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Abstract

Sufficient conditions for a real-valued Gaussian random field X = {X(t), t ∈ RN} with
stationary increments to be strongly locally nondeterministic are proven. As applications,
small ball probability estimates, Hausdorff measure of the sample paths, sharp Hölder
conditions and tail probability estimates for the local times of Gaussian random fields are
established.
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1 Introduction and definitions of local nondeterminism

The concept of local nondeterminism (LND, in short) of a Gaussian process was first intro-
duced by Berman (1973) to unify and extend his methods for studying the existence and joint
continuity of local times of Gaussian processes. Let X = {X(t), t ∈ R+} be a separable
Gaussian process with mean 0 and let J ⊂ R+ be an interval. Assume that E[X(t)2] > 0 for
all t ∈ J and there exists δ > 0 such that

σ2(s, t) = E
[
(X(s)−X(t))2

]
> 0 for s, t ∈ J with 0 < |s− t| < δ.

Recall from Berman (1973) that X is called locally nondeterministic on J if for every integer
m ≥ 2,

lim
ε→0

inf
tm−t1≤ε

Vm > 0, (1.1)

where Vm is the relative prediction error:

Vm =
Var

(
X(tm)−X(tm−1)|X(t1), . . . , X(tm−1)

)

Var
(
X(tm)−X(tm−1)

)

and the infimum in (1.1) is taken over all ordered points t1 < t2 < · · · < tm in J with tm−t1 ≤ ε.
∗Research partially supported by the NSF grant DMS-0404729.
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This definition of LND was extended by Cuzick (1978) who defined local φ-nondeterminism
by replacing the variance σ2(tm, tm−1) by φ(tm − tm−1), where φ : R+ → R+ is an arbitrary
function with φ(0) = 0. It follows from Berman (1973, Lemma 2.3) that (1.1) is equivalent to
the following property: for every integer m ≥ 2, there exist positive constants cm and ε (both
may depend on m) such that

Var
( m∑

k=1

uk

(
X(tk)−X(tk−1)

)) ≥ cm

m∑

k=1

u2
k σ2(tk−1, tk) (1.2)

for all ordered points t1 < t2 < · · · < tm in J with tm− t1 < ε and uk ∈ R (k = 1, . . . , m). Pitt
(1978) used (1.2) to define local nondeterminism of a Gaussian random field X = {X(t), t ∈
RN} with values in Rd by introducing a partial order among t1, . . . , tm ∈ RN .

Roughly speaking, (1.2) suggests that the increments of X are asymptotically independent
so that many of the results on the local times of Brownian motion can be extended to general
Gaussian random fields. For example, Berman (1972, 1973), Pitt (1978) have applied LND to
prove the joint continuity and Hölder conditions of the local times of a large class of Gaussian
processes. See the comprehensive survey of Geman and Horowitz (1980) and the references
therein for further information. Moreover, local nondeterminism has also been applied by Cuz-
ick (1978) to study the moments of the zero crossing number of a stationary Gaussian process;
by Rosen (1984) and Berman (1991) to study the existence and regularity of intersection local
times; by Kahane (1985) to study the geometric properties of the images and level sets of frac-
tional Brownian motion. Because of its various applications, it has been an interesting question
to determine when a Gaussian process is locally nondeterministic. Some sufficient conditions
for Gaussian processes to be locally nondeterministic can be found in Berman (1973, 1988,
1991), Cuzick (1978), Pitt (1978).

On the other hand, it is known that the local nondeterminism is not enough for establishing
fine regularity properties such as the law of the iterated logarithm and the modulus of continuity
for the local times of Gaussian processes. For studying these and many other problems on
Gaussian processes, the concept of strong local nondeterminism (SLND) has proven to be
more appropriate. See Monrad and Pitt (1987), Csörgő et al. (1995), Monrad and Rootzén
(1995), Talagrand (1995, 1998), Xiao (1996, 1997a, b, c), Kasahara et al. (1999), Xiao and
Zhang (2002), just to mention a few.

The following definition of the strong local φ-nondeterminism was essentially given by
Cuzick and DuPreez (1982) for Gaussian processes (i.e., N = 1). For Gaussian random fields,
Definition 1.1 is more general than the definition of strong local α-nondeterministism of Monrad
and Pitt (1987).

Definition 1.1 Let X = {X(t), t ∈ RN} be a real-valued random field with 0 < E[X(t)2] < ∞
for t ∈ J , where J ⊆ RN is a hyper-rectangle. Let φ : R+ → R+ be a given function such that
φ(0) = 0 and φ(r) > 0 for r > 0. Then X is said to be strongly locally φ-nondeterministic
(SLφND) on J if there exist positive constants c0 and r0 such that for all t ∈ J and all
0 < r ≤ min{|t|, r0},

Var
(
X(t)|X(s) : s ∈ J, r ≤ |s− t| ≤ r0

) ≥ c0 φ(r). (1.3)

For a stationary Gaussian process X = {X(t), t ∈ R}, Cuzick and DuPreez (1982) have
given a sufficient condition for X to be strongly locally φ-nondeterministic in terms of its
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spectral measure F . More precisely, they have proven that if the absolutely continuous part
of dF (λ) has the property that

dF (λ/r)
φ(r)

≥ h(λ)dλ, ∀0 < r ≤ r0 (1.4)

and ∫ ∞

0

log h(λ)
1 + λ2

dλ > −∞, (1.5)

then X is SLφND. Their proof uses the ideas from Cuzick (1977) and relies on the special
properties of stationary Gaussian processes. Cuzick and DuPreez (1982, p. 811) point out that
it appears to be difficult to establish conditions under which general Gaussian processes possess
the various forms of strong local nondeterminism. There have only been a few known examples
of strongly locally nondeterministic Gaussian random fields, one of them is the fractional
Brownian motion which has been under extensive investigations in the last decade due to its
applications in various areas such as telecommunication networks, hydrology, finance, and so
on. A (standard) fractional Brownian motion Bα = {Bα(t), t ∈ RN} of index α (0 < α < 1) is
a centered, real-valued Gaussian random field with covariance function

E
(
Bα(t)Bα(s)

)
=

1
2
(|t|2α + |s|2α − |t− s|2α

)
.

The strong local φ-nondeterminism of Bα with φ(r) = r2α follows from Lemma 7.1 of Pitt
(1978), where the self-similarity of Bα has played an essential role. Note that when N = 1,
the strong local r2α-nondeterminism of Bα can also be derived from the above result of Cuzick
and DuPreez (1982) by using the Lamperti transformation.

In the studies of Gaussian processes X = {X(t), t ∈ R}, due to the simple order structure
of R, it is sometimes enough to assume that X is one-sided strongly locally φ-nondeterministic,
namely, for some constant c0 > 0

Var
(
X(t)|X(s) : s ∈ J, r ≤ t− s ≤ r0

) ≥ c0 φ(r); (1.6)

see Cuzick (1978), Berman (1972, 1978), Monrad and Rootzén (1995). When X = {X(t), t ∈
R} is a Gaussian process with stationary increments, some sufficient conditions in terms of the
variance function σ2(h) = E

[(
X(t+h)−X(t)

)2] for the one-sided strong local nondeterminism
have been obtained earlier. Marcus (1968) and Berman (1978) have proved that if σ(h) → 0
as h → 0 and σ2(h) is concave on (0, δ) for some δ > 0, then X is one-sided strongly locally
φ-nondeterministic for φ(r) = σ2(r).

The main objective of this paper is to prove sufficient conditions for a Gaussian random field
X = {X(t), t ∈ RN} with stationary increments to be strongly locally φ-nondeterministic. In
particular, we show that a spectral condition similar to that of Berman (1988) for the ordinary
LND of X actually implies that X is strongly locally φ-nondeterministic and, moreover, φ(r)
is comparable to the variance function σ2(h) with |h| = r; see Theorem 2.5 for details.

Our results on SLφND have many applications. In Section 3, we apply them to study the
sample path properties of Gaussian processes with stationary increments. In particular, we
extend the small ball probability estimates of Monrad and Rootzén (1995), Shao and Wang
(1995) and Stoltz (1996), the results on the exact Hausdorff measure of Talagrand (1995) and
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Xiao (1996, 1997a, b), the local and uniform Hölder conditions and tail probability of the local
times of Xiao (1997a) and Kasahara et al. (1999), to more general Gaussian random fields.

We should mention that, in recent years, several authors have applied general Gaussian
processes with stationary increments as stochastic models in telecommunications, turbulence,
image processing and finance and so on. See, for example, Addie et al. (1999), Anh et
al. (1999), Bonami and Estrade (2003), Mannersalo and Norros (2002), Cheridito (2004),
Mueller and Tribe (2002). These applications have raised many interesting questions about
Gaussian processes with stationary increments. I hope that an appropriate form of strong local
nondeterminism and the results in this paper will be useful for studying these questions.

Throughout the rest of this paper, unspecified positive and finite constants will be denoted
by K which may have different values from line to line. Specific constants in Section j will be
denoted by Kj,1 ,Kj,2 , . . .. For two non-negative functions f and g on RN , we denote f ³ g
if there exists a finite constant K ≥ 1 such that K−1f(x) ≤ g(x) ≤ K f(x) for all x in some
neighborhood of 0 or infinity. This will be clear from the context.

2 Spectral conditions for strong local nondeterminism

Let X = {X(t), t ∈ RN} be a real-valued, centered Gaussian random field with X(0) = 0.
We assume that X has stationary increments and continuous covariance function R(s, t) =
E

[
X(s)X(t)

]
. According to Yaglom (1957) [see also Dudley (1973)], R(s, t) can be represented

as
R(s, t) =

∫

RN

(ei〈s,λ〉 − 1)(e−i〈t,λ〉 − 1)∆(dλ) + 〈s,Qt〉, (2.1)

where 〈x, y〉 is the ordinary scalar product in RN , Q is an N ×N non-negative definite matrix
and ∆(dλ) is a nonnegative symmetric measure on RN\{0} satisfying

∫

RN

|λ|2
1 + |λ|2 ∆(dλ) < ∞. (2.2)

The measure ∆ is called the spectral measure of X.
It follows from (2.1) that X has the following stochastic integral representation:

X(t) =
∫

RN

(ei〈t,λ〉 − 1)W (dλ) + 〈Y, t〉, (2.3)

where Y is an N -dimensional Gaussian random vector with mean 0 and W (dλ) is a centered
complex-valued Gaussian random measure which is independent of Y and satisfies

E
(
W (A)W (B)

)
= ∆(A ∩B) and W (−A) = W (A)

for all Borel sets A, B ⊆ RN . From now on, we will assume Y = 0. This is equivalent to
assuming Q = 0 in (2.1). Consequently, we have

σ2(h) = E
[(

X(t + h)−X(t)
)2] = 2

∫

RN

(
1− cos 〈h, λ〉) ∆(dλ). (2.4)

If the function σ2(h) only depends on |h|, then X is called an isotropic random field. It
is important to note that σ2(h) is a negative definite function and can be viewed as the
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characteristic exponent of a symmetric infinitely divisible distribution; see Berg and Forst
(1975) for more information on negative definite functions.

Our main results of this section are Theorems 2.1 and 2.5. Their proofs rely on the ideas
from Kahane (1985), Pitt (1975, 1978) and Berman (1988, 1991).

Theorem 2.1 Let X = {X(t), t ∈ RN} be a mean zero, real-valued Gaussian random field
with stationary increments and X(0) = 0, and let f be the density function of the absolutely
continuous part ∆c of the spectral measure ∆ of X. Assume that there exist two locally bounded
functions φ(r) : R+ → R+ and q(λ) : RN → R+ satisfying the following conditions: φ(0) = 0
and φ(r) > 0 for r > 0,

f(λ/r)
φ(r)

≥ rN

q(λ)
, ∀ r ∈ (0, 1] and λ ∈ RN (2.5)

and there exists a positive and finite constant η such that

q(λ) ≤ |λ|η, ∀ λ ∈ RN with |λ| large enough. (2.6)

Then for every T > 0, there exists a positive constant K2,1 such that for all t ∈ [−T, T ]N\{0}
and all 0 < r ≤ min{1, |t|},

Var
(
X(t)|X(s) : s ∈ I, |s− t| ≥ r

) ≥ K2,1 φ(r). (2.7)

In particular, X is strongly locally φ-nondeterministic on the hypercube [−T, T ]N .

To prove Theorem 2.1, we need the following lemma which implies that SLND of X is
determined by the behavior of the spectral measure ∆ at infinity.

Lemma 2.2 Assume the density function f of ∆c satisfies the conditions (2.5) and (2.6).
Then for any fixed constants T > 0 and K2,2 > 0, there exists a positive and finite constant
K2,3 such that for all functions g of the form

g(λ) =
n∑

k=1

ak

(
ei〈sk,λ〉 − 1

)
, (2.8)

where ak ∈ R and sk ∈ [−T, T ]N , we have

∣∣g(λ)
∣∣ ≤ K2,3 |λ|

(∫

RN

|g(ξ)|2 f(ξ) dξ
)1/2

for all |λ| < K2,2 . (2.9)

Proof It follows from (2.5) and (2.6) that there exists a positive constant K such that

f(λ) ≥ K

|λ|η for all λ ∈ RN with |λ| large.

Hence Proposition 5 of Pitt (1975) implies that for every constant T > 0, the measure ∆c is
regular at [−T, T ]N . [Pitt (1975, p.304) gives the definition of regularity for finite measures
only, an extension to any σ-finite measure is immediate]. Let G be the collection of the functions

5



g(z) defined by (2.8) with ak ∈ R, sk ∈ [−T, T ]N and z ∈ CN . Since each g ∈ G is an entire
function, it follows from Proposition 1 of Pitt (1975) [see also Pitt (1978, p.326)] that

K2,3 = sup
z∈U(0,K2,2 )

{
sup
g∈G

{
|g(z)| :

∫

RN

|g(λ)|2f(λ) dλ ≤ 1
}}

< ∞,

where U(0,K2,2) = {z ∈ CN : |z| < K2,2} is the open ball of radius K2,2 in CN . Since g(0) = 0
and g is analytic in U(0,K2,2), Schwartz’s lemma implies

∣∣g(z)
∣∣ ≤ K2,3 |z|

(∫

RN

|g(ξ)|2 f(ξ)dξ
)1/2

for all z ∈ U(0,K2,2).

This proves (2.9). ¤

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Working in the Hilbert space setting, the conditional variance in
(2.7) is the square of the L2(P)-distance of X(t) from the subspace generated by {X(s) : s ∈
I, |s − t| ≥ r}. Hence it is sufficient to show that there exists a constant K2,1 such that for
every t ∈ [−T, T ]N\{0}, 0 < r ≤ min{1, |t|}, the inequality

E
(

X(t)−
n∑

k=1

akX(sk)
)2

≥ K2,1 φ(r) (2.10)

holds for all integers n ≥ 1, all ak ∈ R and sk ∈ [−T, T ]N satisfying |sk − t| ≥ r, (k =
1, 2, . . . , n).

It follows from (2.1) or (2.3) that

E
(

X(t)−
n∑

k=1

akX(sk)
)2

=
∫

RN

∣∣∣∣ei〈t,λ〉 − 1−
n∑

k=1

ak

(
ei〈sk,λ〉 − 1

)∣∣∣∣
2

∆(dλ)

≥
∫

RN

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣
2

f(λ)dλ,

(2.11)

where a0 = 1 −∑n
k=1 ak and s0 = 0. Now we choose a bump function δ(·) ∈ C∞(RN ) with

values in [0, 1] such that δ(0) = 1 and it vanishes outside the open unit ball. Let δ̂ be the
Fourier transform of δ. It is known that δ̂(λ) is also in C∞(RN ) and decays rapidly as λ →∞.
Let δr(t) = r−Nδ(t/r), then the Fourier inversion formula gives

δr(t) = (2π)−N

∫

RN

e−i〈t,λ〉 δ̂(rλ) dλ .

Since min{|sk − t|, 0 ≤ k ≤ n} ≥ r we have δr(t− sk) = 0 for all k = 0, 1, · · · , n. Hence
∫

RN

(
ei〈t,λ〉 −

n∑

k=0

ak ei〈sk,λ〉
)

e−i〈t,λ〉 δ̂(rλ) dλ

= (2π)N

(
δr(0)−

n∑

k=0

ak δr(t− sk)
)

= (2π)N r−N .

(2.12)
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Now we will make use of the conditions (2.5) and (2.6). We choose the constant K2,2 in Lemma
2.2 such that (2.6) holds for all |λ| ≥ K2,2 and split the integral in (2.12) over {λ : |λ| < K2,2}
and {λ : |λ| ≥ K2,2}. Denote the two integrals by I1 and I2, respectively. It follows from
Lemma 2.2 that

I1 ≤
∫

|λ|<K2,2

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣ |δ̂(rλ)| dλ

≤ K2,3

[∫

RN

∣∣∣∣ei〈t,λ〉 −
n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣
2

f(λ) dλ

]1/2

·
∫

|λ|<K2,2

|λ| |δ̂(rλ)| dλ

≤ K2,4

[
E

(
X(t)−

n∑

k=1

akX(sk)
)2

]1/2

,

(2.13)

where the last inequality follows from (2.11) and the boundedness of δ̂, and where K2,4 > 0 is
a finite constant depending on T and K2,2 .

On the other hand, by the Cauchy-Schwarz inequality and (2.11), we have

I2
2 ≤

∫

|λ|≥K2,2

∣∣∣∣∣e
i〈t,λ〉 −

n∑

k=0

ak ei〈sk,λ〉
∣∣∣∣∣
2

f(λ) dλ ·
∫

|λ|≥K2,2

1
f(λ)

∣∣∣δ̂(rλ)
∣∣∣
2

dλ

≤ E
(

X(t)−
n∑

k=1

akX(sk)

)2

· r−N

∫

|λ|≥K2,2r

1
f(λ/r)

∣∣∣δ̂(λ)
∣∣∣
2

dλ.

(2.14)

By using (2.5) and (2.6), we deduce
∫

|λ|≥K2,2r

1
f(λ/r)

∣∣∣δ̂(λ)
∣∣∣
2

dλ ≤ φ(r)−1 r−N

∫

|λ|≥K2,2r
q(λ)

∣∣∣δ̂(λ)
∣∣∣
2

dλ

≤ K φ(r)−1 r−N

{∫

|λ|<K2,2

q(λ)
∣∣∣δ̂(λ)

∣∣∣
2

dλ

+
∫

|λ|≥K2,2

|λ|η
∣∣∣δ̂(λ)

∣∣∣
2

dλ

}

= K φ(r)−1 r−N .

(2.15)

Combining (2.14) and (2.15) yields

I2
2 ≤ K φ(r)−1 r−2N E

(
X(t)−

n∑

k=1

akX(sk)
)2

. (2.16)

Finally, we square both sides of (2.12) and use (2.13) and (2.16) to obtain

(2π)2N r−2N ≤ K2,5 φ(r)−1 r−2N E
(
X(t)−

n∑

k=1

akX(sk)
)2

.

This implies (2.10) and hence the theorem is proven. ¤
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In order to apply Theorem 2.1 to investigate the sample path properties of the Gaussian
random field X, we need to study the relationship between φ(|h|) and the function σ2(h). In
the following, we show that under a condition analogous to that of Berman (1988, 1991), there
is a non-decreasing function φ such that X is SLφND and the functions φ(|h|) and σ2(h) are
comparable. More precisely, we assume that the spectral measure ∆ is absolutely continuous
and its density function f(λ) satisfies the following condition [when N = 1, this is due to
Berman (1988)]:

0 < α =
1
2

lim inf
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|} ≤

1
2

lim sup
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|} = α < 1, (2.17)

where β1 = 2 and for N ≥ 2, βN = µ(SN−1) is the area [i.e., the (N −1)-dimensional Lebesgue
measure) of SN−1. At the end of this section, we will give several examples of Gaussian random
fields satisfying condition (2.17).

In the rest of this section, we define φ(r) = ∆{ξ : |ξ| ≥ r−1} and φ(0) = 0. Then
the function φ is non-decreasing and continuous on [0,∞). The following lemma lists some
properties of φ which will be useful later.

Lemma 2.3 Assume the condition (2.17) holds. Then for any ε ∈ (0, 2min{α, 1− α}), there
exists a constant r0 > 0 such that for all 0 < x ≤ y ≤ r0,

(x

y

)2α+ε
≤ φ(x)

φ(y)
≤

(x

y

)2α−ε
. (2.18)

Consequently, we have

(i). limr→0φ(r)/r2 = ∞.

(ii). The function φ has the following doubling property: there exists a constant K2,6 > 0
such that for all 0 < r < r0/2,

φ(2r) ≤ K2,6 φ(r). (2.19)

Proof For N = 1, (2.18) was proved by Berman (1988). Extension to N > 1 is easy and a
proof is included for completeness. Denote G(r) = ∆{ξ : |ξ| ≥ r}. Then we can write

G(r) =
∫ ∞

r
ρN−1

∫

SN−1

f(ρ θ)µ(dθ) dρ, (2.20)

where µ is the surface measure on the unit sphere SN−1. It follows that

d

dr

[
log G(r)

]
= −rN−1

∫
SN−1 f(rθ)µ(dθ)

G(r)
.

Thus we derive the identity

G(x)
G(y)

= exp

(∫ y

x

rN
∫
SN−1 f(rθ)µ(dθ)

G(r)
dr

r

)
for all x, y > 0. (2.21)
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Note that the condition (2.17) and Fatou’s lemma imply that

0 < α ≤ 1
2

lim inf
r→∞

rN
∫
SN−1 f(rθ)µ(dθ)

G(r)
≤ 1

2
lim sup

r→∞
rN

∫
SN−1 f(rθ)µ(dθ)

G(r)
≤ α < 1.

Hence for any ε ∈ (0, 2 min{α, 1− α}), there exists r0 > 0 such that for all r ≥ r−1
0 , we have

2α− ε <
rN

∫
SN−1 f(rθ)µ(dθ)

G(r)
< 2α + ε. (2.22)

Therefore, (2.18) follows from (2.21) and (2.22). ¤

Remark 2.4 The equation (2.18) shows that, under the assumption that the spectral measure
∆ has a density f(λ), Condition (2.17) is more general than assuming φ is regularly varying at
0. Using the terminology of Bingham et al. (1987, pp.65-67), (2.18) implies that φ is extended
regularly varying at 0 with upper and lower Karamata indices 2α and 2α, respectively. Under
(2.17), a necessary and sufficient condition for φ(r) to be regularly varying at 0 of index 2α is
that the limit

α =
1
2

lim
r→∞

rN
∫
SN−1 f(rθ)µ(dθ)

∆{ξ : |ξ| ≥ r}
exists; this follows from Theorem 2.1.1 in Bingham et al. (1987) and (2.22). ¤

The following theorem shows that the assumption (2.17) implies that X is SLφND and φ(r)
is comparable with σ2(h) with |h| = r near 0. In Section 3, we will show that it is often more
convenient to use the function φ to characterize the probabilistic and geometric properties of
X.

Theorem 2.5 Let X = {X(t), t ∈ RN} be a mean zero, real-valued Gaussian random field
with stationary increments and X(0) = 0. Assume that the spectral measure ∆ of X has a
density function f that satisfies (2.17). Then

0 < lim inf
h→0

σ2(h)
φ(|h|) ≤ lim sup

h→0

σ2(h)
φ(|h|) < ∞. (2.23)

Moreover, for every T > 0, X is strongly locally φ-nondeterministic on the hypercube [−T, T ]N .

Proof The proof of (2.23) is based on the proof of Theorem 3.1 of Berman (1991) which
deals with the case of N = 1. Let T, τ > 0 be any constants with Tτ < 1. By (2.4), we can
write σ2(h) as

σ2(h) = 2
∫

|λ|≤T

(
1− cos 〈h, λ〉)f(λ)dλ + 2

∫

T<|λ|≤1/τ

(
1− cos 〈h, λ〉)f(λ)dλ

+ 2
∫

|λ|>1/τ

(
1− cos 〈h, λ〉)f(λ)dλ

:= 2(J1 + J2 + J3).

(2.24)
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First we prove the left inequality in (2.23). Let 0 < ε < 2min
{
α, 1−α

}
be fixed. Condition

(2.17) implies the existence of a τ0 ∈ (0, r0) [r0 is given in Lemma 2.3] such that

2α− ε ≤ βN |λ|Nf(λ)
φ(1/|λ|) ≤ 2α + ε for all λ ∈ RN with |λ| ≥ 1/τ0. (2.25)

It follows from (2.25) and Lemma 2.3 that for τ = |h| < τ0 in (2.24),

J3

φ(|h|) ≥
2α− ε

βN

∫

|λ|>1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≥ 2α− ε

βN

∫

|λ|>1/|h|

(
1− cos 〈h, λ〉) 1

(|λ||h|)2α+ε

dλ

|λ|N

=
2α− ε

βN

∫

|ξ|>1

(
1− cos 〈 h

|h| , ξ〉
) dξ

|ξ|N+2α+ε

≥ K2,7 ,

(2.26)

where K2,7 is a positive constant. In the above, the equality follows from a change of variable
and the last inequality follows from Lemma 3.3 in Xiao (2003). It is clear that (2.24) and
(2.26) imply the left inequality in (2.23).

In order to prove the right inequality in (2.23), we estimate J1, J2 and J3 separately. Since
1− cos 〈h, λ〉 ≤ |h|2|λ|2, we have

J1

φ(|h|) ≤
∫

|λ|≤T
|h|2|λ|2 f(λ)

φ(|h|) dλ

≤ K
|h|2

φ(|h|) → 0 as h → 0,

(2.27)

by (2.2) and Lemma 2.3. Next, suppose we have chosen the constant T > 1/τ0 so that (2.25)
holds for all λ ∈ RN with |λ| > T . Thus by taking τ = |h| < τ0 in (2.24), we derive

J2

φ(|h|) ≤
2α + ε

βN

∫

T<|λ|≤1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≤ 2α + ε

βN

∫

T<|λ|≤1/|h|

(
1− cos 〈h, λ〉) 1(|h||λ|)2α+ε

dλ

|λ|N

≤ 2α + ε

βN

∫

|ξ|≤1

dξ

|ξ|N−2(1−α)+ε
< ∞.

(2.28)

Similar to (2.28), we use (2.25), Lemma 2.3 and the inequality 1− cos 〈h, λ〉 ≤ 2 to deduce

J3

φ(|h|) ≤
2α + ε

βN

∫

|λ|≥1/|h|

(
1− cos 〈h, λ〉) φ(1/|λ|)

φ(|h|)
dλ

|λ|N

≤ 2α + ε

βN

∫

|λ|≥1/|h|

(
1− cos 〈h, λ〉) 1(|h||λ|)2α−ε

dλ

|λ|N

≤ 2(2α + ε)
βN

∫

|ξ|≥1

dξ

|ξ|N+2α−ε
< ∞.

(2.29)
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Therefore the right inequality in (2.23) follows from (2.27), (2.28) and (2.29). This finishes the
proof of (2.23).

Finally, note that Condition (2.17), together with Lemma 2.3, implies that (2.5) and (2.6)
hold with q(r) = K2,8 rN+2α+ε. Therefore, for any T > 0, the strong local φ-nondeterminism
of X on I = [−T, T ]N follows from Theorem 2.1. ¤

Let X = {X(t), t ∈ RN} be a stationary random field with mean 0, variance 1 and spectral
measure ∆. Then X can be represented as

X(t) =
∫

RN

ei〈t,λ〉W (dλ), ∀t ∈ RN . (2.30)

Clearly, Theorems 2.1 and 2.5 are applicable to the Gaussian random field Y = {Y (t), t ∈ RN}
defined by Y (t) = X(t)−X(0). Furthermore, we remark that the proofs of Theorems 2.1 and
2.5 remain effective for X itself. Either way we have the following partial extension of the
result of Cuzick and DuPreez (1982) mentioned in the Introduction to N > 1. It is not known
to me whether (2.6) can be replaced by the weaker condition (1.5).

Corollary 2.6 Let X = {X(t), t ∈ RN} be a stationary Gaussian random field with mean 0
and variance 1.

(i). If the spectral measure ∆ of X has an absolutely continuous part with density f satisfying
(2.5) and (2.6), then for every T > 0, X is strongly locally φ-nondeterministic on the
hypercube [−T, T ]N .

(ii). If the spectral density of X satisfies (2.17), then (2.23) holds and X is SLφND on the
hypercube [−T, T ]N .

We end this section with some examples of Gaussian random fields whose SLND can be
determined.

Example 2.7 Let Bα = {Bα(t), t ∈ RN} be an N -parameter fractional Brownian motion in
R with Hurst index α ∈ (0, 1), then its spectral density is given by

fα(λ) = c(α, N)
1

|λ|2α+N
,

where c(α, N) > 0 is a normalizing constant such that σ2(h) = |h|2α; see e.g., Kahane (1985).
Clearly, the condition (2.17) holds with α = α = α. As mentioned earlier, the strong local
nondeterminism of Bα was first proved by Pitt (1978). ¤

Example 2.8 Consider the mean zero Gaussian random field X = {X(t), t ∈ RN} with
stationary increments and spectral density

fγ,β(λ) =
c(γ, β, N)

|λ|2γ(1 + |λ|2)β
,

where γ and β are constants satisfying

β + γ >
N

2
, 0 < γ < 1 +

N

2
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and c(γ, β, N) > 0 is a normalizing constant. Since the spectral density fγ,β involves both the
Fourier transforms of the Riesz kernel and the Bessel kernel, Anh et al. (1999) call the corre-
sponding Gaussian random field the fractional Riesz-Bessel motion with indices β and γ; and
they have shown that these Gaussian random fields can be used for modelling simultaneously
long range dependence and intermittency.

It is easy to check that Condition (2.17) is satisfied with α = α = γ + β − N
2 . Moreover,

since the spectral density fγ,β(x) is regularly varying at infinity of order 2(β + γ) > N , by a
result of Pitman (1968) we know that, if γ + β − N

2 < 1, then σ(h) is regularly varying at 0 of
order γ + β −N/2 and

σ(h) ∼ |h|γ+β−N/2 as h → 0.

Theorem 2.5 implies that X is SLND with respect to σ2(h). Hence, many sample path prop-
erties of the d-dimensional fractional Riesz-Bessel motion X with indices β and γ can be can
be derived from the results in Section 3. ¤

Example 2.9 Let 0 < α < 1 and 0 < c1 < c2 be constants such that (αc2)/c1 < 1. For
any increasing sequence {bn, n ≥ 0} of real numbers such that b0 = 0 and bn →∞, define the
function f on RN by

f(λ) =
{

c1 |λ|−(2α+N) if |λ| ∈ (b2k, b2k+1],
c2 |λ|−(2α+N) if |λ| ∈ (b2k+1, b2k+2].

(2.31)

Some elementary calculation shows that, when limn→∞ bn+1/bn = ∞, Condition (2.17) is
satisfied with α = (αc1)/c2 < α = (αc2)/c1. Note that in this case,

c1

c(α, N)
|h|2α ≤ σ2(h) ≤ c2

c(α, N)
|h|2α, ∀ h ∈ RN ,

where c(α, N) is the constant in Example 2.7, and

c1 βN

2α
r2α ≤ φ(r) ≤ c2 βN

2α
r2α, ∀ r > 0.

However, both functions are not regularly varying at the origin. ¤

Next, we present a class of Gaussian random fields for which (2.17) does not hold, but
Theorem 2.1 is still applicable.

Example 2.10 For any given constants 0 < α1 < α2 < 1 and any increasing sequence
{bn, n ≥ 0} of real numbers such that b0 = 0 and bn →∞, define the function f on RN by

f(λ) =
{ |λ|−(2α1+N) if |λ| ∈ (b2k, b2k+1],
|λ|−(2α2+N) if |λ| ∈ (b2k+1, b2k+2].

(2.32)

Using such functions f as spectral densities, we obtain a quite large class of Gaussian random
fields with stationary increments that are significantly different from the fractional Brownian
motion. If X is such a Gaussian random field, then it follows from (2.4) and (2.20) that there
exist positive constants K2,9 and K2,10 ≥ 1 such that

K−1
2,9
|h|2α2 ≤ σ2(h) ≤ K2,9 |h|2α1 , ∀h ∈ RN with |h| ≤ 1 (2.33)
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and
K−1

2,10
r2α2 ≤ φ(r) ≤ K2,10 r2α1 , ∀ 0 < r ≤ 1. (2.34)

Now we choose a strictly increasing sequence {bn} such that for all k ≥ 1,

b2α2
2k+1

(
b−2α1
2k − b−2α1

2k+1

)
≤ 1, (2.35)

b2−2α1
2k+1 − b2−2α1

2k ≤ b2−2α2
2k

1
k2

(2.36)

and
b2k+2

b2k+1
≥ (k + 1)1/α2 . (2.37)

This can be done inductively: choose b2k+1 close to b2k so that both (2.35) and (2.36) hold;
then choose b2k+2 so that (2.37) holds.

We claim that the following properties hold:

(i) φ(r) ³ r2α2 for r ∈ (0, 1).

(ii) σ2(h) ³ |h|2α2 for all h ∈ RN with |h| ≤ 1.

(iii) Condition (2.17) is not satisfied.

(iv) the corresponding Gaussian random field X is SLφND on all hypercubes I = [−T, T ]N .

In order to verify (i), by (2.34), we only need to show φ(r) ≤ K2,11 r2α2 for some finite
constant K2,11 . For any r > 0 small, there exists an integer k0 > 0 such that either r−1 ∈
[b2k0 , b2k0+1) or r−1 ∈ [b2k0+1, b2k0+2). In the first case

φ(r) ≤
∫

b2k0
≤|λ|≤b2k0+1

|λ|−(2α1+N)dλ +
∫

b2k0+1≤|λ|≤b2k0+2

|λ|−(2α2+N)dλ + · · ·

=
K

2α1

[
b−2α1
2k0

− b−2α1
2k0+1 + b−2α1

2k0+2 − b−2α1
2k0+3 + · · ·

]

+
K

2α2

[
b−2α2
2k0+1 − b−2α2

2k0+2 + b−2α2
2k0+3 − b−2α2

2k0+4 + · · ·
]
.

(2.38)

Clearly, the second sum is bounded above by K r2α2 . It follows from (2.35) and (2.37) that
the first sum is bounded above by K r2α2 as well. This verifies (i) when r−1 ∈ [b2k0 , b2k0+1).

In the second case when r−1 ∈ [b2k0+1, b2k0+2), we have

φ(r) ≤
∫

r−1≤|λ|≤b2k0+2

|λ|−(2α2+N)dλ +
∫

b2k0+2≤|λ|≤b2k0+3

|λ|−(2α1+N)dλ + · · ·

=
K

2α2

[
r2α2 − b−2α2

2k0+2 + b−2α2
2k0+3 − b−2α2

2k0+4 + · · ·
]

+
K

2α1

[
b−2α1
2k0+2 − b−2α1

2k0+3 + b−2α1
2k0+4 − b−2α1

2k0+5 + · · ·
]

≤ K r2α2 ,

(2.39)

where the last inequality follows from (2.35) and (2.37).
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Next we verify (ii). Because of (2.33), we only need to show σ2(h) ≤ K2,12 |h|2α2 for all
h ∈ RN with |h| ≤ 1. Fix such an h ∈ RN , let k1 be the integer such that |h|−1 ∈ [b2k1 , b2k1+1)
or |h|−1 ∈ [b2k1+1, b2k1+2). In both cases, (2.35) and (2.36) imply |〈h, λ〉| ≤ |h| |λ| ≤ 2 for all
|λ| ∈ [b2k, b2k+1) and all k ≤ k1. For such λ, 1 − cos 〈h, λ〉 ≤ (|h| |λ|)2. It follows from (2.4)
that

σ2(h) ≤ 2
∫

RN

(1− cos 〈h, λ〉) dλ

|λ|2α2+N
+ 2

k1∑

k=0

∫

b2k≤|λ|≤b2k+1

(|h| |λ|)2 dλ

|λ|2α1+N

+ 2
∞∑

k=k1+1

∫

b2k≤|λ|≤b2k+1

dλ

|λ|2α1+N
.

(2.40)

By Example 2.7, the first integral equals K |h|2α2 . Moreover, a few lines of elementary calcu-
lation using (2.35) and (2.36) show that both sums in (2.40) are at most K |h|2α2 . This proves
(ii).

It follows from (2.38) that

lim sup
λ→∞

βN |λ|Nf(λ)
∆{ξ : |ξ| ≥ |λ|} = ∞.

Thus (2.17) is not satisfied.
Finally, (2.32) and (i) above imply that (2.5) and (2.6) hold with q(λ) = |λ|N+2α2 . There-

fore, Theorem 2.1 implies that the Gaussian random field X with spectral density (2.32) is
SLφND. ¤

Remark 2.11 In this paper, we have not considered SLND for Gaussian random fields
with stationary increments and discrete spectral measures. A systematic treatment for such
Gaussian random fields will be done elsewhere. An example of stationary Gaussian processes
with discrete spectrum that is (two-sided) strongly locally nondeterministic can be found in
Shieh and Xiao (2005). ¤

3 Sample path properties of Gaussian random fields

In the studies of Gaussian random fields with stationary increments, the variance function σ2(h)
has played a significant role and it is typically assumed to be regularly varying at 0 and/or
monotone in |h|. See Csörgő et al. (1995), Kasahara et al. (1999), Monrad and Rootzén
(1995), Talagrand (1995, 1998), Xiao (1996, 1997a, b, 2003) and the references therein. In this
section, we show that the regularly varying assumption on σ2(h) can be significantly weakened
and the monotonicity assumption can be removed.

We will consider the Gaussian random field X = {X(t), t ∈ RN} in Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (3.1)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian random field
Y = {Y (t), t ∈ RN}. We call Y the associated random field. In the rest of this paper, we will
often assume that Y satisfies the following Condition (C):
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(C1) there exist positive constants δ0, K3,1 , K3,2 and a non-decreasing, right continuous func-
tion φ : [0, δ0) → [0,∞) such that φ(0) = 0 and

φ(2r)
φ(r)

≤ K3,1 ∀ r ∈ [0, δ0/2) (3.2)

and for all t ∈ RN and h ∈ RN with |h| ≤ δ0,

K−1
3,2

φ(|h|) ≤ E[(
Y (t + h)− Y (t)

)2] ≤ K3,2φ(|h|). (3.3)

(C2) For any T > 0, Y is strongly locally φ-nondeterministic on [−T, T ]N .

It follows from Theorem 2.5 that for any Gaussian random field Y with stationary incre-
ments and spectral density satisfying (2.17), Condition (C) is satisfied. We point out that
the setting of this section is more general than that of Section 2. In particular, our results in
this section are applicable to Gaussian random fields with stationary increments and discrete
spectral measures.

3.1 Small ball probability

In recent years, there has been much interest in studying the small ball probability of Gaussian
processes. We refer to Li and Shao (2001) and Lifshits (1999) for extensive surveys on small
ball probabilities, their applications and open problems.

Our next theorem gives estimates on the small ball probability of Gaussian random fields
satisfying the condition (C). In particular, the upper bound in (3.4) confirms a conjecture of
Shao and Wang (1995), under a much weaker condition.

Theorem 3.1 Let X = {X(t), t ∈ RN} be a Gaussian random field in R satisfying the condi-
tion (C). Then there exist positive constants K3,3 and K3,4 such that for all x ∈ (0, 1),

exp
(
− K3,3

[φ−1(x2)]N

)
≤ P

{
max

t∈[0,1]N
|X(t)| ≤ x

}
≤ exp

(
− K3,4

[φ−1(x2)]N

)
, (3.4)

where φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ.

Proof Equip I = [0, 1]N with the Dudley metric

d(s, t) = (E|X(s)−X(t)|2)1/2, s, t ∈ I

and denote by Nd(I, ε) the smallest number of d-balls of radius ε > 0 needed to cover I. Then
it is easy to see from (C1) that for all ε ∈ (0, 1),

Nd(I, ε) ≤ K
( 1

φ−1(ε2)

)N
:= Ψ(ε).

Moreover, it follows from Condition (C1) that Ψ has the doubling property, i.e., Ψ(ε) ≤
Ψ(ε/2) ≤ K Ψ(ε). Hence the lower bound in (3.4) follows from a result of Talagrand (1993);
see also Ledoux (1996, p.257).
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The proof of the upper bound in (3.4) is based on Condition (C2) and an argument in
Monrad and Rootzén (1995). For any integer n ≥ 2, we choose nN points tn,i ∈ [0, 1]N , where

tn,i =
( i1

n
, . . . ,

iN
n

)
, i = (i1, . . . , iN ) ∈ {1, . . . , n}N ,

and denote them [in any order] by tn,k (k = 1, 2, . . . , nN ) . Then

P
{

max
t∈[0,1]N

|X(t)| ≤ x

}
≤ P

{
max

1≤k≤nN
|X(tn,k)| ≤ x

}
. (3.5)

By Anderson’s inequality for Gaussian measures and the SLφND of X, we derive the following
upper bound for the conditional probabilities

P
{
|X(tn,k)| ≤ x

∣∣X(tn,j), 1 ≤ j ≤ k − 1
}
≤ Φ

(
K x

φ1/2(n−1)

)
, (3.6)

where Φ(x) is the distribution function of a standard normal random variable. It follows from
(3.5) and (3.6) that

P
{

max
t∈[0,1]N

|X(t)| ≤ x

}
≤

[
Φ

(
K x

φ1/2(n−1)

)]nN

. (3.7)

By taking n to be the smallest integer ≥ [
φ−1(x2)

]−1, we obtain the upper bound in (3.4). ¤

Combining Theorem 3.1 with Theorem 7.1 in Li and Shao (2001) yields the following
Chung’s law of the iterated logarithm. When σ is regularly varying, this is also obtained in
Xiao (1997a).

Corollary 3.2 Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian random field defined by (3.1).
Suppose that the associated Gaussian random field Y has stationary increments and spectral
measure ∆. If Y satisfies Condition (C) and its spectral measure ∆ satisfies

lim inf
λ→∞

|λ|N+2∆
(
B(λ, r)

)
> 0, (3.8)

where B(λ, r) = {x ∈ RN : |x− λ| ≤ r}. Then there exists a positive and finite constant K3,5

such that

lim inf
r→0

supt∈[0,r]N |X(t)|
φ1/2

(
r/(log log(1/r))1/N

) = K3,5 a.s. (3.9)

Proof By applying Theorem 3.1 and slightly modifying the proof of Theorem 7.1 in Li and
Shao (2001) to each component Xk (k = 1, . . . , d) of X, we derive that there exists a positive
constant K3,6 ≥ 1 such that

K−1
3,6
≤ lim inf

r→0

supt∈[0,r]N |X(t)|
φ1/2

(
r/(log log(1/r))1/N

) ≤ K3,6 a.s. (3.10)

Since the components of X are independent, (3.8) implies that the zero-one law of Pitt and
Tran (1979) holds for X at t = 0. Hence (3.9) follows from this and (3.10). ¤
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Remark 3.3 When ∆ has a density function which satisfies (2.17), (3.8) follow easily from
(2.25) and Lemma 2.3. Hence (3.9) holds. ¤

We can also consider the small ball probability of Gaussian random fields under the Hölder-
type norm. Let κ : R+ → R+ be a continuous and non-decreasing function such that κ(r) > 0
for all r > 0. For any function y ∈ C0([0, 1]N ), we consider the functional

‖y‖κ = sup
s,t∈[0,1]N ,s 6=t

|y(s)− y(t)|
κ(|s− t|) . (3.11)

When κ(r) = rα, ‖ · ‖κ is the α-Hölder norm on C0([0, 1]N ) and is denoted by ‖ · ‖α.
The following theorem uses SLφND to improve the results of Stolz (1996). We mention

that the conditions of Theorem 2.1 of Kuelbs, Li and Shao (1995) can be weakened in a similar
way.

Theorem 3.4 Let X = {X(t), t ∈ RN} be a Gaussian random field in R satisfying the condi-
tion (C). If for some constant β > 0,

φ1/2(r)
κ(r)

³ rβ, ∀r ∈ (0, 1). (3.12)

Then there exist positive constants K3,7 and K3,8 such that for all ε ∈ (0, 1),

exp
(
−K3,7 ε−N/β

)
≤ P

{
‖X‖κ ≤ ε

}
≤ exp

(
−K3,8 ε−N/β

)
. (3.13)

Proof The lower bound in (3.13) follows directly from Theorem 1.1 of Stolz (1996). The
proof of the upper bound in (3.13) is a modification of the proof of Theorem 1.3 of Stolz (1996),
using (C2) in place of Lemma 7.1 of Pitt (1978). We leave it to the interested reader. ¤

3.2 Hausdorff dimension and Hausdorff measure of the range

In this section we consider the fractal properties of the range X([0, 1]N ) and graph GrX([0, 1]N )
= {(t,X(t)) : t ∈ [0, 1]N} of the Gaussian random field in Rd defined by (3.1). In particular,
we will show that the Hausdorff dimension of X([0, 1]N ) and GrX([0, 1]N ) can be determined
mainly by the upper index of φ at 0 defined by

α∗ = inf
{

β ≥ 0 : lim
r→0

φ(r)
r2β

= ∞
}

(3.14)

with the convention inf ∅ = ∞. Analogously, we can define the lower index of φ at 0 by

α∗ = sup
{

β ≥ 0 : lim
r→0

φ(r)
r2β

= 0
}

. (3.15)

Clearly, 0 ≤ α∗ ≤ α∗ ≤ ∞. When the real-valued Gaussian random field Y = {Y (t), t ∈ RN}
associated with (3.1) has stationary increments and a continuous covariance function. Then
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the above upper and lower indices α∗ and α∗ coincide with the upper and lower indices of σ(h),
where

σ2(h) = E
[(

Y (t + h)− Y (t)
)2]

, ∀h ∈ RN . (3.16)

In this case, we also call α∗ and α∗ the upper and lower indices of Y . See Adler (1981) for
more information.

The following example shows that it is possible to have α∗ = ∞.

Example 3.5 Let N ≥ 2 and let ∆ be a Borel measure on RN with support in a linear subspace
L of RN and satisfying (2.2). If Y is a Gaussian random field with stationary increments and
spectrum measure ∆, then for all h in the linear subspace of RN that is orthogonal to L, we
have σ2(h) = 0. Thus α∗ = ∞. ¤

Lemma 3.6 below shows that under quite general conditions the inequality α∗ ≤ 1 holds.
In particular, this is true for all the Gaussian random fields considered in Section 2.

Lemma 3.6 Let Y = {Y (t), t ∈ RN} be a Gaussian random field in R with stationary incre-
ments and spectrum measure ∆. If N = 1, or N ≥ 2 and ∆ has an absolutely continuous part
with density f(λ). Then α∗ ≤ 1.

Proof It follows from (2.4) that

σ2(h) ≥
∫

|λ|≤|h|−1

(1− cos 〈h, λ〉)∆(dλ)

≥ K|h|2
∫

|λ|≤|h|−1

〈 h

|h| , λ〉
2 ∆(dλ).

(3.17)

It is clear that when N = 1, we have σ2(h) ≥ K|h|2 for all h ∈ R with |h| small enough. This
implies α∗ ≤ 1 whenever N = 1.

Now we assume that N ≥ 2. It follows from (3.17) that

σ2(h) ≥ K|h|2
∫

|λ|≤|h|−1

〈 h

|h| , λ〉
2 f(λ) dλ

≥ K |h|2
∫

SN−1

〈 h

|h| , θ〉
2 µ(dθ)

∫ |h|−1

0
ρN+1f(ρθ) dρ.

(3.18)

Since f(λ) > 0 on a set of positive N -dimensional Lebesgue measure, we see that for all h ∈ RN

with |h| small enough,

∫

SN−1

〈 h

|h| , θ〉
2 µ(dθ)

∫ |h|−1

0
ρN+1f(ρθ) dρ ≥ K3,9 (3.19)

for some constant K3,9 > 0. Hence we have α∗ ≤ 1. ¤

Remark 3.7 It follows from Lemma 2.3 that if the spectral measure ∆ has a density function
that satisfies the condition (2.17), then α ≤ α∗ ≤ α∗ ≤ α. Example 2.9 shows that it is possible
to have α < α∗ = α∗ < α. ¤
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The following result gives general formulas for the Hausdorff dimensions of X([0, 1]N ) and
GrX([0, 1]N ) = {(t,X(t)) : t ∈ [0, 1]N} in terms of the upper index α∗. When α∗ = α∗ ∈ (0, 1),
(3.20) and (3.21) are essentially due to Adler (1981); otherwise, they seem to be new.

Theorem 3.8 Let X = {X(t), t ∈ RN} be the Gaussian random field in Rd defined by (3.1).
If the associated random field Y satisfies Condition (C1) and 0 < α∗ ≤ α∗ < 1, then

dimHX([0, 1]N ) = min
{

d,
N

α∗
}

a.s. (3.20)

dimHGrX([0, 1]N ) = min
{

N + (1− α∗)d,
N

α∗
}

a.s., (3.21)

where dimH denotes Hausdorff dimension.

Remark 3.9 (a). We can allow the components X1, . . . , Xd in (3.1) to have different
distributions. If the upper index of Xi is α∗i , then the formulae for dimHX([0, 1]N ) and
dimHGrX([0, 1]N ) analogous to those in Theorem 2.1 in Xiao (1995) hold.

(b). The proof of Theorem 3.8 also gives dimHX(E) and dimHGrX(E) for all Borel sets E ⊂
RN with dimHE = dimPE. However, the question of determining dimHX(E) and dimHGrX(E)
for an arbitrary Borel set E ⊂ RN remains to be open. ¤

For the proof of Theorem 3.8 as well as the proofs of Theorems 3.11 and 3.14 below, we
need the following lemma on the modulus of continuity of Y , which is reminiscent to Corollary
2.3 or Theorem 2.10 of Dudley (1973), and on the tail probability of the supremum of Y .

Lemma 3.10 Assume that the Gaussian random field Y = {Y (t), t ∈ RN} in R satisfies
Conditions (C1) and 0 < α∗ ≤ α∗ < 1. Let

ωY (δ) = sup
t, t + s ∈ [0, 1]N

|s| ≤ δ

|Y (t + s)− Y (t)|

be the uniform modulus of continuity of Y (t) on [0, 1]N . Then there exists a finite constant
K3,10 > 0 such that

lim sup
δ→0

ωY (δ)√
φ(δ) log 1

δ

≤ K3,10 , a.s. (3.22)

If, in addition, there is a constant K3,11 > 0 such that

∫ ∞

1

(φ(ae−u2
)

φ(a)

)1/2
du ≤ K3,11 for all a ∈ [0, δ0). (3.23)

Then there exist positive constants K3,12 and K3,13 such that for all r > 0 small enough and
u ≥ K3,12 φ1/2(r), we have

P
{

sup
|t|≤r

|Y (t)| ≥ u

}
≤ exp

(
− u2

K3,13 φ(r)

)
. (3.24)
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Proof Because 0 < α∗ ≤ α∗ < 1, the first part, i.e., (3.22), follows from Corollary 2.3 in
Dudley (1973). The proof of the second part is based on the Gaussian isopermetric inequality
[cf. Talagrand (1995)] and is standard. We include it for completeness.

Let r < δ0 and S = {t : |t| ≤ r}. It follows from (3.3) that d(s, t) ≤ K1/2
3,2

φ1/2(|t− s|), we
have

D := sup{d(s, t); s, t ∈ S} ≤ K1/2
3,2

φ1/2(r)

and

Nd(S, ε) ≤ K

(
r

φ−1
(
ε2/K3,2

)
)N

,

where φ−1 the inverse function of φ defined as in Theorem 3.1. Since α∗ > 0, there exists η > 0
such that

σ(r) ≤ rη for all r ∈ [0, δ0). (3.25)

Some simple calculations and (3.3) yield

∫ D

0

√
log Nd(S, ε) dε ≤ K

∫ K
1/2
3,2 φ1/2(r)

0

√
log

( r

φ−1
(
ε2/K3,2

)
)

dε

≤ K

∫ r

0

√
log(r/t) dφ1/2(t)

= K

∫ 1

0

1
u
√

log(1/u)
φ1/2(ur)du

≤ K

(
φ1/2(r) +

∫ ∞

1
φ1/2(re−u2

)du

)

≤ K3,14 φ1/2(r) ,

where the last inequality follows from (3.23). It follows from Lemma 2.1 in Talagrand (1995)
that for all u ≥ K3,14 φ1/2(r),

P
{

sup
|t|≤r

|Y (t)| ≥ 2u
}

≤ P
{

sup
|t|≤r

|Y (t)| ≥ u +
∫ D

0

√
log Nd(S, ε) dε

}

≤ exp
(
− u2

K3,15φ(r)

)
.

(3.26)

This proves (3.24) and the lemma. ¤

Proof of Theorem 3.8 The proofs of the lower bounds in (3.20) and (3.21) using a standard
capacity argument are the same as in Adler (1981) or Kahane (1985), which also complete the
proof of Theorem 3.8 when α∗ = 0.

To prove the upper bound in (3.20), we only need to show dimHX([0, 1]N ) ≤ N/α∗ a.s.
Note that for any γ′ < γ < α∗, it follows from (3.14) that there exists a sequence rn → 0 such
that φ(rn) ≤ r2γ

n . For each fixed n ≥ 1, divide [0, 1]N into r−N
n subcubes Cn,i (i = 1, . . . , r−N

n )
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of side-length rn. It follows from (3.22) in Lemma 3.10 that a.s. for n large enough, each
X(Cn,i) can be covered by a ball of radius rγ′

n in Rd. This implies that dimHX([0, 1]N ) ≤ N/γ′

a.s. Since γ′ < α∗ is arbitrary, we have dimHX([0, 1]N ) ≤ min{d,N/α∗} a.s. The proof of the
upper bound in (3.21) is similar and hence omitted. ¤

Now we consider the exact Hausdofff measure of the image X([0, 1]N ).

Theorem 3.11 Let X = {X(t), t ∈ RN} be a Gaussian random field defined in (3.1) with
the associated real-valued Gaussian random Y that has stationary increments and satisfies
Condition (C). In addition, we assume that the function φ satisfies (3.23) and there exists a
constant K3,16 > 0 such that

∫ δ0/a

1

( φ(a)
φ(ax)

)d/2
xN−1dx ≤ K3,16 for all a ∈ (0, δ0), (3.27)

then
0 < ϕ1-m

(
X([0, 1]N )

)
< ∞ a.s., (3.28)

where ϕ1(r) =
[
φ−1(r2)

]N log log 1/r.

Remark 3.12 If Y has stationary increments with spectrum density f satisfying Condition
(2.17), then it follows from Lemma 2.3 that (3.23) always holds and, moreover, (3.27) holds
whenever N < α d. ¤

Proof Since the proof of (3.28) is similar to that in Xiao (1996), we will only point out places
where modifications have to be made.

To prove the lower bound in (3.28), we follow the standard procedure of using the density
theorem of Rogers and Taylor (1961). For notational convenience, we assume δ0 = 1 and define
the sojourn time

T (r) =
∫

[0,1]N
1lB(0,r)(X(t)) dt

of X in the closed ball B(0, r). Then it is sufficient to show the following estimate of the
moments: there exists a constant K3,17 such that for all integers n ≥ 1,

E
[
T (r)n

] ≤ Kn
3,17

n!
[
φ−1(r2)

]Nn
. (3.29)

This can be proved by using induction, which is where the strong local nondeterminism will
be needed. The details are given in Xiao (1996) and we only check (3.29) for n = 1. Denote
ψ(r) = φ−1(r2). Note that φ(ψ(r)) ≥ r2. Hence by (3.3), a change of variables and (3.27), we
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derive

E
[
T (r)

] ≤
∫

[0,1]N
min

{
1, K

( r

φ1/2(|t|)
)d}

dt

≤ K

∫ 1

0
min

{
1, K

( r2

φ(ρ)

)d/2}
ρN−1 dρ

≤ K

∫ ψ(r)

0
ρN−1dρ + K

∫ 1

ψ(r)

( r2

φ(ρ)

)d/2
ρN−1dρ

≤ K ψ(r)N + K ψ(r)N

∫ 1/ψ(r)

1

( φ(ψ(r))
φ(ψ(r)x)

)d/2
xN−1dx

≤ K ψ(r)N < ∞.

(3.30)

In order to prove the upper bound in (3.28), we need to construct a sequence of economical
coverings {Bn, n ≥ 1} for X([0, 1]N ) such that diamBn → 0 as n → ∞ and almost surely∑

n ϕ1(diamBn) < ∞. This has been done by Talagrand (1995) for fractional Brownian
motion and by Xiao (1996) for any Gaussian random field with stationary increments such
that its variance function σ2(h) is regularly varying at 0. By examining carefully the proofs
in Xiao (1996), we see that the key ingredient for the construction of the desired coverings of
X([0, 1]N ), Proposition 3.1 in Xiao (1996), is still valid under the present conditions. The rest
of the proof is the same as in Xiao (1996). Therefore (3.28) is proven. ¤

Remark 3.13 In a similar way, the results on the exact Hausdorff measure of the graph set
GrX([0, 1]N ) in Xiao (1997a, c) can be extended to Gaussian random fields in this paper. ¤

3.3 Local times and level sets of Gaussian random fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with stationary increments in Rd defined
by (3.1). Suppose the associated real-valued random field Y satisfies (3.3) and for some ε > 0,

∫

[0,1]N

dh

σd+ε(h)
< ∞.

If Y is locally nondeterministic on a cube I ⊂ RN , say, I = [0, 1]N , then it follows from
Theorem 26.1 in Geman and Horowitz (1980) [see also Berman (1973) and Pitt (1978)] that X
has a jointly continuous local time L(x, t) := L(x, [0, t]) for (x, t) ∈ Rd× I and satisfies certain
Hölder conditions in the time and space variables, respectively.

Under the assumptions of strong local nondeterminism and regular variation of σ2(h), Xiao
(1997a) has established sharp local and uniform Hölder conditions for the local time L(x, t) in
the time variable t. Besides interest in their own right, such results are also useful in studying
the fractal properties of the sample paths of X. In the following, we show that the results in
Xiao (1997a) and Kasahara et al. (1999) still hold under the more general Condition (C). For
simplicity, we will only consider the case N = 1.
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Theorem 3.14 Let X = {X(t), t ∈ R} be a mean zero Gaussian process in Rd defined by
(3.1) satisfying Condition (C). In addition, we assume that the function φ satisfies (3.23) and
there exist constants γ0 ∈ (0, 1) and K3,18 > 0 such that

∫ 1

0

( φ(a)
φ(as)

) d
2
+γ0

ds ≤ K3,18 for all a ∈ (0, δ0). (3.31)

Then the following properties hold:

(i) X has a local time L(x, t) that is jointly continuous in (x, t) almost surely.

(ii) For any B ∈ B(R) define L∗(B) = supx∈Rd L(x, B) be the maximum local time. Then
there exists a positive constant K3,19 such that for all t ∈ R,

lim sup
r→0

L∗(B(t, r))
ϕ2(r)

≤ K3,19 a.s. (3.32)

and for all intervals I ⊆ R, there exists a positive finite constant K3,20 such that

lim sup
r→0

sup
t∈I

L∗(B(t, r))
ϕ3(r)

≤ K3,20 a.s., (3.33)

where B(t, r) = (t− r, t + r),

ϕ2(r) =
r

φ(r(log log 1/r)−1)d/2
and ϕ3(r) =

r

φ(r(log 1/r)−1)d/2
.

Remark 3.15 If X has stationary increments and its spectral measure satisfies (2.17) then
(3.23) always holds. Moreover, if 1 > α d, then Lemma 2.3 implies that (3.31) is satisfied for
any γ0 ∈ (0, (1− αd)/(2α)). ¤

The following states that the local Hölder condition for the maximum local time is sharp.

Remark 3.16 By the definition of local times, we have that for any interval Q ⊆ R,

|Q| =
∫

X(Q)
L(x,Q) dx

≤ L∗(Q) ·
(

sup
s,t∈Q

|X(s)−X(t)|
)d

.

(3.34)

If X has stationary increments and satisfies the conditions of Theorem 3.14, then Theorem 3.1
and the proof of Theorem 7.1 in Li and Shao (2001) imply the existence of a constant K3,21 ≥ 1
such that for every t ∈ R,

K−1
3,21

≤ lim inf
r→0

sups∈B(t,r) |X(s)−X(t)|
φ1/2

(
r/(log log(1/r))1/N

) ≤ K3,21 a.s. (3.35)

By taking Q = B(t, r) in (3.34) and using the upper bound in (3.35), we derive the lower
bound in the following

K3,22 ≤ lim sup
r→0

L∗(B(t, r))
ϕ2(r)

≤ K3,19 a.s., (3.36)
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where K3,22 > 0 is a constant and the upper bound is given by (3.32). A similar lower bound
for (3.33) could also be established by using (3.34), if one proves that for every interval I ⊆ R,

lim inf
r→0

inf
t∈I

sup
s∈B(t,r)

|X(s)−X(t)|
φ1/2(r/(log 1/r)1/N )

≤ K3,23 a.s. (3.37)

This is left to the interested reader. ¤

The proof Theorem 3.14 is similar to Xiao (1997a) which is based on getting sharp moment
estimates for L(x,B) and L(x + y, B) − L(x,B) and on a chaining argument. We will not
reproduce all the details. Instead, we give a simplified proof of the following key estimates.

Lemma 3.17 Under the conditions of Theorem 3.14, there exist positive constants K3,24 and
K3,25 such that for all integers n ≥ 1, r(0, δ0), x ∈ Rd and 0 < γ < γ0, we have

E
[
L(x, r)n

] ≤ Kn
3,24

rn

φ(r/n)nd/2
(3.38)

and

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn
3,25
|y|nγ rn

[
φ(r/n)

](d+2γ)n/2
(n!)γ . (3.39)

For the proof of Lemma 3.17, we will need several lemmas. Lemma 3.18 is essentially due
to Cuzick and DuPreez (1982) and Lemma 3.19 extends Lemma 3 of Kasahara et al. (1999).

Lemma 3.18 Let Z1, · · · , Zn be mean zero Gaussian variables which are linearly independent.
Then for any measurable function g : R→ R+,

∫

Rn

g(v1)e−
1
2
Var(

Pn
j=1 vjZj)dv1 · · · dvn =

(2π)n−1

(detCov(Z1, · · · , Zn))1/2

∫

R
g
( v

σ1

)
e−v2/2dv, (3.40)

where σ2
1 = V ar(Z1|Z2, · · · , Zn) is the conditional variance of Z1 given Z2, · · · , Zn and

detCov(Z1, · · · , Zn) is the determinant of the covariance matrix of (Z1, · · · , Zn).

Lemma 3.19 Let U(x) be a right continuous, non-decreasing function on R+ with U(0) = 0.
If there exists a constant K3,26 > 0 such that U(2t) ≤ K3,26U(t) for all t > 0, then

[ ∫

Rn
+∩{0<t1+t2+···+tn≤1}

dU(t1) · · · dU(tn)
]1/n

³ U(1/n), as n →∞. (3.41)

Proof The lower bound follows easily from

∫

Rn
+∩{0<t1+t2+···+tn≤1}

dU(t1) · · · dU(tn) ≥
∫ 1/n

0
· · ·

∫ 1/n

0
dU(t1) · · · dU(tn) (3.42)

=
[
U(1/n)

]n
.
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To prove the upper bound, we follow the argument of Kasahara et al. (1999) and define the
distribution functions Fn on R+ by

Fn(t) =
∫

Rn
+∩{0≤t1+t2+···+tn≤t}

dU(t1) · · · dU(tn).

Then the integral on the left-hand side of (3.42) is Fn(1). Note that the Laplace transform of
Fn can be written as ∫ ∞

0
e−stdFn(t) =

(∫ ∞

0
e−st dU(t)

)n

.

Hence we have

Fn(1) ≤ en

∫ 1

0
e−ntdFn(t) ≤ en

∫ ∞

0
e−ntdFn(t) ≤

(
e

∫ ∞

0
e−ntdU(t)

)n

.

It follows that

lim sup
n→∞

1
U(1/n)

[
Fn(1)

]1/n ≤ lim sup
n→∞

e

U(1/n)

∫ ∞

0
e−ntdU(t). (3.43)

Now we split the last integral over the intervals [0, n−1) and [n−12k−1, n−12k) (k ≥ 1), which
gives

∫ ∞

0
e−ntdU(t) ≤ U(1/n) +

∞∑

k=1

e−2k−1
U(2k/n)

≤ U(1/n)
[
1 +

∞∑

k=1

e−2k−1
Kk

3,26

]

= K3,27 U(1/n),

(3.44)

where in deriving the second inequality, we have made use of the doubling property of U .
Therefore, the upper bound in (3.41) follows from (3.43) and (3.44). ¤

Proof of Lemma 3.17 It follows from (25.5) and (25.7) in Geman and Horowitz (1980) [see
also Pitt (1978)] that for any x, y ∈ Rd, B ∈ B(R) and any integer n ≥ 1, we have

E
[
L(x,B)

]n = (2π)−nd

∫

Bn

∫

Rnd

exp
(
− i

n∑

j=1

〈uj , x〉
)

× E exp
(

i
n∑

j=1

〈uj , X(tj)〉
)

du dt

(3.45)

and for any even integer n ≥ 2,

E
[
L(x + y, B)− L(x,B)

]n = (2π)−nd

∫

Bn

∫

Rnd

n∏

j=1

(
e−i〈uj ,x+y〉 − e−i〈uj ,x〉

)

× E exp
(

i

n∑

j=1

〈uj , X(tj)〉
)

du dt,

(3.46)
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where u = (u1, · · · , un), t = (t1, · · · , tn), and each uj ∈ Rd, tj ∈ R. In the coordinate notation
we then write uj = (u1

j , · · · , ud
j ).

Take B = [0, r]. It follows from (3.45) and the proof of Lemma 2.5 in Xiao (1997a) that
for all integers n ≥ 1,

E
[
L(x, r)n

] ≤ (2π)−nd/2

∫

[0, r]n

1
[
detCn(t1, · · · , tn)

]d/2
dt1 · · · dtn, (3.47)

where Cn(t1, · · · , tn) denotes the covariance matrix of the Gaussian variables X1(t1), . . . ,
X1(tn). It is well known that

det
(
Cn(t1, · · · , tn)

)
= Var

(
X1(t1)

) n∏

j=2

Var
(
X1(tj)|X1(t1), · · · , X1(tj−1)

)
. (3.48)

We apply (C2) to derive that for any 0 < t1 < t2 < . . . < tn,

Kn
n∏

j=1

φ(tj − tj−1) ≤ det
(
Cn(t1, · · · , tn)

) ≤
n∏

j=1

φ(tj − tj−1), (3.49)

where t0 = 0. By (3.47)–(3.49) and a simple substitution, we deduce that

E
[
L(x, r)n

] ≤ Kn n!
∫

0<t1<t2<...<tn≤r

n∏

j=1

1
(
φ(tj − tj−1)

)d/2
dt1 · · · dtn

≤ Kn n! rn

∫

0<s1+s2+···+sn≤1
dU1(s1) · · · dU1(sn),

(3.50)

where the function U1(t) is defined by

U1(t) =
∫ min{t,1}

0

ds

(φ(rs))d/2
for all t ≥ 0.

Since φ is non-decreasing, we see that U1(2t) ≤ 2U1(t) for all t ≥ 0. Hence it follows from
Lemma 3.19 that

E
[
L(x, r)n

] ≤ Kn
3,28

n! rn
[
U1(1/n)

]n
. (3.51)

On the other hand, by (3.31), we derive that

U1(t) ≤ K3,29

t
(
φ(rt)

)d/2
for all 0 ≤ t ≤ 1. (3.52)

Therefore, (3.38) follows from (3.51), (3.52) and Stirling’s formula.
Now we turn to the proof of (3.39). By (3.46) and the elementary inequality

|eiu − 1| ≤ 21−γ |u|γ for all u ∈ R, 0 < γ < 1,

26



we see that for all even integers n ≥ 2 and any 0 < γ < 1,

E
[
L(x + y, r)− L(x, r)

]n ≤ (2π)−nd2(1−γ)n|y|nγ

∫

[0, r]n

∫

Rnd

n∏

j=1

|uj |γ

× exp


−1

2
Var

( n∑

j=1

〈uj , X(tj)〉
)

 du dt. (3.53)

Since for any 0 < γ < 1, |a + b|γ ≤ |a|γ + |b|γ , we have

n∏

j=1

|uj |γ ≤
∑′ n∏

j=1

|ukj

j |γ , (3.54)

where the summation
∑

´ is taken over all (k1, · · · , kn) ∈ {1, · · · , d}n. Fix such a sequence
(k1, · · · , kn) and fix n points 0 < t1 < · · · < tn ≤ r, we consider the integral

I3 :=
∫

Rnd

n∏

j=1

|ukj

j |γ exp

(
− 1

2
Var

( n∑

j=1

〈uj , X(tj)〉
))

du.

It follows from (C2) that the Gaussian random variables Xl(tj) (l = 1, · · · , d, j = 1, · · · , n)
are linearly independent. Hence we use the generalized Hölder’s inequality and Lemma 3.18
to deduce that I3 is at most

n∏

j=1

{∫

Rnd

|ukj

j |nγ exp
[
− 1

2
Var

( n∑

j=1

d∑

l=1

ul
jXl(tj)

)]
du

}1/n

=
(2π)nd−1

[
detCov(Xl(tj), 1 ≤ l ≤ d, 1 ≤ j ≤ n)

]1/2

∫

R
|v|nγ exp

(
−v2

2

)
dv

n∏

j=1

1
σγ

j

≤ Kn (n!)γ

[
detCov(Y (t1), · · · , Y (tn))

]d/2

n∏

j=1

1
σγ

j

,

(3.55)

where σ2
j is the conditional variance of Xkj (tj) given Xl(ti) (l 6= kj or l = kj , i 6= j) and the

last inequality follows from Stirling’s formula.
It follows from the independence of the Gaussian random fields X1, · · · , Xn and Condition

(C) that
σ2

j ≥ K min
{
φ(tj − tj−1), φ(tj+1 − tj)

}
,

where t0 := 0. Hence
n∏

j=1

1
σγ

j

≤ Kn
n∏

j=1

1[
φ(tj − tj−1)

]γ (3.56)

Combining (3.55), (3.48), (3.49) and (3.56), we obtain

I3 ≤ Kn (n!)γ
n∏

j=1

1
[
φ(tj − tj−1)

](d+2γ)/2
(3.57)
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It follows from (3.53), (3.54) and (3.57) that

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn|y|nγ(n!)1+γ

×
∫

0<t1<···<tn≤r

n∏

j=1

1
[
φ(tj − tj−1)

](d+2γ)/2
dt1 . . . dtn

≤ Kn|y|nγ(n!)1+γ rn

∫

0<s1+s2+···+sn≤1
dU2(s1) · · · dU2(sn)

(3.58)

where the function U2(t) is defined by

U2(t) =
∫ min{t,1}

0

ds

(φ(rs))(d+2γ)/2
, t ≥ 0.

Again U2 has the doubling property. Hence it follows from Lemma 3.19 that

E
[
L(x + y, r)− L(x, r)

]n ≤ Kn
3,30

|y|nγ(n!)1+γ rn
[
U2(1/n)

]n
. (3.59)

Finally, (3.31) implies that

U2(t) ≤ K3,31

t
[
φ(rt)

](d+2γ)/2
for all t ∈ [0, 1]. (3.60)

Therefore, (3.39) follows from (3.59), (3.60) and Stirling’s formula. ¤

Theorem 3.14 can be applied to determine the Hausdorff dimension and Hausdorff measure
of the level set X−1(x) = {t ∈ R : X(t) = x}, where x ∈ Rd. See Berman (1970, 1972),
Adler (1981), Monrad and Pitt (1987) and Xiao (1997a). In the following theorem we prove
a uniform Hausdorff dimension result for the level sets of the Gaussian process X, extending
the previous results of Berman (1972), Monrad and Pitt (1987).

Theorem 3.20 Let X = {X(t), t ∈ R} be a Gaussian process in Rd defined by (3.1) satisfying
the conditions of Theorem 3.14. Then with probability one,

dimHX−1(x) = 1− α∗d for all x ∈ O, (3.61)

where O is the random open set defined by

O =
⋃

s,t∈Q; s<t

{
x ∈ Rd : L(x, [s, t]) > 0

}
.

Proof Let Ω0 be the event on which the modulus of continuity for X [cf. (3.22)] and Theorem
3.14 hold. Clearly, P(Ω0) = 1. Now we choose and fix an ω ∈ Ω0, and prove our conclusion for
the sample path X(·, ω).

To prove the upper bound in (3.61), it is sufficient to show that almost surely,

dimH

(
X−1(x) ∩ [0, 1]

) ≤ 1− α∗d for all x ∈ Rd. (3.62)
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For any integer n ≥ 1, we divide the interval [0, 1] into 2n subintervals In,k = [(k−1)2−n, k2−n]
(k = 1, . . . , 2n). For every x ∈ Rd, denote by N(n, x) the number of k’s such that x ∈ X(In,k).
The modulus of continuity of X in Lemma 3.10 implies that if x ∈ X(In,k) then X(In,k) ⊆
B(x, ρn), where ρn = K

√
φ(2−n) log 2n. Since the local time L(y, 1) is a continuous in y, it is

bounded on B(x, ρn). Hence we have

N(n, x) 2−n ≤
∫

B(x,ρn)
L(y, 1)dy ≤ K3,32 ρd

n, (3.63)

where K3,32 depends on ω. This gives

N(n, x) ≤ K3,32 2n ρd
n. (3.64)

Hence for every 0 < γ < α∗, there exists a sequence {nk} of positive integers such that
N(nk, x) ≤ K3,32 2nk(1−γd). This implies (3.62).

To prove the lower bound in (3.61), we note that the jointly continuous local time L(x, t)
of X can be extended to become a random Borel measure, denoted by L(x, ·), on X−1(x); see
Adler (1981). Moreover, for every x ∈ O, L(x, ·) is a positive measure.

Now for any γ > α∗, (3.33) of Theorem 3.14 implies that almost surely, L(x,B(t, r)) ≤
K r1−γd for all x ∈ Rd, all t ∈ [0, 1] and r > 0 small. By the Frostman lemma [cf. Kahane
(1985)], we have almost surely dimHX−1(x) ≥ 1− γd for all x ∈ O. Since γ > α∗ is arbitrary,
this proves the lower bound in (3.61) and hence the theorem. ¤

Remark 3.21 It is an interesting question to characterize the random open set O. Monrad
and Pitt (1987) have given a real-valued periodic stationary Gaussian process X for which O
is a proper subset of R [because the range of X is a.s. bounded]. They have shown a sufficient
condition in terms of the spectral measure of a stationary (N, d)-Gaussian random field X so
that O = Rd holds. Monrad and Pitt (1987) also point out that the self-similarity of an (N, d)-
fractional Brownian motion Bα implies that if N > αd then O = Rd almost surely. However,
we do not know whether O = Rd is true for the (N, d)-Gaussian random fields satisfying the
conditions of Theorem 2.5. ¤

The local time L(0, 1) [i.e., L(x, 1) at x = 0] of a Gaussian process X sometimes appears
as a limit in some limit theorems on the occupation measure of X; see, for example, Kasahara
and Ogawa (1999) and the references therein. Since there is little knowledge on the explicit
distribution of L(0, 1), it is of interest in estimating the tail probability P{L(0, 1) > x} as
x → ∞. This problem has been considered by Kasahara et al. (1999) under some extra
conditions on the Gaussian process X. The next theorem is an extension of their main result.

Theorem 3.22 Let X = {X(t) : t ∈ R} be a mean 0 Gaussian process in Rd defined by (3.1).
We assume that the associated Gaussian process Y satisfies Condition (C) and the condition
(3.31) with γ0 = 0. Then for x > 0 large enough,

− logP
{
L(0, 1) > x

} ³ 1
φ−1(1/x2)

, (3.65)

where φ−1 is the inverse function of φ as defined in Theorem 3.1.
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Theorem 3.22 follows from the moment estimates for L(0, 1) in Lemma 3.24 and the fol-
lowing lemma on the tail probability of nonnegative random variables. When ψ is a power
function or a regularly varying function, Lemma 3.23 is well known.

Lemma 3.23 Let ξ be a non-negative random variable and let ψ : R+ → R+ be a non-
decreasing function having the doubling property. If there exist positive constants K3,33 and
K3,34 such that

Kn
3,33

ψ(n)n ≤ E(ξn) ≤ Kn
3,34

ψ(n)n

for all n large enough, then there exist positive constants K3,35 > K3,34, K3,36 and K3,37 such
that for all x > 0 large enough,

e−K3,36x ≤ P{ξ ≥ K3,35 ψ(x)
} ≤ e−K3,37x. (3.66)

Proof The upper bound in (3.66) follows easily from Chebyshev’s inequality and a monotonic-
ity argument. In order to prove the lower bound, we follow the elementary argument of Tala-
grand (1998). By applying the Paley-Zygmund inequality [cf. Kahane (1985), p.8] to ξn, we
have

P
{

ξ ≥ K3,33

2
ψ(n)

}
≥ P

{
ξn ≥ 1

2
E(ξn)

}

≥ 1
4

[
E(ξn)

]2

E(ξ2n)

≥ 1
4

K2n
3,33

ψ(n)2n

K2n
3,34

ψ(2n)2n
.

Now it is clear that the lower bound in (3.66) follows from the doubling property of ψ and a
standard monotonicity argument. ¤

Lemma 3.24 There exist positive and finite constants K3,38 and K3,39 such that for all integers
n ≥ 1

Kn
3,38

φ(1/n)nd/2
≤ E[

L(0, 1)n
] ≤ Kn

3,39

φ(1/n)nd/2
. (3.67)

Proof As in the proofs of Lemma 2.5 in Xiao (1997a) or Lemma 1 in Kasahara et al. (1999),
we derive from (3.45) that for any integer n ≥ 1,

E
[
L(0, 1)n

]
= (2π)−nd/2

∫

[0, 1]n

1
[
detCn(t1, · · · , tn)

]d/2
dt1 · · · dtn. (3.68)

It follows from (3.48) and (3.49) that

[
E

(
L(0, 1)n

)]1/n
³


n!

∫

0<t1<t2<...<tn≤1

n∏

j=1

1
σd(tj − tj−1)

dt1 · · · dtn




1/n

³
[
n!

∫

0<s1+s2+···+sn≤1
dU3(s1) · · · dU3(sn)

]1/n

,

(3.69)
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where the function U3(t) is defined by

U3(t) =
∫ min{t,1}

0

ds

(φ(s))d/2
∀ t ≥ 0.

Since φ is non-decreasing, we see that U3(2t) ≤ 2U3(t) for all t ≥ 0. Hence it follows from
Lemma 3.19 that [

E
(
L(0, 1)n

)]1/n
³ (n!)1/nU3(1/n). (3.70)

Therefore, (3.67) follows from (3.52) and Stirling’s formula as in the proof of Lemma 3.17. ¤
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