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Local Times and Related Properties of
Multidimensional Iterated Brownian Motion

Yimin Xiao1,2
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Let { W(t), teR} and [B(t), t>0} be two independent Brownian motions in R
with W(0) = B(0) = 0 and let

be the iterated Brownian motion. Define rf-dimensional iterated Brownian
motion by

where X1,..., Xd are independent copies of Y. In this paper, we investigate the
existence, joint continuity and Holder conditions in the set variable of the local
time

of X(t), where B(B + ) is the Borel CT-algebra of R + . These results are applied to
study the irregularities of the sample paths and the uniform Hausdorff dimen-
sion of the image and inverse images of X(t).

KEY WORDS: Iterated Brownian motion; Local times; Holder conditions;
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1. INTRODUCTION

Let { W(t), t e R} and ( B ( t ) , t e R +} be two independent Brownian motions
in R with W(0) = B(0) and let
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where X = Y means that the two processes X and Y have the same finite
dimensional distributions. The notion of self-similarity was first initiated by
Kolmogorov in 1940. Self-similar processes have gained much attention
due to their role in numerous physical theories. We refer to Kono(24) and
Taqqu(33) for more identical comments and a bibliographical guide on self-
similar processes, especially self-similar stable (including Gaussian) pro-
cesses. IBM offers an interesting example of nonstable self-similar processes.

The existence and joint continuity of the local time of Y(t) have been
proved independently and at the same time by Burdzy and Khoshnevisan(9)

and by Csaki et al.(11) In particular, they proved that for any T>0, almost
surely

By using (1.2) and a capacity argument, Burdzy and Khoshnevisan(9) also
proved the following uniform Hausdorff dimension result for the level sets
of IBM: almost surely

for all t>0 and all x in the interior of Y([0, t]), where

is the x-level set of Y(t) and dim E is the Hausdorff dimension of E. We
refer to Falconer(14) for definition and more properties of Hausdorff
measure and Hausdorff dimension.

Associate to IBM Y(t) ( t > 0 ) , we define an Rd valued process by

Using the terminology of Burdzy,(7) Y(t) (t e R) + is called iterated Brownian
motion or simply IBM. Recently, there has been a lot of investigations on
sample path properties of IBM [see Bertoin(6); Burdzy(7,8); Burdzy and
Khoshnevisan(9); Csaki et al.(10,11); Deheuvels and Mason(12): Hu et al.(18);
Hu and Shi(19); Khoshnevisan and Lewis(25,26); and Shi(32) and the referen-
ces therein].

It is easy to verify that Y(t) ( t eR + ) has stationary increments and is
a self-similar process of index 1/4, that is, for any a>0

Xiao384



This generalizes (1.3) to iterated Brownian motion in Rd.
We say a few words about the methods used in this paper. The

arguments of Burdzy and Khoshnevisan(9) and Csaki et al.(11) in the study
of local time of iterated Brownian motion depend on the properties of the
local time of Brownian motion in R. Since Brownian motion in Rd has
no local time for d>1, their methods can not be carried over to the
current case. Instead, we will use the methods developed by Berman(3-5);
Pitt(30); Ehm(13); and Xiao(35) to prove the results on local time of d-dimen-
sional iterated Brownian motion. Uniform Hausdorff dimension results for
Brownian motion were proved by Kaufman(21,22); see also Perkins and
Taylor(29); for locally nondeterministic Gaussian random fields by Monrad
and Pitt.(27) We will follow the same line to study the Hausdorff dimension
of the image set and the inverse image of X(t).

The paper is organized as follows. In Section 2 we study the existence,
joint continuity and Holder conditions in the set variable of the local time
of iterated Brownian motion in Rrf. The results are applied to derive par-
tially the results on the modulus nondifferentiability of the sample path
proved by Hu and Shi(19) and the Hausdorff measure of the graph of X(t).
In Section 3, we prove some uniform Hausdorff dimension results for the
image set and the inverse image of X(t).

We will use K to denote an unspecified positive finite constant which
may not necessarily be the same in each occurrence.

The purpose of this paper is twofold. Our first objective is to investigate the
existence, joint continuity and Holder conditions in the set variable of the
local times of X(t) (t^Q). This is motivated by the papers of Burdzy and
Khoshnevisan(9) and Csaki et al.(11) In particular, our Theorem 3 improves
Proposition 2.4 in Burdzy and Khoshnevisan(9) and Theorem 3.1 in Csaki
et a/.(11) We also apply the results on local time of IBM to derive other
sample path properties such as nowhere differentiability and the Hausdorff
measure of the graph of X(t). The second objective of this paper is to prove
some results on the Hausdorff dimension of the image and inverse image
of X(t). In particular, we prove that almost surely for every xeRd\{0}

where Xl,...,Xd are independent copies of Y. We will call X(t) (t^Q)
d-dimensional iterated Brownian motion. By (1.1) we see that X(t) (f >0)
is also self-similar of index 1/4. Furthermore for every UeSO(d)
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where < •, • > is the ordinary scalar product in Rd and we will use | • | to
denote the Euclidean norm. It follows from Fubini's theorem that

for all Borel set A s R'', where A, is the one-dimensional Lebesgue measure.
If fj.B is absolutely continuous with respect to the Lebesgue measure Xd

on Rd, we say that X(t) has a local time on B and define its local time
L(x, B) to be the Radon-Nikodym derivative of uB. If B = [0,t], we
simply write L(x, B) as L(x, t).

The following existence theorem for the local time of iterated Brownian
motion in R'' is easily proved by using Fourier analysis [see, e.g., Berman(3)

or Kahane(20)].

Proposition 1. If d<4, then for any T>0, with probability 1, X(t)
(O^t^T) has a square integrable local time L(x, T}.

Proof. Let u[0j r] be the occupation measure defined by (2.1). Then
the Fourier transform of u[0 T] is

of X(t), where B(R4.) is the Borel cr-algebra of R+. These results are
applied to study the irregularities of the sample paths of X(t).

We recall briefly the definition of local time. For a comprehensive sur-
vey on local times of both random and nonrandom vector fields, we refer
to Geman and Horowitz(16) [see also Geman, et al.(17)]. Let X(t) be any
Borel function on R with values in R''. For any Borel set BcR, the
occupation measure of X is defined by

2. THE LOCAL TIME OF IBM

Let X(t) (t eR + ) be iterated Brownian motion in R'' defined by (1.4).
In this section, we investigate the existence, joint continuity and Holder
conditions in the set variable of the local time
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Multidimensional Iterated Brownian Motion 387

To evaluate the characteristic function in (2.2), we assume Q<s<t (the
case 0 < t <s is similar) and denote the density of (B(t), B(s)) by pt<s(x, y).
Since X},..., Xd are independent copies of W(B(t)), we have

by substitutions. Putting (2.3) into (2.2), we have

since d<4. That is, almost surely ft(u, T)eL2(Rd). Therefore with prob-
ability 1, /u[0) r] is absolutely continuous with respect to Arf and its density
belongs to L2(Rd). The proof is completed. D



where « = («,,...,«„), i =(t,,..., t,,), and each UjeRd, tjtB (j=l,...,n). In
the coordinate notation we then write uj=(u^,...,ud

i). The equalities (2.5)
and (2.6) have also been given by (25.5) and (25.7) in Geman and
Horowitz.(16)

For a fixed T>0, if we can choose L(x, t] to be a continuous function
of (x, t), x e Rd, O^t^T, then X is said to have a jointly continuous local
time on [0, T~\. Under these conditions, L(x, •) can be extended to be a
finite measure supported on the level set

see Adler(2) [Thm. 8.6.1]. This fact has been used by Berman<4); Adler ( I>;
Ehm(13); Monrad and Pitt,(27 just mention a few, to study the Hausdorff
dimension of the level sets and inverse image of stochastic processes.

In order to study the joint continuity and Holder conditions in the set
variable of the local time of rf-dimensional iterated Brownian motion, we

and

It follows from (2.4) that for any x , w e R d , Be^(R + ) and any integer
n ̂  1, we have

We can express the local times L(x, t} as the inverse Fourier transform
of ft(u, t), namely

Xiao388



Multidimensional Iterated Brownian Motion 389

will use the methods similar to those used by Ehm(13); Geman et al.(17); and
Xiao.(35) We first prove some lemmas.

Lemma 1. Let 0 < oc < 1. Then for any integer n ̂  1 and any
x\,..., xn e R, we have

and for any y > 0

where K > 0 is a finite constant depending only on oc.

Proof. It suffices to prove (2.7). We observe that the left-hand side of
(2.7) can be written as

where Z is the set of the integers. It is clear that (2.7) follows from (2.9)
and Lemma 2. D

Lemma 2. Let 0 < a < 1. Then for any integer n ̂  1 and any
x,,..., xneR, we have

where K > 0 is a finite constant depending only on a.

Proof. The easiest case is that x,e [0, 1] (/= 1,..., n). In this case, the
proof of (2.10) is implied in the following. If x, (i = I,..., n) are not all in
[.0, 1], we may and will assume x{, x2,-, xne [ — 1, 2] and



by Jensen's inequality. This proves (2.10). D

Lemma 3 is a special case of a lemma of K.6no(23), see also Ehm.(13)

Lemma 3. Let 0 < a < 1 and h > 0. Then for any n > 1,

The following lemma gives the basic estimates for the moments of the
local time of iterated Brownian motion in Rd.

Lemma 4. Let X(t) (t^Q) be (d-dimensional iterated Brownian
motion with d<4. For any h>0, fi = [0, h], x,weW', any even integer
n ^ 2 and any 0 < j < 1/6, we have

where K > 0 is a finite constant depending on d only.

In this case

Since decreasing the number of x,'s does not increase the value of the
integral in (2.10), we will further assume ,x, e [ — 1, 0) and

Xiao390



Multidimensional Iterated Brownian Motion 391

Proof. Since X1,...,Xd are independent copies of Y(t)= W(B(t)), it
follows (2.5) that

where Uk = (u\,...,uk
n)eW. For any n ^ l , let S(n) be the family of all

permutations of {!,...,«}. For any permutation neS(n), let

For simplicity, we consider distinct t1,..., tne(0, h~\ with

Denote the density of (B( t 1 ) , B(t2),..., B(tn)) by pt1...,,„(y1,..., jj, i.e.,

Then by conditioning, we have

where ^(j,,..., jn) is the covariance matrix of W(y]],..., W(yn) and C/' is
the transpose of C/eR". We claim that for any >>,,..., >"neR

were det(R) denotes the determinant of R. If det(R(j,,...,;>„)) = 0, then
(2.16) is trivial. Otherwise, we see that the following function



then it follows from (2.15)-(2.18) and Lemma 1 that

where c is an absolute constant. In fact, (2.18) holds for a large class of
locally nondeterministic Gaussian processes (see e.g., Xiao(35) and the
references therein). We make the change of variables

where Var Y and Var( Y\Z) denote the variance of Y and the conditional
variance of Y given Z respectively, and for any y\,..., yneR

is the density function of the Gaussian vector with mean zero and
covariance matrix R~l(yi,..., yn}. This implies (2.16) immediately.

It is well known that
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Multidimensional Iterated Brownian Motion 393

where

By Lemma 3 and (2.19) we see that (2.13) is at most

This proves (2.11).
Now we turn to the proof of (2.12). By (2.6) and the elementary

inequality

we see that for any even integer n ^ 2 and any 0 < y < 1,

By making the change of variables t^hs/, j=\,...,n and u, = h l'4vt,
j = I,..., n and changing the letters s, v back to t, u, we see that the right-
hand side of (2.20) equals

We fix any distinct tls..., tne [0, 1] satisfying (2.14) and let

Since for any 0<y < 1, \a + b\y^ \a\y + \b\y, we have



Fix a k e {1,..., d} and consider the integral in (2.24). To simplify the nota-
tions, we will omit the superscript (subscript) k. Similar to (2.15), we have

For any fixed (y(,..., yn) eR"n/'re, by the independence of increments of
W( •), we have

Then Ak (k = 1,..., d) are disjoint and £/< #Ak = n. By the independence of
X^,..., Xd, we have

Now fix a sequence (//,,..., B„) e {!,..., d}", for 1 ̂ /c <d, let

where the summation £' is taken over all (B1,..., Bn)e {1,..., d}". It follows
from (2.22) that
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by simple substitutions, where the summation ]T" is taken over all
(?/!,..., / /„)e {0, 1,2}" with 5>y=#/L It follows from (2.27) and (2.28.)
that

Using again the inequality \a + b\y^ \a\y + \b\y ( 0 < y < l ) , we see that
(2.27) is at most

It follows from (2.26) that

where

395Multidimensional Iterated Brownian Motion
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We make the substitution y/-j/_, =(tJ-tJ_lY/2 zf (j=1,...,n) in (2.29)
and notice that

where the summation £"' is taken over all ((5,,..., dn) e {1,..., n}". For any
such a fixed sequence (<5[,..., 5n), we can write

with T; ^ 0 and

By (2.30), we have that each summand in (2.29) is at most

It follows from (2.31), (2.32) and Lemma 1 that the integral in the sum-
mand of (2.33) is at most



The Lemma 6 is a consequence of Lemma 5 and Chebyshev's
inequality.

Lemma 6. With the notations of Lemma 5, for any X > 0, there exists
a finite constant A > 0, depending on A and d only, such that for any u > 0

In particular, (2.38) and (2.39) hold for r = 0.

This proves (2.12).

Remark 1. We believe a better inequality than (2.12) with (n!)4rf

replaced by (n!)3(d+y) /4 hold. However, (2.12) is enough for our purpose.
Since X(t) has stationary increments, the above arguments also prove

Lemma 5.

Lemma 5. For any r^Q, let B=(i,T + h'] with h > 0. Then for any
x, w e Rd, any even integer n > 2 and any 0 < y < 1/6

It follows from (2.20), (2.21), (2.35) and Lemma 3 that for 0<y < 1/6

Combining (2.23)-(2.34), we have
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Proof. We only prove (2.38); inequality (2.39) can be proved in the
same way. Let

By (2.36), Jensen's inequality and Stirling's formula, we have

Then (2.38) follows from (2.40) and Chebyshev's inequality as in the proof
of Lemma 3.14 in Geman, et al.(17) D

Now we prove the main results of this section.

Theorem 1. If d < 4, then almost surely X(t) ( t > 0 ) has a jointly con-
tinuous local time L(x, t) (x e Rd, t > 0) and for any B e ,B(R + ), Ae B ( R d )

Proof. It follows from Lemma 4 that for any 0 < y < l / 6 and any
even integer n ̂  2

Then the joint continuity of L(x, t) follows immediately from (2.42) and a
continuity lemma of Garsia.(15) See also Geman et al.(17) for a more
general result.

To prove Theorem 2, we will need Lemma 7, which can be derived
from LIL of Brownian motion (see Burdzy(7)).

Lemma 7. Let Y(t) ( t > 0 ) be iterated Brownian motion in R. For
any r eR , with probability 1,

Theorem 2. If d < 4, then there exits a positive and finite constant K
such that for any T > 0 with probability 1



where Zd is the integer lattice in Rd. The cardinality of Gn satisfies

at least when n is large enough, where a > 0 is a constant depending on y
and d only. Denote

It follows from Lemma 6 that for some constant A > 1,

Hence by the Borel-Cantelli lemma there is n2 = n 2 (w) such that almost
surely

For any fixed integers n with n2>2d, m>1 and any xeGn, define

and let

Fix a j with 0 <y < 1/6 and for any integer n>1, let

Proof. The proof is similar to the proof of Theorem 1.1 in Xiao(35)

[see also Geman et al.(17) and Ehm(13)]. For any fixed i^O, let Bn =
[T,T + 2~"] (n = 1, 2,...). It follows from Lemma 7 that almost surely there
exists n, = n l ( w ) such that
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for some xeGa. Then each pair ym^\, ym is linked, so by (2.46) and the
continuity of L(-, Bn) we have

for all xeGn, m^\ and any linked pair j> , , y2eF(n, m, x). Let QH be the
event that (2.44)-(2.46) hold eventually. Then P(Q0)= 1. Fix an n^n4 =
max{n1, n2, n3} and any j € Rrf with |y| < /:2""/4(log log 2")3/4. We repre-
sent j in the form y = limm _ ̂  ym, where

there exists H3 = n3(w) such that for almost surely for n>n3

Since

A pair of points yl, y2 e F(n, m, x) is said to be linked if y2 — yl = Ons2 m

for some ee {0, 1}''. Then by (2.39) we have
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We believe this inequality also holds for 1 <d<4, but we have not been
able to prove it.

Theorem 3. If d<4, then for any T>0, there exists a positive finite
constant K such that almost surely

Proof. The proof, using Lemma 6, is very similar to that of Xiao(35)

[Thm. 1.2]. Hence we will omit the details.

Remark 2. If d== 1, (2.49) becomes

This improves Proposition 2.4 in Burdzy and Khoshnevisan(9) and
Theorem 3.1 in Csaki et al.(11) as mentioned in (1.2).

This completes the proof of Theorem 2. D

Remark 1. Tf d=l , Csaki et al.(11) [Thm. 4.1] proved that almost
surely

Finally for any r > 0 small enough, there exists n> n4 such that
2-"- ' ^ r < 1 -". Hence by (2.48) we have

for any y eRd with \y\ ^K2-"/4(\og log 2")3/4. Therefore

It follows from (2.45) and (2.47) that almost surely for n>n4
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Let Q = B(t,r). Then (2.50) follows immediately from (2.43) and (2.52).
Similarly, (2.51) follows from (2.49) and (2.52). D

Remark 3. Theorem 4 recovers partially the results obtained by
Khoshnevisan and Lewis(26); Hu et al.(18); and Hu and Shi,(19) respectively.

Now let

and

be the image and graph set of iterated Brownian motion X(t) in Rd. It
follows from standard methods that with probability 1

In particular, X(t) is almost surely nowhere differentiable in R+.

Proof. For any interval Q s R +,

For any interval TcR +

The Holder conditions for the local time of a stochastic process X(t)
are closely related to the irregularity of the sample paths of X(t) (cf.
Berman(4)). In the following, we will apply Theorems 2 and 3 to derive
results about the degree of oscillation of the sample paths and the
Hausdorff measure of the graph set of X(t).

Theorem 4. Let X(t)(teR + )be iterated Brownian motion in Rrf with
d < 4. For any T e R + , there is a finite constant K > 0 such that
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Multidimensional Iterated Brownian Motion 403

It would be interesting to study the exact Hausdorff measure of the image
and graph of iterated Brownian motion in Rrf. We end this section by
presenting a result on the lower bound of the Hausdorff measure of the
graph as an application of Theorem 2.

Theorem 5. Let X(t) (teR + ) be iterated Brownian motion in R''
with d < 4. Then almost surely

where ^3-m is the </>3 -Hausdorff measure, K is a positive finite constant
depending on d only and

Proof. We define a random Borel measure /u in GrX([Q, l ] ) ^R 1 + r f

by

Then /«(R1+' /) = ju(GrX([0, !])) = 1. It follows from Theorem 2 that for
any fixed t0e [0, 1] almost surely

By Fubini's theorem, we see that (2.56) holds almost surely for A, a.e.
t0e[0, 1]^. Then the lower bound in (2.55) follows from (2.56) and an
upper density theorem for Hausdorff measure due to Rogers and Taylor.(31)

3. UNIFORM DIMENSION RESULTS

It follows from a capacity argument and the following Lemma 8 that
for any Borel set E <=, R + almost surely

The exceptional null set in (3.1) depends on E. In the following, we will
prove a uniform Hausdorff dimension result: if d^4, then outside a single
null probability set, (3.1) holds simultaneously for every Borel set E^R + .
This is not true for d < 4. The Hausdorff dimension of the inverse image
X"l(F) for any Borel set F^Rd will also be considered. In particular, we
will generalize (1.3) to (d-dimensional iterated Brownian motion. Hausdorff



If, in addition, X(t) also has a bounded local time L(x, [0, 1]), then for
every closed set F^Rd,

For n = 1, 2,... and ke {1, 2,..., 2"}, let Ink = [(£-!) 2"", /c2~"] .

Lemma 10. If d 3= 4, then almost surely for n large enough and for
any ball D in Rd of radius 2n / 4n3 / 4 , ^"'(D) can intersect at most «2'/+2

intervals Ink.
By Lemma 8, we see that Lemma 10 is a corollary of Lemma 11.

Lemma 11. If d^4, then almost surely for n large enough, any ball
D of radius 2' -"/V/4 in Rrf can contain at most n2<l+2 points A^-").

/Voo/.' Let An be the event that there exists a ball D of radius
2'-"/V/4 in Rd such that it contains at least n2d+2 points AU2-"). Con-
sider n distinct points tj = ki2~" (/c;e {1,..., 2"}) satisfying

and X ( t j ) e D for j= 1,...,«. Denote by Nn the number of such n-tuples
(*,,...,/„).

Lemma 9. If for any c>0, X(t): [0, 1] -> Rd satisfies a uniform
Holder condition of order a —e, then

dimension results of this nature for Brownian motion were proved by
Kaufman(21,22); see also Perkins and Taylor(29); for locally nondeterministic
Gaussian random fields by Monrad and Pitt.(27) We will follow the same
line.

We need several lemmas. Lemma 8 is a direct consequence of a result
of Khoshnevisan and Lewis(25) and Lemma 9 is from Monrad and Pitt.(27)

Lemma 8. Let Y(f) be iterated Brownian motion in R, then with
probability 1
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Multidimensional Iterated Brownian Motion 405

Since A',,..., Xd are independent copies of W(B(-)}, we have

where D, is the orthogonal projection of D in the lth axis. For each fixed
1 < / < r f , similar to (2.15) and (2.19) we have

where the last inequality follows from Lemma 1. It follows from (3.4) and
(3.5) that

Therefore,

We can simply write for rf^4

On the other hand, if the event A „ occurs, then for n large enough



Proof. It suffices to prove (3.8) for £c [0, 1 ]. Then the upper bound
in (3.8) follows from Lemmas 8 and (3.2). The lower bound follows from
Lemma 10 in a standard way. D

Theorem 7. Let X(t) be iterated Brownian motion in Rd with d<4,
then with probability 1, for every closed set FsRrf\{0}

In particular, for every j c e R ^ V f O }

Proof. The upper bound in (3.9) follows from Lemma 8, the con-
tinuity of the local time and (3.3). The proof of the lower bound

for every closed set F^ o= u [,v>,]{x: L(x, [,$, r] >0}, is the same as that
of Theorem 1 in Monrad and Pitt,(21) using Theorem 3. The open set O is
almost surely nonempty. It follows from the self-similarly of X(t) and (1.5)
that 0 = Rd\{0).

Remark 4. The packing dimension [see Taylor and Tricot(34)] of the
image and inverse image of X(t) can also be discussed. Results similar to
(3.8) and (3.9) also hold.

Since £« P(Aa)< oo, the proof of Lemma 11 is completed by the Borel
Cantelli lemma. D

Now we prove the main theorem of this section.

Theorem 6. Let X(t) be iterated Brownian motion in RJ with d^^,
then with probability 1,

It follows from (3.6) and (3.7) that
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