H ∈ (0, 1), is a continuous centered

Gaussian process with covariance function:

E[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
for t, s > 0. From this definition we immediately deduce fundamental prop-
erties:

• BH
0 = 0,

• BH
. has stationary increments:

E
[(
BH
t+h −BH

s+h

)2]
= E

[(
BH
t −BH

s

)2]
= |t− s|2H ,

but these increments are not independent (see long-range dependence

property below), except if H = 1/2, in which case B
1/2
t is the standard

Brownian motion.
• The increment process NH defined by NH

t := BH
t+∆t − BH

t is called
a fractional Gaussian noise (fGn), for fixed time step ∆t > 0. NH

is a stationary, mean-zero Gaussian process, with constant variance
(∆t)2H and autocovariance function given by:

E[NH
s+tN

H
s ] =

1

2

[
|t+ ∆t|2H + |t−∆t|2H − 2|t|2H

]
.(A.1)

For convenience, ∆t can be interpreted as one unit of time, and t as
an integer. In our study, t is measured in years.

We say that a stationary process {Xt, t ∈ N} is a “long-range dependent”
process, or “long-memory” process, if its autocovariance function ρ(t) =
E [Xs+tXs] satisfies:

lim
t→∞

ρ(t)

t−M
= c1

for some constant c1 > 0 and M ∈ (0, 1), so that
∑∞

n=1 ρ(t) = ∞. For a
process such as fBm, which is not stationary, but has stationary increments,
we say that is has long-range dependence (long memory) if its increment
process has long range dependence. There is an alternative condition for
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long-range dependence in terms of the spectral behavior of the stationary
process Xn:

lim
λ→0

f(λ)

|λ|−DG(|λ|)
= c2

where c2 > 0, D ∈ (0, 1) and G is a slow varying function at 0. It turns out
that fGn (and thus fBm) have long-range dependence for H > 1

2 . Indeed,
for these processes we have M = 2 − 2H ∈ (0, 1) and D = 2H − 1 ∈
(0, 1) in the above limits, with the constants c1 = H (2H − 1) and c2 =
π/ (HΓ (2H) sin (πH)). For further details, see Chapter 5 in Nualart (2010)
and Chapter 7 in Samorodnitsky and Taqqu (1994).

A.1.2. Hypothesis testing for possible long-memory.

Robinson’s test(Robinson, 1995) Define the semiparametric Gaussian
estimate of H as:

Ĥ = argminH

log

 1

m

m∑
j=1

λ2H−1
j I(λj)

− (2H − 1)
1

m

m∑
j=1

log λj


where λj = 2πj/n for j = 1, . . . ,m, m = n

2 , and I(·) is the Peri-
odogram estimator constructed using the observationsX1, X2, · · · , Xn.
Assume X’s spectral density satisfies f(λ) ∼ Gλ1−2H (for some fixed
H). Under rather weak distributional assumptions on X, Robinson
(1995) proves that Ĥ is a consistent estimator of H, and is asymptotic

normal in the sense that 2m
1
2 (Ĥ−H) converges to a standard normal

distribution as m→∞. This asymptotic behavior implies that we can
test the following null and alternative hypotheses (Robinson’s test):

Null Hypothesis: H = 0.5 (no memory)(A.2)

Alternative: H > 0.5 (presence of memory)

Davies and Harte’s test (Davies and Harte, 1987) Assume that
X = (X1, . . . , Xn) are normally distributed with a autocorrelation
function given in (A.1). In order to test the same alternatives as Robin-
son’s test (A.2), Davies and Harte derived a locally optimal test with
critical region:

X ′[c(I − 11′/n)− (I − 11′/n)T (I − 11′/n)]X < 0

where

Ti,j =


0 i = j,

log 2 i = j ± 1,
1
2

[
|i− j| log

(
1− (i− j)−2

)
+ log |i−j|+1

|i−j|−1

]
otherwise,
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and c is a constant chosen to attain a desired significance level in the
test.

Goodness of fit test (Beran, 1992) Let Xt be a stationary Gaussian
process with spectral density f(λ) satisfying f(λ) ∼ Gλ1−2H (assume
H is known). Let X1, . . . , Xn be the n observatiouns of X. If f(λ,H)
is the spectral density of the fGn with Hurst parameter H, then we
want to test, for all λ, the Null Hypothesis f(λ) = f(λ,H) against the
Alternative: f(λ) 6= f(λ,H). If we take Ĥ as the Whittle estimator of
H (see Beran, 1994), then Beran proposes the statistic:

Tn(Ĥ) =
An(Ĥ)

B2
n(Ĥ)

with An(Ĥ) = 4π
n

∑n∗

k=1

[
I(sj)

f(sj ,Ĥ)

]2
and Bn(Ĥ) = 4π

n

∑n∗

k=1
I(sj)

f(sj ,Ĥ)
,

where sj = 2πj/n, I (·) is the periodogram as in Robinson’s test, and
n∗ is the integer part of 1

2(n − 1). Under mild technical assumptions
on the distribution of X’s, the Null distribution Tn is asymptotically
normal with mean π−1 and variance 2π−2n−1, which results in Beran’s
test.

A.2. Multitaper Estimator. The general theory of spectral estima-
tion, including the multitaper estimator, can be found in Thomson (1982)
and Percival and Walden (1993) among others. Here we summarize rele-
vant results concerning multitaper estimation. Suppose we have observations
X1, X2, . . . , XN of a stationary process {Xt} with mean 0, variance σ2 and
spectral density function S(·). The observations are separated in time by
∆t. The direct spectral estimator is defined as:

Ŝ(d)(f) = ∆t

∣∣∣∣∣
N∑
t=1

htXte
−i2πft∆t

∣∣∣∣∣
2

where {ht} is a sequence of real-valued constants (tapers) and f ∈ [− 1
2∆t ,

1
2∆t ].

The Fourier transform of {ht} will be denoted as H(f). It is not hard to
conclude the following (defining fN = 1

2∆t):

E[Ŝ(d)(f)] =

∫ 1
2∆t

− 1
2∆t

H(f − f ′)S(f ′)df ′
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where H(f) = |H(f)|2
∆t . It we ask ht to be normalized (

∑N
t=1 h

2
t = 1), then in

the case of a white noise with variance σ2 and S(t) = σ2∆t we have:

E[Ŝ(d)(f)] = σ2∆t

∫ fN

−fN
H(f)df = σ2∆t = S(t).

Hence the direct spectral estimator is unbiased. Moreover, in the case of
{ht = 1√

N
}, we have the usual Periodogram estimator with:

H(f) = N∆tD2
N (f∆t)

=
∆t sin2(Nπf∆t)

N sin2(πf∆t)

where DN (·) is the Dirichlet’s kernel. In this case H(f) is usually denoted
as F(f). F(f) has interesting properties, one of them is that it acts like a
Dirac delta function with an infinite spike at f = 0 when N → ∞. This
implies:

lim
N→∞

E[Ŝ(p)(f)] = S(f).

One of the main problems of the periodogram is that series with large
spectral range1 have a large bias due to the existence of significant sidelobes
on F(f). This kind of bias is known as spectral leakage. The main idea of
tapering is to provide smaller sidelobes in H than F has. A possible way to
solve this problem is by means of the Slepian tapers. The main idea is to
solve the concentration problem:

max
{ht}

β2(W )

where W > 0 is fixed, and assuming ∆t = 1,

β2(W ) =

∫ W

W
|H(f)|2df/

∫ 1/2

−1/2
|H(f)|2df.

This problem leads to the solution:

ht,0 =
1

λ0(N,W )

∫ W

−W
U0(f,N,W )ei2πf [t−N−1

2
]df

1the spectral range can be defined as log maxS(f)
min S(f)
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for t = 0,±1, . . .; where U0(·, N,W ) and λ0(·, N,W ) are the first eigenvector
and eigenvalue of the system:∫ W

−W
NDN (f ′ − f)U(f)df = λU(f)

In general Uk(·, N,W ) is called the k-th order discrete prolate spheroidal
wave function and hk is the Slepian sequence of k-th order:

ht,k =
(−1)k

εkλk(N,W )

∫
Uk(f,N,W )ei2πf [t−N−1

2
]df

We then define the multitaper spectral estimator by:

Ŝ(mt)(f) =
1

K

K−1∑
k=0

Ŝ
(mt)
k (f)

where

Ŝ
(mt)
k (f) = ∆t

∣∣∣∣∣
N∑
t=1

ht,kXte
−i2πft∆t

∣∣∣∣∣
2

The multi taper estimator can be improved by considering a set of weights
bk(f) such that the spectral leakage is minimized. It is possible to define such
weights by considering an approximation of the Fourier transform of the
time series; see Thomson (1982) and Percival and Walden (1993) for further
details. The weights are then computed using an iterative procedure based
on minimization of the spectral leakage. The algorithm generally converges
after a few iterations (see Percival and Walden, 1993) and finally it is possible
to define the Adaptive Multitaper spectral estimator as:

S(amt)(f) =

∑K−1
k=0 b2k(f)λkŜ

mt
k (f)∑K−1

k=0 b2k(f)λk

In order to calculate the multitaper estimators in Figure 2 and 3 in the
main document, we employed an estimator with K = 10 (number of ta-
pers) and NW = 5. Hence, the design bandwidth (see Walden, McCoy and
Percival (1995)) is approximately 2 × 0.0602 = 0.1204, which is a good ap-
proximation of the effective bandwidth of the multitaper estimation in the
long-memory case.
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A.3. Scoring Rules. Gneiting and Raftery (2007) define scoring rules
as “summary measures for the evaluation of probability forecasts, by assign-
ing a numerical score based on the predictive distribution and on the event
or value that materializes”. Scoring rules are designed to reward both cal-
ibration quality and the sharpness of predictive distributions. Sharpness is
understood as the concentration of the predictive distribution and is related
to forecast precision (see Gneiting, Balabdaoui and Raftery (2007)).

“Proper scoring rules” are those with expected value that is minimized
when the predictive distribution is equal to the true distribution, and are
considered optimal (for more technical details, see Gneiting and Raftery,
2007). There are several examples of proper rules, and they depend on the
type of data analyzed: for categorical data, the Brier, Spherical and Loga-
rithmic scores; for continuous variables, the Continuous Ranked Probability
score and Energy score; and for quantiles, the Interval score. See (see Gneit-
ing and Raftery, 2007) for details and additional proper scoring rules.

In the current analysis we obtain samples from the posterior distribution
of the temperature anomalies, and consider two proper scoring rules to assess
these predictive distributions.

A.3.1. Continuous Ranked Probability score (CRPS). This score is de-
fined in terms of the predictive distribution function (F ) directly (see Gneit-
ing, Balabdaoui and Raftery, 2007):

CRPS(F, x) =

∫ ∞
−∞
{F (y)− 1(y ≥ x)}2dy

where x is the observed realization of the true distribution. Gneiting and
Raftery (2007) give an alternative representation as:

CRPS(F, x) = EF |X − x| −
1

2
EF |X −X ′|

where EF is the expectation with respect to the predictive distribution F and
X ′ is an independent copy of X with the same law F . The main advantage
of this representation is that under R MCMC samples of the predictive F
(y1, . . . , yR) and an independent set of R MCMC samples from the same
distribution (ỹ1, . . . , ỹR), we can approximate the CRPS as (Gschlößl and
Czado (2007)):

1

R

R∑
i=1

[
|yi − x| −

|yi − ỹi|
2

]
.
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If the realization xt depends on time t (as well as the predictive distribution
Ft), we can compute the mean CRPS score as:

CRPS =
1

M

M∑
t=1

CRPS(Ft, xt).(A.3)

A.3.2. Interval score. The interval score is a special case of the quantile
score (See equation 42 in Gneiting and Raftery, 2007). These scores are
useful when we are able to compute exact or approximate quantiles of the
predictive distribution F . This is the main reason why we were able to
calculate this score under the normality assumption of Mann et al. (2008),
as well as under our MCMC posterior calculations for comparison purposes.
In the MCMC case, we compute the empirical α/2 and 1−α/2 quantiles of
the posterior distribution Ft, let us call them lt and ut respectively. Hence
the interval score at level 1− α is defined as (Gschlößl and Czado (2007)):

IS(1−α)%(lt, ut, xt) =


2α(ut − lt) + 4(lt − xt) if xt ≤ lt
2α(ut − lt) if lt ≤ xt ≤ ut
2α(ut − lt) + 4(xt − ut) if xt ≥ ut.

and we can compute the mean IS at level 1 − α using the same formula as
(A.3).

A.4. MCMC Posterior Distributions. In what follows, the notation
[X|Y ] indicates the conditional probability of the random variable X given
Y . Suppose we have the following prior distributions:

• α ∼ N2(α̂, D̂α)
• β ∼ N4(β̂, D̂β)
• σ2

P ∼ IG(q1, r1)
• σ2

T ∼ IG(q2, r2)
• H ∼ Unif(0, 1)
• K ∼ Unif(0, 1)

where all the prior parameters are treated as known constants. For the tem-
perature reconstructions in this work, we set α̂ = (0, 1), β̂ = (0, 1, 1, 1),
D̂α = I2, D̂β = I4, q1 = q2 = 2, r1 = r2 = 0.1.

We first write the model of Eq. (3.4) in matrix form:{
RP = α0 + α1T + σP η(H) = T̃α+ σP η(H)

T = β0 + β1S + β2Ṽ + β3C̃ + σT ε(K) = Fβ + σT ε(K)
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for vectors RP and T of size M × 1. Also assume that T = [T1,T2] where
T1 is a vector of size M − L × 1 and T2 has size L × 1 where L < M . Let
ΣH and ΣK be the covariance matrices of η(H) and ε(K) respectively.

After some calculations we can deduce the following posterior distribu-
tions:

Distribution of T|RP, θ.

[T|RP, θ] ∝ exp

[
−1

2

[
TT

(
α2

1

σ2
P

Σ−1
H +

Σ−1
K

σ2
T

)
T− 2

(
α1

σ2
P

(RP− α0)TΣ−1
H +

βTF TΣ−1
K

σ2
T

)
T

]]

∝ exp

[
−1

2

[
T TΩ−1T − 2∆TΩΩ−1T + ∆ΩΩ−1Ω∆T

]]
where Ω−1 =

α2
1

σ2
P

Σ−1
H +

Σ−1
K

σ2
T

and ∆ = α1

σ2
P

(RP−α0)TΣ−1
H +

βTFT Σ−1
K

σ2
T

. Finally:

T|RP, θ ∼ NM (∆TΩ,Ω).

Distribution of α|RP,T, σ2
P , H. For ease of calculation, assume that α

is independent of T and σ2
P and H at the prior level. Then:

[α|RP,T, σ2
P , H] ∝ exp

[
−1

2

[
αT
(

1

σ2
P

T̃TΣ−1
H T̃ + D̂−1

α

)
α− 2

(
RPTΣ−1

H T̃

σ2
P

+ α̂T D̂−1
α

)
α

]]

∝ exp

[
−1

2

[
αTΩ−1

α α− 2∆αΩ−1
α α+ ∆αΩαΩ−1

α Ωα∆T
α

]]
where Ω−1

α = 1
σ2
P

T̃TΣ−1
H T̃ + D̂−1

α and ∆α =
RPT Σ−1

H T̃

σ2
P

+ α̂T D̂−1
α . Hence:

α|RP,T, σ2
P , H ∼ N2(∆αΩα,Ωα).

Distribution of β|T, σ2
T ,K. For ease of calculation, let us assume that β

is independent of σ2
T and K at the prior level. Then:

[β|T, σ2
T ,K] ∝ exp

[
−1

2

[
βT
(

1

σ2
T

FTΣ−1
K F + D̂−1

β

)
β − 2

(
TTΣ−1

K F

σ2
T

+ β̂D̂−1
β

)
β

]]

∝ exp

[
−1

2

[
βTΩ−1

β β − 2∆βΩ−1
β β + ∆βΩβΩ−1

β Ωβ∆T
β

]]
where

Ω−1
β =

1

σ2
T

FTΣ−1
K F + D̂−1

β(A.4)
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and ∆β =
TT Σ−1

K F

σ2
T

+ β̂D̂−1
β . Therefore:

β|T, σ2
T ,K ∼ N4(∆βΩβ,Ωβ).

Distribution of σ2
P |RP,T, α,H.

[σ2
P |RP,T, α,H] =

exp
[
− 1

2σ2
P

(RP− T̃α)TΣ−1
H (RP− T̃α)

]
√

(2π)M |ΣHσ2
P |

(σ2
P )−q1−1 exp

[
− r1

σ2
P

]

∝ (σ2
P )−(q′1+1) exp

[
− r
′
1

σ2
P

]
where q′1 = q1 + M

2 and r′1 = r1 + 1
2(RP− T̃α)TΣ−1

H (RP− T̃α). Then:

σ2
P |RP,T, β,H ∼ IG(q′1, r

′
1).

Distribution of σ2
T |T, β,K.

[σ2
T |T, β,H] =

exp
[
− 1

2σ2
T

(T− Fβ)TΣ−1
K (T− Fβ)

]
√

(2π)M |ΣKσ2
T |

· (σ2
T )−q2−1 exp

[
− r2

σ2
T

]

∝ (σ2
T )−(q′2+1) exp

[
− r
′
2

σ2
T

]
(A.5)

where q′2 = q2 + M
2 and r′2 = r2 + 1

2(T − Fβ)TΣ−1
K (T − Fβ). Therefore:

σ2
T |T, β,K ∼ IG(q′2, r

′
2).

Distribution of T1|T2, θ. Let ∆TΩ = [µ1T , µ2T ] and Ω =

[
Ω11 Ω12

Ω21 Ω22

]
the

corresponding decomposition of Ω and ∆TΩ according to the dimensions of
T = [T1,T2]. If T̃2 is a realization (or observations) of the random variable
T2 then:

T1|T2, θ ∼ N(µ̄, Ω̄)

where µ̄ = µ1T + Ω12Ω−1
22 (T̃2 − µ2T ) and Ω̄ = Ω11 − Ω12Ω−1

22 Ω21.
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Distribution of H|RP,T, α, σ2
P . After similar calculations as the previ-

ous cases, the posterior distribution of H turns out to be proportional to:

[H|RP,T, α, σ2
P ] ∝ [det(ΣH)]−1/2 exp

[
− 1

2σ2
P

(RP− T̃α)TΣ−1
H (RP− T̃α)

]
where we are assuming that the prior of H does not depend on α and σ2

P .
It is inmediate that the posterior does not have a known distribution, then
a Metropolis-Hastings is preferable for the sampling process. We assume
the proposal distribution at repetition i (1 < i ≤ R, R: total number of
repetitions of the MCMC):

p(H|H(i−1)) = TN(H(i−1), Sa(i), 0,K
(i))

whereH(i) is the i-th sample ofH,K(i) is the i-th sample ofK, Sa(i) = (D0−
D1)·ARi+D1 (ARi is the acceptance ratio of H at time i and D0 > D1 > 0)
and TN(µ, σ, a, b) stands for a Truncated Normal distribution with mean µ,
standard deviation σ and lower and upper limit a and b respectively.

Distribution of K|T, β, σ2
T . After some calculations the posterior distri-

bution of K is proportional to:

[K|T, β, σ2
T ] ∝ [det(ΣK)]−1/2 exp

[
− 1

2σ2
T

(T− Fβ)TΣ−1
K (T− Fβ)

]
The Metropolis-Hastings algorithm is employed here using the proposal dis-
tribution:

p(K|K(i−1)) = TN(K(i−1), Sa(i), 0, 1)

where as before 1 < i ≤ R and K(i) is the i-th member of the simulated
Metropolis-Hastings sample. Sa(i) is given as the previous section, but it
depends now on the acceptance ratio of the current sample of K.
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ONLINE SUPPLEMENT B: ADDITIONAL PLOTS AND TABLES
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Fig B.1: Two examples of individual proxy series.

Table B.1
Proxies not included in RPt

Name Type Country

burns 2003 socotrad13c Speleothem Yemen
burns 2003 socotrad18o Speleothem Yemen
burns nicoya d18o Speleothem Costa Rica
curtis 1996 d13cpyro Lacustrine Mexico
curtis 1996 d18o Lacustrine Mexico
dongge Speleothem China
fisher 1994 agassiz Ice core Canada
ge 2002 10yeartemp Other China
lee thorpe 2001 c13 Speleothem South Africa
lee thorpe 2001 o18 Speleothem South Africa
moy 2002 ageredcolor Lacustrine Ecuador
tiljander 2003 lightsum Lacustrine Finland
tiljander 2003 thicknessmm Lacustrine Finland
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Table B.2
Least Squares estimates of model (3.1). HAD and CRU temperature datasets.

Proxy Type HAD CRU

ak046 Tree Ring 0.034 0.021

arge091 Tree Ring 0.008 0.021

az510 Tree Ring 0.015 0.045

baker 2002 su.96.7 Speleothem 0.035 -0.003

ca528 Tree Ring 0.002 -0.023

ca529 Tree Ring 0.019 0.026

ca630 Tree Ring 0.030 0.037

ca631 Tree Ring -0.024 -0.020

co522 Tree Ring -0.003 -0.028

fisher 1996 cgreenland Ice core -0.007 -0.012

gisp2o18 Ice core 0.014 0.030

mongolia.darrigo Other 0.038 0.058

mt110 Tree Ring -0.013 -0.009

norw010 Tree Ring 0.022 0.030

nv512 Tree Ring 0.033 0.015

nv513 Tree Ring -0.008 0.004

nv518 Tree Ring 0.025 0.043

nv519 Tree Ring -0.014 -0.020

orokonztr Other 0.014 0.014

pola006 Tree Ring 0.001 0.010

qian 2003 yriver Other -0.015 -0.029

tasmania recon orig Other 0.013 0.027

thompson 1992 quelccao18 Ice core 0.024 0.017

tiljander 2003 darksum Lacustrine 0.036 0.038

tornetrask Tree Ring 0.020 0.032

R2 77.48% 58.25%

Table B.3
Relative magnitude of each LS coefficient, classified by country and proxy type (HAD)

Tree Ring Ice core Lacustrine Speleothem Other Total

Argentina 1.77% 1.77%

China 3.18% 3.18%

Finland 7.64% 7.64%

Greenland 4.47% 4.47%

Mongolia 8.22% 8.22%

New Zealand 3.06% 3.06%

Norway 4.76% 4.76%

Peru 5.05% 5.05%

Poland 0.16% 0.16%

Scotland 7.54% 7.54%

Sweden 4.27% 4.27%

Tasmania 2.88% 2.88%

USA 46.99% 46.99%

Total 57.96% 9.52% 7.64% 7.54% 17.34% 100.00%
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Table B.4
Relative magnitude of each LS coefficient, classified by country and proxy type (CRU)

Tree Ring Ice core Lacustrine Speleothem Other Total

Argentina 3.50% 3.50%

China 4.70% 4.70%

Finland 6.28% 6.28%

Greenland 6.84% 6.84%

Mongolia 9.46% 9.46%

New Zealand 2.27% 2.27%

Norway 4.98% 4.98%

Peru 2.79% 2.79%

Poland 1.63% 1.63%

Scotland 0.46% 0.46%

Sweden 5.27% 5.27%

Tasmania 4.34% 4.34%

USA 47.47% 47.47%

Total 62.87% 9.63% 6.28% 0.46% 20.76% 100.00%
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Fig B.2: Bayesian Estimation of Error parameters. Scenario B.
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Fig B.3: Bayesian Estimation of Error parameters. Scenario C.
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Fig B.4: Bayesian Estimation of Error parameters. Scenario D.
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Proxy Eq. (HAD). Scenario D
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Fig B.6: Bayesian Estimation of α. (HAD, Scenario A)
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Fig B.8: Bayesian Estimation of β. (Histograms) (HAD, Scenario A)
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Fig B.10: Bayesian Estimation of α. (CRU, Scenario A)
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Fig B.12: Bayesian Estimation of β. (Histograms) (CRU, Scenario A)
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Fig B.16: Comparison of Scenarios A, B, E, F, H with previous reconstruc-
tions (CRU). Black: Observations, Purple: MCMC posterior mean with 95%
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